WO2022102381A1 - 二次電池の製造方法及びドープ電極の製造方法 - Google Patents

二次電池の製造方法及びドープ電極の製造方法 Download PDF

Info

Publication number
WO2022102381A1
WO2022102381A1 PCT/JP2021/039179 JP2021039179W WO2022102381A1 WO 2022102381 A1 WO2022102381 A1 WO 2022102381A1 JP 2021039179 W JP2021039179 W JP 2021039179W WO 2022102381 A1 WO2022102381 A1 WO 2022102381A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
dope
active material
tank
manufacturing
Prior art date
Application number
PCT/JP2021/039179
Other languages
English (en)
French (fr)
Inventor
広基 薬師寺
雅浩 山本
一成 相田
Original Assignee
武蔵エナジーソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵エナジーソリューションズ株式会社 filed Critical 武蔵エナジーソリューションズ株式会社
Priority to EP21891628.6A priority Critical patent/EP4246615A1/en
Priority to CN202180075643.0A priority patent/CN116420210A/zh
Priority to KR1020237019081A priority patent/KR20230104673A/ko
Priority to JP2022561373A priority patent/JPWO2022102381A1/ja
Priority to US18/251,570 priority patent/US20240014369A1/en
Publication of WO2022102381A1 publication Critical patent/WO2022102381A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a method for manufacturing a secondary battery and a method for manufacturing a dope electrode.
  • non-aqueous electrolyte secondary batteries typified by lithium ion secondary batteries
  • a lithium ion capacitor is known as a power storage device corresponding to an application requiring high energy density characteristics and high output characteristics.
  • sodium ion type batteries and capacitors using sodium which is cheaper than lithium and is abundant in resources, are also known.
  • a process of pre-doping an alkali metal into an electrode is adopted for various purposes. This process is commonly referred to as pre-doping.
  • a method of pre-doping an alkali metal to an electrode for example, there is a continuous method. In the continuous method, pre-doping is performed while the strip-shaped electrodes are transferred in the dope solution.
  • the continuous method is disclosed in Patent Documents 1 to 4.
  • Japanese Unexamined Patent Publication No. 10-308212 Japanese Unexamined Patent Publication No. 2008-77963 Japanese Unexamined Patent Publication No. 2012-49543 Japanese Unexamined Patent Publication No. 2012-49544
  • the electrode containing the active material layer doped with the alkali metal will be referred to as a doped electrode below.
  • the components of the dope solution are attached to the dope electrode coming out of the dope solution tank.
  • the inventor has clarified that a secondary battery having high battery stability can be manufactured by using a dope electrode to which an appropriate amount of a dope solution component is attached.
  • One aspect of the present disclosure is a method of manufacturing a secondary battery using a dope electrode including an active material layer doped with an alkali metal.
  • an electrode containing an active material layer is conveyed along a path passing through a dope solution containing the alkali metal ion and an aprotonic organic solvent and a dope tank containing a counter electrode unit.
  • the dope electrode is manufactured, and the dope electrode discharged from the dope tank is dried so as to contain 5 parts by mass or more and 40 parts by mass or less of the component of the dope solution with respect to 100 parts by mass of the active material layer.
  • the secondary battery is manufactured by using the dope electrode after drying.
  • a secondary battery having high battery stability can be manufactured.
  • Another aspect of the present disclosure is a method of manufacturing a dope electrode containing an active material layer doped with an alkali metal.
  • the electrode containing the active material layer is conveyed along a path passing through a dope solution containing the alkali metal ion and an aprotonic organic solvent and a dope tank containing a counter electrode unit.
  • the dope electrode is produced in 1 and dried so that the dope electrode from the dope tank contains 5 parts by mass or more and 40 parts by mass or less of the component of the dope solution with respect to 100 parts by mass of the active material layer. ..
  • a secondary battery having high battery stability can be manufactured.
  • FIG. It is a top view which shows the structure of electrode 1.
  • FIG. It is sectional drawing which shows the II-II cross section in FIG.
  • Electrode manufacturing system 15 ... Electrolyte treatment tank , 17, 19, 21 ... Dope tank, 23A, 23B, 23C ... Cleaning tank, 25, 27, 29, 31, 33, 35, 37, 39, 40, 41, 43, 45, 46, 47, 49, 51. , 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 67, 69, 70, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93.
  • the configuration of the electrode 1 will be described with reference to FIGS. 1 and 2.
  • the electrode 1 has a band-like shape.
  • the electrode 1 includes a current collector 3 and an active material layer 5.
  • the current collector 3 has a band-like shape.
  • the active material layer 5 is formed on both sides of the current collector 3.
  • the active material layer forming portion 6 is a portion where the active material layer 5 is formed.
  • the active material layer unformed portion 7 is a portion where the active material layer 5 is not formed.
  • the current collector 3 is exposed in the active material layer unformed portion 7.
  • the active material layer unformed portion 7 has a band-like shape extending in the longitudinal direction L of the electrode 1.
  • the active material layer unformed portion 7 is located at the end portion of the electrode 1 in the width direction W of the electrode 1.
  • the current collector 3 for example, a metal foil such as copper, nickel, or stainless steel is preferable. Further, the current collector 3 may have a conductive layer containing a carbon material as a main component formed on the metal foil. The thickness of the current collector 3 is, for example, 5 to 50 ⁇ m.
  • the active material layer 5 can be produced, for example, by applying a slurry containing an active material, a binder, or the like onto the current collector 3 and drying the slurry.
  • binder examples include rubber-based binders, fluorine-based resins, polypropylene, polyethylene, and fluorine-modified (meth) acrylic-based binders as disclosed in Japanese Patent Application Laid-Open No. 2009-246137.
  • rubber-based binder examples include styrene-butadiene rubber (SBR) and NBR.
  • fluororesin examples include polyethylene tetrafluoride and polyvinylidene fluoride.
  • the slurry may contain other components in addition to the active material and the binder.
  • other components include a conductive agent and a thickener.
  • the conductive agent include carbon black, graphite, vapor-grown carbon fiber, metal powder and the like.
  • the thickener include carboxylmethylcellulose, its Na salt or ammonium salt, methylcellulose, hydroxymethylcellulose, ethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and the like.
  • the thickness of the active material layer 5 is not particularly limited.
  • the thickness of the active material layer 5 is, for example, 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the active material contained in the active material layer 5 is not particularly limited as long as it is an electrode active material applicable to a battery or a capacitor that utilizes the insertion and desorption of alkali metal ions.
  • the active material may be a negative electrode active material or a positive electrode active material.
  • the negative electrode active material is not particularly limited.
  • the negative electrode active material include carbon materials such as composite carbon materials, metals or semimetals such as Si and Sn that can be alloyed with lithium, and materials containing oxides thereof.
  • the composite carbon material include graphite, graphitized carbon, non-graphitizable carbon, and a composite carbon material in which graphite particles are coated with a pitch or a carbide of a resin.
  • Specific examples of the carbon material include the carbon material described in JP2013-258392.
  • Specific examples of the material containing a metal or metalloid capable of alloying with lithium or an oxide thereof include the materials described in JP-A-2005-123175 and JP-A-2006-107795.
  • Examples of the positive electrode active material include transition metal oxides, sulfur-based active materials, and the like.
  • Examples of the transition metal oxide include cobalt oxide, nickel oxide, manganese oxide, vanadium oxide and the like.
  • Examples of the sulfur-based active material include elemental sulfur and metal sulfide. Both the positive electrode active material and the negative electrode active material may be composed of a single substance or may be composed of a mixture of two or more kinds of substances.
  • the active material contained in the active material layer 5 is pre-doped with an alkali metal using the electrode manufacturing system 11 described later.
  • the alkali metal to be pre-doped into the active material lithium or sodium is preferable, and lithium is particularly preferable.
  • the density of the active material layer 5 is preferably 1.30 to 2.00 g / cc, and particularly preferably 1.40 to 1.90 g / cc. Is.
  • the electrode manufacturing system 11 includes an electrolytic solution treatment tank 15, a dope tank 17, 19, 21, a cleaning tank 23A, 23B, 23C, and transfer rollers 25, 27, 29, 31, 33.
  • the plurality of transport rollers described above may be collectively referred to as a transport roller group.
  • the electrolytic solution treatment tank 15 is a square tank with an open upper part.
  • the bottom surface of the electrolytic solution treatment tank 15 has a substantially U-shaped cross-sectional shape.
  • the electrolytic solution treatment tank 15 includes a partition plate 123.
  • the partition plate 123 is supported by a support rod 125 penetrating the upper end thereof.
  • the support rod 125 is fixed to a wall or the like (not shown).
  • the partition plate 123 extends in the vertical direction and divides the inside of the electrolytic solution treatment tank 15 into two spaces.
  • a transport roller 33 is attached to the lower end of the partition plate 123.
  • the partition plate 123 and the transport roller 33 are supported by a support rod 127 penetrating them.
  • the vicinity of the lower end of the partition plate 123 is cut out so as not to come into contact with the transport roller 33.
  • the configuration of the dope tank 17 will be described with reference to FIG.
  • the dope tank 17 is composed of an upstream tank 131 and a downstream tank 133.
  • the upstream tank 131 is arranged on the side of the supply roll 101
  • the downstream tank 133 is arranged on the side of the take-up roll 103.
  • the side of the supply roll 101 is referred to as the upstream side
  • the side of the take-up roll 103 is referred to as the downstream side.
  • the upstream tank 131 is a square tank with an open upper part.
  • the bottom surface of the upstream tank 131 has a substantially U-shaped cross-sectional shape.
  • the upstream tank 131 includes a partition plate 135 and four counter electrode units 137, 139, 141, and 143.
  • the partition plate 135 is supported by a support rod 145 that penetrates the upper end thereof.
  • the support rod 145 is fixed to a wall or the like (not shown).
  • the partition plate 135 extends in the vertical direction and divides the inside of the upstream tank 131 into two spaces.
  • a transport roller 40 is attached to the lower end of the partition plate 135.
  • the partition plate 135 and the transport roller 40 are supported by a support rod 147 that penetrates them.
  • the vicinity of the lower end of the partition plate 135 is cut out so as not to come into contact with the transport roller 40.
  • the counter electrode unit 137 is arranged on the upstream side of the upstream tank 131.
  • the counter electrode units 139 and 141 are arranged so as to sandwich the partition plate 135 from both sides.
  • the counter electrode unit 143 is arranged on the downstream side of the upstream tank 131.
  • the counter electrode units 137, 139, 141, and 143 are connected to one pole of the power supply 109.
  • the counter electrode units 137, 139, 141, and 143 may be connected to different power supplies. In this case, the counter electrode units 137, 139, 141, and 143 can be controlled, respectively. Further, it becomes easy to electrically adjust the counter electrode units 137, 139, 141, and 143 according to the doping condition of the electrode 1 in the doping step. As a result, it becomes easy to manufacture the desired dope electrode 1A.
  • the dope electrode 1A is an electrode 1 including an active material layer 5 doped with an alkali metal.
  • the counter electrode units 137, 139, 141, and 143 have the same configuration.
  • the configuration of the counter electrode units 137 and 139 will be described with reference to FIG.
  • the counter electrode unit 137 and 139 have a structure in which a conductive base material 153, an alkali metal-containing plate 155, and a porous insulating member 157 are laminated.
  • a conductive base material 153 examples include copper, stainless steel, nickel and the like.
  • the form of the alkali metal-containing plate 155 is not particularly limited, and examples thereof include an alkali metal plate and an alkali metal alloy plate.
  • the thickness of the alkali metal-containing plate 155 is, for example, 0.03 to 6 mm.
  • the porous insulating member 157 has a plate-like shape.
  • the porous insulating member 157 is laminated on the alkali metal-containing plate 155.
  • the plate-like shape of the porous insulating member 157 is a shape when the porous insulating member 157 is laminated on the alkali metal-containing plate 155.
  • the porous insulating member 157 may be a member that maintains a constant shape by itself, or may be a member that can be easily deformed, such as a net or the like.
  • the porous insulating member 157 is porous. Therefore, the dope solution described later can pass through the porous insulating member 157. Thereby, the alkali metal-containing plate 155 can come into contact with the dope solution.
  • Examples of the porous insulating member 157 include a resin mesh and the like.
  • Examples of the resin include polyethylene, polypropylene, nylon, polyetheretherketone, polytetrafluoroethylene and the like.
  • the mesh opening can be set as appropriate.
  • the mesh opening is, for example, 0.1 ⁇ m to 10 mm, preferably 0.1 to 5 mm.
  • the thickness of the mesh can be set as appropriate.
  • the thickness of the mesh is, for example, 1 ⁇ m to 10 mm, preferably 30 ⁇ m to 1 mm.
  • the mesh opening ratio can be set as appropriate.
  • the mesh opening ratio is, for example, 5 to 98%, preferably 5 to 95%, and more preferably 50 to 95%.
  • the porous insulating member 157 may be entirely made of an insulating material, or may be partially provided with an insulating layer.
  • the downstream tank 133 basically has the same configuration as the upstream tank 131. However, inside the downstream tank 133, there is a transfer roller 46 instead of the transfer roller 40. Further, the counter electrode units 137, 139, 141, and 143 included in the downstream tank 133 are connected to one pole of the power supply 110.
  • the dope tank 19 basically has the same configuration as the dope tank 17. However, inside the dope tank 19, the transfer rollers 52 and 58 are present instead of the transfer rollers 40 and 46. Further, the counter electrode units 137, 139, 141, and 143 included in the upstream tank 131 of the dope tank 19 are connected to one pole of the power supply 111. Further, the counter electrode units 137, 139, 141, and 143 included in the downstream tank 133 of the dope tank 19 are connected to one pole of the power supply 112.
  • the dope tank 21 basically has the same configuration as the dope tank 17. However, inside the dope tank 21, there are transfer rollers 64, 70 instead of transfer rollers 40, 46. Further, the counter electrode units 137, 139, 141, and 143 included in the upstream tank 131 of the dope tank 21 are connected to one pole of the power supply 113. Further, the counter electrode units 137, 139, 141, and 143 included in the downstream tank 133 of the dope tank 21 are connected to one pole of the power supply 114.
  • the cleaning tanks 23A, 23B, and 23C each have basically the same configuration as the electrolytic solution treatment tank 15. However, inside the cleaning tanks 23A, 23B, and 23C, the transfer roller 75 is present instead of the transfer roller 33.
  • the dope solution taken out from the dope tank 21 is attached to the electrode 1 that has passed through the dope tank 21.
  • the washing tanks 23A, 23B, and 23C the dope solution adhering to the electrode 1 is efficiently removed. Therefore, the handling of the electrode 1 in the next step becomes easy.
  • the cleaning liquid is preferably an organic solvent, and preferably contains an aprotic solvent having a boiling point of 150 ° C. or lower at 1 atm.
  • the aprotonic solvent having a boiling point of 150 ° C. or lower at 1 atm include at least one selected from a carbonate solvent, an ester solvent, an ether solvent, a hydrocarbon solvent, a ketone solvent and a nitrile solvent. .. Among these, carbonate-based solvents are preferable.
  • the carbonate solvent at least one selected from dimethyl carbonate, diethyl carbonate, methylpropyl carbonate and ethylmethyl carbonate is particularly preferable.
  • the dope solution taken out from the dope tank 21 is accumulated, so it is preferable to add or replace the cleaning solution to maintain the cleaning solution at a constant quality.
  • a method of grasping the quality of the cleaning liquid there is a method of installing sensors such as an insulation resistance tester and a conductivity meter in the cleaning tanks 23A, 23B, and 23C, and periodically checking the values measured by these sensors. ..
  • the transport rollers 37, 39, 43, 45, 49, 51, 55, 57, 61, 63, 67, 69 are made of a conductive material.
  • the transfer rollers 37, 39, 43, 45, 49, 51, 55, 57, 61, 63, 67, 69 correspond to conductive feeding rollers.
  • the conductive material include stainless steel, gold, copper, rhodium and the like. Copper is particularly preferable as the conductive material.
  • the conductive material may be a mixture of two or more kinds of materials. The presence of the conductive material, especially on the surface of the feeding roller, makes it easier to suppress the reaction between the dope electrode 1A and the feeding roller. As a result, high quality dope electrode 1A can be mass-produced.
  • the transport roller group transports the electrode 1 along a fixed path.
  • the cleaning execution route is from the supply roll 101, in the electrolytic solution treatment tank 15, in the dope tank 17, in the dope tank 19, in the dope tank 21, and in at least one of the cleaning tanks 23A, 23B, and 23C. , It is a route that sequentially passes through the tab cleaner 117 and reaches the take-up roll 103.
  • the number of cleaning tanks through which the dope electrode 1A passes can be arbitrarily selected from 1 to 3.
  • the cleaning omission route is basically the same as the cleaning execution route, but after passing through the dope tank 21, it does not pass through the cleaning tanks 23A, 23B, and 23C, and proceeds to the tab cleaner 117.
  • the other route is a route that is conveyed by the transfer rollers 85, 87, 89, 91, 93 via the transfer rollers 201 and 203 after passing through the tab cleaner 117.
  • This route will be referred to as the short drying route KS below.
  • the portion that passes through the electrolytic solution treatment tank 15 first moves downward via the transfer rollers 29 and 31, and then moves upward by the transfer rollers 33. It is a route that can be changed to.
  • the portion of the path through which the transport roller group transports the electrode 1 passes through the dope tank 17 is as follows. First, the moving direction is changed downward by the transport roller 37, and the space 149 of the upstream tank 131 is moved downward. Next, the moving direction is changed upward by the transport roller 40, and the space 151 of the upstream tank 131 is moved upward. Next, the moving direction is changed downward by the transport rollers 41 and 43, and the space 149 of the downstream tank 133 is moved downward. Next, the moving direction is changed upward by the transport roller 46, and the space 151 of the downstream tank 133 is moved upward. Finally, the moving direction is changed to the horizontal direction by the transport roller 47, and the moving direction is changed to the dope tank 19.
  • the portion of the path through which the transport roller group transports the electrode 1 passes through the dope tank 19 is as follows. First, the moving direction is changed downward by the transport roller 49, and the space 149 of the upstream tank 131 is moved downward. Next, the moving direction is changed upward by the transport roller 52, and the space 151 of the upstream tank 131 is moved upward. Next, the moving direction is changed downward by the transport rollers 53 and 55, and the space 149 of the downstream tank 133 is moved downward. Next, the moving direction is changed upward by the transport roller 58, and the space 151 of the downstream tank 133 is moved upward. Finally, the transfer roller 59 changes the moving direction to the horizontal direction and heads toward the dope tank 21.
  • the portion of the path through which the transport roller group transports the electrode 1 passes through the dope tank 21 is as follows. First, the moving direction is changed downward by the transport roller 61, and the space 149 of the upstream tank 131 is moved downward. Next, the moving direction is changed upward by the transport roller 64, and the space 151 of the upstream tank 131 is moved upward. Next, the moving direction is changed downward by the transport rollers 65 and 67, and the space 149 of the downstream tank 133 is moved downward. Next, the moving direction is changed upward by the transport roller 70, and the space 151 of the downstream tank 133 is moved upward. Finally, the moving direction is changed to the horizontal direction by the transport roller 71, and the moving direction is changed to the washing tank 23.
  • the portion passing through the cleaning tanks 23A, 23B, and 23C is first changed in the moving direction downward by the transport roller 73 and moved downward, and then moved in the moving direction by the transport roller 75. Is a route that can be changed upward.
  • the supply roll 101 winds the electrode 1. That is, the supply roll 101 holds the electrode 1 in a wound state.
  • the active material in the electrode 1 held on the supply roll 101 has not yet been doped with an alkali metal.
  • the transport roller group pulls out the electrode 1 held by the supply roll 101 and transports it.
  • the take-up roll 103 winds up and stores the electrode 1 transported by the transport roller group.
  • the method of doping the alkali metal is a method of electrically doping the active material with the alkali metal using the counter electrode units 139, 141, 143 provided facing the electrode 1 in the doping tanks 17, 19, 21. Is.
  • the electrode 1 becomes a doped electrode 1A including the active material layer 5 doped with the alkali metal.
  • the electrode 1 stored in the take-up roll 103 is a dope electrode 1A.
  • the support base 105 supports the electrolytic solution treatment tank 15, the dope tanks 17, 19, 21 and the cleaning tanks 23A, 23B, 23C from below.
  • the height of the support base 105 can be changed.
  • the circulation filtration unit 107 is provided in each of the dope tanks 17, 19 and 21, respectively.
  • the circulation filtration unit 107 includes a filter 161, a pump 163, and a pipe 165.
  • the pipe 165 is a circulation pipe that exits the dope tank 17, passes through the pump 163 and the filter 161 in sequence, and returns to the dope tank 17.
  • the dope solution in the dope tank 17 circulates in the pipe 165 and the filter 161 by the driving force of the pump 163, and returns to the dope tank 17 again.
  • foreign substances and the like in the dope solution are filtered by the filter 161.
  • the foreign matter include foreign matter deposited from the dope solution, foreign matter generated from the electrode 1, and the like.
  • the material of the filter 161 is, for example, a resin such as polypropylene or polytetrafluoroethylene.
  • the pore diameter of the filter 161 can be set as appropriate.
  • the pore size of the filter 161 is, for example, 0.2 ⁇ m or more and 50 ⁇ m or less.
  • the circulation filtration unit 107 provided in the dope tanks 19 and 21 also has the same configuration and exhibits the same function and effect.
  • the description of the dope solution is omitted for convenience.
  • One terminal of the power supply 109 is connected to the transport rollers 37 and 39. Further, the other terminal of the power supply 109 is connected to the counter electrode units 137, 139, 141, and 143 included in the upstream tank 131 of the dope tank 17.
  • the electrode 1 comes into contact with the transport rollers 37 and 39.
  • the electrode 1 and the counter electrode units 137, 139, 141, and 143 are in a dope solution which is an electrolytic solution. Therefore, in the upstream tank 131 of the dope tank 17, the electrode 1 and the counter electrode units 137, 139, 141, and 143 are electrically connected via the electrolytic solution.
  • One terminal of the power supply 110 is connected to the transport rollers 43 and 45. Further, the other terminal of the power supply 110 is connected to the counter electrode units 137, 139, 141, and 143 included in the downstream tank 133 of the dope tank 17.
  • the electrode 1 comes into contact with the transport rollers 43 and 45.
  • the electrode 1 and the counter electrode units 137, 139, 141, and 143 are in a dope solution which is an electrolytic solution. Therefore, in the downstream tank 133 of the dope tank 17, the electrode 1 and the counter electrode units 137, 139, 141, and 143 are electrically connected via the electrolytic solution.
  • One terminal of the power supply 111 is connected to the transport rollers 49 and 51. Further, the other terminal of the power supply 111 is connected to the counter electrode units 137, 139, 141, and 143 included in the upstream tank 131 of the dope tank 19.
  • the electrode 1 comes into contact with the transport rollers 49 and 51.
  • the electrode 1 and the counter electrode units 137, 139, 141, and 143 are in a dope solution which is an electrolytic solution. Therefore, in the upstream tank 131 of the dope tank 19, the electrode 1 and the counter electrode units 137, 139, 141, and 143 are electrically connected via the electrolytic solution.
  • One terminal of the power supply 112 is connected to the transport rollers 55 and 57. Further, the other terminal of the power supply 112 is connected to the counter electrode units 137, 139, 141, and 143 included in the downstream tank 133 of the dope tank 19.
  • the electrode 1 comes into contact with the transfer rollers 55 and 57.
  • the electrode 1 and the counter electrode units 137, 139, 141, and 143 are in a dope solution which is an electrolytic solution. Therefore, in the downstream tank 133 of the dope tank 19, the electrode 1 and the counter electrode units 137, 139, 141, and 143 are electrically connected via the electrolytic solution.
  • One terminal of the power supply 113 is connected to the transport rollers 61 and 63. Further, the other terminal of the power supply 113 is connected to the counter electrode units 137, 139, 141, and 143 included in the upstream tank 131 of the dope tank 21.
  • the electrode 1 comes into contact with the transport rollers 61 and 63.
  • the electrode 1 and the counter electrode units 137, 139, 141, and 143 are in a dope solution which is an electrolytic solution. Therefore, in the upstream tank 131 of the dope tank 21, the electrode 1 and the counter electrode units 137, 139, 141, and 143 are electrically connected via the electrolytic solution.
  • One terminal of the power supply 114 is connected to the transport rollers 67 and 69. Further, the other terminal of the power supply 114 is connected to the counter electrode units 137, 139, 141, and 143 included in the downstream tank 133 of the dope tank 21.
  • the electrode 1 comes into contact with the transport rollers 67 and 69.
  • the electrode 1 and the counter electrode units 137, 139, 141, and 143 are in a dope solution which is an electrolytic solution. Therefore, in the downstream tank 133 of the dope tank 21, the electrode 1 and the counter electrode units 137, 139, 141, and 143 are electrically connected via the electrolytic solution.
  • the tab cleaner 117 cleans the active material layer unformed portion 7 of the dope electrode 1A. If the residual organic component derived from the dope solution or the like remains in the active material layer unformed portion 7 of the dope electrode 1A, welding defects are likely to occur when the active material layer unformed portion 7 is welded.
  • the amount of residual organic components on the active material layer unformed portion 7 can be measured.
  • a measuring method for example, a total reflection measuring method of a Fourier transform infrared spectrophotometer can be mentioned.
  • the characteristic peak of the residual organic component is in the wave number range of 1180 cm -1 to 1250 cm -1 . Therefore, the amount of residual organic component can be measured based on the absorbance peak area value in this range.
  • the quality of the dope electrode 1A can be evaluated based on the amount of residual organic components on the active material layer unformed portion 7. For example, the quality of the dope electrode 1A can be evaluated based on whether or not the absorbance peak area value in the wave number range of 1180 cm -1 to 1250 cm -1 is 0.1 or less. When the absorbance peak area value is 0.1 or less, it can be determined that the active material layer unformed portion 7 is sufficiently cleaned.
  • the recovery unit 119 is arranged in each of the electrolytic solution treatment tank 15, the dope tanks 17, 19, 21, and the cleaning tanks 23A, 23B, and 23C.
  • the recovery unit 119 collects the liquid taken out from the tank by the electrode 1 and returns it to the tank.
  • the end sensor 121 detects the position of the end of the electrode 1 in the width direction W.
  • the end position adjusting unit (not shown) adjusts the positions of the supply roll 101 and the take-up roll 103 in the width direction W based on the detection result of the end sensor 121.
  • the plurality of blowers 213 are arranged along the path through which the dope electrode 1A is carried. Some blowers 213 blow gas onto the conveyed dope electrode 1A regardless of whether the path of the dope electrode 1A is the long drying path KL or the short drying path KS. The other blower 213 blows gas onto the dope electrode 1A carried through the long drying path KL. Therefore, when the path of the dope electrode 1A is the long drying path KL, the dope electrode 1A is sprayed with gas for a longer period of time than in the case of the short drying path KS.
  • the gas blown by the blower 213 is preferably a gas that is inert to the alkali metal-doped active material.
  • a gas that is inert to the alkali metal-doped active material.
  • gases include helium gas, neon gas, argon gas, nitrogen gas, dehumidified air from which water has been removed, and the like.
  • the gas may be a gas composed of a single component or a mixed gas composed of two or more kinds of components.
  • the blower 213 blows gas onto the dope electrode 1A the solvent of the dope solution evaporates.
  • the residual component is a residue in which one or more of the components contained in the dope solution adhering to the dope electrode 1A remains. Most of the residual components can be removed from the dope electrode 1A by cleaning the dope electrode 1A. Therefore, the mass of the residual component is substantially equal to the mass of the solvent basis weight a described later.
  • the dope solution is housed in the electrolytic solution treatment tank 15 and the dope tanks 17, 19, and 21.
  • the dope solution contains alkali metal ions and a solvent.
  • the dope solution is an electrolytic solution.
  • the solvent examples include organic solvents.
  • organic solvent an aprotic organic solvent is preferable.
  • aprotonic organic solvents for example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, vinylene carbonate, vinylethylene carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, dipropyl carbonate, ⁇ -butyrolactone, sulfolane, diethylene glycol dimethyl ether (diglyme). ), Diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether (triglime), triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether (tetraglyme) and the like.
  • the electrode 1 When the solvent is the above-mentioned aprotic organic solvent, the electrode 1 can be efficiently doped. Further, by using the dope electrode 1A doped with the above-mentioned aprotic organic solvent, a secondary battery having high battery stability can be obtained.
  • an organic solvent belonging to a specific group is preferable.
  • the organic solvent belonging to a specific group for example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, vinylene carbonate, vinyl ethylene carbonate, ethylene carbonate, and propylene carbonate are preferable.
  • dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate are more preferable, and at least dimethyl carbonate and ethylene carbonate are particularly preferably used in combination.
  • the volume ratio of dimethyl carbonate to the organic solvent is preferably 30% or more, preferably 50% or more. Is more preferable, and 70% or more is particularly preferable.
  • the electrode 1 When the solvent is an organic solvent belonging to a specific group, the electrode 1 can be doped particularly efficiently. Further, by using the dope electrode 1A which has been doped with an organic solvent belonging to a specific group, a secondary battery having particularly high battery stability can be obtained.
  • an ionic liquid such as a quaternary imidazolium salt, a quaternary pyridinium salt, a quaternary pyrrolidinium salt, or a quaternary piperidinium salt can be used.
  • the organic solvent may be composed of a single component or may be a mixed solvent of two or more kinds of components.
  • the alkali metal ion contained in the dope solution is an ion constituting an alkali metal salt.
  • the alkali metal salt is preferably a lithium salt or a sodium salt.
  • Phosphorus anions having a fluoro group such as PF 6 ⁇ , PF 3 (C 2 F 5 ) 3 ⁇ , PF 3 (CF 3 ) 3 ⁇ , etc. as the anion portion constituting the alkali metal salt; BF 4 ⁇ , BF 2 (CF) 2- , BF 3 (CF 3 ) - , B ( CN) 4- , etc.
  • Boron anion having a fluoro group or a cyano group N (FSO 2 ) 2- , N (CF 3 SO 2 ) 2- , Examples thereof include sulfonylimide anions having a fluoro group such as N (C 2 F 5 SO 2 ) 2- , and organic sulfonic acid anions having a fluoro group such as CF 3 SO 3- .
  • the concentration of the alkali metal salt in the dope solution is preferably 0.1 mol / L or more, and more preferably in the range of 0.5 to 1.5 mol / L. When the concentration of the alkali metal salt is within this range, the predope of the alkali metal proceeds efficiently.
  • the dope solution may further contain additives such as vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethyl sulfone and the like. can.
  • additives such as vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethyl sulfone and the like.
  • the amount of such an additive added is preferably 5% by mass or less in terms of the mass ratio with respect to the dope solution, and more preferably 3% by mass or less.
  • the dope solution can further contain a flame retardant such as a phosphazene compound.
  • the amount of the flame retardant added is preferably 1 part by mass or more, preferably 3 parts by mass or more, with respect to 100 parts by mass of the dope solution, from the viewpoint of effectively controlling the thermal runaway reaction when doping the alkali metal. More preferably, it is more preferably 5 parts by mass or more. Further, the amount of the flame retardant added is preferably 20 parts by mass or less, more preferably 15 parts by mass or less with respect to 100 parts by mass of the dope solution, from the viewpoint of obtaining a high-quality dope electrode 1A. It is more preferably less than or equal to parts by mass.
  • the manufacturing method of the dope electrode 1A is as follows.
  • the electrode 1 before pre-doping is wound around the supply roll 101.
  • the electrode 1 before pre-doping is pulled out from the supply roll 101 and sent to the take-up roll 103 along the above-mentioned path.
  • the electrolytic solution treatment tank 15, the dope tanks 17, 19, 21 and the cleaning tanks 23A, 23B, 23C are raised and set in the fixed positions shown in FIG.
  • the dope solution is housed in the electrolytic solution treatment tank 15 and the dope tanks 17, 19 and 21.
  • the dope solution is the dope solution described in "3. Composition of dope solution" above.
  • the cleaning liquid is stored in the cleaning tanks 23A, 23B, and 23C.
  • the transfer roller group transports the electrode 1 from the supply roll 101 to the take-up roll 103 along the above-mentioned path.
  • the path for transporting the electrode 1 is a path that passes through the dope tanks 17, 19, and 21.
  • the alkali metal is pre-doped into the active material contained in the active material layer 5.
  • the transport roller group transports the electrode 1 to one or more of the cleaning tanks 23A, 23B, and 23C.
  • the electrode 1 is washed in one or more of the washing tanks 23A, 23B, and 23C while being transported by the transport roller group.
  • the transport roller group continuously transports the electrode 1 to the tab cleaner 117.
  • the portion of the electrode 1 that has been conveyed to the tab cleaner 117 is a portion that has already been pre-doped and has become the doped electrode 1A.
  • the tab cleaner 117 cleans the active material layer unformed portion 7 of the dope electrode 1A.
  • the dope electrode 1A may be a positive electrode or a negative electrode.
  • the electrode manufacturing system 11 doped the positive electrode active material with an alkali metal.
  • the electrode manufacturing system 11 doped the negative electrode active material with an alkali metal.
  • the doping amount of the alkali metal is preferably 70 to 95% with respect to the theoretical capacity of the negative electrode active material.
  • the doping amount of the alkali metal is preferably 10 to 30% with respect to the theoretical capacity of the negative electrode active material.
  • the secondary battery examples include a lithium ion secondary battery and the like.
  • the secondary battery includes an electrode cell.
  • the electrode cell has a structure in which a negative electrode and a positive electrode are laminated.
  • the negative electrode is manufactured by the above-mentioned "4. Manufacturing method of doped electrode 1A using the electrode manufacturing system 11".
  • the negative electrode and the positive electrode are laminated to form an electrode cell.
  • the dope electrode 1A to which the dope solution is attached is subjected to a long drying route. It can be dried in the KL or short drying route KS. Drying means removing the solvent of the dope solution.
  • the dried dope electrode 1A contains 5 parts by mass or more and 40 parts by mass or less of residual components with respect to 100 parts by mass of the active material layer 5. If the dope electrode 1A containing a residual component is used, a secondary battery having high battery stability can be manufactured.
  • the dried dope electrode 1A preferably contains 10 parts by mass or more and 30 parts by mass or less of residual components with respect to 100 parts by mass of the active material layer 5, and 15 parts by mass with respect to 100 parts by mass of the active material layer 5. It is more preferable to contain the residual component of 25 parts by mass or more, and particularly preferably to contain the residual component of 15 parts by mass or more and 20 parts by mass or less.
  • the dope electrode 1A after drying contains a residual component of 10 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the active material layer 5, a secondary battery having higher battery stability can be manufactured.
  • the dope electrode 1A after drying contains a residual component of 15 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the active material layer 5, a secondary battery having particularly high battery stability can be manufactured.
  • the cleaning execution route is selected as the transport route of the electrode 1
  • any one of the cleaning tanks 23A, 23B, and 23C is not used, compared with the case where all of the cleaning tanks 23A, 23B, and 23C are used. Therefore, the productivity of the dope electrode 1A is high.
  • the dope electrode 1A containing the residual component can be manufactured by an electrode manufacturing system that does not have a cleaning mechanism such as cleaning tanks 23A, 23B, and 23C. Therefore, the electrode manufacturing system can be miniaturized.
  • Example (Example 1) (i) Manufacture of electrode 1 A long strip-shaped current collector 3 was prepared.
  • the current collector 3 was a negative electrode current collector.
  • the size of the current collector 3 was 130 mm in width, 100 m in length, and 8 ⁇ m in thickness.
  • the surface roughness Ra of the current collector 3 was 0.1 ⁇ m.
  • the current collector 3 was made of copper foil.
  • Active material layers 5 were formed on both sides of the current collector 3.
  • the active material layer 5 was a negative electrode active material layer.
  • the coating amount of the active material layer 5 was 100 g / m 2 per one side. As shown in FIG. 1, the active material layer 5 was formed along the longitudinal direction of the current collector 3. The active material layer 5 was formed over a width of 120 mm from the end portion of the current collector 3 in the width direction W. The width of the active material layer unformed portion 7 at the other end in the width direction W of the current collector 3 was 10 mm. The active material layer unformed portion 7 is a portion where the active material layer 5 is not formed. Then, the electrode 1 was obtained by drying and pressing.
  • the active material layer 5 contained a negative electrode active material, carboxymethyl cellulose, acetylene black, a binder and a dispersant in a mass ratio of 88: 3: 5: 3: 1.
  • the negative electrode active material was a mixture of a Si-based active material and a graphite-based active material.
  • the negative electrode active material contained a Si-based active material and a graphite-based active material in a mass ratio of 2: 8.
  • Acetylene black corresponds to conductive agents.
  • a Li foil was attached on the resin film.
  • the length and width of the Li foil were the same as the length and width of the resin film.
  • the thickness of the Li foil was 2 mm.
  • the resin film and Li foil were crimped onto a copper plate using a roll press device to obtain counter electrode units 137, 139, 141, and 143.
  • the linear pressure in crimping was 5 kgf / cm.
  • the copper plate corresponds to the conductive substrate 153.
  • the Li foil corresponds to the alkali metal-containing plate 155.
  • the electrode manufacturing system 11 shown in FIG. 3 was prepared, and the electrode 1 was passed through the paper.
  • counter electrode units 137, 139, 141, and 143 were installed in the dope tanks 17, 19, and 21, respectively.
  • the dope solution was supplied into the dope tanks 17, 19 and 21.
  • the dope solution was a solution containing 1.2 M of LiPF 6 .
  • the solvent of the dope solution was a mixed solution containing EC (ethylene carbonate) and DMC (dimethyl carbonate) in a volume ratio of 3: 7.
  • the composition of the dope solution 1 in Example 1 is D1.
  • the dope tanks 17, 19 and 21 were in a state of accommodating the dope solution and the counter electrode units 137, 139, 141 and 143.
  • the transport route of the electrode 1 was a cleaning omitted route and a short drying route KS.
  • the electrode 1 passed through the electrode manufacturing system 11 and the counter electrode units 137, 139, 141, and 143 were connected to a DC power supply with a current / voltage monitor. While transporting the electrode 1 at a speed of 1.24 m / min, a current of 154 A was applied to the entire electrode manufacturing system 11. At this time, the pre-doped current density per unit area of the electrode 1 was 10 mA / cm 2 . At this time, the center of the active material layer 5 included in the electrode 1 in the width direction W coincided with the center of the Li foil included in the counter electrode units 137, 139, 141, and 143 in the width direction W. Further, at this time, it was not observed that the voltage continued to rise even if the predoping was continuously performed. Predoping could be performed in a stable state with a voltage of 3.0 V.
  • the dope electrode 1A passed through the dope tank 21, it did not pass through the cleaning tanks 23A, 23B, and 23C, and proceeded to the tab cleaner 117.
  • the dope electrode 1A passed through the tab cleaner 117 and then proceeded to the short drying path KS.
  • the dope solution was attached to the surface of the dope electrode 1A.
  • the dope electrode 1A was blown with gas from the blower 213 and dried in the short drying path KS.
  • the gas blown by the blower 213 was nitrogen.
  • the flow rate of the blower 213 was 5 L / min per unit.
  • the total number of blowers 213 was 18. In Example 1, the number of blowers 213 sprayed with gas on the dope electrode 1A was six.
  • the solvent basis weight a is calculated as follows. A sample having a diameter of 16 mm was punched from the dope electrode 1A using a hand punch manufactured by Nogami Giken. The mass wa1 of the sample in the initial stage was measured using an electronic balance. Next, the sample was thoroughly washed with DMC solvent and dried. The mass wa2 of the dried sample was measured using an electronic balance. The unit of wa1 and wa2 is g, respectively.
  • the mass ratio X in the dope electrode 1A was 17% as shown in Table 1. As described above, the mass of the residual component is substantially equal to the mass of the solvent basis weight a. Therefore, the mass ratio X represents the ratio of the mass of the residual component to the mass of the active material layer 5. That is, the obtained dope electrode 1A contains 100 parts by mass of the active material layer 5 and a component of the dope solution having a numerical value of the mass ratio X.
  • the battery stability of the dope electrode 1A was evaluated by the following method. A part of the dope electrode 1A was punched out using a Thomson blade of Takahashi Type Sei Co., Ltd. The punched out portion was used as the negative electrode.
  • the basic form of the negative electrode was a rectangle with a length of 2.6 cm and a width of 4.0 cm. The negative electrode was provided with a terminal welded portion protruding from one side of the rectangle to the outer peripheral side. The negative electrode was exposed to an environment with a dew point of ⁇ 45 ° C. in the glove box for 5 hours.
  • the negative electrode was brought into a dry room with a dew point of -60 ° C.
  • a first evaluation half cell was prepared using a negative electrode.
  • the method for creating the first evaluation half cell is as follows.
  • a separator, a counter electrode, and a separator were sequentially laminated on one side of the negative electrode. Further, a separator, a counter electrode, and a separator were sequentially laminated on the opposite side of the negative electrode. As a result, a laminated body was obtained.
  • the separator was made of a polyethylene non-woven fabric having a thickness of 35 ⁇ m.
  • the counter electrode was a copper lath foil with metallic lithium attached.
  • the basic form of the copper lath foil was a rectangle with a length of 2.6 cm and a width of 3.9 cm.
  • the copper lath foil had a terminal weld that protruded from one side of the rectangle to the outer peripheral side.
  • the four sides of the laminate were taped.
  • the terminal welded portion of the negative electrode and the terminal welded portion of the counter electrode were ultrasonically welded to the copper terminal.
  • the size of the terminal was 5 mm in width, 50 mm in length, and 0.2 mm in thickness.
  • the laminated body was sandwiched between two laminated films.
  • the shape of the laminated film was rectangular.
  • the size of the laminated film was 6.5 cm in length and 8.0 cm in width. Three of the four sides of the two laminated films were fused. As a result, the two laminated films became a bag with only one side open. The laminate was housed in a bag.
  • the electrolytic solution was a solution containing 1.2 M of LiPF 6 .
  • the solvent of the electrolytic solution was a mixed solution containing EC (ethylene carbonate) and DMC (dimethyl carbonate) in a volume ratio of 3: 7.
  • the first evaluation half cell was completed. Further, basically, the second evaluation half cell was produced by the same method as the method for producing the first evaluation half cell. However, in the preparation of the second evaluation half cell, a negative electrode not exposed to dry air at a dew point of ⁇ 45 ° C. was used.
  • the first evaluation half cell and the second evaluation half cell correspond to the secondary battery.
  • the method for producing the first evaluation half cell and the second evaluation half cell corresponds to the method for manufacturing a secondary battery.
  • the first evaluation half cell and the second evaluation half cell were introduced into a constant temperature bath at 25 ° C.
  • the unit of the initial charge / discharge efficiency E represented by the following formula (4) was calculated for each of the first evaluation half cell and the second evaluation half cell.
  • the unit of the initial charge / discharge efficiency E is%.
  • E (C1 / C2) ⁇ 100
  • C1 is the initial discharge capacity.
  • C2 is the initial charge capacity.
  • the unit of C1 and C2 is mAh / cm 2 , respectively.
  • the initial discharge capacity C1 is when charging is performed with a constant current of 10 mA until the cell voltage reaches 0.01 V, and then charging is continued until the current value drops to 1 mA with a constant voltage of 0.01 V applied. Capacity.
  • the initial charge capacity C2 is the capacity when the battery is discharged until the cell voltage reaches 2.0 V with a constant current of 10 mA after the measurement of the initial discharge capacity C1.
  • the initial charge / discharge efficiency E of the first evaluation half cell was 99%.
  • the initial charge / discharge efficiency E of the second evaluation half cell was 100%.
  • the battery stability was evaluated according to the following criteria.
  • the evaluation results are shown in Table 1 above. (Evaluation criteria for battery stability)
  • the initial charge / discharge efficiency is less than 98.5% and 95.5% or more.
  • the initial charge / discharge efficiency is less than 95.5%.
  • the working time T is defined as the time from the start of drawing out the electrode 1 from the supply roll 101 to the winding of the dope electrode 1A on the take-up roll 103.
  • the working time ratio TR represented by the following equation 5 was calculated.
  • the unit of working time ratio TR is%.
  • TR (T / T r1 ) ⁇ 100 T r1 is the working time T in Comparative Example 1 described later.
  • the productivity was evaluated according to the following criteria based on the value of the working time ratio TR. The evaluation results are shown in Table 1 above.
  • B Working time ratio TR is 70% or more and 80% or less.
  • Example 2 Basically, the dope electrode 1A was manufactured and evaluated in the same manner as in Example 1. However, the transport path of the electrode 1 was the cleaning execution path. The dope electrode 1A passed through the cleaning tank 23A and did not pass through the cleaning tanks 23B and 23C.
  • Example 2 the mass ratio X was 12%.
  • the initial charge / discharge efficiency E of the first evaluation half cell was 98%.
  • the initial charge / discharge efficiency E of the second evaluation half cell was 100%.
  • the productivity evaluation result was A. (Example 3) Basically, the dope electrode 1A was manufactured and evaluated in the same manner as in Example 1. However, the transport path of the electrode 1 was the cleaning execution path. The dope electrode 1A passed through the cleaning tank 23A and did not pass through the cleaning tanks 23B and 23C. Further, the transport path of the electrode 1 was a long drying path KL. The number of blowers 213 sprayed with gas on the dope electrode 1A was 18.
  • Example 3 the mass ratio X was 8%.
  • the initial charge / discharge efficiency E of the first evaluation half cell was 97%.
  • the initial charge / discharge efficiency E of the second evaluation half cell was 100%.
  • the productivity evaluation result was B.
  • Example 4 Basically, the dope electrode 1A was manufactured and evaluated in the same manner as in Example 1. However, the flow rate of the blower 213 was 2.5 L / min per unit.
  • Example 4 the mass ratio X was 27%.
  • the initial charge / discharge efficiency E of the first evaluation half cell was 98%.
  • the initial charge / discharge efficiency E of the second evaluation half cell was 100%.
  • the productivity evaluation result was A.
  • Example 5 Basically, the dope electrode 1A was manufactured and evaluated in the same manner as in Example 1. However, the composition of the dope solution supplied into the dope tanks 17, 19 and 21 is different.
  • the dope solution in Example 5 is a solution containing 1.2 M of LiPF 6 .
  • the solvent of the dope solution is a mixed solution containing EC (ethylene carbonate), EMC (ethylmethyl carbonate) and DMC (dimethyl carbonate) in a volume ratio of 1: 1: 1.
  • the composition of the dope solution in Example 5 is D2.
  • Example 5 the mass ratio X was 21%.
  • the initial charge / discharge efficiency E of the first evaluation half cell was 98%.
  • the initial charge / discharge efficiency E of the second evaluation half cell was 100%.
  • the productivity evaluation result was A.
  • Example 6 Basically, the dope electrode 1A was manufactured and evaluated in the same manner as in Example 1. However, the composition of the dope solution supplied into the dope tanks 17, 19 and 21 is different.
  • the dope solution in Example 6 is a solution containing 1.4 M of LiPF 6 .
  • the solvent of the dope solution is a mixed solution containing EC (ethylene carbonate) and DMC (dimethyl carbonate) in a volume ratio of 3: 7, and further adding FEC (fluoroethylene carbonate) in a mass ratio of 1% by mass.
  • the composition of the dope solution in Example 6 is D3.
  • Example 6 the mass ratio X was 22%.
  • the initial charge / discharge efficiency E of the first evaluation half cell was 99%.
  • the initial charge / discharge efficiency E of the second evaluation half cell was 100%.
  • the productivity evaluation result was A.
  • Example 7 Basically, the dope electrode 1A was manufactured and evaluated in the same manner as in Example 1. However, the composition of the dope solution supplied into the dope tanks 17, 19 and 21 is different.
  • the dope solution in Example 7 is a solution containing 1.2 M of LiPF 6 .
  • the solvent of the dope solution is a mixed solution containing EC (ethylene carbonate) and DMC (dimethyl carbonate) in a volume ratio of 3: 7, and further adding FEC (fluoroethylene carbonate) in a mass ratio of 5% by mass.
  • the composition of the dope solution in Example 7 is D4.
  • Example 7 the mass ratio X was 17%.
  • the initial charge / discharge efficiency E of the first evaluation half cell was 99%.
  • the initial charge / discharge efficiency E of the second evaluation half cell was 100%.
  • the productivity evaluation result was A.
  • Comparative Example 1 Basically, the dope electrode 1A was manufactured and evaluated in the same manner as in Example 1. However, the transport path of the electrode 1 was the cleaning execution path. The dope electrode 1A passed through the cleaning tanks 23A, 23B, and 23C.
  • Comparative Example 2 Basically, the dope electrode 1A was manufactured in the same manner as in Example 1. However, the dope electrode 1A did not pass through either the long drying path KL or the short drying path KS. Therefore, the blower 213 did not blow gas onto the dope electrode 1A.
  • each of the above embodiments may be shared by a plurality of components, or the function of the plurality of components may be exerted by one component. Further, a part of the configuration of each of the above embodiments may be omitted. Further, at least a part of the configuration of each of the above embodiments may be added or substituted with respect to the configuration of the other embodiments.
  • the present disclosure can also be realized in various forms such as a dope electrode, a secondary battery, and an electrode manufacturing system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

アルカリ金属がドープされた活物質層を含むドープ電極を用いる二次電池の製造方法である。前記アルカリ金属のイオン及び非プロトン性有機溶媒を含むドープ溶液、並びに対極ユニットを収容するドープ槽内を通過する経路に沿って、活物質層を含む電極を搬送することで前記ドープ電極を製造する。前記ドープ槽から出た前記ドープ電極を、100質量部の前記活物質層に対し、5質量部以上40質量部以下の前記ドープ溶液の成分を含むように乾燥させ、乾燥後の前記ドープ電極を用いて前記二次電池を製造する。

Description

二次電池の製造方法及びドープ電極の製造方法 関連出願の相互参照
 本国際出願は、2020年11月10日に日本国特許庁に出願された日本国特許出願第2020-187146号に基づく優先権を主張するものであり、日本国特許出願第2020-187146号の全内容を本国際出願に参照により援用する。
 本開示は二次電池の製造方法及びドープ電極の製造方法に関する。
 近年の目覚しい電子機器の小型化・軽量化に伴い、当該電子機器の駆動用電源として用いられる電池に対しても小型化・軽量化の要求が一層高まっている。
 このような小型化・軽量化の要求を満足するために、リチウムイオン二次電池に代表される非水電解質二次電池が開発されている。また、高エネルギー密度特性及び高出力特性を必要とする用途に対応する蓄電デバイスとして、リチウムイオンキャパシタが知られている。更に、リチウムより低コストで資源的に豊富なナトリウムを用いたナトリウムイオン型の電池やキャパシタも知られている。
 このような電池やキャパシタにおいては、様々な目的のために、予めアルカリ金属を電極にドープするプロセスが採用されている。このプロセスは、一般にプレドープと呼ばれている。アルカリ金属を電極にプレドープする方法として、例えば、連続式の方法がある。連続式の方法では、帯状の電極をドープ溶液中で移送させながらプレドープを行う。連続式の方法は、特許文献1~4に開示されている。
特開平10-308212号公報 特開2008-77963号公報 特開2012-49543号公報 特開2012-49544号公報
 アルカリ金属がドープされた活物質層を含む電極を、以下ではドープ電極とする。ドープ溶液の槽から出たドープ電極には、ドープ溶液の成分が付着している。発明者は、研究の結果、ドープ溶液の成分が適切な量付着しているドープ電極を用いれば、電池安定性が高い二次電池を製造できることを明らかにした。本開示の1つの局面では、電池安定性が高い二次電池の製造方法、及びドープ電極の製造方法を提供することが好ましい。
 本開示の1つの局面は、アルカリ金属がドープされた活物質層を含むドープ電極を用いる二次電池の製造方法である。二次電池の製造方法では、前記アルカリ金属のイオン及び非プロトン性有機溶媒を含むドープ溶液、並びに対極ユニットを収容するドープ槽内を通過する経路に沿って、活物質層を含む電極を搬送することで前記ドープ電極を製造し、前記ドープ槽から出た前記ドープ電極を、100質量部の前記活物質層に対し、5質量部以上40質量部以下の前記ドープ溶液の成分を含むように乾燥させ、乾燥後の前記ドープ電極を用いて前記二次電池を製造する。
 このような製造方法によれば、電池安定性が高い二次電池を製造できる。
 本開示の別の局面は、アルカリ金属がドープされた活物質層を含むドープ電極の製造方法である。ドープ電極の製造方法では、前記アルカリ金属のイオン及び非プロトン性有機溶媒を含むドープ溶液、並びに対極ユニットを収容するドープ槽内を通過する経路に沿って、活物質層を含む電極を搬送することで前記ドープ電極を製造し、前記ドープ槽から出た前記ドープ電極を、100質量部の前記活物質層に対し、5質量部以上40質量部以下の前記ドープ溶液の成分を含むように乾燥させる。
 本開示の別の局面であるドープ電極の製造方法により製造したドープ電極を用いれば、電池安定性が高い二次電池を製造できる。
電極1の構成を表す平面図である。 図1におけるII-II断面を表す断面図である。 電極製造システム11の構成を表す説明図である。 ドープ槽17の構成を表す説明図である。 対極ユニット137、139の構成を表す説明図である。
1…電極、1A…ドープ電極、3…集電体、5…活物質層、6…活物質層形成部、7…活物質層未形成部、11…電極製造システム、15…電解液処理槽、17、19、21…ドープ槽、23A、23B、23C…洗浄槽、25、27、29、31、33、35、37、39、40、41、43、45、46、47、49、51、52、53、55、57、58、59、61、63、64、65、67、69、70、71、73、75、77、79、81、83、85、87、89、91、93、201、203、205、207、209、211…搬送ローラ、101…供給ロール、103…巻取ロール、105…支持台、107…循環濾過ユニット、109、110、111、112、113、114…電源、117…タブクリーナー、119…回収ユニット、121…端部センサ、131…上流槽、133…下流槽、137、139、141、143…対極ユニット、149、151…空間、153…導電性基材、155…アルカリ金属含有板、157…多孔質絶縁部材、161…フィルタ、163…ポンプ、165…配管、213…ブロアー
 本開示の例示的な実施形態を、図面を参照しながら説明する。
<第1実施形態>
 1.電極1の構成
 図1、図2に基づき、電極1の構成を説明する。電極1は帯状の形状を有する。電極1は、集電体3と、活物質層5とを備える。集電体3は帯状の形状を有する。活物質層5は、集電体3の両面にそれぞれ形成されている。
 電極1の表面には、活物質層形成部6と、活物質層未形成部7とがある。活物質層形成部6は、活物質層5が形成された部分である。活物質層未形成部7は、活物質層5が形成されていない部分である。活物質層未形成部7では、集電体3が露出している。
 活物質層未形成部7は、電極1の長手方向Lに延びる帯状の形態を有する。活物質層未形成部7は、電極1の幅方向Wにおいて、電極1の端部に位置する。
 集電体3として、例えば、銅、ニッケル、ステンレス等の金属箔が好ましい。また、集電体3は、前記金属箔上に炭素材料を主成分とする導電層が形成されたものであってもよい。集電体3の厚みは、例えば、5~50μmである。
 活物質層5は、例えば、活物質及びバインダー等を含有するスラリーを集電体3上に塗布し、乾燥させることにより作製できる。
 前記バインダーとして、例えば、ゴム系バインダー、フッ素系樹脂、ポリプロピレン、ポリエチレン、特開2009-246137号公報に開示されているようなフッ素変性(メタ)アクリル系バインダー等が挙げられる。ゴム系バインダーとしては、例えば、スチレン-ブタジエンゴム(SBR)、NBR等が例示される。またフッ素系樹脂としては、ポリ四フッ化エチレン、ポリフッ化ビニリデン等が例示される。
 前記スラリーは、活物質及びバインダーに加えて、その他の成分を含んでいてもよい。その他の成分として、例えば、導電剤、増粘剤が挙げられる。導電剤として、例えば、カーボンブラック、黒鉛、気相成長炭素繊維、金属粉末等が挙げられる。増粘剤として、例えば、カルボキシルメチルセルロース、そのNa塩又はアンモニウム塩、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
 活物質層5の厚さは特に限定されない。活物質層5の厚さは、例えば、5~500μm、好ましくは10~200μm、特に好ましくは10~100μmである。活物質層5に含まれる活物質は、アルカリ金属イオンの挿入及び脱離を利用する電池又はキャパシタに適用可能な電極活物質であれば特に限定されない。活物質は、負極活物質であってもよいし、正極活物質であってもよい。
 負極活物質は特に限定されない。負極活物質として、例えば、複合炭素材料等の炭素材料、リチウムと合金化が可能なSi、Sn等の金属若しくは半金属又はこれらの酸化物を含む材料等が挙げられる。複合炭素材料として、例えば、黒鉛、易黒鉛化炭素、難黒鉛化炭素、黒鉛粒子をピッチや樹脂の炭化物で被覆した複合炭素材料等が挙げられる。炭素材料の具体例として、特開2013-258392号公報に記載の炭素材料が挙げられる。リチウムと合金化が可能な金属若しくは半金属又はこれらの酸化物を含む材料の具体例として、特開2005-123175号公報、特開2006-107795号公報に記載の材料が挙げられる。
 正極活物質として、例えば、遷移金属酸化物、硫黄系活物質等が挙げられる。遷移金属酸化物として、例えば、コバルト酸化物、ニッケル酸化物、マンガン酸化物、バナジウム酸化物等が挙げられる。硫黄系活物質として、例えば、硫黄単体、金属硫化物等が挙げられる。正極活物質、及び負極活物質のいずれも、単一の物質から成るものであってもよいし、2種以上の物質を混合して成るものであってもよい。
 活物質層5が含む活物質は、後述する電極製造システム11を用いて、アルカリ金属がプレドープされる。活物質にプレドープするアルカリ金属として、リチウム又はナトリウムが好ましく、特にリチウムが好ましい。電極1をリチウムイオン二次電池の電極の製造に用いる場合、活物質層5の密度は、好ましくは1.30~2.00g/ccであり、特に好ましくは1.40~1.90g/ccである。
 2.電極製造システム11の構成
 電極製造システム11の構成を、図3~図5に基づき説明する。図3に示すように、電極製造システム11は、電解液処理槽15と、ドープ槽17、19、21と、洗浄槽23A、23B、23Cと、搬送ローラ25、27、29、31、33、35、37、39、40、41、43、45、46、47、49、51、52、53、55、57、58、59、61、63、64、65、67、69、70、71、73、75、77、79、81、83、85、87、89、91、93、201、203、205、207、209、211と、供給ロール101と、巻取ロール103と、支持台105と、循環濾過ユニット107と、6つの電源109、110、111、112、113、114と、タブクリーナー117と、回収ユニット119と、端部センサ121と、ブロアー213と、を備える。以下では、上述した複数の搬送ローラをまとめて搬送ローラ群と呼ぶこともある。
 電解液処理槽15は、上方が開口した角型の槽である。電解液処理槽15の底面は、略U字型の断面形状を有する。電解液処理槽15は、仕切り板123を備える。仕切り板123は、その上端を貫く支持棒125により支持されている。支持棒125は図示しない壁等に固定されている。仕切り板123は上下方向に延び、電解液処理槽15の内部を2つの空間に分割している。
 仕切り板123の下端に、搬送ローラ33が取り付けられている。仕切り板123と搬送ローラ33とは、それらを貫く支持棒127により支持されている。なお、仕切り板123の下端付近は、搬送ローラ33と接触しないように切り欠かれている。搬送ローラ33と、電解液処理槽15の底面との間には空間が存在する。
 ドープ槽17の構成を図4に基づき説明する。ドープ槽17は、上流槽131と下流槽133とから構成される。上流槽131は供給ロール101の側に配置され、下流槽133は巻取ロール103の側に配置されている。以下では、供給ロール101の側を上流側とし、巻取ロール103の側を下流側とする。
 まず、上流槽131の構成を説明する。上流槽131は上方が開口した角型の槽である。上流槽131の底面は、略U字型の断面形状を有する。上流槽131は、仕切り板135と、4個の対極ユニット137、139、141、143と、を備える。
 仕切り板135は、その上端を貫く支持棒145により支持されている。支持棒145は図示しない壁等に固定されている。仕切り板135は上下方向に延び、上流槽131の内部を2つの空間に分割している。仕切り板135の下端に、搬送ローラ40が取り付けられている。仕切り板135と搬送ローラ40とは、それらを貫く支持棒147により支持されている。なお、仕切り板135の下端付近は、搬送ローラ40と接触しないように切り欠かれている。搬送ローラ40と、上流槽131の底面との間には空間が存在する。
 対極ユニット137は、上流槽131のうち、上流側に配置されている。対極ユニット139、141は、仕切り板135を両側から挟むように配置されている。対極ユニット143は、上流槽131のうち、下流側に配置されている。
 対極ユニット137と対極ユニット139との間には空間149が存在する。対極ユニット141と対極ユニット143との間には空間151が存在する。対極ユニット137、139、141、143は、電源109の一方の極に接続される。
 なお、対極ユニット137、139、141、143は、それぞれ別の電源に接続してもよい。この場合、対極ユニット137、139、141、143をそれぞれ制御することができる。また、ドープ工程における電極1のドープの具合に応じて、対極ユニット137、139、141、143の電気的な調整を行い易くなる。その結果、所望のドープ電極1Aを製造し易くなる。ドープ電極1Aは、アルカリ金属がドープされた活物質層5を含む電極1である。
 対極ユニット137、139、141、143は同様の構成を有する。ここでは、図5に基づき、対極ユニット137、139の構成を説明する。
 対極ユニット137、139は、導電性基材153と、アルカリ金属含有板155と、多孔質絶縁部材157とを積層した構成を有する。導電性基材153の材質として、例えば、銅、ステンレス、ニッケル等が挙げられる。アルカリ金属含有板155の形態は特に限定されず、例えば、アルカリ金属板、アルカリ金属の合金板等が挙げられる。アルカリ金属含有板155の厚さは、例えば、0.03~6mmである。
 多孔質絶縁部材157は、板状の形状を有する。多孔質絶縁部材157は、アルカリ金属含有板155の上に積層されている。多孔質絶縁部材157が有する板状の形状とは、多孔質絶縁部材157がアルカリ金属含有板155の上に積層されている際の形状である。多孔質絶縁部材157は、それ自体で一定の形状を保つ部材であってもよいし、例えばネット等のように、容易に変形可能な部材であってもよい。
 多孔質絶縁部材157は多孔質である。そのため、後述するドープ溶液は、多孔質絶縁部材157を通過することができる。そのことにより、アルカリ金属含有板155は、ドープ溶液に接触することができる。
 多孔質絶縁部材157として、例えば、樹脂製のメッシュ等が挙げられる。樹脂として、例えば、ポリエチレン、ポリプロピレン、ナイロン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン等が挙げられる。メッシュの目開きは適宜設定できる。メッシュの目開きは、例えば、0.1μm~10mmであり、0.1~5mmであることが好ましい。メッシュの厚みは適宜設定できる。メッシュの厚みは、例えば、1μm~10mmであり、30μm~1mmであることが好ましい。メッシュの目開き率は適宜設定できる。メッシュの目開き率は、例えば、5~98%であり、5~95%であることが好ましく、50~95%であることがさらに好ましい。
 多孔質絶縁部材157は、その全体が絶縁性の材料から成っていてもよいし、その一部に絶縁性の層を備えていてもよい。
 下流槽133は、基本的には上流槽131とは同様の構成を有する。ただし、下流槽133の内部には、搬送ローラ40ではなく、搬送ローラ46が存在する。また、下流槽133が備える対極ユニット137、139、141、143は、電源110の一方の極に接続される。
 ドープ槽19は、基本的にはドープ槽17と同様の構成を備える。ただし、ドープ槽19の内部には、搬送ローラ40、46ではなく、搬送ローラ52、58が存在する。また、ドープ槽19の上流槽131が備える対極ユニット137、139、141、143は、電源111の一方の極に接続される。また、ドープ槽19の下流槽133が備える対極ユニット137、139、141、143は、電源112の一方の極に接続される。
 ドープ槽21は、基本的にはドープ槽17と同様の構成を備える。ただし、ドープ槽21の内部には、搬送ローラ40、46ではなく、搬送ローラ64、70が存在する。また、ドープ槽21の上流槽131が備える対極ユニット137、139、141、143は、電源113の一方の極に接続される。また、ドープ槽21の下流槽133が備える対極ユニット137、139、141、143は、電源114の一方の極に接続される。
 洗浄槽23A、23B、23Cは、それぞれ、基本的には電解液処理槽15と同様の構成を有する。ただし、洗浄槽23A、23B、23Cの内部には、搬送ローラ33ではなく、搬送ローラ75が存在する。
 ドープ槽21を通過した電極1には、ドープ槽21から持ち出したドープ溶液が付着している。洗浄槽23A、23B、23Cにおいて、電極1に付着しているドープ溶液は効率的に除去される。そのため、次工程での電極1の取り扱いが容易になる。
 洗浄槽23A、23B、23Cには、例えば、以下の洗浄液が収容されている。洗浄液は、有機溶剤であることが好ましく、1気圧での沸点が150℃以下の非プロトン性溶剤を含むことが好ましい。1気圧での沸点が150℃以下の非プロトン性溶剤として、例えば、カーボネート系溶剤、エステル系溶剤、エーテル系溶剤、炭化水素系溶剤、ケトン系溶剤及びニトリル系溶剤から選ばれる少なくとも一種が挙げられる。これらの中でも、カーボネート系溶剤が好ましい。カーボネート系溶剤として、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート及びエチルメチルカーボネートから選ばれる少なくとも1種が特に好ましい。このような洗浄液を用いることにより、洗浄後の電極1から洗浄液を除去することが容易になる。
 なお、洗浄槽23A、23B、23Cでは、ドープ槽21から持ち出されたドープ溶液が蓄積されていくため、洗浄液の追加、取り替え等をして、洗浄液を一定品質に維持することが好ましい。洗浄液の品質を把握する方法としては、洗浄槽23A、23B、23Cに絶縁抵抗計や導電率計等のセンサを設置し、これらのセンサにより測定される値を定期的に確認する方法が挙げられる。
 搬送ローラ群のうち、搬送ローラ37、39、43、45、49、51、55、57、61、63、67、69は、導電性の材料から成る。搬送ローラ37、39、43、45、49、51、55、57、61、63、67、69は、導電性の給電ローラに対応する。導電性の材料として、例えば、ステンレス鋼、金、銅、ロジウム等が挙げられる。導電性の材料として、特に、銅が好ましい。導電性の材料は、2種以上の材質を混合して成るものであってもよい。導電性の材料が、特に給電ローラの表面に存在することで、ドープ電極1Aと給電ローラとの反応を抑制し易くなる。その結果、高品質のドープ電極1Aを量産することが出来る。
 搬送ローラ群のうち、その他の搬送ローラは、軸受部分を除き、エラストマーから成る。搬送ローラ群は、電極1を一定の経路に沿って搬送する。搬送ローラ群が電極1を搬送する経路として、洗浄実行経路と、洗浄省略経路とがある。洗浄実行経路は、供給ロール101から、電解液処理槽15の中、ドープ槽17の中、ドープ槽19の中、ドープ槽21の中、洗浄槽23A、23B、23Cのうちの少なくとも1つの中、タブクリーナー117の中を順次通り、巻取ロール103に至る経路である。洗浄実行経路において、ドープ電極1Aが通過する洗浄槽の数は、1~3の中から任意に選択できる。
 洗浄省略経路は、洗浄実行経路と基本的には同様であるが、ドープ槽21の中を通った後、洗浄槽23A、23B、23Cの中は通らず、タブクリーナー117へ進む。
 また、洗浄実行経路と、洗浄省略経路とのいずれにおいても、タブクリーナー117の中を通った後の経路は2種類存在する。一つの経路は、タブクリーナー117の中を通った後、搬送ローラ201、203、205、207、209、211により搬送され、次に、搬送ローラ85、87、89、91、93により搬送される経路である。この経路は、以下では長乾燥経路KLとする。
 もう1つの経路は、タブクリーナー117の中を通った後、搬送ローラ201、203を経て、搬送ローラ85、87、89、91、93により搬送される経路である。この経路は、以下では短乾燥経路KSとする。
 搬送ローラ群が電極1を搬送する経路のうち、電解液処理槽15の中を通る部分は、まず、搬送ローラ29、31を経て下方に移動し、次に、搬送ローラ33により移動方向を上向きに変えられるという経路である。
 また、搬送ローラ群が電極1を搬送する経路のうち、ドープ槽17の中を通る部分は以下のとおりである。まず、搬送ローラ37により移動方向を下向きに変えられ、上流槽131の空間149を下方に移動する。次に、搬送ローラ40により移動方向を上向きに変えられ、上流槽131の空間151を上方に移動する。次に、搬送ローラ41、43により移動方向を下向きに変えられ、下流槽133の空間149を下方に移動する。次に、搬送ローラ46により移動方向を上向きに変えられ、下流槽133の空間151を上方に移動する。最後に、搬送ローラ47により移動方向を水平方向に変えられ、ドープ槽19に向かう。
 また、搬送ローラ群が電極1を搬送する経路のうち、ドープ槽19の中を通る部分は以下のとおりである。まず、搬送ローラ49により移動方向を下向きに変えられ、上流槽131の空間149を下方に移動する。次に、搬送ローラ52により移動方向を上向きに変えられ、上流槽131の空間151を上方に移動する。次に、搬送ローラ53、55により移動方向を下向きに変えられ、下流槽133の空間149を下方に移動する。次に、搬送ローラ58により移動方向を上向きに変えられ、下流槽133の空間151を上方に移動する。最後に、搬送ローラ59により移動方向を水平方向に変えられ、ドープ槽21に向かう。
 また、搬送ローラ群が電極1を搬送する経路のうち、ドープ槽21の中を通る部分は以下のとおりである。まず、搬送ローラ61により移動方向を下向きに変えられ、上流槽131の空間149を下方に移動する。次に、搬送ローラ64により移動方向を上向きに変えられ、上流槽131の空間151を上方に移動する。次に、搬送ローラ65、67により移動方向を下向きに変えられ、下流槽133の空間149を下方に移動する。次に、搬送ローラ70により移動方向を上向きに変えられ、下流槽133の空間151を上方に移動する。最後に、搬送ローラ71により移動方向を水平方向に変えられ、洗浄槽23に向かう。
 また、洗浄実行経路のうち、洗浄槽23A、23B、23Cの中を通る部分は、まず、搬送ローラ73により移動方向を下向きに変えられて下方に移動し、次に、搬送ローラ75により移動方向を上向きに変えられるという経路である。
 供給ロール101は、電極1を巻き回している。すなわち、供給ロール101は、巻き取られた状態の電極1を保持している。供給ロール101に保持されている電極1における活物質には、未だアルカリ金属がドープされていない。
 搬送ローラ群は、供給ロール101に保持された電極1を引き出し、搬送する。巻取ロール103は、搬送ローラ群により搬送されてきた電極1を巻き取り、保管する。ドープ槽17、19、21内を通過する経路に沿って電極1が搬送されるとき、活物質層5にアルカリ金属がドープされる。アルカリ金属をドープする方法は、ドープ槽17、19、21内において、電極1に対向して設けられた対極ユニット139、141、143を用いて、アルカリ金属を活物質に電気的にドープする方法である。活物質層5にアルカリ金属をドープすることにより、電極1は、アルカリ金属がドープされた活物質層5を含むドープ電極1Aになる。巻取ロール103に保管されている電極1はドープ電極1Aである。
 支持台105は、電解液処理槽15、ドープ槽17、19、21、及び洗浄槽23A、23B、23Cを下方から支持する。支持台105は、その高さを変えることができる。循環濾過ユニット107は、ドープ槽17、19、21にそれぞれ設けられている。循環濾過ユニット107は、フィルタ161と、ポンプ163と、配管165と、を備える。
 ドープ槽17に設けられた循環濾過ユニット107において、配管165は、ドープ槽17から出て、ポンプ163、及びフィルタ161を順次通り、ドープ槽17に戻る循環配管である。ドープ槽17内ドープ溶液は、ポンプ163の駆動力により、配管165、及びフィルタ161内を循環し、再びドープ槽17に戻る。このとき、ドープ溶液中の異物等は、フィルタ161により濾過される。異物として、ドープ溶液から析出した異物や、電極1から発生する異物等が挙げられる。フィルタ161の材質は、例えば、ポリプロピレン、ポリテトラフルオロエチレン等の樹脂である。フィルタ161の孔径は適宜設定できる。フィルタ161の孔径は、例えば、0.2μm以上50μm以下である。
 ドープ槽19、21に設けられた循環濾過ユニット107も、同様の構成を有し、同様の作用効果を奏する。なお、図3、図4において、ドープ溶液の記載は便宜上省略している。
 電源109の一方の端子は、搬送ローラ37、39と接続する。また、電源109の他方の端子は、ドープ槽17の上流槽131が備える対極ユニット137、139、141、143と接続する。電極1は搬送ローラ37、39と接触する。電極1と対極ユニット137、139、141、143とは、電解液であるドープ溶液中にある。そのため、ドープ槽17の上流槽131において、電極1と対極ユニット137、139、141、143とは電解液を介して電気的に接続する。
 電源110の一方の端子は、搬送ローラ43、45と接続する。また、電源110の他方の端子は、ドープ槽17の下流槽133が備える対極ユニット137、139、141、143と接続する。電極1は搬送ローラ43、45と接触する。電極1と対極ユニット137、139、141、143とは、電解液であるドープ溶液中にある。そのため、ドープ槽17の下流槽133において、電極1と対極ユニット137、139、141、143とは電解液を介して電気的に接続する。
 電源111の一方の端子は、搬送ローラ49、51と接続する。また、電源111の他方の端子は、ドープ槽19の上流槽131が備える対極ユニット137、139、141、143と接続する。電極1は搬送ローラ49、51と接触する。電極1と対極ユニット137、139、141、143とは、電解液であるドープ溶液中にある。そのため、ドープ槽19の上流槽131において、電極1と対極ユニット137、139、141、143とは電解液を介して電気的に接続する。
 電源112の一方の端子は、搬送ローラ55、57と接続する。また、電源112の他方の端子は、ドープ槽19の下流槽133が備える対極ユニット137、139、141、143と接続する。電極1は搬送ローラ55、57と接触する。電極1と対極ユニット137、139、141、143とは、電解液であるドープ溶液中にある。そのため、ドープ槽19の下流槽133において、電極1と対極ユニット137、139、141、143とは電解液を介して電気的に接続する。
 電源113の一方の端子は、搬送ローラ61、63と接続する。また、電源113の他方の端子は、ドープ槽21の上流槽131が備える対極ユニット137、139、141、143と接続する。電極1は搬送ローラ61、63と接触する。電極1と対極ユニット137、139、141、143とは、電解液であるドープ溶液中にある。そのため、ドープ槽21の上流槽131において、電極1と対極ユニット137、139、141、143とは電解液を介して電気的に接続する。
 電源114の一方の端子は、搬送ローラ67、69と接続する。また、電源114の他方の端子は、ドープ槽21の下流槽133が備える対極ユニット137、139、141、143と接続する。電極1は搬送ローラ67、69と接触する。電極1と対極ユニット137、139、141、143とは、電解液であるドープ溶液中にある。そのため、ドープ槽21の下流槽133において、電極1と対極ユニット137、139、141、143とは電解液を介して電気的に接続する。
 タブクリーナー117は、ドープ電極1Aの活物質層未形成部7を洗浄する。ドープ電極1Aの活物質層未形成部7に、ドープ溶液等に由来する残存有機成分が残ってしまうと、活物質層未形成部7を溶接する際に溶接不具合が発生し易い。
 タブクリーナー117によるクリーニング後に、活物質層未形成部7上の残存有機成分量を測定することができる。測定方法として、例えば、フーリエ変換赤外分光光度計の全反射測定法が挙げられる。残存有機成分の特徴的なピークは、波数1180cm-1~1250cm-1の範囲にある。そのため、この範囲の吸光度ピーク面積値に基づき、残存有機成分量を測定することができる。
 タブクリーナー117によるクリーニング後に、活物質層未形成部7上の残存有機成分量に基づき、ドープ電極1Aの品質の評価を行うことができる。例えば、波数1180cm-1~1250cm-1の範囲における吸光度ピーク面積値が0.1以下であるか否かにより、ドープ電極1Aの品質の評価を行うことができる。吸光度ピーク面積値が0.1以下であれば、活物質層未形成部7が十分にクリーニングされていると判断することができる。
 回収ユニット119は、電解液処理槽15、ドープ槽17、19、21、及び洗浄槽23A、23B、23Cのそれぞれに配置されている。回収ユニット119は、電極1が槽から持ち出す液を回収し、槽に戻す。
 端部センサ121は、電極1の幅方向Wにおける端部の位置を検出する。図示しない端部位置調整ユニットは、端部センサ121の検出結果に基づき、供給ロール101及び巻取ロール103の幅方向Wにおける位置を調整する。
 ブロアー213は複数存在する。複数のブロアー213は、ドープ電極1Aが搬送される経路に沿って並んでいる。一部のブロアー213は、ドープ電極1Aの経路が長乾燥経路KL及び短乾燥経路KSのいずれであっても、搬送されるドープ電極1Aにガスを吹き付ける。他のブロアー213は、長乾燥経路KLを搬送されているドープ電極1Aにガスを吹き付ける。そのため、ドープ電極1Aの経路が長乾燥経路KLである場合は、短乾燥経路KSである場合よりも、ドープ電極1Aは長時間にわたってガスを吹き付けられる。
 ブロアー213が吹き付けるガスは、アルカリ金属がドープされた活物質に対して不活性なガスであることが好ましい。そのようなガスとして、例えば、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス、水分が除去された除湿空気等が挙げられる。ガスは単一の成分から成るガスであってもよいし、2種以上の成分から成る混合ガスであってもよい。
 洗浄省略経路を選択し、ドープ電極1Aがタブクリーナー117を通過したとき、ドープ電極1Aの表面にはドープ溶液が付着している。ブロアー213がドープ電極1Aにガスを吹き付けることで、ドープ溶液の溶媒は蒸発する。ドープ電極1Aの表面にはドープ溶液の成分が残る。この残った成分を、以下では残留成分とする。残留成分は、ドープ電極1Aに付着したドープ溶液に含まれている成分の1種以上が残留した残留物である。残留成分の大部分は、ドープ電極1Aを洗浄することによりドープ電極1Aから除去可能である。よって、残留成分の質量は、後述する溶剤目付aの質量とほぼ等しい。
 3.ドープ溶液の組成
 電極製造システム11を使用するとき、電解液処理槽15、及びドープ槽17、19、21に、ドープ溶液を収容する。ドープ溶液は、アルカリ金属イオンと、溶媒とを含む。ドープ溶液は電解液である。
 溶媒として、例えば、有機溶媒が挙げられる。有機溶媒として、非プロトン性の有機溶媒が好ましい。非プロトン性の有機溶媒として、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジプロピルカーボネート、γ-ブチロラクトン、スルホラン、ジエチレングリコールジメチルエーテル(ジグライム)、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル(トリグライム)、トリエチレングリコールブチルメチルエーテル、及びテトラエチレングリコールジメチルエーテル(テトラグライム)等が挙げられる。
 溶媒が上記の非プロトン性の有機溶媒である場合、電極1を効率的にドープすることが可能となる。また、上記の非プロトン性の有機溶媒を用いてドープを行ったドープ電極1Aを用いることで、電池安定性が高い二次電池が得られる。
 非プロトン性の有機溶媒として、特定のグループに属する有機溶媒が好ましい。特定のグループに属する有機溶媒として、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、エチレンカーボネート、及びプロピレンカーボネートが好ましい。このような特定のグループに属する有機溶媒の中でも、ジメチルカーボネート、エチレンカーボネート及びメチルエチルカーボネートがさらに好ましく、少なくともジメチルカーボネートとエチレンカーボネートとを組み合わせて用いることが特に好ましい。
 前記特定のグループに属する有機溶媒として、少なくともジメチルカーボネートとエチレンカーボネートとを組み合わせて用いる際は、前記有機溶媒に占めるジメチルカーボネートの体積比が30%以上となることが好ましく、50%以上となることがより好ましく、70%以上となることが特に好ましい。このような組成の有機溶媒を用いてドープを行ったドープ電極1Aを用いることで、電池安定性が高い二次電池が得られる。
 溶媒が特定のグループに属する有機溶媒である場合、電極1を特に効率的にドープすることが可能となる。また、特定のグループに属する有機溶媒を用いてドープを行ったドープ電極1Aを用いることで、電池安定性が特に高い二次電池が得られる。
 また、前記有機溶媒として、例えば、第4級イミダゾリウム塩、第4級ピリジニウム塩、第4級ピロリジニウム塩、第4級ピペリジニウム塩等のイオン液体を使用することもできる。前記有機溶媒は、単一の成分から成るものであってもよいし、2種以上の成分の混合溶媒であってもよい。
 前記ドープ溶液に含まれるアルカリ金属イオンは、アルカリ金属塩を構成するイオンである。アルカリ金属塩は、好ましくはリチウム塩又はナトリウム塩である。アルカリ金属塩を構成するアニオン部として、例えば、PF6 -、PF3(C253 -、PF3(CF33 -等のフルオロ基を有するリンアニオン;BF4 -、BF2(CF)2 -、BF3(CF3-、B(CN)4 -等のフルオロ基又はシアノ基を有するホウ素アニオン;N(FSO22 -、N(CF3SO22 -、N(C25SO22 -等のフルオロ基を有するスルホニルイミドアニオン;CF3SO3 -等のフルオロ基を有する有機スルホン酸アニオンが挙げられる。
 前記ドープ溶液におけるアルカリ金属塩の濃度は、好ましくは0.1モル/L以上であり、より好ましくは0.5~1.5モル/Lの範囲内である。アルカリ金属塩の濃度がこの範囲内である場合、アルカリ金属のプレドープが効率よく進行する。
 前記ドープ溶液は、さらに、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、1-(トリフルオロメチル)エチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の添加剤を含有することができる。このような添加剤は、添加量がドープ溶液に対する質量比で5質量%以下であることが好ましく、添加量が3質量%以下であることがより好ましい。
 前記ドープ溶液は、ホスファゼン化合物等の難燃剤をさらに含有することができる。難燃剤の添加量は、アルカリ金属をドープする際の熱暴走反応を効果的に制御する観点から、ドープ溶液100質量部に対して1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、難燃剤の添加量は、高品質のドープ電極1Aを得る観点から、ドープ溶液100質量部に対して20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。
 4.電極製造システム11を使用したドープ電極1Aの製造方法
 ドープ電極1Aの製造方法は以下のとおりである。プレドープ前の電極1を供給ロール101に巻き回す。次に、プレドープ前の電極1を供給ロール101から引き出し、上述した経路に沿って巻取ロール103まで送る。次に、電解液処理槽15と、ドープ槽17、19、21と、洗浄槽23A、23B、23Cとを上昇させ、図3に示す定位置へセットする。
 次に、電解液処理槽15、及びドープ槽17、19、21にドープ溶液を収容する。ドープ溶液は、前記「3.ドープ溶液の組成」で述べたドープ溶液である。搬送経路として洗浄実行経路を選択する場合は、洗浄槽23A、23B、23Cに洗浄液を収容する。
 次に、搬送ローラ群により、供給ロール101から巻取ロール103まで、上述した経路に沿って電極1を搬送する。電極1を搬送する経路は、ドープ槽17、19、21内を通過する経路である。電極1がドープ槽17、19、21内を通過するとき、活物質層5に含まれる活物質にアルカリ金属がプレドープされる。
 さらに、搬送経路として洗浄実行経路を選択する場合は、搬送ローラ群は、電極1を洗浄槽23A、23B、23Cのうちの1以上に搬送する。電極1は、搬送ローラ群により搬送されながら、洗浄槽23A、23B、23Cのうちの1以上で洗浄される。
 さらに、搬送ローラ群は、電極1をタブクリーナー117に連続的に搬送する。電極1のうち、タブクリーナー117に搬送された部分は、プレドープの処理が既に行われ、ドープ電極1Aになった部分である。タブクリーナー117は、ドープ電極1Aのうち、活物質層未形成部7をクリーニングする。
 ドープ電極1Aは、正極であってもよいし、負極であってもよい。正極を製造する場合、電極製造システム11は、正極活物質にアルカリ金属をドープする。負極を製造する場合、電極製造システム11は、負極活物質にアルカリ金属をドープする。
 リチウムイオンキャパシタの負極活物質にリチウムを吸蔵させる場合、アルカリ金属のドープ量は、負極活物質の理論容量に対して好ましくは70~95%である。リチウムイオン二次電池の負極活物質にリチウムを吸蔵させる場合、アルカリ金属のドープ量は、負極活物質の理論容量に対して好ましくは10~30%である。
 5.二次電池の製造方法
 二次電池として、例えば、リチウムイオン二次電池等が挙げられる。二次電池は電極セルを備える。電極セルは、負極と、正極とを積層した構成を有する。二次電池において、例えば、負極を、前記「4.電極製造システム11を使用したドープ電極1Aの製造方法」により製造する。次に、負極と、正極とを積層して電極セルを形成する。
 6.ドープ電極の製造方法及び二次電池の製造方法が奏する効果
 (6-1)電極1の搬送経路として、洗浄省略経路を選択した場合、ドープ溶液が付着しているドープ電極1Aを、長乾燥経路KL又は短乾燥経路KSにおいて乾燥させることができる。乾燥とは、ドープ溶液の溶媒を除去することを意味する。乾燥後のドープ電極1Aは、100質量部の活物質層5に対し、5質量部以上40質量部以下の残留成分を含む。残留成分を含むドープ電極1Aを用いれば、電池安定性が高い二次電池を製造できる。
 乾燥後のドープ電極1Aは、100質量部の活物質層5に対し、10質量部以上30質量部以下の残留成分を含むことが好ましく、100質量部の活物質層5に対し、15質量部以上25質量部以下の残留成分を含むことがさらに好ましく、15質量部以上20質量部以下の残留成分を含むことが特に好ましい。
 乾燥後のドープ電極1Aが、100質量部の活物質層5に対し、10質量部以上30質量部以下の残留成分を含む場合、電池安定性がさらに高い二次電池を製造できる。乾燥後のドープ電極1Aが、100質量部の活物質層5に対し、15質量部以上25質量部以下の残留成分を含む場合、電池安定性が特に高い二次電池を製造できる。
 (6-2)電極1の搬送経路として洗浄省略経路を選択した場合、ドープ電極1Aを洗浄する工程が不要であるので、ドープ電極1Aの生産性が高い。
 また、電極1の搬送経路として洗浄実行経路を選択した場合でも、洗浄槽23A、23B、23Cのうちのいずれかを使用しなければ、洗浄槽23A、23B、23Cの全てを使用する場合に比べて、ドープ電極1Aの生産性が高い。
 (6-3)残留成分を含むドープ電極1Aは、洗浄槽23A、23B、23C等の洗浄機構を備えない電極製造システムにより製造できる。そのため、電極製造システムを小型化することができる。
 7.実施例
(実施例1)
 (i)電極1の製造
 長尺の帯状の集電体3を用意した。集電体3は負極集電体であった。集電体3のサイズは、幅130mm、長さ100m、厚さ8μmであった。集電体3の表面粗さRaは0.1μmであった。集電体3は銅箔から成っていた。集電体3の両面に、それぞれ活物質層5を形成した。活物質層5は負極活物質層であった。
 活物質層5の塗工量は、片面当たり、100g/m2であった。図1に示すように、活物質層5は、集電体3の長手方向に沿って形成された。活物質層5は、集電体3の幅方向Wにおける端部から幅120mmにわたって形成された。集電体3の幅方向Wにおけるもう一方の端部での活物質層未形成部7の幅は10mmであった。活物質層未形成部7とは、活物質層5が形成されていない部分である。その後、乾燥、及びプレスを行うことにより、電極1を得た。
 活物質層5は、負極活物質、カルボキシメチルセルロース、アセチレンブラック、バインダー及び分散剤を、質量比で88:3:5:3:1の比率で含んでいた。負極活物質は、Si系活物質と黒鉛系活物質との混合物であった。負極活物質は、Si系活物質と、黒鉛系活物質とを、質量比で2:8の比率で含んでいた。アセチレンブラックは導電剤に対応する。
 (ii)対極ユニット137、139、141、143の製造
 銅板上に、ポリプロピレン(PP)製の樹脂膜を取り付けた。銅板のサイズは、長さ1000mm、幅220mm、厚み3mmであった。樹脂膜のサイズは、長さ810mm、幅120mm、厚み470μmであった。樹脂膜の形態は、複数の開口部を有するメッシュ状であった。樹脂膜の開口率は50%であった。
 さらに、樹脂膜上にLiフォイルを取り付けた。Liフォイルの長さ及び幅は、樹脂膜の長さ及び幅と同一であった。Liフォイルの厚みは2mmであった。樹脂膜及びLiフォイルを、ロールプレス装置を用いて銅板に圧着し、対極ユニット137、139、141、143を得た。圧着における線圧は5kgf/cmであった。銅板は導電性基材153に対応する。Liフォイルはアルカリ金属含有板155に対応する。
 (iii)ドープ電極1Aの製造
 図3に示す電極製造システム11を用意し、電極1を通紙した。また、ドープ槽17、19、21のそれぞれに対極ユニット137、139、141、143を設置した。次に、ドープ槽17、19、21内にドープ溶液を供給した。ドープ溶液は、1.2MのLiPF6を含む溶液であった。ドープ溶液の溶媒は、EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とを、3:7の体積比で含む混合液であった。実施例1におけるドープ溶液1の組成をD1とする。ドープ槽17、19、21は、ドープ溶液、並びに対極ユニット137、139、141、143を収容した状態となった。電極1の搬送経路は、洗浄省略経路且つ短乾燥経路KSとした。
 次に、電極製造システム11に通紙した電極1及び対極ユニット137、139、141、143を電流・電圧モニター付き直流電源に接続した。電極1を1.24m/minの速度で搬送しながら、電極製造システム11の全体で154Aの電流を通電した。このとき、電極1の単位面積当たりのプレドープ電流密度は10mA/cm2であった。また、このとき、電極1が備える活物質層5の幅方向Wにおける中心と、対極ユニット137、139、141、143が備えるLiフォイルの幅方向Wにおける中心とが一致していた。また、このとき、継続してプレドープを行っても電圧が継続して上昇する様子は見られなかった。電圧が3.0Vで安定した状態でプレドープを行うことができた。
 ドープ電極1Aは、ドープ槽21の中を通った後、洗浄槽23A、23B、23Cの中は通らず、タブクリーナー117へ進んだ。ドープ電極1Aは、タブクリーナー117の中を通った後、短乾燥経路KSに進んだ。ドープ電極1Aが短乾燥経路KSに入ったとき、ドープ電極1Aの表面にはドープ溶液が付着していた。ドープ電極1Aは、短乾燥経路KSにおいて、ブロアー213からガスを吹き付けられ、乾燥した。ブロアー213が吹き付けたガスは窒素であった。ブロアー213の流量は、1台当たり5L/minであった。ブロアー213の総数は18台であった。実施例1においてドープ電極1Aにガスを吹き付けたブロアー213の数は6台であった。
 (iv)質量比Xの算出
 得られたドープ電極1Aにおいて、質量比Xを算出した。質量比X(%)は、以下の式1で算出される値である。
(式1) X=(a/b)×100
 aは溶剤目付である。溶剤目付aの単位はg/cm2である。bは活物質層目付である。活物質層目付bの単位はg/cm2である。
 溶剤目付aは以下のように算出される。ドープ電極1Aから、直径16mmの試料を、野上技研製のハンドパンチを用いて打ち抜いた。初期における試料の質量wa1を、電子天秤を用いて測定した。次に、試料を、DMC溶剤を用いて充分洗浄し、乾燥させた。乾燥後の試料の質量wa2を、電子天秤を用いて測定した。wa1、wa2の単位はそれぞれgである。以下の式2により、溶剤目付aを算出した。
(式2) a=(wa1-wa2)/S
 Sは直径16mmの試料の面積である。Sの単位はcm2である。
 活物質層目付bは以下の式3により算出される。
(式3) b=(wa2-wa3)/S
 wa3は、集電体3から打ち抜かれた、直径16mmの試料の質量である。wa3の単位はgである。
 ドープ電極1Aにおける質量比Xは、表1に示すように、17%であった。なお、上述したように、残留成分の質量は溶剤目付aの質量とほぼ等しい。そのため、質量比Xは、活物質層5の質量に対する残留成分の質量の比率を表す。すなわち、得られたドープ電極1Aは、100質量部の活物質層5に対し、質量比Xの数値の質量部のドープ溶液の成分を含む。
Figure JPOXMLDOC01-appb-T000001
 なお、表1の「乾燥工程」の行における「有(短)」は、ドープ電極1Aが短乾燥経路KSを通過したことを意味する。また、「有(長)」は、ドープ電極1Aが長乾燥経路KLを通過したことを意味する。また、「無」は、ドープ電極1Aが長乾燥経路KL及び短乾燥工程KSのいずれも通過しなかったことを意味する。ドープ電極1Aが通過する洗浄槽の数が少ないほど、質量比Xは大きい。ドープ電極1Aが短乾燥経路KSを通過した場合は、長乾燥経路KLを通過した場合よりも、質量比Xは大きい。
 (v)電池安定性の評価
 ドープ電極1Aの電池安定性を以下の方法で評価した。株式会社高橋型精のトムソン刃を用い、ドープ電極1Aの一部を打ち抜いた。打ち抜いた部分を負極とした。負極の基本形態は、縦2.6cm、横4.0cmの矩形であった。負極は、矩形の一辺から外周側に突出する端子溶接部を備えていた。負極を、グローブボックス内の露点-45℃の環境に5時間曝した。
 次に、露点-60℃のドライルームに負極を持ち込んだ。ドライルーム内で、負極を用いて第1の評価用ハーフセルを作製した。第1の評価用ハーフセルの作成方法は以下のとおりである。
 負極の一方の側に、セパレータ、対極、及びセパレータを順次積層した。また、負極の反対の側にも、セパレータ、対極、及びセパレータを順次積層した。この結果、積層体が得られた。セパレータは、厚さ35μmのポリエチレン製不織布から成るものであった。対極は、銅ラス箔に金属リチウムを貼りつけたものであった。銅ラス箔の基本形態は、縦2.6cm、横3.9cmの矩形であった。銅ラス箔は、矩形の一辺から外周側に突出する端子溶接部を備えていた。
 次に、積層体の4辺をテープで留めた。次に、負極の端子溶接部と対極の端子溶接部とを、銅製の端子に超音波溶接した。端子のサイズは、幅5mm、長さ50mm、厚さ0.2mmであった。
 次に、積層体を2枚のラミネートフィルムで挟んだ。ラミネートフィルムの形状は長方形であった。ラミネートフィルムのサイズは、縦6.5cm、横8.0cmであった。2枚のラミネートフィルムの4辺のうち3辺を融着した。その結果、2枚のラミネートフィルムは、1辺のみが開口した袋となった。積層体は袋の中に収容されていた。
 次に、袋の中の積層体に電解液を真空含侵させた。電解液は1.2MのLiPF6を含む溶液であった。電解液の溶媒は、EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とを、3:7の体積比で含む混合液であった。
 次に、袋の4辺のうち、未だ融着していなかった1辺を融着した。以上の工程により第1の評価用ハーフセルが完成した。また、基本的には、第1の評価用ハーフセルの作製方法と同様の方法で、第2の評価用ハーフセルを作製した。ただし、第2の評価用ハーフセルの作製では、露点-45℃のドライエアに曝していない負極を使用した。
 なお、第1の評価用ハーフセル及び第2の評価用ハーフセルは二次電池に対応する。第1の評価用ハーフセル及び第2の評価用ハーフセルの作製方法は二次電池の製造方法に対応する。
 第1の評価用ハーフセルと第2の評価用ハーフセルとを、25℃の恒温槽内に導入した。次に、第1の評価用ハーフセルと第2の評価用ハーフセルとのそれぞれについて、以下の式(4)で表される初回充放電効率Eを算出した。初回充放電効率Eの単位は%である。
(式4) E=(C1/C2)×100
 C1は初回放電容量である。C2は初回充電容量である。C1及びC2の単位はそれぞれmAh/cm2である。初回放電容量C1とは、10mAの定電流でセル電圧が0.01Vになるまで充電した後、0.01Vの定電圧を印加した状態で電流値が1mAに低下するまで充電を継続したときの容量である。初回充電容量C2とは、初回放電容量C1の測定後、10mAの定電流でセル電圧が2.0Vになるまで放電したときの容量である。
 第1の評価用ハーフセルの初回充放電効率Eは99%であった。第2の評価用ハーフセルの初回充放電効率Eは100%であった。
 第1の評価用ハーフセルにおける初回充放電効率Eの値に基づき、以下の基準で電池安定性を評価した。評価結果を上記表1に示す。
(電池安定性の評価基準)
 A:初回充放電効率が98.5%以上である。
 B:初回充放電効率が98.5%未満95.5%以上である。
 C:初回充放電効率が95.5%未満である。
 (vi)生産性の評価
 供給ロール101から電極1を引き出し始めてから、巻取ロール103にドープ電極1Aを巻き取るまでの時間を作業時間Tとする。以下の式5により表される作業時間比TRを算出した。作業時間比TRの単位は%である。
(式5) TR=(T/Tr1)×100
 Tr1は後述する比較例1における作業時間Tである。作業時間比TRの値に基づき、以下の基準で生産性を評価した。評価結果を上記表1に示す。
(生産性の評価基準)
A:作業時間比TRが70%未満である。
B:作業時間比TRが70%以上80%以下である。
(実施例2)
 基本的には実施例1と同様にドープ電極1Aを製造し、評価を行った。ただし、電極1の搬送経路は、洗浄実行経路とした。ドープ電極1Aは、洗浄槽23Aの中は通過し、洗浄槽23B、23Cの中は通らなかった。
 実施例2では、質量比Xは12%であった。第1の評価用ハーフセルの初回充放電効率Eは98%であった。第2の評価用ハーフセルの初回充放電効率Eは100%であった。生産性の評価結果はAであった。
(実施例3)
 基本的には実施例1と同様にドープ電極1Aを製造し、評価を行った。ただし、電極1の搬送経路は、洗浄実行経路とした。ドープ電極1Aは、洗浄槽23Aの中は通過し、洗浄槽23B、23Cの中は通らなかった。また、電極1の搬送経路は、長乾燥経路KLとした。ドープ電極1Aにガスを吹き付けたブロアー213の数は18台であった。
 実施例3では、質量比Xは8%であった。第1の評価用ハーフセルの初回充放電効率Eは97%であった。第2の評価用ハーフセルの初回充放電効率Eは100%であった。生産性の評価結果はBであった。
(実施例4)
 基本的には実施例1と同様にドープ電極1Aを製造し、評価を行った。ただし、ブロアー213の流量は、1台当たり2.5L/minであった。
 実施例4では、質量比Xは27%であった。第1の評価用ハーフセルの初回充放電効率Eは98%であった。第2の評価用ハーフセルの初回充放電効率Eは100%であった。生産性の評価結果はAであった。
(実施例5)
 基本的には実施例1と同様にドープ電極1Aを製造し、評価を行った。ただし、ドープ槽17、19、21内に供給するドープ溶液の組成において相違する。実施例5におけるドープ溶液は、1.2MのLiPF6を含む溶液である。ドープ溶液の溶媒は、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを、1:1:1の体積比で含む混合液である。実施例5におけるドープ溶液の組成をD2とする。
 実施例5では、質量比Xは21%であった。第1の評価用ハーフセルの初回充放電効率Eは98%であった。第2の評価用ハーフセルの初回充放電効率Eは100%であった。生産性の評価結果はAであった。
(実施例6)
 基本的には実施例1と同様にドープ電極1Aを製造し、評価を行った。ただし、ドープ槽17、19、21内に供給するドープ溶液の組成において相違する。実施例6におけるドープ溶液は、1.4MのLiPF6を含む溶液である。ドープ溶液の溶媒は、EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とを、3:7の体積比で含み、さらにFEC(フルオロエチレンカーボネート)を質量比で1質量%添加した混合液である。実施例6におけるドープ溶液の組成をD3とする。
 実施例6では、質量比Xは22%であった。第1の評価用ハーフセルの初回充放電効率Eは99%であった。第2の評価用ハーフセルの初回充放電効率Eは100%であった。生産性の評価結果はAであった。
(実施例7)
 基本的には実施例1と同様にドープ電極1Aを製造し、評価を行った。ただし、ドープ槽17、19、21内に供給するドープ溶液の組成において相違する。実施例7におけるドープ溶液は、1.2MのLiPF6を含む溶液である。ドープ溶液の溶媒は、EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とを、3:7の体積比で含み、さらにFEC(フルオロエチレンカーボネート)を質量比で5質量%添加した混合液である。実施例7におけるドープ溶液の組成をD4とする。
 実施例7では、質量比Xは17%であった。第1の評価用ハーフセルの初回充放電効率Eは99%であった。第2の評価用ハーフセルの初回充放電効率Eは100%であった。生産性の評価結果はAであった。
(比較例1)
 基本的には実施例1と同様にドープ電極1Aを製造し、評価を行った。ただし、電極1の搬送経路は、洗浄実行経路とした。ドープ電極1Aは、洗浄槽23A、23B、23Cの中を通った。
 比較例1では、質量比Xは3%であった。第1の評価用ハーフセルの初回充放電効率Eは95%であった。第2の評価用ハーフセルの初回充放電効率Eは100%であった。生産性の評価結果はCであった。
(比較例2)
 基本的には実施例1と同様にドープ電極1Aを製造した。ただし、ドープ電極1Aは、長乾燥経路KL及び短乾燥経路KSのいずれも通過しなかった。よって、ドープ電極1Aにブロアー213がガスを吹き付けることはなかった。
 ドープ溶液の析出物がドープ槽17以降の搬送ローラに堆積し、電極1が破断した。そのため、評価を行うことができなかった。
<他の実施形態>
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 (1)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。
 (2)上述したドープ電極の製造方法、二次電池の製造方法の他、ドープ電極、二次電池、電極製造システム等、種々の形態で本開示を実現することもできる。

Claims (6)

  1.  アルカリ金属がドープされた活物質層を含むドープ電極を用いる二次電池の製造方法であって、
     前記アルカリ金属のイオン及び非プロトン性有機溶媒を含むドープ溶液、並びに対極ユニットを収容するドープ槽内を通過する経路に沿って、活物質層を含む電極を搬送することで前記ドープ電極を製造し、
     前記ドープ槽から出た前記ドープ電極を、100質量部の前記活物質層に対し、5質量部以上40質量部以下の前記ドープ溶液の成分を含むように乾燥させ、
     乾燥後の前記ドープ電極を用いて前記二次電池を製造する二次電池の製造方法。
  2.  アルカリ金属がドープされた活物質層を含むドープ電極の製造方法であって、
     前記アルカリ金属のイオン及び非プロトン性有機溶媒を含むドープ溶液、並びに対極ユニットを収容するドープ槽内を通過する経路に沿って、活物質層を含む電極を搬送することで前記ドープ電極を製造し、
     前記ドープ槽から出た前記ドープ電極を、100質量部の前記活物質層に対し、5質量部以上40質量部以下の前記ドープ溶液の成分を含むように乾燥させる、
     ドープ電極の製造方法。
  3.  請求項2に記載のドープ電極の製造方法であって、
     前記ドープ槽内において、前記電極に対向して設けられた前記対極ユニットを用いて、前記アルカリ金属を前記活物質層に電気的にドープする、
     ドープ電極の製造方法。
  4.  請求項2又は3に記載のドープ電極の製造方法であって、
     ヘリウムガス、ネオンガス、アルゴンガス、及び窒素ガスからなる群より選択される少なくとも1種を吹き付けることで、前記ドープ槽から出た前記ドープ電極を乾燥させる、
     ドープ電極の製造方法。
  5.  請求項2~4のいずれか1項に記載のドープ電極の製造方法であって、
     前記非プロトン性有機溶媒は、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジプロピルカーボネート、γ-ブチロラクトン、スルホラン、ジエチレングリコールジメチルエーテル(ジグライム)、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル(トリグライム)、トリエチレングリコールブチルメチルエーテル、及びテトラエチレングリコールジメチルエーテル(テトラグライム)からなる群より選択される少なくとも1種である、
     ドープ電極の製造方法。
  6.  請求項2~4のいずれか1項に記載のドープ電極の製造方法であって、
     前記非プロトン性有機溶媒は、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、エチレンカーボネート、及びプロピレンカーボネートからなる群より選択される少なくとも1種である、
     ドープ電極の製造方法。
PCT/JP2021/039179 2020-11-10 2021-10-22 二次電池の製造方法及びドープ電極の製造方法 WO2022102381A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21891628.6A EP4246615A1 (en) 2020-11-10 2021-10-22 Manufacturing method for secondary battery and manufacturing method for doped electrode
CN202180075643.0A CN116420210A (zh) 2020-11-10 2021-10-22 二次电池的制造方法以及掺杂电极的制造方法
KR1020237019081A KR20230104673A (ko) 2020-11-10 2021-10-22 이차 전지의 제조 방법 및 도프 전극의 제조 방법
JP2022561373A JPWO2022102381A1 (ja) 2020-11-10 2021-10-22
US18/251,570 US20240014369A1 (en) 2020-11-10 2021-10-22 Method for manufacturing rechargeable battery and method for manufacturing doped electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-187146 2020-11-10
JP2020187146 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102381A1 true WO2022102381A1 (ja) 2022-05-19

Family

ID=81601071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039179 WO2022102381A1 (ja) 2020-11-10 2021-10-22 二次電池の製造方法及びドープ電極の製造方法

Country Status (6)

Country Link
US (1) US20240014369A1 (ja)
EP (1) EP4246615A1 (ja)
JP (1) JPWO2022102381A1 (ja)
KR (1) KR20230104673A (ja)
CN (1) CN116420210A (ja)
WO (1) WO2022102381A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366668A (zh) * 2019-01-23 2021-09-07 武藏能源解决方案有限公司 掺杂系统以及掺杂方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308212A (ja) 1997-05-06 1998-11-17 Ricoh Co Ltd 2次電池用電極板処理装置
JP2005123175A (ja) 2003-09-26 2005-05-12 Jfe Chemical Corp 複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP2006107795A (ja) 2004-09-30 2006-04-20 Sony Corp 負極活物質およびそれを用いた電池
JP2008077963A (ja) 2006-09-21 2008-04-03 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置
JP2009246137A (ja) 2008-03-31 2009-10-22 Jsr Corp リチウムイオンキャパシタ
JP2012049543A (ja) 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd エネルギー貯蔵装置の電極製造用ドーピング装置及びこれを用いた電極製造方法
JP2012049544A (ja) 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd エネルギー貯蔵装置の電極製造用ドーピング装置及びこれを用いた電極製造方法
JP2013258392A (ja) 2012-05-18 2013-12-26 Jsr Corp 電極活物質、電極及び蓄電デバイス
JP2016189331A (ja) * 2012-05-09 2016-11-04 信越化学工業株式会社 蓄電デバイス用電極の製造方法
JP2018113447A (ja) * 2016-02-26 2018-07-19 Jsr株式会社 ドーピングシステム、並びに、電極、電池及びキャパシタの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308212A (ja) 1997-05-06 1998-11-17 Ricoh Co Ltd 2次電池用電極板処理装置
JP2005123175A (ja) 2003-09-26 2005-05-12 Jfe Chemical Corp 複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP2006107795A (ja) 2004-09-30 2006-04-20 Sony Corp 負極活物質およびそれを用いた電池
JP2008077963A (ja) 2006-09-21 2008-04-03 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置
JP2009246137A (ja) 2008-03-31 2009-10-22 Jsr Corp リチウムイオンキャパシタ
JP2012049543A (ja) 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd エネルギー貯蔵装置の電極製造用ドーピング装置及びこれを用いた電極製造方法
JP2012049544A (ja) 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd エネルギー貯蔵装置の電極製造用ドーピング装置及びこれを用いた電極製造方法
JP2016189331A (ja) * 2012-05-09 2016-11-04 信越化学工業株式会社 蓄電デバイス用電極の製造方法
JP2013258392A (ja) 2012-05-18 2013-12-26 Jsr Corp 電極活物質、電極及び蓄電デバイス
JP2018113447A (ja) * 2016-02-26 2018-07-19 Jsr株式会社 ドーピングシステム、並びに、電極、電池及びキャパシタの製造方法

Also Published As

Publication number Publication date
JPWO2022102381A1 (ja) 2022-05-19
EP4246615A1 (en) 2023-09-20
CN116420210A (zh) 2023-07-11
KR20230104673A (ko) 2023-07-10
US20240014369A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP7280281B2 (ja) 電極製造装置
JP7307165B2 (ja) 蓄電デバイス及びリチウムイオン二次電池の製造方法
JP7456936B2 (ja) 電極製造方法、蓄電デバイスの製造方法、及び電極製造装置
WO2022102381A1 (ja) 二次電池の製造方法及びドープ電極の製造方法
WO2022270063A1 (ja) ドープ電極の製造方法
JP7170057B2 (ja) 電極製造装置及び電極製造方法
US20220077448A1 (en) Doping system and doping method
US11811046B2 (en) Method for manufacturing electrode
US20230042598A1 (en) Doping system and method of manufacturing electrode
JP7372315B2 (ja) 電極製造方法及び蓄電デバイスの製造方法
US12095071B2 (en) Electrode manufacturing system and electrode manufacturing method
WO2021131124A1 (ja) 電極の製造方法、蓄電デバイスの製造方法、及び電極製造装置
WO2023276314A1 (ja) ドープ電極の製造方法及びドープ電極の製造システム
JP2024067440A (ja) ドープ電極の製造方法及び蓄電デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561373

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18251570

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237019081

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891628

Country of ref document: EP

Effective date: 20230612