JP2010010093A - 二次電池用電極群の製造方法および二次電池の製造方法 - Google Patents

二次電池用電極群の製造方法および二次電池の製造方法 Download PDF

Info

Publication number
JP2010010093A
JP2010010093A JP2008171432A JP2008171432A JP2010010093A JP 2010010093 A JP2010010093 A JP 2010010093A JP 2008171432 A JP2008171432 A JP 2008171432A JP 2008171432 A JP2008171432 A JP 2008171432A JP 2010010093 A JP2010010093 A JP 2010010093A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
drying
active material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008171432A
Other languages
English (en)
Inventor
Hideaki Fujita
秀明 藤田
Yoshiyuki Ozaki
義幸 尾崎
Kenichi Nishihata
健一 西端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008171432A priority Critical patent/JP2010010093A/ja
Publication of JP2010010093A publication Critical patent/JP2010010093A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】活物質層表面に多孔質耐熱層を連続的にかつ安定的に形成することにより、非水電解質二次電池の高容量化および安全性向上に寄与できる二次電池用電極群を作製する。
【解決手段】負極2および正極3の少なくとも一方の表面に多孔質絶縁層4を形成するに当たり、負極集電体表面に塗布された負極合剤スラリーの乾燥または正極集電体表面に塗布された正極合剤スラリーの乾燥とは別に、負極2および/または正極3を乾燥する再乾燥工程を設け、再乾燥を施した後に、多孔質耐熱層4を形成する。
【選択図】図1

Description

本発明は、二次電池用電極群の製造方法および二次電池の製造方法に関する。さらに詳しくは、本発明は主に、二次電池用電極群に含まれる多孔質耐熱層の形成方法の改良に関する。
最近では、小型民生用電子機器のポータブル化、コードレス化が急速に進み、これらの駆動用電源として、小型かつ軽量で、高エネルギー密度を有する二次電池の開発が強く望まれている。また、小型民生用途のみならず、電力貯蔵機器や電気自動車、ハイブリッド自動車といった長期に亘る耐久性や安全性が要求される用途においても、大型の二次電池を電源として使用するための応用研究が盛んに行われている。このような観点から、非水電解質二次電池、特に、リチウムイオン二次電池が、高電圧であり、かつ高エネルギー密度を有するため、電子機器、電力貯蔵用機器、電気自動車などの電源として期待されている。
リチウムイオン二次電池は、正極と、負極と、セパレータとを含む。正極は、正極活物質として、たとえば、リチウムに対する電位が高く、安全性に優れ、比較的容易に合成できるリチウムコバルト酸化物(たとえばLiCoO2)を含有する。負極は、黒鉛などの種々の炭素材料である負極活物質を含有する。セパレータは正極と負極との間に配置され、非水電解質が含浸される。セパレータには、主として、ポリオレフィン製多孔質膜が用いられる。非水電解質には、たとえば、LiBF4、LiPF6などのリチウム塩を非プロトン性有機溶媒に溶解した非水電解液が用いられる。
リチウムイオン二次電池は、実用上十分な容量を有しているが、電子機器などの多機能化などに対応するために、さらなる高容量化が要望されている。しかしながら、高容量化は内部短絡に伴う発熱量を増大させ、電池の安全性を低下させるおそれがある。内部短絡は、電池内部に混入した異物、電極から脱落した活物質層の破片などが原因になって発生する。このように、電池の高容量化を図る上で、内部短絡の発生を防止するかまたは発熱を抑制することが課題になっている。
このような課題に鑑み、正極活物質層または負極活物質層の表面に、アルミナ、シリカなどを含有する多孔質耐熱層を形成することが提案されている(たとえば、特許文献1参照)。より具体的には、多孔質耐熱層は、微粒子を含有する耐熱層形成用スラリーを活物質層表面に塗布し、乾燥させることにより形成される。耐熱層形成用スラリーは、アルミナなどの無機酸化物の微粒子を結着剤とともに溶媒に分散させたものである。結着剤には、たとえば、ポリフッ化ビニリデン(PVdF)が使用される。溶媒には、たとえば、N−メチル−2−ピロリドン(NMP)が使用される。多孔質耐熱層の形成は、内部短絡の防止には有効な技術である。
一方、電池の製造工程では、作業効率の向上が大きな技術的課題になっている。その解決手段の1つとして、耐熱層形成用スラリーと、活物質層の形成に用いられるスラリーを、同じ溶媒で調製することが行われている。溶媒を1つに統一すると、溶媒の乾燥温度をほぼ一定にできるので、乾燥温度を変更しなくてもよく、工程管理が容易になる。また、乾燥により蒸発した溶媒の回収も比較的容易であり、作業者のための防護設備も単純化できる。しかしながら、活物質層用のスラリーと同じ溶媒を用いて多孔質耐熱層を形成したリチウムイオン二次電池では、しばしば、電池容量の低下が認められる。また、量産ラインで多孔質耐熱層を形成する場合に、ほぼ均一な膜厚を有する多孔質耐熱層を、連続的にかつ安定的に形成できず、不良品率が高くなるという問題がある。
特開平7−220759号公報
本発明の目的は、電池容量の低下を伴うことなく、多孔質耐熱層を連続的にかつ安定的に形成できる二次電池用電極群の製造方法、および、高容量化と安全性の向上とを両立した二次電池を効率良く製造できる二次電池の製造方法を提供することである。
本発明者らは、上記課題を解決するための研究過程で、活物質層および多孔質耐熱層が同様の方法により形成されることに着目した。すなわち、活物質層は、活物質、結着剤などを溶媒に分散させた合剤スラリーを調製し、この合剤スラリーを集電体表面に塗布し、乾燥させることにより形成される。活物質は無機化合物の粉末であり、結着剤および溶媒としては、多孔質耐熱層の形成に用いられるのと同様のものが使用されている。また、合剤スラリーの乾燥は、一般に80℃以下の温度で行われ、5分程度で終了する。
本発明者らは、上記のような合剤スラリーの乾燥条件では、活物質粒子の表面などに溶媒が残留し、活物質粒子が溶媒に対してある程度の濡れ性を保持していることを見出した。さらに、このような活物質粒子の集合体である活物質層に、液状物である微粒子スラリーを塗布すると、活物質粒子が微粒子スラリー中に分散し、活物質層が部分的に削り取られることを見出した。これが、電池容量の低下、多孔質絶縁層の膜厚の不均一化などを引き起こすものと推測された。なお、合剤スラリーと微粒子スラリーとが同じ溶媒を含有していると、活物質層から削り取られる量が顕著に多くなる傾向が有る。
本発明者らは、上記知見に基づいてさらに研究を重ねた。その結果、活物質層を形成して電極を作製した後に、該電極を再度乾燥させることにより、活物質粒子が保持する濡れ性が著しく低減化され、活物質層が部分的に削り取られるのを防止できることを見出し、本発明を完成するに至った。
すなわち本発明は、正極集電体に正極合剤スラリーを塗布し、乾燥させて正極活物質層を形成し、正極を得る正極作製工程と、
負極集電体に負極合剤スラリーを塗布し、乾燥させて負極活物質層を形成し、負極を得る負極作製工程と、
正極作製工程で得られる正極および負極作製工程で得られる負極の少なくとも一方を乾燥させる再乾燥工程と、
正極の負極対向面および負極の正極対向面の少なくとも一方に多孔質耐熱層用スラリーを塗布し、乾燥させて多孔質耐熱層を形成する耐熱層形成工程と、
多孔質耐熱層を形成した後に、正極と負極とをセパレータを介して捲回または積層して電極群を作製する電極群作製工程とを含む二次電池用電極群の製造方法に係る。
再乾燥工程で乾燥した正極および/または負極に、耐熱層形成工程で多孔質耐熱層を形成することが好ましい。
正極合剤スラリーおよび負極合剤スラリーの少なくとも一方ならびに多孔質耐熱層用スラリーが同じ溶媒を含有することが好ましい。
溶媒は、有機溶媒であることがさらに好ましい。
有機溶媒は、N−メチル−2−ピロリドンであることが特に好ましい。
多孔質耐熱層は、無機化合物を含有することが好ましい。
正極作製工程における正極合剤スラリーの乾燥および負極作製工程における負極合剤スラリーの乾燥は、80℃以上の温度下にて5分間以下で行われ、再乾燥工程における乾燥は、80℃以上の温度下で0.5時間〜15時間行われることが好ましい。
また本発明は、上記した本発明の二次電池用電極群の製造方法により製造される二次電池用電極群を、非水電解質とともに開口を有する電池ケースに収容し、電池ケースの開口を封口する二次電池の製造方法に係る。
本発明の二次電池用電極群の製造方法によれば、電池容量の低下を伴うことなく、均質な多孔質耐熱層を連続的にかつ安定的に形成できる。また、本発明の製造方法によって製造された二次電池用電極群を用いて二次電池を作製すると、電池容量のばらつきが少なく、容量および安全性という、相反する特性を高水準で満足する二次電池を効率良く製造できる。すなわち、高容量を有し、内部短絡の発生が顕著に抑制された二次電池が得られる。
図1は、本発明の二次電池用電極群の製造方法により製造される二次電池用電極群1の要部の構成を簡略化して示す縦断面図である。二次電池用電極群1は、負極2、正極3、多孔質耐熱層4およびセパレータ5を含む捲回型電極群である。
本発明の二次電池用電極群の製造方法は、正極作製工程、負極作製工程、再乾燥工程、耐熱層形成工程および電極群作製工程を含む。正極作製工程および負極作製工程は、どちらを先に実施してもよく、同時に実施してもよい。その他の工程は、順番通りに行われる。本発明の製造方法によれば、再乾燥工程を実施することにより、活物質層中の残留する溶媒の影響を受けることなく、活物質層表面に安定的に多孔質耐熱層を形成することが可能になる。これにより、内部短絡の発生が顕著に防止された、安全性の高い二次電池用電極群が得られる。
[正極作製工程]
本工程では、正極集電体3aの両面に正極活物質層3bを形成し、正極3を作製する。本実施形態では、正極活物質層3bを正極集電体3aの両面に形成するが、それに限定されず、正極集電体3aの片面に形成してもよい。
正極集電体3aには、たとえば、無孔または多孔質の導電性基板を使用できる。無孔の導電性基板には、箔、シート、フィルムなどがある。多孔質導電性基板には、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体(不織布など)などがある。導電性基板の材料には、たとえば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどの金属材料が挙げられる。導電性基板の厚みは特に制限されないが、好ましくは1〜500μmである。正極集電体3aの厚さを前記範囲とすることにより、正極3の強度を保持しつつ軽量化することができる。
正極活物質層3bは、正極活物質を含有し、さらに結着剤、導電剤などを含有してもよい。正極活物質としては、この分野で常用されるものを使用できるが、その中でも、リチウム複合金属酸化物が好ましい。リチウム複合金属酸化物としては、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBよりなる群から選ばれる少なくとも1つの元素を示す。x=0〜1.2、y=0〜0.9、z=2.0〜2.3)などが挙げられる。なお、リチウムのモル比を示すx値は、活物質作製直後の値であり、充放電により増減する。さらにこれら含リチウム化合物の一部を異種元素で置換してもよい。金属酸化物、リチウム酸化物、導電剤などで表面処理してもよく、表面を疎水化処理してもよい。
結着剤としては、たとえば、PVDF、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ヘキシル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ヘキシル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが挙げられる。
また、結着剤として、各種モノマー化合物の共重合体の1種または2種以上を用いても良い。モノマー化合物としては、たとえば、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸およびヘキサジエンよりなる群から選ばれる2種以上を使用できる。結着剤は1種を単独でまたは2種以上を組み合わせて使用できる。
導電剤としては、たとえば、天然黒鉛、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛ウィスカー、チタン酸カリウムウィスカーなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、フェニレン誘導体などの有機導電性材料などが挙げられる。導電剤は1種を単独でまたは2種以上を組み合わせて使用できる。
正極活物質層3bが正極活物質、導電剤および結着剤を含有する場合、それぞれの含有量は特に制限されず、広い範囲から適宜選択できる。その一例を挙げれば、正極活物質は正極活物質層3b全量の80〜97重量%、導電剤は正極活物質層3b全量の1〜20重量%、結着剤は正極活物質層3b全量の1〜10重量%の範囲から、合計量が100重量%になるように適宜選択すればよい。
正極活物質層3bは、正極合剤スラリーを正極集電体3a表面に塗布し、乾燥し、必要に応じて圧延することにより形成できる。これにより正極3が得られる。正極合剤スラリーは、たとえば、正極活物質および必要に応じて結着剤、導電剤などを溶媒に溶解または分散させることにより調製できる。溶媒としては、たとえば、N−メチル−2−ピロリドン、テトラヒドロフラン、ジメチルホルムアミドなどを使用できる。これらの中でも、N−メチル−2−ピロリドンが好ましい。これらの溶媒は、二次電池用電極群の製造において一般的に用いられるものであるため、製造上、好都合である。
正極合剤スラリーの乾燥は、好ましくは80℃以上、さらに好ましくは80〜200℃の温度下に行われ、5分間以内で終了する。これにより、クラック、孔などがない均質な正極活物質層3bを形成し、正極集電体3a表面に強固に固着できる。温度が80℃未満では、溶媒が多量に残存した状態になり、正極活物質層3bを正極集電体上に固定させることが難しくなる。温度が200℃を超えると、結着剤の移動が起こり、正極活物質層3bの表面付近に偏在する。その結果、正極集電体3aと正極活物質層3bとの密着力が低下するおそれがある。また、体積収縮が急激に起こり、正極活物質層3b表面にクラックが発生し、電池の充放電サイクル特性、容量などを低下させるおそれがある。
また、乾燥時間が5分間を超えると、塗布工程に要する時間が長くなりすぎるために生産性が悪くなる。したがって、残留溶媒を除去するために、高温下でのまたは長時間の乾燥を行うことは、困難である。正極活物質層3bの厚さは特に制限されないが、好ましくは30〜200μmである。
[負極作製工程]
本工程では、負極集電体2aの両面に負極活物質層2bを形成し、負極2を作製する。本実施の形態では、負極活物質層2bを負極集電体2aの両面に形成するが、それに限定されず、負極集電体2aの片面に形成してもよい。
負極集電体2aには、たとえば、無孔または多孔質の導電性基板を使用できる。無孔の導電性基板は、具体的には、金属箔、金属シートなどである。多孔質導電性基板には、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体(不織布など)などがある。導電性基板の材料には、たとえば、ステンレス鋼、ニッケル、銅、銅合金の金属材料などが挙げられる。導電性基板の厚みは特に制限されないが、好ましくは1〜500μmである。負極集電体2aの厚さを前記範囲とすることにより、負極2の強度を保持しつつ軽量化することができる。
負極活物質層2bは、負極活物質を含有し、さらに結着剤、導電剤、増粘剤などを含有してもよい。
負極活物質としては、非水電解質二次電池の分野で常用されるものを使用でき、たとえば、金属、金属繊維、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、各種合金材料などが挙げられる。これらの中でも、炭素材料、珪素化合物、錫化合物などが好ましい。
炭素材料としては、たとえば、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛、非晶質炭素などが挙げられる。珪素化合物としては、たとえば、珪素、式:SiOx(0.05<x<1.95)で表される珪素酸化物、珪素含有合金、これらの固溶体などが挙げられる。また、前記した珪素化合物におけるSi原子の一部を他の元素で置換した化合物も使用できる。ここで、他の元素は、B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Snよりなる群から選択される少なくとも1つである。錫化合物としては、たとえば、Ni2Sn4、Mg2Sn、SnOx(0<x<2)、SnO2、SnSiO3などが挙げられる。負極活物質は1種を単独でまたは2種以上を組み合わせて使用できる。
結着剤および導電剤としては、正極活物質層3bに含有されるものと同じものを使用できる。増粘剤としては、たとえば、カルボキシメチルセルロースなどが挙げられる。
負極活物質層2bが負極活物質および結着剤を含有する場合、それぞれの含有量は特に制限されず、広い範囲から適宜選択できる。その一例を挙げれば、負極活物質は負極活物質層2b全量の85〜99重量%、結着剤は負極活物質層2b全量の1〜15重量%の範囲から、合計量が100重量%になるように適宜選択して使用すればよい。
負極活物質層2bは、正極活物質層3bと同様にして形成できる。すなわち、負極活物質層2bは、負極合剤スラリーを負極集電体2a表面に塗布し、乾燥し、必要に応じて圧延することにより形成できる。これにより負極2が得られる。負極合剤スラリーは、たとえば、負極活物質および必要に応じて結着剤、増粘剤、導電剤などを溶媒に溶解または分散させることにより調製できる。溶媒としては、正極合剤スラリーの調製に用いられるのと同じ溶媒、水などを使用できる。その中でも、N−メチル−2−ピロリドンが好ましい。
負極合剤スラリーの乾燥は、正極合剤スラリーの乾燥と同様に、好ましくは80℃以上、さらに好ましくは80〜200℃の温度下に行われ、好ましくは5分間以内で終了する。これにより、クラック、孔などがない均質な負極活物質層2bを形成し、負極集電体2a表面に強固に固着できる。乾燥温度を80℃以上にする理由および乾燥時間を5分以内にする理由は、正極合剤スラリーを乾燥させる場合と同様である。
[再乾燥工程]
本工程では、負極作製工程で得られる負極2を再乾燥する。本実施形態では、負極2のみを再乾燥するが、それに限定されず、正極3のみを再乾燥してもよく、負極2および正極3の両方を再乾燥してもよい。
本発明では、正極作製工程および負極作製工程(以下特に断らない限り「電極作製工程」と総称する)で一度乾燥を行った後、得られた正極および負極に対して再乾燥を行うことが肝要である。電極作製工程の乾燥により、多孔質絶縁層4の形成に影響を与えない程度に溶媒を除去しようとすると、上記したように、結着剤の活物質層表面への偏在が発生し、活物質層と集電体との密着力が低下するおそれがある。また、急激な収縮が起こり、活物質層表面にクラック、孔などが発生するおそれがある。
その結果、最終的に得られる電池の充放電サイクル特性、出力特性、容量などを低下させるおそれがある。したがって、電極作製工程において乾燥工程に次いで圧延工程などを経た後に、再乾燥工程を実施するのがよい。これにより、密着力の低下、クラック、孔などの発生などを伴うことなく、活物質層が削り取られるのを防止し、膜厚がほぼ均一でかつ均質な多孔質絶縁層4を形成できる。
本工程における乾燥温度および乾燥時間は特に制限されず、活物質層中に残留する溶媒を、多孔質絶縁層4の形成に影響を及ぼさない程度に除去可能でありかつ活物質層を変質させることがない条件を適宜選択すればよい。その条件の一例を挙げれば、乾燥温度が80℃以上であり、乾燥時間は0.5時間〜15時間である。このような条件で再乾燥を行うことにより、活物質層中に含有される活物質の溶媒に対する濡れ性が減少し、多孔質耐熱層スラリーを塗布しても、活物質が削り取られる量が顕著に減少する。その結果、膜厚がほぼ均一でかつ均質な多孔質絶縁層4を安定的に形成できる。
乾燥温度が80℃未満では、残留溶媒の除去が不十分になるかまたは残留溶媒の除去に長時間を要するおそれがある。また、乾燥時間が0.5時間未満では、乾燥温度を80℃以上の高い温度に設定しても、残留溶媒の除去が不十分になるおそれがある。一方、乾燥時間が15時間を超えても、残留溶媒がそれ以上除去されることがほとんどなく、余分な時間を掛けることになるので、製造上不利である。また、活物質層の変質などが発生するおそれもある。
[耐熱層形成工程]
本工程では、負極2の両面、すなわち負極2における両方の負極活物質層2bの表面に多孔質耐熱層4を形成する。本実施形態では、負極2の両面に多孔質耐熱層4を形成するが、それに限定されず、負極2の片面に多孔質耐熱層4を形成してもよい。また、正極3の片面または両面に多孔質耐熱層4を形成してもよい。また、負極2および正極3の両方に、多孔質耐熱層4を形成してもよい。このとき、負極2および正極3のそれぞれの両面または片面に多孔質耐熱層4が形成される。いずれにせよ、正極3の負極2との対向面、負極2の正極3との対向面に多孔質耐熱層4を形成するのが好ましい。さらに、再乾燥工程において再乾燥が施された電極に対して多孔質耐熱層4を形成するのが好ましい。
従来技術では、集電体表面に合剤スラリーを塗布し、乾燥させて活物質層を形成した後に、活物質層表面に多孔質耐熱層用スラリーを塗布している。この場合、活物質層中の残留溶媒の影響により、活物質層中の活物質、導電剤などが多孔質耐熱層用スラリー中に分散してしまい、膜厚がほぼ均一でかつ均質な多孔質耐熱層を安定的に形成できない。
これに対し、本発明では、作製された電極を再乾燥した後に多孔質耐熱層用スラリーを塗布する。これにより、活物質層中の各成分が多孔質耐熱層用スラリー中に分散することが防止され、多孔質耐熱層を活物質層表面に安定的に形成できる。
負極2の表面に多孔質耐熱層4を形成することにより、たとえば、正極3と負極2との間に混入する異物、活物質層の端面で発生する切断バリなどに起因して、正極3と負極2とが内部短絡を起こすのを防止できる。その結果、安全性の高い二次電池用電極群が得られる。
多孔質耐熱層4は、負極2の表面に多孔質耐熱層用スラリーを塗布し、乾燥することにより形成できる。
多孔質耐熱層用スラリーは、たとえば、無機化合物、結着剤および溶媒を含有する。無機化合物としては、たとえば、アルミナ、マグネシア、シリカなどの無機酸化物を好ましく使用できる。無機酸化物は化学的に安定でかつ高い耐熱性を有しているので、電池の安全性を向上させるのに有効である。無機化合物は粉末の形態で用いるのが好ましい。
結着剤としては、非結晶性でかつ耐熱性の高いものが好ましい。このような結着剤としては、たとえば、ゴム弾性を有するポリアクリロニトリル基を含有するゴム性状高分子化合物などが挙げられる。このような結着剤を用いることにより、多孔質耐熱層4の耐熱性、電気化学的な安定性などが向上し、内部短絡に対する高い安全性が得られる。
溶媒は、正極合剤スラリーに用いられるのと同様のものを使用できる。
多孔質耐熱層用スラリーは、たとえば、無機酸化物および結着剤を溶媒に溶解または分散させることにより調製できる。
正極合剤スラリー、負極合剤スラリーおよび多孔質耐熱層用スラリーに含まれる溶媒は、同じでもよくまたは異なっていてもよい。従来技術では、たとえば、正極活物質層の表面に多孔質耐熱層を形成する場合、正極合剤スラリーおよび多孔質耐熱層用スラリーが同じ溶媒を含有していると、上記したように、活物質層の一部が削り取られ、電池の容量、充放電サイクル特性、出力特性などが低下するおそれがある。これに対し、本発明では、活物質層を再乾燥することにより、従来技術のような問題が生じるのを防止できる。
したがって、負極活物質層2bおよび/または正極活物質層3bの表面に多孔質耐熱層4を形成する場合、負極合剤スラリーおよび/または正極合剤スラリーと多孔質耐熱層用スラリーとが同じ溶媒を含んでいてもよい。これにより、電池の製造工程における作業効率を顕著に高めることができる。また、多孔質耐熱層4が形成されない一方の活物質層の合剤スラリーが、多孔質耐熱層4が形成される他方の活物質層の合剤スラリーおよび多孔質耐熱層用スラリーと同じ溶媒を含有していてもよい。これにより、作業効率が一層顕著に向上する。
多孔質耐熱層用スラリーは、印刷法により、負極2表面に塗布するのが好ましい。印刷法としては、たとえば、グラビア印刷、スクリーン印刷などを利用できる。負極2表面に塗布した多孔質耐熱層用スラリーの乾燥は、正極合剤スラリーの乾燥と同様にして実施できる。これにより、多孔質耐熱層4が形成される。多孔質耐熱層4の厚みは特に制限されないが、好ましくは2〜30μm、さらに好ましくは2〜10μmである。これにより、電池容量の低下を実質的に抑制しつつ、安全性の高い二次電池用電極群が得られる。
なお、多孔質耐熱層4を正極3の表面に形成する場合も、負極2の表面に形成するのと同様にして形成できる。
[電極群作製工程]
本工程では、正極3と多孔質絶縁層4を有する負極2とを、セパレータ5を介して重ね合わせ、さらに捲回して捲回型電極群1を作製する。本実施形態では捲回型電極群を作製するが、それに限定されず、正極3と多孔質絶縁層4を有する負極2とを、セパレータ5を介して積層した積層型電極群を作製してもよい。
セパレータ5は、正極3と多孔質絶縁層4を有する負極2との間に配置され、正極3と負極2とを絶縁する。セパレータ5としては、たとえば、大きなイオン透過度を持ち、所定の機械的強度と絶縁性とを兼ね備えた樹脂製のフィルムを使用できる。樹脂製フィルムとは、具体的には、多孔質膜、織布、不織布などである。セパレータ5の材質としては、たとえば、ポリプロピレン、ポリエチレンなどのポリオレフィンが耐久性に優れ、かつシャットダウン機能を有しているため、非水電解質二次電池の安全性の観点から好ましい。
セパレータ5の厚さは、一般的に10〜300μmであるが、好ましくは40μm以下、より好ましくは15〜30μm、さらに好ましくは10〜25μmである。さらに多孔質膜は、1種の材料からなる単層膜であってもよく、1種または2種以上の材料からなる複合膜または多層膜であってもよい。また、セパレータ5の空孔率は、好ましくは30〜70%、さらに好ましくは35〜60%である。ここで空孔率とは、セパレータ体積に対する孔部容積の比(孔部容積/セパレータ体積)である。
図2は、本発明の非水電解質二次電池の製造方法により得られる非水電解質二次電池6の構成を簡略化して示す縦断面図である。非水電解質二次電池6は、二次電池用電極群1、電池ケース10、封口板11、ガスケット12、正極リード13、負極リード14および絶縁板15a、15bを含む。
二次電池用電極群1は、図1に示す円筒状の捲回型電極群1である。なお、図2においては、負極2の両面に形成された多孔質絶縁層4の図示を省略する。
電池ケース10は、有底円筒型の金属製容器であり、長手方向の一端が開口している。本実施形態では、円筒型の電池ケース10を用いているが、それに限定されず、角型、コイン型、ラミネートパック型などの任意の形状の電池ケースを使用できる。
封口板11は、内圧作動型の安全弁を含み、電池ケース10の開口を封口するために用いられる。また、封口板11には正極リード13の他端が接続され、正極端子としても機能する。
ガスケット12は、封口板11により電池ケース10の開口を封口する際に、封口板11の周縁部に装着される樹脂製またはゴム製部材である。
正極リード13は一端が電極群1に含まれる正極集電体3aに接続され、他端が封口板11に接続され、正極3と封口板11とを導通させる。正極リード13には、たとえば、アルミニウム製リードを使用できる。負極リード14は一端が電極群1に含まれる負極集電体2aに接続され、他端が電池ケース10に接続され、負極2と電池ケース10とを導通させる。負極リード14には、たとえば、ニッケル製リードを使用できる。
絶縁板15a、15bは、電極群1の長手方向の両端部に装着される樹脂製またはゴム製の絶縁部材である。
本発明の非水電解質二次電池6の製造方法(以下特に断らない限り「本発明の電池製造方法」とする)によれば、二次電池用電極群1を、非水電解質とともに電池ケース10に収容し、電池ケース10の開口を封口することにより、非水電解質二次電池6が得られる。本発明の電池製造方法は、本発明の二次電池用電極群の製造方法により得られる二次電池用電極群1を用いることを特徴とする。
より具体的には、二次電池用電極群1の長手方向の両端部にそれぞれ絶縁板15a、15bを装着し、正極リード13の他端を封口板11に接続し、負極リード14の他端を電池ケース10の底面内壁に接続する。この状態で電極群1を電池ケース10内に収納し、さらに電池ケース10内に減圧方式で非水電解質を注入する。次に、周縁部にガスケット12を装着した封口板11を電池ケース10の開口に装着し、電池ケース10の開口端部を封口板11に向けてかしめつけることにより、非水電解質二次電池6が得られる。
非水電解質としては、液状、ゲル状または固体(高分子固体電解質)状の物質を使用することができる。
液状非水電解質(非水電解液)は、支持塩および非水溶媒を含有する。液状非水電解質は、たとえば、支持塩を非水溶媒に溶解することにより調製できる。
非水溶媒としては、非水電解質二次電池の分野で常用されるものを使用でき、たとえば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)などが挙げられる。非水溶媒は、1種を単独でまたは2種以上を組み合わせて使用できる。
支持塩としても、非水電解質二次電池の分野で常用されるものを使用でき、たとえば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類などが挙げられる。
ホウ酸塩類としては、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ホウ酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ホウ酸リチウムなどが挙げられる。
イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム((CF3SO22NLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CF3SO2)(C49SO2))、ビスペンタフルオロエタンスルホン酸イミドリチウム((C25SO22NLi)などが挙げられる。
支持塩の非水溶媒に対する溶解量は、0.5〜2モル/Lの範囲内とすることが望ましい。支持塩は、1種を単独でまたは2種以上を組み合わせて使用できる。
また、非水電解液は、添加剤として、充放電効率を向上させる材料を含んでいてもよい。この材料は、たとえば、負極表面で分解してリチウムイオン伝導性の高い被膜を形成する。このような材料としては、たとえば、ビニレンカーボネート(VC)、4−メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4−エチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、4−プロピルビニレンカーボネート、4,5−ジプロピルビニレンカーボネート、4−フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネートなどが挙げられる。これらは単独でまたは2種以上を組み合わせて使用できる。これらの中でも、ビニレンカーボネート、ビニルエチレンカーボネート、およびジビニルエチレンカーボネートよりなる群から選ばれる少なくとも1種が好ましい。なお、上記化合物は、その水素原子の一部がフッ素原子で置換されていてもよい。
さらに、非水電解液には、過充電時に分解して電極上に被膜を形成し、電池を不活性化する公知のベンゼン誘導体を含有させてもよい。前記ベンゼン誘導体としては、フェニル基および前記フェニル基に隣接する環状化合物基を有するものが好ましい。前記環状化合物基としては、フェニル基、環状エーテル基、環状エステル基、シクロアルキル基、フェノキシ基などが好ましい。ベンゼン誘導体の具体例としては、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ただし、ベンゼン誘導体の含有量は、非水溶媒全体の10体積%以下であることが好ましい。
また、ゲル状非水電解質は、液状非水電解質と、液状非水電解質を保持し得る高分子材料とを含む。高分子材料としては、たとえば、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート、ポリビニリデンフルオライドヘキサフルオロプロピレンなどが挙げられる。
以下に実施例および比較例を挙げ、本発明を具体的に説明する。
(実施例1)
以下のようにして、図2に示す本発明の非水電解質二次電池を作製した。
[正極の作製]
NiSO4水溶液に、所定比率のCoおよびAlの硫酸塩を加え、飽和水溶液を調製した。この飽和水溶液に、撹拌下に、水酸化ナトリウム水溶液を徐々に滴下して中和し、共沈法により、三元系の水酸化ニッケルNi0.7Co0.2Al0.1(OH)2の沈殿物を生成させた。この沈殿物をろ過、水洗し、80℃で乾燥した。得られた水酸化ニッケルは平均粒径約10μmであった。
上記で得られた水酸化ニッケルを、大気中900℃で10時間加熱し、酸化ニッケルNi0.7Co0.2Al0.1Oを得た。この酸化ニッケルに、Ni、CoおよびAlの原子数の和とLiの原子数とが等量になるように水酸化リチウム1水和物を添加し、乾燥空気中800℃で10時間加熱し、リチウムニッケル複合酸化物LiNi0.7Co0.2Al0.12を得た。その後、粉砕および分級を行い、前記組成を有し、体積平均粒径9.5μm、比表面積0.4m2/g(BET法)であるリチウムニッケル複合酸化物を得た。
上記で得られたリチウムニッケル複合酸化物(正極活物質)3kg、アセチレンブラック(導電剤)150gおよび、ポリフッ化ビニリデン(PVDF、結着剤)をN−メチル−2−ピロリドン(NMP)に溶解したPVDF固形分含量12重量%の溶液1500gを混合し、プレスラリーを調製した。このプレスラリーと、さらにNMP1000gとを混合し、正極合剤スラリーを調製した。
この正極合剤スラリーを、厚さ15μmのアルミニウム箔(正極集電体)表面に塗布した後、100℃の乾燥炉に2m/分のライン速度にて流し、2分間乾燥させ、アルミニウム箔表面に正極活物質層を形成した。正極活物質層はアルミニウム箔の両面に形成した。そして総厚が100μmになるように圧延し、さらに裁断して、長さ20m、幅50mmの正極を作製した。この正極を長さ750mmずつ切り出し、中央部分の正極活物質層を5mmの幅で剥離し、アルミニウム箔の露出部分にアルミニウム製正極リードの一端を溶接し、正極板3を作製した。このような正極板3を20枚作製した。
[負極の作製]
人造黒鉛3kgと、PVDFのNMP溶液2500gとを混合し、負極合剤スラリーを調製した。この負極合剤スラリーを厚み10μmの銅箔(負極集電体)表面に塗布した後、100℃の乾燥炉に2m/分のライン速度にて流し、2分間乾燥させ、銅箔表面に負極活物質層を形成した。負極活物質層は銅箔の両面に形成した。そして総厚が130μmになるように圧延し、負極を作製した。この負極を100℃の乾燥炉内で10時間放置し、再乾燥を施した。これにより、負極活物質層中に残存しているNMPを十分に除去した。
[多孔質耐熱層の形成]
体積平均粒径0.3μmのアルミナ1000gおよびポリアクリロニトリル変性ゴム(結着剤、固形分8重量%、商品名:BM−720H、日本ゼオン(株)製)375gおよび適量のNMPに溶解または分散させ、多孔質耐熱層用スラリーを調製した。
上記で得られた負極の一方の表面全面に、グラビア塗装装置により多孔質耐熱層スラリーを塗布し、乾燥させ、膜厚約10μmの多孔質耐熱層を形成した。次に、負極の他方の面にも、前記と同様にして膜厚約10μmの多孔質耐熱層を形成した。引き続き裁断を行い、長さ20m、幅55mmの負極を作製した。この負極を長さ850mmずつ切り出し、端部の活物質層および多孔質耐熱層を5mmの幅で剥離し、露出した銅箔にニッケル製負極リードの一端を溶接し、負極板2を作製した。この負極板2を20枚作製した。
[電極群作製工程]
上記で得られた正極板3と負極板2とを、ポリエチレン製多孔質膜(セパレータ、膜厚20μm、商品名:ハイポアN9420G、旭化成ケミカルズ(株)製)を介して重ね合わせ、幅方向の一端を軸芯にして円筒型に捲回し、捲回型電極群1を作製した。
[電池の組立て]
上記で得られた捲回型電極群1の上端部および下端部に、それぞれポリプロピレン製絶縁板15a、15bを装着した。また、負極リード14の他端を有底円筒形の電池ケース10に溶接し、正極リード13の他端を内圧作動型の安全弁を有する封口板11に溶接した。この状態で、捲回型電極群1を電池ケース10の内部に収納した。その後、電池ケース10の内部に、非水電解質を減圧方式により注入した。非水電解質としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:3で混合した混合溶媒に、溶質として六フッ化リン酸リチウム(LiPF6)を1mol/dm3の濃度で溶解したものを用いた。
次いで、電池ケース10の開口端部を、ポリプロピレン製ガスケット12を介して封口板11に向けてかしめることにより、本発明の円筒型非水電解質二次電池6(設計電池容量1400mAh)を作製した。この電池を20個作製した。
(実施例2)
下記の正極板3および負極板2を用いる以外は、実施例1と同様にして、本発明の円筒型非水電解質二次電池6(設計電池容量1400mAh)20個を作製した。
[正極の作製]
実施例1と同様にして、厚さ15μmのアルミニウム箔表面全面に正極活物質層を形成し、厚さ100μmの正極を作製した。この正極を、100℃の乾燥炉に10時間放置し、再乾燥を施した。これにより、正極活物質層中に残存しているNMPを十分に除去した。この正極両面に、実施例1において負極両面に多孔質耐熱層を形成したのと同様にして、厚さ約10μmの多孔質耐熱層を形成した。この正極を裁断して長さ20m、幅50mmにした後、750mmの長さで切り出し、中央部分の正極活物質層を5mmの幅で剥離し、アルミニウム箔の露出部分にアルミニウム製正極リードの一端を溶接し、正極板3を作製した。このような正極板3を20枚作製した。
[負極の作製]
再乾燥を施さずかつ多孔質耐熱層を形成しない以外は実施例1と同様にして、長さ20m、幅55mm、厚さ130μmの負極を作製した。この負極を長さ850mmずつ切り出し、端部の活物質層を5mmの幅で剥離し、露出した銅箔にニッケル製負極リードの一端を溶接し、負極板2を作製した。この負極板2を20枚作製した。
(比較例1)
下記の負極板を用いる以外は、実施例1と同様にして、円筒型非水電解質二次電池(設計電池容量1400mAh)20個を作製した。
再乾燥を施さない以外は実施例1と同様にして、長さ20m、幅55mm、厚さ130μmの負極を作製した。この負極を長さ850mmずつ切り出し、端部の活物質層および多孔質耐熱層を5mmの幅で剥離し、露出した銅箔にニッケル製負極リードの一端を溶接し、負極板を作製した。この負極板を20枚作製した。
(試験例1)
[電極板評価]
実施例1の負極板、実施例2の正極板および比較例1の負極板について、次のようにして評価を行った。多孔質耐熱層の塗布が終了する電極板の長さ方向における一方の端部付近を樹脂固めした後、研磨し、断面観察を行い、電極板の一方の表面および他方の表面における活物質層および多孔質耐熱層の厚さを、マイクロスコープを用いて測定した。なお多孔質耐熱層用スラリーの塗布は、まず一方の表面に対して行い、塗布終了点から電極板を裏返して他方の表面に行っている。すなわち、塗布方向は、一方の表面と他方の表面では逆方向になる。また、多孔質絶縁層を形成していない実施例1の正極板および実施例2の負極板についても、同様の評価を行った。結果を表1に示す。
Figure 2010010093
表1から、次のことが明らかである。多孔質耐熱層を形成する前に再乾燥を実施した実施例1の負極板は、片面活物質層厚60μm、多孔質耐熱層厚10μmであり、設定値にほぼ等しい厚さの層が形成されている。同様に、実施例2の正極板も、片面活物質層厚42.5μm、多孔質耐熱層厚10μmであり、やはり設定値にほぼ等しい厚さの層が形成されている。また、多孔質耐熱層を形成していない実施例1の正極板および実施例2の負極板でも、設定値にほぼ等しい厚さの層が形成されている。
これに対し、多孔質耐熱層を形成する前に再乾燥を実施していない比較例1の負極板では、活物質層厚がそれぞれ59μm、49μmであり、他方の表面の活物質層厚が設定値よりも11μmほど薄くなっている。その原因としては、再乾燥を施さないために、活物質層中の残留溶媒が多孔質耐熱層スラリーの溶媒と馴染むことによるものと推測される。
本実施例では、長尺電極(正極または負極)の両面に多孔質耐熱層用スラリーを塗布する。長尺状電極は、長手方向における一端部と他端部とを有している。多孔質耐熱層用スラリーは、まず一方の表面において長尺電極の一端部(塗布開始点)から他端部(塗布終了点)に塗布される。塗布終了後、多孔質耐熱層用スラリーの乾燥が行われる。乾燥は、一端部(塗布開始点)から他端部(塗布終了点)に向けて連続的に行われる。
その結果、塗布開始点から塗布終了点に向うにつれ、削られた活物質層が耐熱層用スラリー中に分散し、そのスラリーが耐熱層塗布用スラリーとして循環し、活物質層が混入した耐熱層用スラリーが活物質層と接触することで、活物質層の削れがさらに助長されていく。そのため塗布終了点において、もっとも活物質層の削れが大きくなる。
一方の表面に多孔質耐熱層が形成された長尺電極は、一方の表面の塗布開始点から保存用ロールに巻き取られる。したがって、他方の面に多孔質耐熱層用スラリーを塗布する際には、一方の面の塗布終了点が他方の面の塗布開始点になり、一方の面の塗布開始点が他方の面の塗布終了点になる。そして、他方の面においても、一方の面と同様に、塗布開始点から塗布終了点に向けて活物質層の厚みが徐々に減少する。
このことは、多孔質耐熱層を両面に形成した後に、たとえば、長尺状電極の一端部(一方の面の塗布開始点または他方の面の塗布終了点)付近における活物質の厚みを調べることからも明らかになる。すなわち、一方の面では活物質層の厚みは59μmであり、設計値にほぼ近い値である。これに対し、他方の面では活物質層の厚みは49μmであり、設計値よりもかなり小さく、活物質層が削り取られていることがわかる。
このように、捲回型電極群を作製する際には、電極板は長尺状に形成され、表面に多孔質耐熱層用スラリーを塗布する場合、比較的長い時間を必要するので、活物質層厚が変化していくものと推測される。
また、比較例1の負極板では、多孔質耐熱層厚は、一方および他方の表面の多孔質耐熱層厚がそれぞれ9μm、12μmであり、他方の表面における厚さが若干大きくなっている。これは、多孔質耐熱層を形成した活物質層厚みの影響によるものと推測される。
(試験例2)
[電池容量評価]
実施例1〜2および比較例1の電池各20個について、次のようにして、電池容量を評価し、平均値を求めた。結果を表2に示す。
25℃の環境下にて、電流1400mA、上限電圧4.2Vまでの定電流充電を行った後、さらに4.2Vの定電圧で100mAまで充電を行った。放電は1400mA、放電終止電圧2.5Vとして定電流放電を行った。これを1サイクルとし、3サイクル目の放電容量を電池容量とした。
Figure 2010010093
表2から、次のことが明らかである。実施例1および2の電池では、設計容量1400mAhにほぼ等しい容量が得られている。それに対し、比較例1の電池は、電池容量が1325mAhであり、設計容量よりも5.4%低い容量しか得られていない。これは、表1の(比較例1の負極板)の結果で示したように、負極に多孔質耐熱層を形成することにより、負極活物質層の一部が削りとられたことに起因するものと考えられる。
すなわち、負極活物質層厚が設計値よりも薄くなると、負極板の単位重量当たりの容量負荷(mAh/g)が活物質の能力限界を超え、負極活物質表面にLiが析出し、電池容量に寄与しなくなったことが原因と推測される。その結果、電池の保存または充放電サイクルの増加によって電池容量が大きく低下していくことがさらに予想される。
以上の結果より、本発明によると、電極板を再乾燥することによって、活物質層中の残留溶媒の影響を受けることなく、多孔質耐熱層を活物質層表面に安定的に形成することが可能となる。これにより、内部短絡に対する安全性の高い二次電池用電極群、及びそれを備えた二次電池を提供することができる。
本発明により、安定した多孔質耐熱層の形成が可能であり、内部短絡に対する安全性の高い二次電池用電極群、及びそれを備えた二次電池を提供することができる。したがってこの二次電池用電極群を備えた二次電池は、ノートパソコン、携帯電話、デジタルスチルカメラなどの電子機器の駆動源、さらには高出力を要求される電力貯蔵用や電気自動車の電源として有用である。
本発明の二次電池用電極群の製造方法により製造される二次電池用電極群の要部の構成を簡略化して示す縦断面図である。 本発明の非水電解質二次電池の製造方法により得られる非水電解質二次電池の構成を簡略化して示す縦断面図である。
符号の説明
1 電極群
2 負極
3 正極
4 多孔質耐熱膜
5 セパレータ
6 非水電解質二次電池
10 電池ケース
11 封口板
12 ガスケット
13 正極リード
14 負極リード
15a、15b 絶縁版

Claims (8)

  1. 正極集電体に正極合剤スラリーを塗布し、乾燥させて正極活物質層を形成し、正極を得る正極作製工程と、
    負極集電体に負極合剤スラリーを塗布し、乾燥させて負極活物質層を形成し、負極を得る負極作製工程と、
    正極作製工程で得られる正極および負極作製工程で得られる負極の少なくとも一方を乾燥させる再乾燥工程と、
    正極の負極対向面および負極の正極対向面の少なくとも一方に多孔質耐熱層用スラリーを塗布し、乾燥させて多孔質耐熱層を形成する耐熱層形成工程と、
    多孔質耐熱層を形成した後に、正極と負極とをセパレータを介して捲回または積層して電極群を作製する電極群作製工程とを含む二次電池用電極群の製造方法。
  2. 再乾燥工程で乾燥した正極および/または負極に、耐熱層形成工程で多孔質耐熱層を形成する請求項1に記載の二次電池用電極群の製造方法。
  3. 正極合剤スラリーおよび負極合剤スラリーの少なくとも一方ならびに多孔質耐熱層用スラリーが同じ溶媒を含有する請求項1または2に記載の二次電池用電極群の製造方法。
  4. 溶媒が有機溶媒である請求項3に記載の二次電池用電極群の製造方法。
  5. 有機溶媒がN−メチル−2−ピロリドンである請求項4に記載の二次電池用電極群の製造方法。
  6. 多孔質耐熱層が無機化合物を有する請求項1〜5のいずれか1つに記載の二次電池用電極群の製造方法。
  7. 正極作製工程における正極合剤スラリーの乾燥および負極作製工程における負極合剤スラリーの乾燥が、80℃以上の温度下にて5分間以下で行われ、再乾燥工程における乾燥が、80℃以上の温度下で0.5時間〜15時間行われる請求項1〜6のいずれか1つに記載の二次電池用電極群の製造方法。
  8. 請求項1〜7のいずれか1つに記載の二次電池用電極群の製造方法により製造される二次電池用電極群を、非水電解質とともに開口を有する電池ケースに収容し、電池ケースの開口を封口する二次電池の製造方法。
JP2008171432A 2008-06-30 2008-06-30 二次電池用電極群の製造方法および二次電池の製造方法 Pending JP2010010093A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008171432A JP2010010093A (ja) 2008-06-30 2008-06-30 二次電池用電極群の製造方法および二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008171432A JP2010010093A (ja) 2008-06-30 2008-06-30 二次電池用電極群の製造方法および二次電池の製造方法

Publications (1)

Publication Number Publication Date
JP2010010093A true JP2010010093A (ja) 2010-01-14

Family

ID=41590304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008171432A Pending JP2010010093A (ja) 2008-06-30 2008-06-30 二次電池用電極群の製造方法および二次電池の製造方法

Country Status (1)

Country Link
JP (1) JP2010010093A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198806B1 (ko) 2010-12-06 2012-11-07 현대자동차주식회사 다공절연층을 포함하는 이차전지 전극 및 그 제조 방법
JP2017188293A (ja) * 2016-04-05 2017-10-12 Csエナジーマテリアルズ株式会社 リチウム−ニッケル−コバルト−アルミニウム複合酸化物粉末
WO2018179613A1 (ja) * 2017-03-28 2018-10-04 株式会社 東芝 電極構造体および二次電池
JP2019140040A (ja) * 2018-02-14 2019-08-22 トヨタ自動車株式会社 リチウムイオン二次電池用負極の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198806B1 (ko) 2010-12-06 2012-11-07 현대자동차주식회사 다공절연층을 포함하는 이차전지 전극 및 그 제조 방법
JP2017188293A (ja) * 2016-04-05 2017-10-12 Csエナジーマテリアルズ株式会社 リチウム−ニッケル−コバルト−アルミニウム複合酸化物粉末
WO2018179613A1 (ja) * 2017-03-28 2018-10-04 株式会社 東芝 電極構造体および二次電池
CN110392953A (zh) * 2017-03-28 2019-10-29 株式会社东芝 电极结构体及二次电池
JPWO2018179613A1 (ja) * 2017-03-28 2019-11-07 株式会社東芝 電極構造体および二次電池
CN110392953B (zh) * 2017-03-28 2023-02-21 株式会社东芝 电极结构体及二次电池
JP2019140040A (ja) * 2018-02-14 2019-08-22 トヨタ自動車株式会社 リチウムイオン二次電池用負極の製造方法
JP6992572B2 (ja) 2018-02-14 2022-01-13 トヨタ自動車株式会社 リチウムイオン二次電池用負極の製造方法

Similar Documents

Publication Publication Date Title
CN111492510B (zh) 二次电池用正极活性材料、其制备方法以及包含其的锂二次电池
US10897040B2 (en) Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
CN108028355B (zh) 二次电池用正极和包含其的二次电池
CN108604674B (zh) 二次电池用正极、其制造方法以及包含该正极的锂二次电池
KR102417200B1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
CN111226330A (zh) 二次电池用正极材料和包含该正极材料的锂二次电池
CN110663126B (zh) 制备二次电池用正极的方法、由此制备的二次电池用正极以及包含所述正极的锂二次电池
JP5331333B2 (ja) 非水電解質二次電池
JP5264271B2 (ja) 非水電解質二次電池及びその製造方法
JP2008186704A (ja) 非水系二次電池用正極板および非水系二次電池
JP2009004289A (ja) 非水電解質二次電池
US20210135285A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2014225324A (ja) 非水電解質二次電池
JP2009026514A (ja) 非水電解質二次電池
WO2011016183A1 (ja) 非水電解質二次電池
CN113994512B (zh) 锂二次电池及其制备方法
KR20180122238A (ko) 이차전지용 양극의 제조방법
CN111344256A (zh) 制备二次电池用正极活性材料的方法
CN112204769A (zh) 锂钴类正极活性材料、其制备方法以及包含其的正极和二次电池
CN110651384B (zh) 用于锂二次电池的负极和包括该负极的锂离子二次电池
JP7313536B2 (ja) 水分との反応性が緩和された高ニッケル電極シートおよびその製造方法
JP2011060541A (ja) 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
JP2020525991A (ja) リチウム二次電池用正極活物質、その製造方法、それを含むリチウム二次電池用正極及びリチウム二次電池
JP2019164965A (ja) リチウムイオン二次電池
CN115004405A (zh) 制造二次电池的方法