JPWO2020059225A1 - 電極製造装置 - Google Patents

電極製造装置 Download PDF

Info

Publication number
JPWO2020059225A1
JPWO2020059225A1 JP2020547978A JP2020547978A JPWO2020059225A1 JP WO2020059225 A1 JPWO2020059225 A1 JP WO2020059225A1 JP 2020547978 A JP2020547978 A JP 2020547978A JP 2020547978 A JP2020547978 A JP 2020547978A JP WO2020059225 A1 JPWO2020059225 A1 JP WO2020059225A1
Authority
JP
Japan
Prior art keywords
alkali metal
electrode
unit
manufacturing apparatus
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020547978A
Other languages
English (en)
Other versions
JP7280281B2 (ja
Inventor
相田 一成
一成 相田
直井 雅也
雅也 直井
友哉 岩▲崎▼
友哉 岩▲崎▼
健二 南坂
健二 南坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Energy Solutions Co Ltd
Original Assignee
Musashi Energy Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Energy Solutions Co Ltd filed Critical Musashi Energy Solutions Co Ltd
Publication of JPWO2020059225A1 publication Critical patent/JPWO2020059225A1/ja
Application granted granted Critical
Publication of JP7280281B2 publication Critical patent/JP7280281B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • B05C3/02Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material
    • B05C3/12Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material for treating work of indefinite length
    • B05C3/132Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material for treating work of indefinite length supported on conveying means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/04Drying; Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

電極製造装置は、活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする。電極製造装置は、アルカリ金属イオンを含む溶液を収容するドーピング槽と、前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、前記ドーピング槽に収容され、導電性基材、及び導電性基材上に配置されたアルカリ金属含有板を備える対極ユニットと、前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、を備える。前記アルカリ金属含有板と前記電極前駆体との距離は、前記距離の測定位置が、前記電極前駆体と前記接続ユニットとが接続する接続位置に近いほど、大きい。

Description

関連出願の相互参照
本国際出願は、2018年9月19日に日本国特許庁に出願された日本国特許出願第2018−175011号に基づく優先権を主張するものであり、日本国特許出願第2018−175011号の全内容を本国際出願に参照により援用する。
本開示は電極製造装置に関する。
近年、電子機器の小型化・軽量化は目覚ましく、それに伴い、当該電子機器の駆動用電源として用いられる電池に対しても小型化・軽量化の要求が一層高まっている。
このような小型化・軽量化の要求を満足するために、リチウムイオン二次電池に代表される非水電解質二次電池が開発されている。また、高エネルギー密度特性及び高出力特性を必要とする用途に対応する蓄電デバイスとして、リチウムイオンキャパシタが知られている。更に、リチウムより低コストで資源的に豊富なナトリウムを用いたナトリウムイオン型の電池やキャパシタも知られている。
このような電池やキャパシタにおいては、様々な目的のために、予めアルカリ金属を電極にドープするプロセス(一般にプレドープと呼ばれている)が採用されている。アルカリ金属を電極にプレドープする方法として、例えば、連続式の方法がある。連続式の方法では、帯状の電極板を電解液中で移送させながらプレドープを行う。連続式の方法は、特許文献1〜4に開示されている。
特開平10−308212号公報 特開2008−77963号公報 特開2012−49543号公報 特開2012−49544号公報
プレドープを行う装置として、以下の電極製造装置が考えられる。電極製造装置は、帯状の電極板に対向配置されたアルカリ金属含有板を備える。電極製造装置は接続部を備える。接続部は、電源と、帯状の電極板とを、電気的に接続する。アルカリ金属含有板の厚みは、プレドープを行うにつれて、徐々に減少する。アルカリ金属含有板の一部において、厚みが所定の下限値以下になると、アルカリ金属含有板を交換する必要がある。
アルカリ金属含有板の厚みは、接続部に近いほど早く減少する。その理由は、接続部に近いほど、アルカリ金属含有板と接続部との電気抵抗が低く、アルカリ金属含有板に電流が流れ易いためであると推測される。
アルカリ金属含有板の厚みが、接続部に近いほど早く減少するため、アルカリ金属含有板のうち、接続部から遠い部分の厚みは大きいにもかかわらず、接続部に近い部分の厚みが下限値以下となり、アルカリ金属含有板を交換する必要が生じる。その結果、アルカリ金属含有板を効率的に使用することができない。
本開示の1つの局面は、アルカリ金属含有板を効率的に使用することを可能にする電極製造装置を提供することが好ましい。
本開示の1つの局面は、活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする電極製造装置であって、アルカリ金属イオンを含む溶液を収容するように構成されたドーピング槽と、前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、前記ドーピング槽に収容され、導電性基材、及び前記導電性基材上に配置されたアルカリ金属含有板を備える対極ユニットと、前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、を備え、前記アルカリ金属含有板と前記電極前駆体との距離は、前記距離の測定位置が、前記電極前駆体と前記接続ユニットとが接続する接続位置に近いほど、大きい電極製造装置である。
本開示の1つの局面である電極製造装置において、アルカリ金属含有板と電極前駆体との距離は、その距離の測定位置が接続位置に近いほど、大きい。そのため、アルカリ金属含有板の厚みの減少の程度は、アルカリ金属含有板におけるどの位置でも大きく変化しない。その結果、アルカリ金属含有板を効率的に使用することができる。
本開示の別の局面は、活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする電極製造装置であって、アルカリ金属イオンを含む溶液を収容するように構成されたドーピング槽と、前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、前記ドーピング槽に収容され、導電性基材、及び前記導電性基材上に配置されたアルカリ金属含有板を備える対極ユニットと、前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、を備え、前記アルカリ金属含有板の厚みは、前記厚みの測定位置が、前記電極前駆体と前記接続ユニットとが接続する接続位置に近いほど、大きい電極製造装置である。
本開示の別の局面である電極製造装置において、アルカリ金属含有板の厚みは、厚みの測定位置が、電極前駆体と接続ユニットとが接続する接続位置に近いほど、大きい。
そのため、アルカリ金属含有板の厚みが、接続位置に近いほど早く減少した場合でも、アルカリ金属含有板の残存する厚みは、アルカリ金属含有板におけるどの位置でも大きく変化しない。その結果、アルカリ金属含有板を効率的に使用することができる。
本開示の別の局面は、活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする電極製造装置であって、アルカリ金属イオンを含む溶液を収容するように構成されたドーピング槽と、前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、前記ドーピング槽に収容され、導電性基材、及び前記導電性基材上に配置されたアルカリ金属含有板を備える対極ユニットと、前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、を備え、前記導電性基材は、前記アルカリ金属含有板に対向する面に孔を有する電極製造装置である。
本開示の別の局面である電極製造装置において、導電性基材は、アルカリ金属含有板に対向する面に孔を有する。そのため、アルカリ金属含有板を導電性基材から剥がす作業が容易である。
本開示の別の局面は、活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする電極製造装置であって、アルカリ金属イオンを含む溶液を収容するように構成されたドーピング槽と、前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、前記ドーピング槽に収容された対極ユニットと、前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、を備え、前記対極ユニットは、ロッド状のアルカリ金属含有材料を収容し、前記溶液の透過を許容する収容部を備える電極製造装置である。
本開示の別の局面である電極製造装置において、対極ユニットは、ロッド状のアルカリ金属含有材料を収容する収容部を備える。収容部内のロッド状のアルカリ金属含有材料が減少したとき、新たなロッド状のアルカリ金属含有材料を収容部内に供給することができる。そのため、対極ユニットにアルカリ金属含有材料を補充する作業が容易である。
電極製造装置の構成を表す説明図である。 電解液槽を下方に移動させた状態を表す説明図である。 電極製造装置の電気的構成を表す説明図である。 対極ユニットの構成を表す側断面図である。 電極前駆体の構成を表す平面図である。 図5におけるVI-VI断面での断面図である。 対極ユニットの構成を表す側断面図である。 対極ユニットの構成を表す側断面図である。 対極ユニットの構成を表す側断面図である。 金属箔の構成を表す平面図である。 対極ユニットの構成を表す説明図である。
1…電極製造装置、7、203、205、207…電解液槽、9、11、13、15、17、19、21、23、25、27、29、31、305、307、109、311、313、315、317、119、321、323、33、35、37、39、41、43、45…搬送ローラ、47…供給ロール、49…巻取ロール、51、52、54…対極ユニット、53…多孔質絶縁部材、55…支持台、57…循環濾過ユニット、61、62、64…直流電源、63…ブロア、66…電源制御ユニット、67、68、70…支持棒、69…仕切り板、71…空間、73…電極前駆体、75…電極、77…導電性基材、77B…本体部、77C…金属箔、79…アルカリ金属含有板、81…フィルタ、83…ポンプ、85…配管、87、89、91、94、97、99…ケーブル、93…集電体、95…活物質層、101…CPU、103…洗浄槽、105…メモリ、107…孔、111…収容部、113…アルカリ金属含有材料、115…アノードバック、117…透過型センサ、117A…光照射部、117B…受光部、121…供給ユニット、123…ガイド部、125…シャッター、127…開口
本開示の例示的な実施形態について図面を参照しながら説明する。
<第1実施形態>
1.電極製造装置1の構成
電極製造装置1の構成を、図1〜図4に基づき説明する。図1に示すように、電極製造装置1は、電解液槽203、205、7、207と、洗浄槽103と、搬送ローラ9、11、13、15、17、19、21、23、25、27、29、31、305、307、109、311、313、315、317、119、321、323、33、35、37、39、41、43、45(以下ではこれらをまとめて搬送ローラ群と呼ぶこともある)と、供給ロール47と、巻取ロール49と、対極ユニット51、52、54と、多孔質絶縁部材53と、支持台55と、循環濾過ユニット57と、3つの直流電源61、62、64と、ブロア63と、電源制御ユニット66と、を備える。電解液槽205、7、207はドーピング槽に対応する。搬送ローラ群は搬送ユニットに対応する。
電解液槽205は、図1及び図2に示すように、上方が開口した角型の槽である。電解液槽205の底面は、略U字型の断面形状を有する。電解液槽205内には、仕切り板69と、4個の対極ユニット51と、4個の多孔質絶縁部材53と、搬送ローラ27とが存在する。図2に示すように、4個の多孔質絶縁部材53には、53a、53b、53c、53dが含まれる。
仕切り板69は、その上端を貫く支持棒67により支持されている。支持棒67は図示しない壁等に固定されている。仕切り板69のうち、上端を除く部分は、電解液槽205内にある。仕切り板69は上下方向に延び、電解液槽205の内部を2つの空間に分割している。仕切り板69の下端に、搬送ローラ27が取り付けられている。仕切り板69と搬送ローラ27とは、それらを貫く支持棒68により支持されている。なお、仕切り板69の下端付近は、搬送ローラ27と接触しないように切り欠かれている。搬送ローラ27と、電解液槽205の底面との間には空間が存在する。
4個の対極ユニット51は、それぞれ、それらの上端を貫く支持棒70により支持され、上下方向に延びている。支持棒70は図示しない壁等に固定されている。対極ユニット51のうち、上端を除く部分は、電解液槽205内にある。4個の対極ユニット51のうち、2個は、仕切り板69を両側から挟むように配置されている。残りの2個の対極ユニット51は、電解液槽205の内側面に沿って配置されている。
図1に示すように、仕切り板69側に配置された対極ユニット51と、電解液槽205の内側面に沿って配置された対極ユニット51との間には空間71が存在する。対極ユニット51は、直流電源61のプラス極に接続される。対極ユニット51の詳しい構成は後述する。
それぞれの対極ユニット51における空間71側の表面に、多孔質絶縁部材53が取り付けられている。多孔質絶縁部材53は、板状の形状を有する。多孔質絶縁部材53は、対極ユニット51の表面に取り付けられている。多孔質絶縁部材53が有する板状の形状とは、多孔質絶縁部材53が対極ユニット51の表面に取り付けられている際の形状である。多孔質絶縁部材53は、それ自体で一定の形状を保つ部材であってもよいし、例えばネット等のように、容易に変形可能な部材であってもよい。
多孔質絶縁部材53と、搬送ローラ群により搬送される電極前駆体73とは非接触である。多孔質絶縁部材53の表面から、電極前駆体73までの最短距離dは、0.5〜100mmの範囲内であることが好ましく、1〜10mmの範囲内であることが特に好ましい。最短距離dとは、多孔質絶縁部材53の表面のうち、電極前駆体73に最も近い点と、電極前駆体73との距離である。
多孔質絶縁部材53は多孔質である。そのため、後述するドープ溶液は、多孔質絶縁部材53を通過することができる。そのことにより、対極ユニット51は、ドープ溶液に接触することができる。
多孔質絶縁部材53としては、例えば、樹脂製のメッシュ等が挙げられる。樹脂としては、例えば、ポリエチレン、ポリプロピレン、ナイロン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン等が挙げられる。メッシュの目開きは適宜設定でき、例えば、0.1μm〜10mmとすることができるが、0.1〜5mmの範囲内にあることが好ましい。メッシュの厚みは適宜設定でき、例えば、1μm〜10mmとすることができるが、30μm〜1mmの範囲内にあることが好ましい。メッシュの目開き率は適宜設定でき、例えば、5〜98%とすることができるが、5〜95%であることが好ましく、50〜95%の範囲内にあることがさらに好ましい。
多孔質絶縁部材53は、その全体が絶縁性の材料から成っていてもよいし、その一部に絶縁性の層を備えていてもよい。
電解液槽203は、基本的には電解液槽205と同様の構成を有する。ただし、電解液槽203は、対極ユニット51及び多孔質絶縁部材53を備えない。また、電解液槽203は、搬送ローラ27に代えて、搬送ローラ17を備える。搬送ローラ17は、搬送ローラ27と同様のものである。
電解液槽7は、基本的には電解液槽205と同様の構成を有する。ただし、電解液槽7は、4個の対極ユニット51及び搬送ローラ27に代えて、4個の対極ユニット54及び搬送ローラ109を備える。4個の対極ユニット54は、4個の対極ユニット51と同様のものである。搬送ローラ109は、搬送ローラ27と同様のものである。対極ユニット54は、直流電源62のプラス極に接続される。
電解液槽207は、電解液槽205と同様の構成を有する。ただし、電解液槽207は、4個の対極ユニット51及び搬送ローラ27に代えて、4個の対極ユニット52及び搬送ローラ119を備える。4個の対極ユニット52は、4個の対極ユニット51と同様のものである。搬送ローラ119は、搬送ローラ27と同様のものである。対極ユニット52は、直流電源64のプラス極に接続される。
洗浄槽103は、基本的には電解液槽205と同様の構成を有する。ただし、洗浄槽103は、対極ユニット51及び多孔質絶縁部材53を備えない。また、洗浄槽103は、搬送ローラ27に代えて、搬送ローラ37を備える。搬送ローラ37は、搬送ローラ27と同様のものである。
搬送ローラ25、29、307、311、317、321は、導電性の材料から成る。搬送ローラ群のうち、その他の搬送ローラは、軸受部分を除き、エラストマーから成る。搬送ローラ群は、後述する電極前駆体73を一定の経路に沿って搬送する。搬送ローラ群が電極前駆体73を搬送する経路は、供給ロール47から、電解液槽203の中、電解液槽205の中、電解液槽7の中、電解液槽207の中、及び洗浄槽103の中を順次通り、巻取ロール49に至る経路である。
その経路のうち、電解液槽203の中を通る部分は、まず、電解液槽203の内側面と、仕切り板69との間を下方に移動し、次に、搬送ローラ17により移動方向を上向きに変えられ、最後に、電解液槽203の内側面と、それに対向する仕切り板69との間を上方に移動するという経路である。
また、上記の経路のうち、電解液槽205の中を通る部分は、まず、電解液槽205の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を下方に移動し、次に、搬送ローラ27により移動方向を上向きに変えられ、最後に、電解液槽205の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を上方に移動するという経路である。
また、上記の経路のうち、電解液槽7の中を通る部分は、まず、電解液槽7の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を下方に移動し、次に、搬送ローラ109により移動方向を上向きに変えられ、最後に、電解液槽7の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を上方に移動するという経路である。
また、上記の経路のうち、電解液槽207の中を通る部分は、まず、電解液槽207の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を下方に移動し、次に、搬送ローラ119により移動方向を上向きに変えられ、最後に、電解液槽207の内側面に沿って取り付けられた多孔質絶縁部材53と、それに対向する仕切り板69側の多孔質絶縁部材53との間の空間71を上方に移動するという経路である。
また、上記の経路のうち、洗浄槽103の中を通る部分は、まず、洗浄槽103の内側面と、仕切り板69との間を下方に移動し、次に、搬送ローラ37により移動方向を上向きに変えられ、最後に、洗浄槽103の内側面と、仕切り板69との間を上方に移動するという経路である。
供給ロール47は、その外周に電極前駆体73を巻き回している。すなわち、供給ロール47は、巻き取られた状態の電極前駆体73を保持している。搬送ローラ群は、供給ロール47に保持された電極前駆体73を引き出し、搬送する。
巻取ロール49は、搬送ローラ群により搬送されてきた電極75を巻き取り、保管する。なお、電極75は、電極前駆体73に対し、電解液槽205、7、207においてアルカリ金属のプレドープを行うことで製造されたものである。電極75はドープ電極に対応する。
図4に基づき、対極ユニット51の構成を説明する。図4に示す2つの対極ユニット51は、図1において、仕切り板69の左側に位置する2つの対極ユニット51である。なお、図4では、説明の便宜上、多孔質絶縁部材53の記載を省略している。実際には、多孔質絶縁部材53は、後述するアルカリ金属含有板79の上に設けられている。
対極ユニット51は、板状の形状を有する。対極ユニット51は、導電性基材77と、アルカリ金属含有板79とを積層した構成を有する。アルカリ金属含有板79は、導電性基材77上に配置されている。
導電性基材77の材質としては、例えば、銅、ステンレス、ニッケル等が挙げられる。アルカリ金属含有板79の形態は特に限定されず、例えば、アルカリ金属板、アルカリ金属の合金板等が挙げられる。アルカリ金属含有板79の厚さは、例えば、0.03〜3mmとすることができる。
電極前駆体73と搬送ローラ25とが電気的に接続する位置を、接続位置CPとする。後述するように、搬送ローラ25は接続ユニットの一部である。接続位置CPは、電極前駆体73と接続ユニットとが接続する接続位置に対応する。接続位置CPは、対極ユニット51よりも上方にある。
導電性基材77における、アルカリ金属含有板79側の表面を77Aとする。アルカリ金属含有板79における、電極前駆体73に対向する表面を79Aとする。表面79A上の任意の位置を測定位置MP1とする。測定位置MP1における、アルカリ金属含有板79と電極前駆体73との距離をLとする。測定位置MP1における、アルカリ金属含有板79の厚みをtとする。
厚みtは、測定位置MP1によらず一定である。距離Lは、測定位置MP1が接続位置CPに近いほど、大きい。表面77A上の任意の位置を測定位置MP2とする。測定位置MP2における導電性基材77の厚みは、測定位置MP2が接続位置CPに近いほど、小さい。そのため、測定位置MP2と、電極前駆体73との距離は、測定位置MP2が接続位置CPに近いほど、大きい。
図1において、仕切り板69の右側に位置する2つの対極ユニット51も、上記と同様の構成を有する。仕切り板69の右側に位置する2つの対極ユニット51の場合は、電極前駆体73と搬送ローラ29とが電気的に接続する位置を、接続位置CPとする。
図1において、仕切り板69の左側に位置する2つの対極ユニット54も、上記と同様の構成を有する。仕切り板69の左側に位置する2つの対極ユニット54の場合は、電極前駆体73と搬送ローラ307とが電気的に接続する位置を、接続位置CPとする。
図1において、仕切り板69の右側に位置する2つの対極ユニット54も、上記と同様の構成を有する。仕切り板69の右側に位置する2つの対極ユニット54の場合は、電極前駆体73と搬送ローラ311とが電気的に接続する位置を、接続位置CPとする。
図1において、仕切り板69の左側に位置する2つの対極ユニット52も、上記と同様の構成を有する。仕切り板69の左側に位置する2つの対極ユニット52の場合は、電極前駆体73と搬送ローラ317とが電気的に接続する位置を、接続位置CPとする。
図1において、仕切り板69の右側に位置する2つの対極ユニット52も、上記と同様の構成を有する。仕切り板69の右側に位置する2つの対極ユニット52の場合は、電極前駆体73と搬送ローラ321とが電気的に接続する位置を、接続位置CPとする。
支持台55は、電解液槽203、205、7、207及び洗浄槽103を下方から支持する。支持台55は、その高さを変えることができる。仕切り板69、対極ユニット51、及び多孔質絶縁部材53の上下方向における位置を維持したまま、電解液槽205を支持する支持台55を低くすると、図2に示すように、仕切り板69、対極ユニット51、及び多孔質絶縁部材53に対し、電解液槽205を相対的に下方に移動させることができる。また、支持台55高くすると、仕切り板69、対極ユニット51、及び多孔質絶縁部材53に対し、電解液槽205を相対的に上方に移動させることができる。電解液槽203、7、207及び洗浄槽103を支持する支持台55も同様の機能を有する。
循環濾過ユニット57は、電解液槽203、205、7、207にそれぞれ設けられている。循環濾過ユニット57は、フィルタ81と、ポンプ83と、配管85と、を備える。
電解液槽203に設けられた循環濾過ユニット57において、配管85は、電解液槽203から出て、ポンプ83、及びフィルタ81を順次通り、電解液槽203に戻る循環配管である。電解液槽203内のドープ溶液は、ポンプ83の駆動力により、配管85、及びフィルタ81内を循環し、再び電解液槽203に戻る。このとき、ドープ溶液中の異物等は、フィルタ81により濾過される。異物としては、ドープ溶液から析出した異物や、電極前駆体73から発生する異物等が挙げられる。フィルタ81の材質は、例えば、ポリプロピレン、ポリテトラフルオロエチレン等の樹脂とすることができる。フィルタ81の孔径は適宜設定でき、例えば、30〜50μmとすることができる。
電解液槽205、7、207に設けられた循環濾過ユニット57も、同様の構成を有し、同様の作用効果を奏する。なお、図1、図2において、ドープ溶液の記載は便宜上省略している。
図3に示すように、直流電源61におけるマイナス端子は、ケーブル87を介して、搬送ローラ25、29とそれぞれ接続する。また、直流電源61のプラス端子は、ケーブル89を介して、合計4個の対極ユニット51にそれぞれ接続する。電極前駆体73は、導電性の搬送ローラ25、29と接触する。電極前駆体73と対極ユニット51とは、電解液であるドープ溶液中にある。そのため、電極前駆体73と対極ユニット51とは電気的に接続する。
ケーブル87、89、及び搬送ローラ25、29は接続ユニットに対応する。直流電源61は、ケーブル87、89、及び搬送ローラ25、29を介して対極ユニット51に電流を流す。
図3に示すように、直流電源62におけるマイナス端子は、ケーブル91を介して、搬送ローラ307、311とそれぞれ接続する。また、直流電源62のプラス端子は、ケーブル94を介して、合計4個の対極ユニット54にそれぞれ接続する。電極前駆体73は、導電性の搬送ローラ307、311と接触する。電極前駆体73と対極ユニット54とは、電解液であるドープ溶液中にある。そのため、電極前駆体73と対極ユニット54とは電気的に接続する。
ケーブル91、94、及び搬送ローラ307、311は接続ユニットに対応する。直流電源62は、ケーブル91、94、及び搬送ローラ307、311を介して対極ユニット54に電流を流す。
図3に示すように、直流電源64におけるマイナス端子は、ケーブル97を介して、搬送ローラ317、321とそれぞれ接続する。また、直流電源64のプラス端子は、ケーブル99を介して、合計4個の対極ユニット52にそれぞれ接続する。電極前駆体73は、導電性の搬送ローラ317、321と接触する。電極前駆体73と対極ユニット52とは、電解液であるドープ溶液中にある。そのため、電極前駆体73と対極ユニット52とは電気的に接続する。
ケーブル97、99、及び搬送ローラ317、321は接続ユニットに対応する。直流電源64は、ケーブル97、99、及び搬送ローラ317、321を介して対極ユニット52に電流を流す。
図1に示すように、ブロア63は、洗浄槽103から出てきた電極75にガスを吹きつけて洗浄液を気化させ、電極75を乾燥させる。使用するガスは、アルカリ金属がプレドープされた活物質に対して不活性なガスであることが好ましい。そのようなガスとして、例えば、ヘリウムガス、ネオンガス、アルゴンガス、水分が除去された除湿空気等が挙げられる。
図3に示すように、電源制御ユニット66は、直流電源61、62、64と、電気的に接続している。電源制御ユニット66は、CPU101と、例えば、RAM又はROM等の半導体メモリ(以下、メモリ105とする)と、を有するマイクロコンピュータである。
2.電極前駆体73の構成
電極前駆体73の構成を図5及び図6に基づき説明する。電極前駆体73は、図5に示すように、帯状の形状を有する。電極前駆体73は、図6に示すように、帯状の集電体93と、その両側に形成された活物質層95とを備える。
集電体93としては、例えば、銅、ニッケル、ステンレス等の金属箔が好ましい。また、集電体93は、上記金属箔上に炭素材料を主成分とする導電層が形成されたものであってもよい。集電体93の厚みは、例えば、5〜50μmとすることができる。
活物質層95は、例えば、アルカリ金属をドープする前の活物質及びバインダー等を含有するスラリーを調製し、このスラリーを集電体93上に塗布し、乾燥させることにより作製できる。
上記バインダーとしては、例えば、スチレン−ブタジエンゴム(SBR)、NBR等のゴム系バインダー;ポリ四フッ化エチレン、ポリフッ化ビニリデン等のフッ素系樹脂;ポリプロピレン、ポリエチレン、特開2009−246137号公報に開示されているようなフッ素変性(メタ)アクリル系バインダー等が挙げられる。
上記スラリーは、活物質及びバインダーに加えて、その他の成分を含んでいてもよい。その他の成分としては、例えば、カーボンブラック、黒鉛、気相成長炭素繊維、金属粉末等の導電剤;カルボキシルメチルセルロース、そのNa塩又はアンモニウム塩、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等の増粘剤が挙げられる。
活物質層95の厚さは、特に限定されるものではないが、例えば、5〜500μm、好ましくは10〜200μm、特に好ましくは10〜100μmである。
活物質層95に含まれる活物質は、アルカリ金属イオンの挿入/脱離を利用する電池又はキャパシタに適用可能な電極活物質であれば特に限定されるものではなく、負極活物質であってもよいし、正極活物質であってもよい。
負極活物質は、特に限定されるものではないが、例えば、黒鉛、易黒鉛化炭素、難黒鉛化炭素、黒鉛粒子をピッチや樹脂の炭化物で被覆した複合炭素材料等の炭素材料;リチウムと合金化が可能なSi、Sn等の金属若しくは半金属又はこれらの酸化物を含む材料等が挙げられる。炭素材料の具体例としては、特開2013−258392号公報に記載の炭素材料が挙げられる。リチウムと合金化が可能な金属若しくは半金属又はこれらの酸化物を含む材料の具体例としては、特開2005−123175号公報、特開2006−107795号公報に記載の材料が挙げられる。
正極活物質としては、例えば、コバルト酸化物、ニッケル酸化物、マンガン酸化物、バナジウム酸化物等の遷移金属酸化物;硫黄単体、金属硫化物等の硫黄系活物質が挙げられる。
正極活物質、及び負極活物質のいずれにおいても、単一の物質から成るものであってもよいし、2種以上の物質を混合して成るものであってもよい。本開示の電極製造装置1は、負極活物質にアルカリ金属をプレドープする場合に適しており、特に、負極活物質が炭素材料又はSi若しくはその酸化物を含む材料であることが好ましい。
活物質にプレドープするアルカリ金属としては、リチウム又はナトリウムが好ましく、特にリチウムが好ましい。電極前駆体73を、リチウムイオン二次電池の電極の製造に用いる場合、活物質層95の密度は、好ましくは1.50〜2.00g/ccであり、特に好ましくは1.60〜1.90g/ccである。
3.ドープ溶液の組成
電極製造装置1を使用するとき、電解液槽203、205、7、207に、アルカリ金属イオンを含む溶液(以下ではドープ溶液とする)を収容する。
ドープ溶液は、アルカリ金属イオンと、溶媒とを含む。溶媒として、例えば、有機溶媒が挙げられる。有機溶媒としては、非プロトン性の有機溶媒が好ましい。非プロトン性の有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1−フルオロエチレンカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン、ジエチレングリコールジメチルエーテル(ジグライム)、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル(トリグライム)、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル(テトラグライム)等が挙げられる。
また、上記有機溶媒として、第4級イミダゾリウム塩、第4級ピリジニウム塩、第4級ピロリジニウム塩、第4級ピペリジニウム塩等のイオン液体を使用することもできる。上記有機溶媒は、単一の成分から成るものであってもよいし、2種以上の成分の混合溶媒であってもよい。有機溶媒は、単一の成分から成るものであってもよいし、2種以上の成分の混合溶媒であってもよい。
上記ドープ溶液に含まれるアルカリ金属イオンは、アルカリ金属塩を構成するイオンである。アルカリ金属塩は、好ましくはリチウム塩又はナトリウム塩である。アルカリ金属塩を構成するアニオン部としては、例えば、PF 、PF(C 、PF(CF 等のフルオロ基を有するリンアニオン;BF 、BF(CF) 、BF(CF、B(CN) 等のフルオロ基又はシアノ基を有するホウ素アニオン;N(FSO 、N(CFSO 、N(CSO 等のフルオロ基を有するスルホニルイミドアニオン;CFSO 等のフルオロ基を有する有機スルホン酸アニオンが挙げられる。
上記ドープ溶液におけるアルカリ金属塩の濃度は、好ましくは0.1モル/L以上であり、より好ましくは0.5〜1.5モル/Lの範囲内である。この範囲内である場合、アルカリ金属のプレドープが効率よく進行する。
上記ドープ溶液は、更に、ビニレンカーボネート、ビニルエチレンカーボネート、1−フルオロエチレンカーボネート、1−(トリフルオロメチル)エチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の添加剤を含有することができる。
上記ドープ溶液は、ホスファゼン化合物等の難燃剤をさらに含有することができる。難燃剤の添加量の下限としては、アルカリ金属をドープする際の熱暴走反応を効果的に制御する観点から、ドープ溶液100質量部に対して1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、難燃剤の添加量の上限としては、高品質のドープ電極を得る観点から、ドープ溶液100質量部に対して20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。
4.電極製造装置1を用いた電極75の製造方法
まず、電極75を製造するための準備として、以下のことを行う。電極前駆体73を供給ロール47に巻き回す。次に、搬送ローラ群により、電極前駆体73を供給ロール47から引き出し、上述した経路に沿って巻取ロール49まで通紙する。そして、電解液槽203、205、7、207、及び洗浄槽103を上昇させ、図1に示す定位置へセットする。電解液槽203、205、7、207にドープ溶液を収容する。ドープ溶液は、上記「3.ドープ溶液の組成」で述べたものである。洗浄槽103に洗浄液を収容する。洗浄液は有機溶剤である。その結果、電解液槽203、205、7、207の空間71は電解液で満たされる。洗浄槽103の空間71は洗浄液で満たされる。
次に、搬送ローラ群により、供給ロール47から巻取ロール49まで通紙された電極前駆体73を供給ロール47から巻取ロール49に向かって、引き出し、上述した経路に沿って搬送する。直流電源61、62、64が起動した状態で、電極前駆体73が電解液槽205、7、207内を通過するとき、活物質層95に含まれる活物質にアルカリ金属がプレドープされる。
活物質にアルカリ金属がプレドープされることにより、電極前駆体73が電極75となる。電極75は搬送ローラ群により搬送されながら、洗浄槽103で洗浄される。最後に、電極75は、巻取ロール49に巻き取られる。
電極製造装置1を用いて製造する電極75は、正極であってもよいし、負極であってもよい。正極を製造する場合、電極製造装置1は、正極活物質にアルカリ金属をドープし、負極を製造する場合、電極製造装置1は、負極活物質にアルカリ金属をドープする。
アルカリ金属のドープ量は、リチウムイオンキャパシタの負極活物質にリチウムを吸蔵させる場合、負極活物質の理論容量に対して好ましくは70〜95%であり、リチウムイオン二次電池の負極活物質にリチウムを吸蔵させる場合、負極活物質の理論容量に対して好ましくは10〜30%である。
6.電極製造装置1が奏する効果
(1A)仮に、測定位置MP1によらず距離Lが一定であれば、測定位置MP1における、アルカリ金属含有板79と搬送ローラ25との間の電気抵抗(以下ではMP1抵抗とする)は、測定位置MP1が接続位置CPに近いほど、小さい。対極ユニット51、54、52において、距離Lは、測定位置MP1が接続位置CPに近いほど、大きい。そのため、MP1抵抗は、測定位置MP1がどこであっても大きく変化しない。そのことにより、厚みtの減少の程度は、測定位置MP1がどこであっても大きく変化しない。その結果、アルカリ金属含有板79を効率的に使用することができる。
(1B)接続位置CPは、電極前駆体73と、導電性の搬送ローラ25、29、307、311、317、321とが接続する位置である。そのため、電極前駆体73と対極ユニット51、54、52との電気的な接続を確実に行うことができる。
(1C)電極製造装置1は複数のアルカリ金属含有板79を備える。2つのアルカリ金属含有板79は、電極前駆体73を挟んで対向するように配置される。そのため、プレドープを効率的に行うことができる。
<第2実施形態>
1.第1実施形態との相違点
第2実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
前述した第1実施形態では、厚みtは、測定位置MP1によらず一定であり、距離Lは、測定位置MP1が接続位置CPに近いほど、大きい。これに対し、第2実施形態では、図7に示すように、厚みtは、測定位置MP1が接続位置CPに近いほど、大きい。また、距離Lは、測定位置MP1によらず一定である。測定位置MP2と、電極前駆体73との距離は、測定位置MP2が接続位置CPに近いほど、大きい。
厚みtが測定位置MP1によって変化するアルカリ金属含有板79は、例えば、以下の方法で製造できる。アルカリ金属含有板79の幅方向における両側に、厚みtを規定するガイドを取り付けて、ロールプレスによりアルカリ金属含有板79を製造する。このとき、ガイドの高さを、アルカリ金属含有板79の長手方向に進むにつれて、増加させる。
2.電極製造装置1が奏する効果
以上詳述した第2実施形態によれば、前述した第1実施形態の効果(1B)、(1C)を奏し、さらに、以下の効果を奏する。
(2A)測定位置MP1によらず距離Lが一定であるので、MP1抵抗は、測定位置MP1が接続位置CPに近いほど、小さい。そのため、厚みtの減少の程度は、測定位置MP1が接続位置CPに近いほど、大きい。厚みtは、初期において、測定位置MP1が接続位置CPに近いほど、大きい。その結果、厚みtが減少したとき、残存する厚みtは、測定位置MP1がどこであっても、大きく変化しない。その結果、アルカリ金属含有板79を効率的に使用することができる。
<第3実施形態>
1.第1実施形態との相違点
第3実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
前述した第1実施形態では、厚みtは、測定位置MP1によらず一定であり、測定位置MP2と、電極前駆体73との距離は、測定位置MP2が接続位置CPに近いほど、大きい。
これに対し、第2実施形態では、図8に示すように、厚みtは、測定位置MP1が接続位置CPに近いほど、小さい。また、距離Lは、測定位置MP1が接続位置CPに近いほど、大きい。測定位置MP2と、電極前駆体73との距離は、測定位置MP2によらず一定である。
厚みtが位置によって変化するアルカリ金属含有板79は、第2実施形態と同様の方法で製造できる。
2.電極製造装置1が奏する効果
以上詳述した第3実施形態によれば、前述した第1実施形態の効果を奏する。
<第4実施形態>
1.第1実施形態との相違点
第4実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
図9は、図1において仕切り板69の左側に位置する2つの対極ユニット51を示す。なお、他の対極ユニット51、対極ユニット54、及び対極ユニット52も、図9に示す対極ユニット51と同様の構成を有する。
図9に示すように、導電性基材77は、本体部77Bと、金属箔77Cとを備える。本体部77Bは金属から成る板状部材である。本体部77Bには、例えば、孔は設けられていない。本体部77Bの材質として、例えば、銅、ステンレス、ニッケル等が挙げられる。
金属箔77Cは、導電性基材77のうち、アルカリ金属含有板79に対向する面を構成する。金属箔77Cは、本体部77Bとアルカリ金属含有板79とに挟まれている。アルカリ金属含有板79は、金属箔77Cに取り付けられている。金属箔77Cは、金属から成る薄膜である。金属箔77Cの材質として、例えば、銅、ステンレス、ニッケル等が挙げられる。図10に示すように、金属箔77Cは、複数の孔107を備える。複数の孔107は金属箔77Cの全面にわたって分布している。複数の孔107は、それぞれ、金属箔77Cを厚み方向に貫通している。
金属箔77Cの開口率は0.1%以上50%以下であることが好ましく、1%以上20%以下であることがより好ましい。金属箔77Cの開口率が上記範囲内である場合、アルカリ金属含有板79を導電性基材77から剥がす作業が一層容易である。開口率とは、複数の孔107が存在しないと仮定した場合の金属箔77Cの面積に対する、複数の孔107の面積の比率である。
孔107の直径は0.01mm以上10mm以下であることが好ましく、0.1mm以上3mm以下であることがより好ましい。孔107の直径が上記範囲内である場合、アルカリ金属含有板79を導電性基材77から剥がす作業が一層容易である。
孔107同士のピッチは0.01mm以上10mm以下であることが好ましく、0.1mm以上5mm以下であることがより好ましい。孔107同士のピッチが上記範囲内である場合、アルカリ金属含有板79を導電性基材77から剥がす作業が一層容易である。
アルカリ金属含有板79と電極前駆体73との距離Lは、例えば、第1実施形態と同様に、測定位置MP1に応じて変化してもよいし、測定位置MP1によらず一定であってもよい。アルカリ金属含有板79の厚みtは、例えば、第2実施形態と同様に、測定位置MP1に応じて変化してもよいし、測定位置MP1によらず一定であってもよい。
2.電極製造装置1が奏する効果
以上詳述した第4実施形態によれば、アルカリ金属含有板79を導電性基材77から剥がす作業が容易である。よって、アルカリ金属含有板79を容易に交換することができる。
<第5実施形態>
1.第1実施形態との相違点
第5実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
図11は、第5実施形態における対極ユニット51を示す。なお、第5実施形態における対極ユニット54、52も、図11に示す対極ユニット51と同様の構成を有する。
対極ユニット51は、収容部111と、ロッド状のアルカリ金属含有材料113と、アノードバック115と、を備える。
収容部111は、中空の箱状の部材である。収容部111は、上側において開口している。収容部111は、複数の孔が形成されたチタン製の板材により構成されている。そのため、収容部111は導電性の部材である。また、収容部111は電解液の透過を許容する。すなわち、電解液は、収容部111の内部と外部との間を流れることができる。
アルカリ金属含有材料113は、第1実施形態におけるアルカリ金属含有板79と同様の組成を有する。ただし、アルカリ金属含有材料113はロッド状の形態を有する。アルカリ金属含有材料113は収容部111に収容される。アルカリ金属含有材料113の軸方向は、電極前駆体73の幅方向と平行である。複数のアルカリ金属含有材料113が収容部111内に、縦一列に積み上げられている。複数のアルカリ金属含有材料113のうち、最も上側に位置するものは、収容部111の上端付近に位置する。
ケーブル89は収容部111に接続している。アルカリ金属含有材料113は収容部111の内面と接している。よって、アルカリ金属含有材料113は、収容部111を介してケーブル89に電気的に接続している。
アノードバック115は収容部111の外側を覆う。アノードバック115の材質として、例えば、複数の微細な孔を備えた樹脂製のメッシュ等が挙げられる。樹脂として、例えば、ポリエチレン、ポリプロピレン、ナイロン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン等が挙げられる。複数の微細な孔の目開きは適宜設定でき、例えば、0.1μm〜10mmとすることができる。複数の微細な孔の目開きは、0.1〜5mmの範囲内にあることが好ましい。
メッシュの厚みは適宜設定でき、例えば、1μm〜10mmとすることができる。メッシュの厚みは、30μm〜1mmの範囲内にあることが好ましい。複数の微細な孔の目開き率は適宜設定でき、例えば、5〜98%とすることができる。複数の微細な孔の目開き率は、5〜95%であることが好ましく、50〜95%であることがさらに好ましい。アノードバック115は複数の微細な孔を備えているため、電解液はアノードバック115を透過可能である。アノードバック115が備える孔は、収容部111が備える孔よりも小さい。
電極製造装置1は、透過型センサ117をさらに備える。透過型センサ117は、対極ユニット51ごとに設けられている。透過型センサ117は、収容部111の上端付近に設けられている。透過型センサ117は、電解液の液面よりも上方に位置する。透過型センサ117は、光照射部117Aと受光部117Bとを備える。光照射部117Aと受光部117Bとは、収容部111を挟むように配置されている。
光照射部117Aは受光部117Bに向けて光を照射する。収容部111の上端付近にアルカリ金属含有材料113が存在する場合、アルカリ金属含有材料113が光を遮るため、受光部117Bは光を受光しない。収容部111の上端付近にアルカリ金属含有材料113が存在しない場合、アルカリ金属含有材料113が光を遮らないため、受光部117Bは光を受光する。よって、透過型センサ117は、受光部117Bの受光状態に基づき、収容部111の上端付近にアルカリ金属含有材料113が存在するか否かを検出することができる。
電極製造装置1は、供給ユニット121をさらに備える。供給ユニット121は、対極ユニット51ごとに設けられている。供給ユニット121は、対極ユニット51の上方に設けられている。供給ユニット121は、電解液の液面よりも上方に位置する。供給ユニット121は、ガイド部123と、シャッター125とを備える。ガイド部123は、下側に開口127を有する筒状の部材である。ガイド部123内にアルカリ金属含有材料113が複数収容されている。
シャッター125は、開口127を閉じる位置と、開口127を開放する位置との間を移動可能である。シャッター125が開口127を閉じているとき、ガイド部123内のアルカリ金属含有材料113は落下しない。シャッター125が開口127を開放しているとき、ガイド部123内のアルカリ金属含有材料113は、開口127から下方に落下し、対応する対極ユニット51の収容部111に供給される。
2.電極製造装置1が実行する処理
電極製造装置1は、第1実施形態の処理に加えて、さらに以下の処理を行う。電極製造装置1は、所定時間ごとに、透過型センサ117の検出結果を用いて、収容部111の上端付近にアルカリ金属含有材料113が存在するか否かを判断する。収容部111の上端付近にアルカリ金属含有材料113が存在する場合、電極製造装置1は処理を終了する。なお、収容部111の上端付近にアルカリ金属含有材料113が存在する場合は、収容部111内にアルカリ金属含有材料113が充分存在し、新たなアルカリ金属含有材料113を供給する必要がない場合である。
収容部111の上端付近にアルカリ金属含有材料113が存在しない場合、電極製造装置1は、シャッター125を動かして開口127を開放する。このとき、供給ユニット121が、収容部111に新たなアルカリ金属含有材料113を供給する。なお、収容部111の上端付近にアルカリ金属含有材料113が存在しない場合は、収容部111内のアルカリ金属含有材料113が消費され、アルカリ金属含有材料113が減少した場合である。
電極製造装置1は、新たなアルカリ金属含有材料113を供給しているときも、所定時間ごとに、透過型センサ117の検出結果を用いて、収容部111の上端付近にアルカリ金属含有材料113が存在するか否かを判断する。新たなアルカリ金属含有材料113を供給した結果、収容部111の上端付近にアルカリ金属含有材料113が存在するようになると、電極製造装置1は、シャッター125により開口127を閉じる。
電極製造装置1は、上記の処理を、例えば、マイコンを用いて行うことができる。また、オペレータが、透過型センサ117の検出結果に応じて、シャッター125を動かしてもよい。
3.電極製造装置1が奏する効果
以上詳述した第5実施形態によれば、以下の効果を奏する。
(5A)対極ユニット51は、ロッド状のアルカリ金属含有材料113を収容する収容部111を備える。収容部111内のアルカリ金属含有材料113が減少したとき、電極製造装置1は、新たなアルカリ金属含有材料113を収容部111内に供給することができる。そのため、対極ユニット51にアルカリ金属含有材料113を補充する作業が容易である。
(5B)電極製造装置1は供給ユニット121を備える。そのため、対極ユニット51にアルカリ金属含有材料113を補充する作業が一層容易である。
(5C)電極製造装置1は、透過型センサ117を用いて、収容部111の上端付近にアルカリ金属含有材料113が存在するか否かを判断することができる。そのため、電極製造装置1は、収容部111内のアルカリ金属含有材料113の量を容易に検出することができる。電極製造装置1は、透過型センサ117の検出結果に基づき、対極ユニット51にアルカリ金属含有材料113を補充することができる。
(5D)電極製造装置1は、アノードバック115を備える。アノードバック115は、収容部111の外側を覆う。アノードバック115が備える孔は、収容部111が備える孔よりも小さい。そのため、アルカリ金属含有材料113に由来するアルカリ金属の粉が対極ユニット51の外部に流出することを抑制できる。
(5E)収容部111は、アルカリ金属含有材料113とケーブル89とを電気的に接続することができる。
<他の実施形態>
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
(1)第1実施形態において、導電性基材77の厚みはどの位置でも一定であってもよい。その場合、導電性基材77を傾斜させることにより、測定位置MP2と、電極前駆体73との距離を、測定位置MP2が接続位置CPに近いほど、大きくすることができる。
(2)第4実施形態において、アルカリ金属含有板79と、金属箔77Cとは一体の部材であってもよい。
(3)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
(4)上述した電極製造装置の他、当該電極製造装置を構成要素とするシステム、電極製造方法等、種々の形態で本開示を実現することもできる。
また、上記有機溶媒として、第4級イミダゾリウム塩、第4級ピリジニウム塩、第4級ピロリジニウム塩、第4級ピペリジニウム塩等のイオン液体を使用することもできる。上記有機溶媒は、単一の成分から成るものであってもよいし、2種以上の成分の混合溶媒であってもよい
これに対し、第実施形態では、図8に示すように、厚みtは、測定位置MP1が接続位置CPに近いほど、小さい。また、距離Lは、測定位置MP1が接続位置CPに近いほど、大きい。測定位置MP2と、電極前駆体73との距離は、測定位置MP2によらず一定である。
また、上記有機溶媒として、第4級イミダゾリウム塩、第4級ピリジニウム塩、第4級ピロリジニウム塩、第4級ピペリジニウム塩等のイオン液体を使用することもできる。上記有機溶媒は、単一の成分から成るものであってもよいし、2種以上の成分の混合溶媒であってもよい
これに対し、第実施形態では、図8に示すように、厚みtは、測定位置MP1が接続位置CPに近いほど、小さい。また、距離Lは、測定位置MP1が接続位置CPに近いほど、大きい。測定位置MP2と、電極前駆体73との距離は、測定位置MP2によらず一定である。

Claims (6)

  1. 活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする電極製造装置であって、
    アルカリ金属イオンを含む溶液を収容するように構成されたドーピング槽と、
    前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、
    前記ドーピング槽に収容され、導電性基材、及び前記導電性基材上に配置されたアルカリ金属含有板を備える対極ユニットと、
    前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、
    を備え、
    前記アルカリ金属含有板と前記電極前駆体との距離は、前記距離の測定位置が、前記電極前駆体と前記接続ユニットとが接続する接続位置に近いほど、大きい電極製造装置。
  2. 活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする電極製造装置であって、
    アルカリ金属イオンを含む溶液を収容するように構成されたドーピング槽と、
    前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、
    前記ドーピング槽に収容され、導電性基材、及び前記導電性基材上に配置されたアルカリ金属含有板を備える対極ユニットと、
    前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、
    を備え、
    前記アルカリ金属含有板の厚みは、前記厚みの測定位置が、前記電極前駆体と前記接続ユニットとが接続する接続位置に近いほど、大きい電極製造装置。
  3. 活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする電極製造装置であって、
    アルカリ金属イオンを含む溶液を収容するように構成されたドーピング槽と、
    前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、
    前記ドーピング槽に収容され、導電性基材、及び前記導電性基材上に配置されたアルカリ金属含有板を備える対極ユニットと、
    前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、
    を備え、
    前記導電性基材は、前記アルカリ金属含有板に対向する面に孔を有する電極製造装置。
  4. 請求項1〜3のいずれか1項に記載の電極製造装置であって、
    前記搬送ユニットは、前記接続ユニットの一部である導電性の搬送ローラを備え、
    前記接続位置は、前記電極前駆体と前記導電性の搬送ローラとが接続する位置である電極製造装置。
  5. 請求項1〜4のいずれか1項に記載の電極製造装置であって、
    前記電極前駆体を挟んで対向するように配置された複数の前記アルカリ金属含有板を備える電極製造装置。
  6. 活物質を含む層を有する帯状の電極前駆体における前記活物質にアルカリ金属をドープする電極製造装置であって、
    アルカリ金属イオンを含む溶液を収容するように構成されたドーピング槽と、
    前記電極前駆体を、前記ドーピング槽内を通過する経路に沿って搬送するように構成された搬送ユニットと、
    前記ドーピング槽に収容された対極ユニットと、
    前記電極前駆体と前記対極ユニットとを電気的に接続する接続ユニットと、
    を備え、
    前記対極ユニットは、ロッド状のアルカリ金属含有材料を収容し、前記溶液の透過を許容する収容部を備える電極製造装置。
JP2020547978A 2018-09-19 2019-06-19 電極製造装置 Active JP7280281B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018175011 2018-09-19
JP2018175011 2018-09-19
PCT/JP2019/024309 WO2020059225A1 (ja) 2018-09-19 2019-06-19 電極製造装置

Publications (2)

Publication Number Publication Date
JPWO2020059225A1 true JPWO2020059225A1 (ja) 2021-08-30
JP7280281B2 JP7280281B2 (ja) 2023-05-23

Family

ID=69886915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020547978A Active JP7280281B2 (ja) 2018-09-19 2019-06-19 電極製造装置

Country Status (6)

Country Link
US (1) US20220037634A1 (ja)
EP (1) EP3855534A4 (ja)
JP (1) JP7280281B2 (ja)
KR (1) KR20210058830A (ja)
CN (1) CN112805850A (ja)
WO (1) WO2020059225A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913047A (zh) * 2018-10-24 2021-06-04 武藏能源解决方案有限公司 电极制造装置以及电极制造方法
US20220077448A1 (en) * 2019-01-23 2022-03-10 Musashi Energy Solutions Co., Ltd. Doping system and doping method
KR20220106994A (ko) * 2019-11-28 2022-08-01 무사시 에너지 솔루션즈 가부시키가이샤 전극 제조 방법
KR20220023516A (ko) * 2020-08-21 2022-03-02 주식회사 엘지에너지솔루션 음극의 전리튬화 장치 및 음극의 전리튬화 방법
EP4365982A1 (en) * 2021-06-28 2024-05-08 Musashi Energy Solutions Co., Ltd. Doped electrode manufacturing method and doped electrode manufacturing system
KR20230004000A (ko) * 2021-06-30 2023-01-06 주식회사 엘지에너지솔루션 코팅층 두께 조절이 용이한 코팅장치 및 코팅방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107296A (ja) * 1990-08-27 1992-04-08 Nippon Steel Corp 鋼帯の連続電気メッキ装置
JPH10308212A (ja) * 1997-05-06 1998-11-17 Ricoh Co Ltd 2次電池用電極板処理装置
JP2008016199A (ja) * 2006-06-30 2008-01-24 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極の製造装置
WO2010079754A1 (ja) * 2009-01-07 2010-07-15 パナソニック株式会社 電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子
WO2017146223A1 (ja) * 2016-02-26 2017-08-31 Jsr株式会社 ドーピングシステム、並びに、電極、電池及びキャパシタの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995050B2 (ja) 2003-09-26 2007-10-24 Jfeケミカル株式会社 リチウムイオン二次電池負極材料用複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP4051686B2 (ja) 2004-09-30 2008-02-27 ソニー株式会社 負極活物質およびそれを用いた電池
JP5045044B2 (ja) * 2006-09-21 2012-10-10 パナソニック株式会社 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置
JP5133111B2 (ja) 2008-03-31 2013-01-30 Jsr株式会社 リチウムイオンキャパシタ
KR101204598B1 (ko) 2010-08-27 2012-11-23 삼성전기주식회사 에너지 저장 장치의 전극 제조용 도핑 장치 및 이를 이용한 전극 제조 방법
KR101204539B1 (ko) 2010-08-27 2012-11-23 삼성전기주식회사 에너지 저장 장치의 전극 제조용 도핑 장치 및 이를 이용한 전극 제조 방법
JP6161328B2 (ja) 2012-05-18 2017-07-12 Jsr株式会社 電極活物質、電極及び蓄電デバイス
JP6613647B2 (ja) * 2015-06-19 2019-12-04 日本電気株式会社 蓄電デバイス用電極の製造方法および前記電極の製造装置
WO2017026253A1 (ja) * 2015-08-07 2017-02-16 Jsr株式会社 電極の製造方法及び蓄電デバイスの製造方法
DE102016212735A1 (de) * 2016-07-13 2018-01-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung einer Anode für eine Lithiumionenbatterie und Lithiumionenzelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107296A (ja) * 1990-08-27 1992-04-08 Nippon Steel Corp 鋼帯の連続電気メッキ装置
JPH10308212A (ja) * 1997-05-06 1998-11-17 Ricoh Co Ltd 2次電池用電極板処理装置
JP2008016199A (ja) * 2006-06-30 2008-01-24 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極の製造装置
WO2010079754A1 (ja) * 2009-01-07 2010-07-15 パナソニック株式会社 電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子
WO2017146223A1 (ja) * 2016-02-26 2017-08-31 Jsr株式会社 ドーピングシステム、並びに、電極、電池及びキャパシタの製造方法

Also Published As

Publication number Publication date
KR20210058830A (ko) 2021-05-24
CN112805850A (zh) 2021-05-14
US20220037634A1 (en) 2022-02-03
EP3855534A1 (en) 2021-07-28
WO2020059225A1 (ja) 2020-03-26
EP3855534A4 (en) 2022-10-12
JP7280281B2 (ja) 2023-05-23

Similar Documents

Publication Publication Date Title
JP7280281B2 (ja) 電極製造装置
JP7456936B2 (ja) 電極製造方法、蓄電デバイスの製造方法、及び電極製造装置
JP7170057B2 (ja) 電極製造装置及び電極製造方法
JPWO2020152986A1 (ja) ドーピングシステム及びドーピング方法
WO2022102381A1 (ja) 二次電池の製造方法及びドープ電極の製造方法
WO2020208965A1 (ja) 電極製造方法及び蓄電デバイスの製造方法
WO2021157157A1 (ja) ドーピングシステム及び電極の製造方法
JP7319306B2 (ja) 電極製造システム及び電極製造方法
US11811046B2 (en) Method for manufacturing electrode
WO2021039085A1 (ja) ドープ電極の製造方法及び蓄電デバイスの製造方法
WO2023276314A1 (ja) ドープ電極の製造方法及びドープ電極の製造システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230511

R150 Certificate of patent or registration of utility model

Ref document number: 7280281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150