JP5045044B2 - 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置 - Google Patents

非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置 Download PDF

Info

Publication number
JP5045044B2
JP5045044B2 JP2006255597A JP2006255597A JP5045044B2 JP 5045044 B2 JP5045044 B2 JP 5045044B2 JP 2006255597 A JP2006255597 A JP 2006255597A JP 2006255597 A JP2006255597 A JP 2006255597A JP 5045044 B2 JP5045044 B2 JP 5045044B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode precursor
material layer
lithium ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006255597A
Other languages
English (en)
Other versions
JP2008077963A (ja
Inventor
秀治 武澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006255597A priority Critical patent/JP5045044B2/ja
Priority to US11/856,760 priority patent/US8133374B2/en
Publication of JP2008077963A publication Critical patent/JP2008077963A/ja
Application granted granted Critical
Publication of JP5045044B2 publication Critical patent/JP5045044B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高容量密度の負極活物質を用いた非水電解質二次電池用負極を製造する過程において、その前駆体にリチウムイオンを吸蔵させることによって、負極活物質の不可逆容量を補う方法とその装置に関する。
電子機器のポータブル化、コードレス化が進むにつれて、小型・軽量で、かつ高エネルギー密度を有する非水電解質二次電池への期待はより一層高まっている。現在、黒鉛などの炭素材料が非水電解質二次電池の負極活物質として実用化されている。しかしながらその理論容量密度は372mAh/gである。そこで、さらに非水電解質二次電池を高エネルギー密度化するために、炭素材料より理論容量密度の大きいケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)やこれらの酸化物および合金などが検討されている。特にSi粒子や酸化ケイ素粒子などの含ケイ素粒子は安価なため、幅広く検討されている。
上記のような負極活物質は、特に処理しない限りリチウムイオンを含まない状態で電池に組み込まれる。電池容量に寄与するリチウムイオンは正極活物質のみに由来するが、予め処理をしない負極活物質を用いた電池は初回充電時の不可逆容量が大きい。そのため、初回放電以降に利用可能なリチウムイオンが減少し、電池容量が低下する。このように、負極活物質の高容量密度を活かしきれない。
そこでこの不可逆容量を補うため、予め負極の表面にリチウム金属箔を貼り付けたり、真空蒸着法やイオンプレーティング法などの乾式成膜法により負極の表面にリチウム金属の層を形成したりすることが提案されている(例えば、特許文献1、2)。
国際公開第96/27910号パンフレット 特開2005−038720号公報
しかしながら不可逆容量に相当する量のリチウム金属はごくわずかであるため、リチウム箔を負極表面に貼り付ける場合、極めて薄い箔を作製して貼り付ける必要がある。このような金属箔を製造することは難しく、このような金属箔の取り扱いは困難である。またそのため負極の製造工程が煩雑になる。また比較的厚めのリチウム箔を負極に疎らに貼り付けると、負極活物質のリチウム吸蔵量が極板面内で大きくばらつく。大容量密度の負極活物質は一般的に充電に伴い膨張するため、このようにリチウム箔を貼り付けると、負極に凹凸が生じ、充放電反応が不均一になり、その結果、例えばサイクル特性が低下する。また過剰なリチウム金属箔を貼り付けると負極活物質に吸蔵されきれないリチウム金属が負極表面に残り、充電時にはその部位にデンドライドが発生する可能性があり、熱安定性や安全性の面で課題が残る。
一方、乾式成膜法により負極の表面にリチウム金属の層を形成する場合には負極の温度が上昇するため、負極活物質層を形成するための結着剤の強度に影響する。結着剤の強度が低下すると充放電時の負極活物質の体積変化に伴う応力変化により、活物質同士の導電ネットワークが維持できず充放電サイクル特性が低下する。特に上述のように高容量密度の負極活物質は一般的に充放電に伴い体積変化する。そのため、このような負極活物質を用いた場合、負極活物質層が崩壊しやすくなる。
本発明は、上記の課題を解決するものであり、負極活物質の不可逆容量を補充して非水電解質二次電池用負極の高容量密度化を実現しつつ、充放電サイクル特性に優れた非水電解質二次電池を実現するために、非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置を提供することを目的とする。
上記目的を達成するために本発明では、導体からなる芯材とこの芯材上に形成された活物質層とを有し、芯材の巻取方向に活物質を有さない芯材露出部を形成した非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる。この方法は、次の5つのステップを含む。
巻き取られた負極前駆体を引き出すAステップ。
引き出された負極前駆体を、リチウムイオンを含有させた非水電解液に挿入するBステップ。
非水電解液内に設けられた参照電極を用い、負極前駆体における、非水電解液に浸った部分の参照電極近傍の電位を測定するCステップ。
測定された電位に基づき、負極前駆体と非水電解液中で活物質層に対向するように設置した電極との間に流す電流を制御することにより活物質層へのリチウムイオンの吸蔵量を制御するDステップ。
リチウムイオンを吸蔵処理した負極前駆体を巻き取るEステップ。
このように、本発明による方法では、非水電解液中で電気化学的に負極前駆体にリチウムイオンを吸蔵させる。これによって負極活物質の不可逆容量を補充するのに必要な量だけのリチウムイオンを負極活物質に供給することができる。これにより負極活物質の大容量密度を活かすことができる。またその際、負極と外部端子との電気的接続に用いる芯材露出部に反応性の高いリチウム金属が析出することを抑制することができる。これにより、芯材露出部を溶接する際にリチウム金属への着火などの不具合が生じない。そのため生産性が向上する。
本発明の非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法を用いれば、高容量で生産性の高い非水電解質二次電池を提供することができる。
本発明の第1の発明は、導体からなる芯材とこの芯材上に形成された活物質層とを有し、芯材の巻取方向に活物質を有さない芯材露出部を形成した非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法である。この方法は、次の5つのステップを含む。巻き取られた負極前駆体を引き出すAステップ、引き出された負極前駆体を、リチウムイオンを含有させた非水電解液に挿入するBステップ、非水電解液内に設けられた第1参照電極を用い、負極前駆体における、非水電解液に浸った部分の第1参照電極近傍の電位を測定するCステップ、測定された電位に基づき、負極前駆体と非水電解液中で活物質層に対向するように設置した第1電極との間に流す電流を制御することにより活物質層へのリチウムイオンの吸蔵量を制御するDステップ、リチウムイオンを吸蔵処理した負極前駆体を巻き取るEステップ。この方法では、非水電解液中で電気化学的に負極前駆体にリチウムイオンを吸蔵させる。これによって負極活物質の不可逆容量を補充するのに必要な量だけのリチウムイオンを負極活物質に供給することができる。これにより負極活物質の大容量密度を活かすことができる。またその際、負極と外部端子との電気的接続に用いる芯材露出部に反応性の高いリチウム金属が析出することを抑制することができる。これにより、芯材露出部を溶接する際にリチウム金属への着火などの不具合が生じない。そのため生産性が向上する。
本発明の第2の発明は、第1の発明のBステップにおいて、負極前駆体を非水電解液に挿入する部分の負極前駆体の移動方向における長さを、負極前駆体の移動方向における芯材露出部の長さ以上とした、負極前駆体にリチウムイオンを吸蔵させる方法である。このようにすることで、芯材露出部のみが非水電解液に浸る状態が生じ、第1参照電極近傍の電位がより明確に変化するため、負極前駆体と第1電極との間に流す電流の制御がやりやすくなる。
本発明の第3の発明は、第1の発明において負極前駆体が芯材の両面に活物質層を有し、Dステップより後に未処理の活物質層を第1電極に対向させ、BステップからDステップと同様の処理を行い裏面の活物質層にリチウムイオンを吸蔵させた後、Eステップを行う、負極前駆体にリチウムイオンを吸蔵させる方法である。このように、負極前駆体が芯材の両面に活物質層を有する場合は、両面にリチウムイオンを吸蔵させることが好ましい。これによって長尺な正極、負極を捲回して電池を構成する円筒形電池や角形電池の負極前駆体全体に含まれる負極活物質の不可逆容量を補充することができる。
本発明の第4の発明は、第3の発明においてDステップの後、負極前駆体を非水電解液から取り出し、負極前駆体を裏返したあとBステップからDステップと同様の処理を行う、負極前駆体にリチウムイオンを吸蔵させる方法である。これにより1つの装置で負極前駆体の両面を処理することができる。あるいは、リチウムイオンを吸蔵させる場を2ヶ所設けることで連続的に負極前駆体の両面を処理することができる。
本発明の第5の発明は、第1の発明において負極前駆体が芯材の両面に活物質層を有し、非水電解液中に第1電極と同様の第2電極が負極前駆体に対して反対側に配置され、第1参照電極と同様の第2参照電極が負極前駆体の近傍に配置され、Dステップの後に未処理の活物質層を第2電極に対向させるFステップと、Fステップに続いて第2電極と第2参照電極とを用いてBステップからDステップと同様の処理を行うことで両面の活物質層に連続的にリチウムイオンを吸蔵させた後、Eステップを行う、負極前駆体にリチウムイオンを吸蔵させる方法である。このように参照電極と対極(第1電極、第2電極)とを2組設けることで、負極前駆体の両面の活物質層を連続的に処理することができる。
本発明の第6の発明は、第1の発明のDステップにおいて電位が貴にシフトすると電流を停止し、電位が卑にシフトすると電流を流す、負極前駆体にリチウムイオンを吸蔵させる方法である。電位が貴にシフトするということはリチウムイオンを吸蔵しない芯材露出部が電位測定対象として増加していることを意味し、電位が卑にシフトするということはリチウムイオンを吸蔵する活物質層が電位測定対象として増加していることを意味する。したがってこのように電流を制御することにより、活物質層にリチウムイオンを吸蔵させるとともに、芯材露出部にリチウムが析出することを防止できる。
本発明の第7の発明は、第1の発明のDステップにおいて電位が貴にシフトすると電流を低減し、電位が卑にシフトすると電流を増加させる、負極前駆体にリチウムイオンを吸蔵させる方法である。この方法では、特に芯材露出部と活物質層との界面においてできるだけ活物質層にリチウムイオンを吸蔵させるとともに、芯材露出部でのリチウム析出を減少させることができる。
本発明の第8から第13の発明の発明は、第1、第2、第3から第7の方法を具現化する、負極前駆体にリチウムイオンを吸蔵させる装置である。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本発明は、本明細書に記載された基本的な特徴に基づく限り、以下に記載の内容に限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1による非水電解質二次電池の一部切欠斜視図、図2は同非水電解質二次電池の分解斜視図である。この角形電池は、負極1と、負極1に対向し放電時にリチウムイオンを還元する正極2と、負極1と正極2との間に介在し負極1と正極2の直接接触を防ぐセパレータ3とを有する。負極1および正極2は、セパレータ3とともに、捲回されて電極体9を形成している。電極体9は、図示しない非水電解液とともにケース6内に収納されている。電極体9の上部には、電極体9と蓋体5とを隔離するとともにリード11とケース6とを隔離する樹脂製の枠体4が配置されている。
負極1は負極芯材とその表面に設けられた負極活物質層とを有し、負極芯材にはリード11が溶接などにより取り付けられている。リード11の他端は蓋体5に設けられた端子13に接続されている。なお負極芯材の両面に負極活物質層が形成されている。
正極2は芯材と正極活物質を含む正極活物質層とを有し、正極芯材にはリード14が取り付けられている。リード14の他端は正極端子を兼ねるケース6に接続されている。なお正極芯材の両面に正極活物質層が形成されている。
負極活物質層は少なくともリチウムイオンの吸蔵放出が可能な活物質を含む。この活物質としては、グラファイトや非晶質カーボンのような炭素材料を用いることができる。あるいはケイ素(Si)やスズ(Sn)などのように正極活物質よりも卑な電位でリチウムイオンを大量に吸蔵放出可能な材料を用いることができる。このような材料であれば、単体、合金、化合物、固溶体および含ケイ素材料や含スズ材料を含む複合活物質のいずれであっても、本発明の効果を発揮させることは可能である。特に含ケイ素材料は容量密度が大きく安価であるため好ましい。すなわち、含ケイ素材料として、Si、SiO(0.05<x<1.95)、またはこれらのいずれかにB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Snからなる群から選択される少なくとも1つ以上の元素でSiの一部を置換した合金や化合物、または固溶体などを用いることができる。含スズ材料としてはNiSn、MgSn、SnO(0<x<2)、SnO、SnSiO、LiSnOなどを適用できる。
これらの材料は単独で負極活物質を構成してもよく、また複数種の材料により構成してもよい。上記複数種の材料により負極活物質を構成する例として、Siと酸素と窒素とを含む化合物やSiと酸素とを含み、Siと酸素との構成比率が異なる複数の化合物の複合物などが挙げられる。この中でもSiO(0.3≦x≦1.3)は、放電容量密度が大きく、かつ充電時の膨張率がSi単体より小さいため好ましい。
負極活物質層はさらに結着剤を含む。結着剤としては、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが使用可能である。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体を用いてもよい。
また、必要に応じて鱗片状黒鉛などの天然黒鉛、人造黒鉛、膨張黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅やニッケルなどの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などの導電剤を負極活物質層に混入させてもよい。特に、繊維状の炭素材料を負極活物質の粒子に付着させ、負極活物質の粒子同士の導電ネットワークを形成することがさらに好ましい。
負極芯材やリード11、端子13には、ステンレス鋼、ニッケル、銅、チタンなどの金属箔、炭素や導電性樹脂の薄膜などが利用可能である。さらに、カーボン、ニッケル、チタンなどで表面処理を施してもよい。
正極活物質層はLiCoOやLiNiO、LiMnまたはこれらの混合あるいは複合化合物などのような含リチウム複合酸化物を正極活物質として含む。特にLi1−y(式中、MおよびNは、Co、Ni、Mn、Cr、Fe、Mg、Al、およびZnからなる群より選択される少なくとも1種で少なくともNiを含み、M≠Nであり、0.98≦x≦1.10、0<y<1)は容量密度が大きいため好ましい。
正極活物質としては上記以外に、LiMPO(M=V、Fe、Ni、Mn)の一般式で表されるオリビン型リン酸リチウム、LiMPOF(M=V、Fe、Ni、Mn)の一般式で表されるフルオロリン酸リチウムなども利用可能である。さらにこれら含リチウム化合物の一部を異種元素で置換してもよい。金属酸化物、リチウム酸化物、導電剤などで表面処理してもよく、表面を疎水化処理してもよい。
正極活物質層はさらに導電剤と結着剤とを含む。導電剤としては、天然黒鉛や人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維や金属繊維などの導電性繊維類、アルミニウムなどの金属粉末類、酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、フェニレン誘導体などの有機導電性材料を用いることができる。
また結着剤としては、PVDF、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが使用可能である。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体を用いてもよい。またこれらのうちから選択された2種以上を混合して用いてもよい。
正極芯材やリード14、ケース6としては、アルミニウム(Al)、炭素、導電性樹脂などが使用可能である。またこのいずれかの材料に、カーボンなどで表面処理したものを用いてもよい。
非水電解質には有機溶媒に溶質を溶解した非水溶液系の電解質溶液や、これらを含み高分子で非流動化されたいわゆるポリマー電解質層が適用可能である。少なくとも電解質溶液を用いる場合には正極2と負極1との間にポリエチレン、ポリプロピレン、アラミド樹脂、アミドイミド、ポリフェニレンサルファイド、ポリイミドなどからなる不織布や微多孔膜などのセパレータ3を用い、これに電解質溶液を含浸させるのが好ましい。
非水電解質の材料は、活物質の酸化還元電位などを基に選択される。非水電解質に用いるのが好ましい溶質としては、LiPF、LiBF、LiClO、LiAlCl、LiSbF、LiSCN、LiCFSO、LiN(CFCO、LiN(CFSO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiF、LiCl、LiBr、LiI、クロロボランリチウム、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ホウ酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ホウ酸リチウムなどのホウ酸塩類、テトラフェニルホウ酸リチウムなど、一般にリチウム電池で使用されている塩類を適用できる。
さらに上記塩を溶解させる有機溶媒には、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート(EMC)、ジプロピルカーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ジメトキシメタン、γ−ブチロールクトン、γ−バレロールクトン、1,2−ジエトキシエタン、1,2−ジメトキシエタン、エトキシメトキシエタン、トリメトキシメタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのテトラヒドロフラン誘導体、ジメチルスルホキシド、1,3−ジオキソラン、4−メチル−1,3−ジオキソランなどのジオキソラン誘導体、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、酢酸エステル、プロピオン酸エステル、スルホラン、3−メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、エチルエーテル、ジエチルエーテル、1,3−プロパンサルトン、アニソール、フルオロベンゼンなどの1種またはそれ以上の混合物など、一般にリチウム電池で使用されているような溶媒を適用できる。
さらに、ビニレンカーボネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、フェニルエチレンカーボネート、ジアリルカーボネート、フルオロエチレンカーボネート、カテコールカーボネート、酢酸ビニル、エチレンサルファイト、プロパンサルトン、トリフルオロプロピレンカーボネート、ジベンゾフラン、2,4−ジフルオロアニソール、o−ターフェニル、m−ターフェニルなどの添加剤を含んでいてもよい。
なお、非水電解質は、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンなどの高分子材料の1種またはそれ以上の混合物などに上記溶質を混合して、固体電解質として用いてもよい。また、上記有機溶媒と混合してゲル状で用いてもよい。さらに、リチウム窒化物、リチウムハロゲン化物、リチウム酸素酸塩、LiSiO、LiSiO−LiI−LiOH、LiPO−LiSiO、LiSiS、LiPO−LiS−SiS、硫化リン化合物などの無機材料を固体電解質として用いてもよい。
次に正極2の製造方法について簡単に説明する。所定の粒度に分級した粉状の正極活物質を、結着剤、導電剤、および適量の分散媒とともに攪拌し、正極合剤ペーストを調製する。このペーストを正極芯材の両面に塗布し、乾燥させた後、ロールプレスする。このようにして正極芯材の両面に正極活物質層を形成する。その後、角形のケース6に挿入可能な幅にスリットする。また正極活物質層の一部を剥離して正極芯材にリード14を接続する。このようにして正極2が作製される。
次に負極1の製造方法について説明する。所定の粒度に分級した粉状の負極活物質を、結着剤、導電剤、および適量の分散媒とともに攪拌し、負極合剤ペーストを調製する。このペーストを負極芯材の両面に塗布し、乾燥させる。この際、リード11を接続するため、負極合剤ペーストを間欠塗工する。その後、必要に応じてロールプレスする。このようにして負極芯材の両面に負極活物質層を形成し、負極前駆体を作製する。その後、負極活物質層に含まれる負極活物質に、不可逆容量に相当するリチウムイオンを吸蔵させる。そして角形のケース6に挿入可能で、かつ正極2より広い幅にスリットする。また露出している負極芯材にリード11を接続する。このようにして負極1が作製される。
これ以外に、負極芯材に気相法を用いて負極活物質を堆積させて負極前駆体を作製してもよい。
次に図3、図4を用いて、負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置について説明する。図3は負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置の概略構成図である。図4はその要部拡大図である。
上述のようにして作製された負極前駆体20は、芯材20Aとその表面(両面)に形成された負極活物質層(以下、活物質層と称す)20Bとを有する。負極前駆体20は、供給ロール21に捲回された状態で供給される。供給ロール21は、巻き取られた負極前駆体20を引き出す巻出部である。
この装置は、供給ロール21と、電解槽24と、電源部28と、第1参照電極26と、第1電極27と、第1電位センサ29と、リチウム吸蔵制御部40と、巻取ロール22とを有する。電解槽24は、リチウムイオンを含有する非水電解液25を保持している。引き出された負極前駆体20は非水電解液25に浸漬される。第1電極27は金属リチウムまたはリチウムを含む合金で構成され、非水電解液25中に設置されている。電源部28は第1電極27と負極前駆体20との間に電流を流し、活物質層20Bの第1電極27に面した側(第1活物質層)にリチウムイオンを吸蔵させる。そのため、第1電極27は処理に伴い消耗するので定期的に交換する必要がある。
第1参照電極26は、負極前駆体20の、非水電解液25に浸った部分の近傍に配置されている。第1電位センサ29は第1参照電極26に対する非水電解液25に浸った部分の電位を測定する。リチウム吸蔵制御部40は、測定された電位に基づき、負極前駆体20と第1電極27との間に流す電流を制御することにより活物質層20Bの第1電極27に面した側へのリチウムイオンの吸蔵量を制御する。巻取り部である巻取ロール22は、リチウムイオンを吸蔵処理した負極前駆体20を巻き取る。
この装置を用いて負極前駆体20の活物質層20Bにリチウムイオンを吸蔵させる方法を説明する。まず巻き取られた負極前駆体20を供給ロール21から引き出す。次に引き出された負極前駆体20を、非水電解液25に挿入する。負極前駆体20は浸漬ロール23に沿って非水電解液25に浸漬され、また浸漬ロール23に沿って非水電解液25から引き出される。
第1電位センサ29は、第1参照電極26を用いて負極前駆体20における非水電解液25に浸った部分の第1参照電極26近傍の電位を測定する。この測定結果は逐次リチウム吸蔵制御部40に送られる。リチウム吸蔵制御部40は、測定された電位に基づき電源部28が負極前駆体20と第1電極27との間に流す電流を制御する。すなわちリチウム吸蔵制御部40は、活物質層20Bの第1電極27に面した側へのリチウムイオンの吸蔵量を制御する。最後に巻取ロール22は、リチウムイオンを吸蔵処理した負極前駆体20を巻き取る。
次に図5、図6を用いて第1電位センサ29の測定電位の変化と負極前駆体20へのリチウム供給について説明する。図5は第1電位センサ29の測定電位の時間変化を模式的に示すグラフ、図6は負極前駆体20へのリチウムイオンの供給状態と芯材露出部31へのリチウム析出状態を示す模式断面図である。
電源部28から電流を流さず、供給ロール21から巻取ロール22へ負極前駆体20を一定速度で送ると、芯材露出部31が非水電解液25を通過するときに第1電位センサ29の測定電位は一点鎖線のように変化する。すなわち、リチウムイオンを吸蔵できる活物質層20Bが第1参照電極26の測定箇所にあるとき、電位は点A1点のように低い状態(V)にある。そして芯材露出部31が非水電解液25に挿入されると、点B1点のように電位が上昇し始め貴な方へ変化する。これは芯材20Aの自然電位が負極前駆体20の活物質層20Bが形成された部分よりも高いためである。そして非水電解液25に浸漬されている部位の中で芯材露出部31の占める割合が大きくなるにつれてさらに電位は上昇する。そして点D点のように、芯材露出部31のみが非水電解液25に浸っている状態で最も電位が貴になる(V)。さらに負極前駆体20を送ると点E点のように、活物質層20Bが非水電解液25に浸漬され始める。そのため電位は徐々に低下し卑な方へ変化する。そして芯材露出部31が非水電解液25に浸っておらず、活物質層20Bが形成された部位のみが非水電解液25に浸っている状態になると点G1のように電位はVに戻る。
このような電位プロファイルを基に、リチウム吸蔵制御部40は電源部28を制御する。図5における実線はリチウム吸蔵制御部40で電源部28を制御した際の第1電位センサ29の測定電位の変化を示す。点A2で示すように、リチウムイオンを吸蔵できる活物質層20Bが形成された部位のみが非水電解液25に浸っている状態において、電源部28は第1電極27を正極、浸漬ロール23に接している負極前駆体20を負極として電流を流す。このようにして活物質層20Bにリチウムイオンが吸蔵される。あるいは電源部28の負極側は供給ロール21に接続し、さらに芯材20Aと供給ロール21が接触するように負極前駆体20の巻き終わり部分に充分長い芯材露出部を設けてもよい。このようにすれば電子伝導性の比較的低い状態で活物質層20Bが形成されている場合でも確実に活物質層20Bにリチウムイオンを吸蔵することができる。
点A2における電位Vは、点A1における電位Vより低い。これは、充電する電流による分極と、リチウムイオンを吸蔵した部位が非水電解液25に浸っていることによる。そして芯材露出部31が非水電解液25に挿入されると、点B2点のように電位が上昇し始める。リチウム吸蔵制御部40はこの電位変化を検知して電源部28による電解電流を停止する(点C)。すると電流による分極がなくなるため電位がステップ状に上昇する。さらに非水電解液25に浸漬されている部位の中で芯材露出部31の占める割合が大きくなるにつれてさらに電位は上昇する。電流が流れていない状態では、一点鎖線の場合と同様に点Dを経て点Eに至る。そして電位がVになった点Fにて、リチウム吸蔵制御部40は芯材露出部31が完全に非水電解液25から出たと判断し、電源部28は第1電極27を正極、負極前駆体20を負極として電流を流す。これにより電位はさらに低下し、最終的は点G2のようにVに至る。
以上のように制御すれば、芯材露出部31にリチウムが析出することなく活物質層20Bにリチウムイオンが吸蔵される。この場合、活物質層20Bのうち芯材露出部31に隣接する部分はリチウムイオン吸蔵量がやや少なくなる。そこで、負極前駆体20の移動方向(送り方向)において、負極前駆体20を非水電解液25に挿入する部分の長さに対し、第1電極27の長さを短くし、負極前駆体20の送り速度を考慮して電源部28のオン・オフのタイミングを点B2、点Eの検知より遅らせるように制御してもよい。このようにリチウム吸蔵制御部40が電源部28を制御することで活物質層20Bのうち芯材露出部31に隣接する部分まで充分にリチウムイオンを吸蔵させることができる。
また、負極前駆体20の送り方向において、負極前駆体20を非水電解液25に挿入する部分の長さを、芯材露出部31の長さ以上とすることが好ましい。このようにすることで、芯材露出部31のみが非水電解液25に浸る状態が生じ、第1参照電極26近傍の電位がより明確に変化するため、負極前駆体20と第1電極27との間に流す電流の制御がやりやすくなる。
このように負極前駆体20の移動方向において、負極前駆体20を非水電解液25に挿入する部分の長さと、芯材露出部31の長さと、第1電極27の長さ、負極前駆体20の送り速度とを考慮してリチウム吸蔵制御部40は電源部28を適切に制御する必要がある。特に、上述のように負極前駆体20の送り方向において、負極前駆体20を非水電解液25に挿入する部分の長さよりも第1電極27の長さを短くし、負極前駆体20の送り速度を考慮して電源部28のオン・オフのタイミングを点B2、点Eの検知より遅らせる制御を行う場合にはリチウムイオン吸蔵の境界がばらつく可能性がある。この様子を、図6を用いて説明する。図6では便宜上、負極活物質層20Bへ吸蔵されるリチウムイオンを吸蔵部分30Aとして示している。
電位が上昇し始めた点B2では、第1参照電極26の測定部位である非水電解液25への入口側に芯材露出部31が浸漬し始める時点である。この時点では芯材露出部31には第1電極27は対向していない。この時点で電流を停止すると、芯材露出部31にリチウムが析出しないが、図6(a)に示すように活物質層20Bの芯材露出部31との境界に近い部分にリチウムイオンが吸蔵されない、または吸蔵量が少ない部分ができる。
一方、電流の停止タイミングが遅れると、芯材露出部31が非水電解液25に浸漬して以降もリチウムイオンが供給され、場合によっては図6(b)に示すように芯材露出部31上にリチウム30Bが析出する。なお、図6(c)は電流を停止しない場合に芯材露出部31全体にリチウム30Bが析出する様子を示している。負極前駆体20の送り速度の精度や芯材露出部31の寸法精度を向上させれば、図6(d)に示すように芯材露出部31にリチウムが析出せず、かつ活物質層20B全体にリチウムイオンを吸蔵させることも理論的に可能である。
そこで電流を電位の閾値でオン・オフするのではなく、電位が貴にシフトすると電流を低減してゆき、電位が卑にシフトすると電流を増加させるようにしてもよい。このようにすれば、特に芯材露出部31と活物質層20Bとの界面においてできるだけ活物質層20Bにリチウムイオンを吸蔵させるとともに、芯材露出部31でのリチウム析出を減少させることができる。
非水電解液25には電池に用いる非水電解液と同様の材料を用いることができる。また図示していないが、電解槽24から引き出された負極前駆体20を巻取ロール22に巻き取る前に、非水電解液25に含まれる溶質を溶解する非水溶媒に通して溶質を除去することが好ましい。これによって溶質が析出して巻き取った負極前駆体20同士が貼りついてしまったり、過剰な溶質が電池に入ったりすることが防止される。
なお図4に示すように、負極前駆体20が両面に活物質層20Bを有する場合、すなわち、上述のようにリチウムイオンを吸蔵させた第1活物質層の裏側にも第2活物質層が設けられている場合、この第2活物質層にもリチウムイオンを吸蔵させる必要がある。そこで、巻取ロール22に巻き取った負極前駆体20を再び供給ロール21にセットし、裏側の活物質層20B(第2活物質層)にリチウムイオンを吸蔵させる。
あるいは図3に示す浸漬ロール23、非水電解液25、第1電極27、第1参照電極26、電源部28、第1電位センサ29、リチウム吸蔵制御部40のセットをもう1組用意する。そして片面側の活物質層20B(第1活物質層)にリチウムイオンを吸蔵させた後、図7に示すように複数のロールで構成された反転部50で負極前駆体20を裏返し、第2の浸漬ロール23A、第2の電解槽24Aなどを用いて裏側の活物質層20B(第2活物質層)にリチウムイオンを吸蔵させる。その後、巻取ロール22で負極前駆体20を巻き取る。このようにすれば連続的に両面の活物質層20Bを処理することができる。
以上のように、負極前駆体20が芯材20Aの両面に活物質層20Bを有する場合は、両面にリチウムイオンを吸蔵させることが好ましい。これによって長尺な正極、負極を捲回して電池を構成する円筒形電池や角形電池の負極前駆体全体に含まれる負極活物質の不可逆容量を補充することができる。
以下、具体的な例を用いて本実施の形態の効果を説明する。
(1)負極の作製
負極前駆体20は、図8に示す製造装置を用いて作製した。この製造装置では巻き出しロール41から成膜ロール44A、44Bを経て巻取ロール45へと芯材20Aが送られる。これらのロールと蒸着ユニット43は真空容器46の中に設けられている。真空容器46内は真空ポンプ47により減圧される。蒸着ユニット43では蒸着ソース、るつぼ、電子ビーム発生装置がユニット化されている。
芯材20Aとしては、電解メッキによりRa=2.0μmの凹凸を設けた厚さ30μmの電解銅箔を用いた。真空容器46の内部は、圧力3.5Paのアルゴン雰囲気とした。蒸着時には、電子ビーム発生装置により発生させた電子ビームを偏光ヨークにより偏光させ、蒸着ソースに照射した。蒸着ソースには半導体ウェハを形成する際に生じる端材(スクラップシリコン:純度99.999%)を用いた。一方、純度99.7%の酸素ガスを基板近傍に配置した酸素ノズル48から真空容器46内に導入した。なおマスク42の開口部の形状を調整することで、蒸着ユニット43から発生したケイ素蒸気が芯材20Aの面に垂直に入射しないようにしている。またケイ素蒸気の入射方向と酸素ノズル48からの酸素の入射方向とのなす角ωを65°に設定した。このような条件で、活物質層20Bを約20nm/secの成膜速度で形成した。このようにして芯材20Aの凸部に厚さ21μmのSiO0.7からなる柱状体で構成された活物質層20Bを形成した。成膜ロール44Aにて片面に活物質層20Bを形成した後、芯材20Aを成膜ロール44Bに送り、もう一方の面にも活物質層20Bを形成した。
なお30mmの芯材露出部31を設けるために、芯材20Aの両面に予め等間隔に耐熱テープを貼り付けておく。成膜後このテープを剥離することによって芯材露出部31を形成した。
その後、実施の形態に従って、負極前駆体20に電気化学的にリチウムイオンを吸蔵させた。具体的には、第1電極27の電流密度を5mAh/cmとし、負極前駆体20の送り速度を5m/minとした。また浸漬ロール23に沿って負極前駆体20が非水電解液25に浸漬される投影寸法を芯材露出部31とほぼ同じにした。そして図5における点B2、点Fを検知直後に電源部28をオン、オフ制御した。実施例(a)では、負極前駆体20の送り方向における第1電極27の寸法を、負極前駆体20が非水電解液25に浸漬される投影寸法より大きくした。実施例(b)では負極前駆体20が非水電解液25に浸漬される投影寸法とほぼ同じにした。実施例(c)では負極前駆体20が非水電解液25に浸漬される投影寸法より小さくした。なお比較例(a)として電位制御せずに連続的にリチウムイオン吸蔵処理した負極前駆体20を作製した。また比較例(b)として電位測定を行わず、芯材露出部31の幅と形成間隔と、負極前駆体20の送り速度とから、芯材露出部31に相当する時間の長さだけ、所定の間隔でリチウムイオン吸蔵の電流を停止しながらリチウムイオン吸蔵処理した負極前駆体20を作製した。このようにしてリチウムイオン吸蔵処理後、負極前駆体20を所定の寸法に切断後、電池構成時に内周になる側にニッケル製のリード11を溶接した。この際、比較例(a)による負極ではリード11の溶接に伴い、析出した金属リチウムが過熱したため、それ以上の作業を行わず、電池を作製しなかった。
(2)正極の作製
リチウムイオンを吸蔵・放出可能な正極活物質を有する正極2を、以下の方法で作製した。
まず、正極活物質であるLiCoO粉末を94重量部と、導電剤であるアセチレンブラックを3重量部とを混合した。得られた粉末に結着剤であるPVDFのN−メチル−2−ピロリドン(NMP)溶液を、PVDFの重量が4重量部となるように混合した。得られた混合物に適量のNMPを加えて、正極合剤用ペーストを調製した。得られた正極合剤用ペーストをアルミニウム(Al)箔からなる正極芯材(厚さ15μm)上にドクターブレード法を用いて正極芯材の両面に塗布、85℃で充分に乾燥した。さらに正極合剤層の密度が3.6g/cm、厚さ170μmとなるように圧延した。これを裁断して正極2を得た。正極2の内周側に負極1と対向しないAl箔に露出部を設け、Al製のリード11を溶接した。
(3)電池の作製と評価
上記のようにして作製した負極1と正極2を、厚さが20μmの多孔質ポリプロピレンからなるセパレータ3を介して捲回して電極体9を構成した。そして、得られた電極体9を、電解液としてLiPFのエチレンカーボネート/エチルメチルカーボネート(体積比1:2)混合溶液とをケース6に収容し、ケース6の開口部を蓋体5と枠体4で封止して、高さ50mm、幅34mm、厚さ5mmの角型電池を作製した。なお、電池の設計容量は1100mAhとした。
このようにして作製した電池を、25℃環境温度において以下の条件で充放電した。まず、設計容量(1100mAh)に対し、時間率1.0C(1100mA)の定電流で電池電圧が4.2Vになるまで充電し、4.2Vの定電圧で時間率0.05C(55mA)の電流値に減衰させる定電圧充電を行った。その後、30分間休止した。その後、時間率1.0C(1100mA)の電流値で、電池電圧が2.5Vに低下するまで定電流で放電した。そして、上記の充放電を1サイクルとして、3サイクル目の放電容量を電池容量とし設計容量に対する電池容量の比率(%)を求めた。また3サイクル終了後の放電状態での電池厚みを測定し、組みたて後の厚みとの差を電池膨れとした。
評価結果を(表1)に示す。
Figure 0005045044
実施例(a)では図6(b)のように芯材露出部31に若干の金属リチウムが析出し、実施例(b)では図6(d)のように芯材露出部31近傍を含め活物質層20Bのほぼ全体にリチウムイオン吸蔵処理がなされた。実施例(c)では図6(a)のように芯材露出部31近傍に一部リチウムイオン吸蔵処理されない部分が残った。それでも(表1)に示すように、実施例(a)〜(c)では不可逆容量の大きい活物質であるSiO0.7を負極活物質に用いているのにも関わらず、設計容量に近い電池容量が得られた。
ただし実施例(a)では芯材露出部31に析出した金属リチウムと非水電解液との反応によると考えられるガス発生により電池がやや膨れている。ただこの程度ではあまり問題にならない。
一方、比較例(b)では芯材露出部31に金属リチウムが析出するのを防ぐために、電流停止の時間のマージンが大きいために芯材露出部31周辺でリチウムイオン吸蔵処理されていない活物質層20Bが大きくなった。そのために不可逆容量が大きくなり電池容量が低下した。
第1電極27は金属リチウムなどで構成されている。そのため使用時間に応じて電極の大きさが小さくなる。すなわち、実施例(a)のような大きさの第1電極27を用いても徐々に実施例(b)の状態を経て実施例(c)の状態になる。しかしながら表1に示すように、このように多少第1電極27の大きさが変化しても電池容量は大きく変化しない。
(実施の形態2)
図9は本発明の実施の形態2における、負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置の概略構成図である。本実施の形態では、非水電解液25の中に第1支持ロール33A、第2支持ロール33Bを設け、これらの間で負極前駆体20を張り、そこで、負極前駆体20の両面の活物質層20Bに連続的にリチウムイオンを吸蔵させる。
具体的には、非水電解液25中に第1電極27Aと第1参照電極26Aとの組と、第1電極27Aと同様の第2電極27Bと第1参照電極26Aと同様の第2参照電極26Bとの組が設けられている。第1電極27Aと第2電極27Bとはそれぞれ負極前駆体20に対して反対側に配置されている。第2参照電極26Bは負極前駆体20の近傍に配置されている。第1電位ロール35Aは負極前駆体20に関して第1電極27Aに対向する位置で負極前駆体20に接している。第1電位センサ29Aは第1参照電極26Aと第1電位ロール35Aとの間の電圧を測定することにより、負極前駆体20の、第1電極27Aに対向する位置の電位を測定する。同様に、第2電位ロール35Bは負極前駆体20に関して第2電極27Bに対向する位置で負極前駆体20に接している。第2電位センサ29Bは第2参照電極26Bと第2電位ロール35Bとの間の電圧を測定することにより、負極前駆体20の、第2電極27Bに対向する位置の電位を測定する。
一方、第1電解ロール34Aは第1支持ロール33Aとともに負極前駆体20をはさんでいる。これにより第1電解ロール34Aは負極前駆体20との間で電気抵抗が小さくなるように密着している。第1電源28Aは第1電位センサ29Aの検出結果を基にした図示しないリチウム吸蔵制御部に制御されて、第1電極27Aと第1電解ロール34Aとの間に電流を流す。これによって図面中下側の負極前駆体20の活物質層20B(第1活物質層)にリチウムイオンを吸蔵させる。同様に、第2電解ロール34Bは第2支持ロール33Bとともに負極前駆体20をはさんでいる。第2電源28Bは第2電位センサ29Bの検出結果を基にした図示しないリチウム吸蔵制御部に制御されて、第2電極27Bと第2電解ロール34Bとの間に電流を流す。これによって図面中上側の負極前駆体20の活物質層20B(第2活物質層)にリチウムイオンを吸蔵させる。
すなわち、第1活物質層にリチウムイオンを吸蔵させ後、未処理の第2活物質層を第2電極27Bに対向させ、第2電極27Bと第2参照電極26Bとを用いて第2活物質層にリチウムイオンを吸蔵させる。このようにして両面の活物質層20Bに連続的にリチウムイオンを吸蔵させる。このように参照電極と対極(第1電極、第2電極)とを2組設けることで、負極前駆体20の両面の活物質層20Bを連続的に処理することができる。
なお、リチウム吸蔵制御部における制御は実施の形態1と同様なので説明を省略する。またリチウム吸蔵制御部は第1電源部28A用と第2電源部28B用にそれぞれ別個に設けてもよい。
本発明によれば、非水電解液中で電気化学的に負極前駆体にリチウムイオンを吸蔵させることで負極活物質の不可逆容量を補充するのに必要な量だけのリチウムイオンを負極活物質に供給することができる。これにより負極活物質の高容量密度を活かすことができる。またその際、負極と外部端子との電気的接続に用いる芯材露出部に反応性の高いリチウム金属が析出することを抑制することができる。そのため生産性が向上する。本発明は、特に不可逆容量の大きい負極活物質を用いたリチウム二次電池に有用である。
本発明の実施の形態1による非水電解質二次電池の一部切欠斜視図 同非水電解質二次電池の分解斜視図 本発明の実施の形態1における、負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置の概略構成図 同要部拡大図 本発明の実施の形態1における第1電位センサの測定電位の時間変化を模式的に示すグラフ 負極前駆体へのリチウムイオンの供給状態と芯材露出部へのリチウム析出状態を示す模式断面図 本発明の実施の形態1における反転部を示す模式図 本発明の実施の形態1における負極前駆体を作製するための装置の概略構成図 本発明の実施の形態2における、負極前駆体の負極活物質層にリチウムイオンを吸蔵させる装置の概略構成図
符号の説明
1 負極
2 正極
3 セパレータ
4 枠体
5 蓋体
6 ケース
9 電極体
11,14 リード
13 端子
20 負極前駆体
20A 芯材
20B 負極活物質層
21 供給ロール
22 巻取ロール
23 浸漬ロール
23A 第2の浸漬ロール
24 電解槽
24A 第2の電解槽
25 非水電解液
26,26A 第1参照電極
26B 第2参照電極
27,27A 第1電極
27B 第2電極
28 電源部
28A 第1電源部
28B 第2電源部
29,29A 第1電位センサ
29B 第2電位センサ
30A 吸蔵部分
30B リチウム
31 芯材露出部
33A 第1支持ロール
33B 第2支持ロール
34A 第1電解ロール
34B 第2電解ロール
35A 第1電位ロール
35B 第2電位ロール
40 リチウム吸蔵制御部
41 巻き出しロール
42 マスク
43 蒸着ユニット
44A,44B 成膜ロール
45 巻取ロール
46 真空容器
47 真空ポンプ
48 酸素ノズル
50 反転部

Claims (13)

  1. 導体からなる芯材と前記芯材上に形成された第1活物質層とを有し、前記芯材の巻取方向に活物質を有さない芯材露出部を形成した非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法であって、
    巻き取られた前記負極前駆体を引き出すAステップと、
    引き出された前記負極前駆体を、リチウムイオンを含有させた非水電解液に挿入するBステップと、
    前記非水電解液内に設けられた第1参照電極を用い、前記負極前駆体における、前記非水電解液に浸った部分の前記第1参照電極近傍の電位を測定するCステップと、
    測定された前記電位に基づき、前記負極前駆体と前記非水電解液中で前記第1活物質層に対向するように設置した第1電極との間に流す電流を制御することにより前記第1活物質層へのリチウムイオンの吸蔵量を制御するDステップと、
    リチウムイオンを吸蔵処理した前記負極前駆体を巻き取るEステップと、を備えたリチウムイオンを吸蔵させる方法。
  2. 前記Bステップにおいて、前記負極前駆体を前記非水電解液に挿入する部分の前記負極前駆体の移動方向における長さは、前記負極前駆体の移動方向における前記芯材露出部の長さ以上とした請求項1記載のリチウムイオンを吸蔵させる方法。
  3. 前記負極前駆体は前記芯材における前記第1活物質層を形成した面と反対の面に形成した第2活物質層を有し、
    前記Dステップの後に前記第2活物質層を前記第1電極に対向させるFステップと、
    前記Fステップに続いて前記Bステップから前記Dステップと同様の処理を行い前記第2活物質層にリチウムイオンを吸蔵させた後、前記Eステップを行う請求項1記載のリチウムイオンを吸蔵させる方法。
  4. 前記Dステップの後、前記負極前駆体を前記非水電解液から取り出し、前記負極前駆体を裏返し、前記Fステップを行う請求項3記載のリチウムイオンを吸蔵させる方法。
  5. 前記負極前駆体は前記芯材における前記第1活物質層を形成した面と反対の面に形成した
    第2活物質層を有し、
    前記非水電解液中に前記第1電極と同様の第2電極が前記負極前駆体に対して前記第1電極と反対側に配置され、前記第1参照電極と同様の第2参照電極が前記負極前駆体近傍に配置され、
    前記Dステップの後に前記第2活物質層を前記第2電極に対向させるFステップと、
    前記Fステップに続いて前記第2電極と前記第2参照電極とを用いて前記Bステップから前記Dステップと同様の処理を行うことで前記第1活物質層と前記第2活物質層に連続的にリチウムイオンを吸蔵させた後、前記Eステップを行う請求項1記載のリチウムイオンを吸蔵させる方法。
  6. 前記Dステップにおいて前記電位が貴にシフトすると電流を停止し、前記電位が卑にシフトすると電流を流す請求項1記載のリチウムイオンを吸蔵させる方法。
  7. 前記Dステップにおいて前記電位が貴にシフトすると電流を低減し、前記電位が卑にシフトすると電流を増加する請求項1記載のリチウムイオンを吸蔵させる方法。
  8. 導体からなる芯材と前記芯材上に形成された第1活物質層とを有し、前記芯材の巻取方向に活物質を有さない芯材露出部を形成した非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる装置であって、
    巻き取られた前記負極前駆体を引き出す巻出部と、
    リチウムイオンを含有させた非水電解液を保持し、引き出された前記負極前駆体を前記非水電解液に浸漬するための電解槽と、
    前記非水電解液中に設置された第1電極と、
    前記第1電極と前記負極前駆体との間に電流を流し、前記第1活物質層にリチウムイオンを吸蔵させる電源部と、
    前記負極前駆体の、前記非水電解液に浸った部分の近傍に配置された第1参照電極と、
    前記第1参照電極に対する前記負極前駆体の、前記非水電解液に浸った部分の電位を測定する第1電位センサと、
    前記第1電位センサが測定した前記電位に基づき、前記負極前駆体と前記第1電極との間に流す電流を制御することにより前記第1活物質層へのリチウムイオンの吸蔵量を制御するリチウム吸蔵制御部と、
    リチウムイオンを吸蔵処理した前記負極前駆体を巻き取る巻取り部と、を備えた装置。
  9. 前記電解槽において、前記負極前駆体を前記非水電解液に挿入する部分の前記負極前駆体の移動方向における長さを、前記負極前駆体の移動方向における前記芯材露出部の長さ以上に設定する浸漬ロールをさらに備え、前記負極前駆体を前記浸漬ロールに沿った状態で前記非水電解液に挿入する請求項8記載の装置。
  10. 前記負極前駆体は前記芯材における前記第1活物質層を形成した面と反対の面に形成した第2活物質層を有し、
    前記第1活物質層にリチウムイオンを吸蔵させた前記負極前駆体を裏返す反転部をさらに備え、
    前記第1活物質層にリチウムイオンを吸蔵させた前記負極前駆体を前記非水電解液から取り出し、前記第2活物質層にリチウムイオンを吸蔵させる請求項8記載の装置。
  11. 前記負極前駆体は前記芯材における前記第1活物質層を形成した面と反対の面に形成した第2活物質層を有し、
    前記非水電解液中の前記負極前駆体に対して反対側に配置された前記第1電極と同様の第2電極と、前記非水電解液中の前記負極前駆体の近傍に配置された前記第1参照電極と同様の第2参照電極と、前記第2参照電極に対する前記負極前駆体の、前記非水電解液に浸
    った部分の電位を測定する第2電位センサと、をさらに備え、
    前記第1活物質層にリチウムイオンを吸蔵させた後、連続して前記第2活物質層にリチウムイオンを吸蔵させる請求項8記載の装置。
  12. 前記リチウム吸蔵制御部は、前記電位が貴にシフトすると電流を低減させ、前記電位が卑になると電流を増加させる請求項8記載の装置。
  13. 前記リチウム吸蔵制御部は、前記電位が貴にシフトすると電流を停止させ、前記電位が卑にシフトすると電流を流す請求項8記載の装置。
JP2006255597A 2006-09-21 2006-09-21 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置 Expired - Fee Related JP5045044B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006255597A JP5045044B2 (ja) 2006-09-21 2006-09-21 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置
US11/856,760 US8133374B2 (en) 2006-09-21 2007-09-18 Method and apparatus for manufacturing negative electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255597A JP5045044B2 (ja) 2006-09-21 2006-09-21 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置

Publications (2)

Publication Number Publication Date
JP2008077963A JP2008077963A (ja) 2008-04-03
JP5045044B2 true JP5045044B2 (ja) 2012-10-10

Family

ID=39349810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255597A Expired - Fee Related JP5045044B2 (ja) 2006-09-21 2006-09-21 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置

Country Status (1)

Country Link
JP (1) JP5045044B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598789B2 (en) * 2011-12-01 2017-03-21 Nanoscale Components, Inc. Method for alkaliating anodes
EP3972010A1 (en) 2015-12-09 2022-03-23 Nanoscale Components, Inc. Methods for alkaliating roll anodes
CN108701553A (zh) * 2016-02-26 2018-10-23 Jsr株式会社 掺杂系统、以及电极、电池和电容器的制造方法
JP7206250B2 (ja) 2017-07-10 2023-01-17 ナノスケール コンポーネンツ,インコーポレイテッド アノード上にsei層を形成する方法
EP3855534A4 (en) 2018-09-19 2022-10-12 Musashi Energy Solutions Co., Ltd. ELECTRODE MANUFACTURING DEVICE
EP3872895A4 (en) * 2018-10-24 2022-08-03 Musashi Energy Solutions Co., Ltd. ELECTRODE MANUFACTURING DEVICE AND ELECTRODE MANUFACTURING METHOD
JP7456936B2 (ja) 2018-11-28 2024-03-27 武蔵エナジーソリューションズ株式会社 電極製造方法、蓄電デバイスの製造方法、及び電極製造装置
WO2020152980A1 (ja) 2019-01-23 2020-07-30 Jmエナジー株式会社 電極製造システム及び電極製造方法
JP7319307B2 (ja) 2019-01-23 2023-08-01 武蔵エナジーソリューションズ株式会社 ドーピングシステム及びドーピング方法
JP7328319B2 (ja) 2019-02-20 2023-08-16 武蔵エナジーソリューションズ株式会社 電極製造システム、クリーニングユニット、及び電極製造方法
EP3955342A4 (en) 2019-04-10 2023-09-20 Musashi Energy Solutions Co., Ltd. ELECTRODE MANUFACTURING METHOD AND METHOD FOR PRODUCING AN ELECTRICITY STORAGE DEVICE
KR20200129908A (ko) 2019-05-10 2020-11-18 주식회사 엘지화학 음극의 제조방법
WO2021039085A1 (ja) 2019-08-30 2021-03-04 Jmエナジー株式会社 ドープ電極の製造方法及び蓄電デバイスの製造方法
US11811046B2 (en) 2019-11-28 2023-11-07 Musashi Energy Solutions Co., Ltd. Method for manufacturing electrode
KR20220122660A (ko) 2019-12-26 2022-09-02 무사시 에너지 솔루션즈 가부시키가이샤 전극의 제조 방법, 축전 디바이스의 제조 방법 및 전극 제조 장치
US20230042598A1 (en) 2020-02-04 2023-02-09 Musashi Energy Solutions Co., Ltd. Doping system and method of manufacturing electrode
JPWO2022102381A1 (ja) 2020-11-10 2022-05-19
JP2023003667A (ja) 2021-06-24 2023-01-17 武蔵エナジーソリューションズ株式会社 ドープ電極の製造方法
EP4365982A1 (en) 2021-06-28 2024-05-08 Musashi Energy Solutions Co., Ltd. Doped electrode manufacturing method and doped electrode manufacturing system
CN113964295B (zh) * 2021-10-19 2023-06-16 远景动力技术(江苏)有限公司 锂离子电池负极极片的补锂装置及其补锂方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541249A (ja) * 1991-08-01 1993-02-19 Toyo Takasago Kandenchi Kk リチウム二次電池及びそれに使用する負極構造体へのリチウムイオンの注入方法
JPH07235330A (ja) * 1994-02-24 1995-09-05 Sony Corp 非水電解液二次電池の製造方法
DE69605362T2 (de) * 1995-07-03 2000-06-21 Gen Motors Corp Verfahren zur Herstellung von deaktivierten kohlenstoffhaltigen Anoden
JPH10308212A (ja) * 1997-05-06 1998-11-17 Ricoh Co Ltd 2次電池用電極板処理装置
JP4025931B2 (ja) * 1997-07-11 2007-12-26 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池の製造方法
JP2000048808A (ja) * 1998-07-27 2000-02-18 Furukawa Electric Co Ltd:The Liイオン二次電池およびその製造方法
JP2002083589A (ja) * 2000-09-08 2002-03-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP4851699B2 (ja) * 2004-09-30 2012-01-11 株式会社Gsユアサ 非水電解質電気化学セル用負極活物質およびそれを用いた非水電解質電気化学セル

Also Published As

Publication number Publication date
JP2008077963A (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
JP5045044B2 (ja) 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置
JP4831075B2 (ja) 非水電解質二次電池
US8133374B2 (en) Method and apparatus for manufacturing negative electrode for non-aqueous electrolyte secondary battery
KR101162794B1 (ko) 비수전해질 2차 전지용 음극의 제조방법과 그것을 이용한비수전해질 2차 전지
JP6370885B2 (ja) 電解液との反応を防止するためのコーティング層を含む電極
US8389156B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US20100136393A1 (en) Lithium ion secondary battery
TWI605633B (zh) 可再充電鋰電池用之負極活性材料、製備彼之方法及包括彼之可再充電鋰電池
EP2824740B1 (en) Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
JP5264271B2 (ja) 非水電解質二次電池及びその製造方法
KR20130134239A (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
JP2007280926A (ja) 非水電解質二次電池用負極の製造方法とそれを用いた非水電解質二次電池
US10403891B2 (en) Positive electrode material and lithium ion battery
JP2019121597A (ja) 有機電解液、及びそれを含むリチウム電池
JP5003088B2 (ja) 非水電解質二次電池用負極前駆体にリチウムイオンを吸蔵させる方法と装置
JP2008117758A (ja) 非水電解質二次電池およびその負極の製造方法
JP5145693B2 (ja) 非水電解質二次電池とその製造方法
US8148018B2 (en) Method and apparatus of manufacturing negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the negative electrode
JP2008282798A (ja) 電気化学デバイスとその電極の製造方法、電気化学デバイスの電極の処理装置
JP5506663B2 (ja) 非水電解質二次電池とその製造方法
CN107925069B (zh) 二次电池用负极活性材料和包含它的二次电池
CN115004405A (zh) 制造二次电池的方法
JP2010010093A (ja) 二次電池用電極群の製造方法および二次電池の製造方法
JP2004296255A (ja) シート状極板の製造方法及び非水電解質電池
JP5768219B2 (ja) 電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees