WO2010074256A1 - ジアルキルカーボネートの製造方法 - Google Patents

ジアルキルカーボネートの製造方法 Download PDF

Info

Publication number
WO2010074256A1
WO2010074256A1 PCT/JP2009/071654 JP2009071654W WO2010074256A1 WO 2010074256 A1 WO2010074256 A1 WO 2010074256A1 JP 2009071654 W JP2009071654 W JP 2009071654W WO 2010074256 A1 WO2010074256 A1 WO 2010074256A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
separated
boiling fraction
glycol
ethylene
Prior art date
Application number
PCT/JP2009/071654
Other languages
English (en)
French (fr)
Inventor
清水 諭
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to EP09835052A priority Critical patent/EP2380868A4/en
Priority to CN2009801529024A priority patent/CN102264687A/zh
Publication of WO2010074256A1 publication Critical patent/WO2010074256A1/ja
Priority to US13/166,940 priority patent/US20110313185A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/12Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids

Definitions

  • the present invention relates to a method for producing a symmetric dialkyl carbonate and an asymmetric dialkyl carbonate by transesterifying an alkylene carbonate and two or more alcohols.
  • the present invention also relates to a method for producing diethyl carbonate by transesterification of ethylene carbonate or propylene carbonate with ethanol.
  • dialkyl carbonate such as diethyl carbonate, ethyl methyl carbonate or dimethyl carbonate
  • methyl glycol ethers or ethyl glycol Ethers are by-produced.
  • this reaction proceeds according to the following reaction formulas (1) to (4).
  • glycol ethers are by-produced by side reactions of the following reaction formulas (5) to (8).
  • the boiling points of the reaction raw material and the target product and these by-products are as follows. Since these by-products easily azeotrope with the target product, the reaction product containing such a by-product is changed from the target product to the target product. It is very difficult to separate by-products by distillation.
  • the reaction product obtained by the transesterification reaction between ethylene carbonate and ethanol includes diethyl carbonate (boiling point 127 ° C.) and ethylene glycol (boiling point 198 ° C.), which are target products, and the remaining reaction raw material ethylene carbonate (boiling point 198 ° C.). Boiling point 246 ° C.), ethanol (boiling point 78.3 ° C.), and by-product ethyl glycol ether (boiling point 136 ° C.).
  • diethyl carbonate (boiling point 127 ° C.) and ethyl glycol ether (boiling point 136 ° C.) have close boiling points and are azeotropic, making it difficult to separate by distillation.
  • the reaction product obtained by the transesterification reaction between propylene carbonate and ethanol includes diethyl carbonate (boiling point 127 ° C.) and propylene glycol (boiling point 188 ° C.) as target products, and remaining propylene carbonate (boiling point 188 ° C.).
  • diethyl carbonate (boiling point 127 ° C.) and propylene glycol ethyl ether (boiling point 133 ° C .: in the case of (6) -2) are close to each other in boiling point and are difficult to be separated by distillation.
  • reaction products obtained by the transesterification reaction of ethylene carbonate with a mixture of ethanol and methanol include the target products diethyl carbonate (boiling point 127 ° C.), dimethyl carbonate (boiling point 90 ° C.), ethyl methyl carbonate (boiling point).
  • diethyl carbonate (boiling point 127 ° C.) and ethyl glycol ether (boiling point 136 ° C.) and ethyl methyl carbonate (boiling point 107 ° C.) and methyl glycol ether (boiling point 125 ° C.) are close in boiling point and are azeotropically separated by distillation. It is difficult.
  • the reaction products obtained by transesterification of propylene carbonate with a mixture of ethanol and methanol include the target products diethyl carbonate (boiling point 127 ° C.), dimethyl carbonate (boiling point 90 ° C.), ethyl methyl carbonate (boiling point).
  • diethyl carbonate (boiling point 127 ° C.) and propylene glycol ethyl ether (boiling point 133 ° C .: in the case of (6) -2) are close in boiling point and are in an azeotropic relationship
  • diethyl carbonate (boiling point 127 ° C.) and propylene glycol ethyl ether (boiling point 133 ° C.) are close to each other in azeotropic relationship, and any of them is difficult to be separated by distillation.
  • Patent Document 1 does not disclose a method for separating ethyl glycol ether from diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, or the like.
  • the present invention relates to a method for industrially advantageously producing a symmetric dialkyl carbonate and an asymmetric dialkyl carbonate by transesterification of an alkylene carbonate and two or more alcohols, and in particular, a by-product azeotroping with a target product in this method. It is an object of the present invention to provide a method for efficiently producing a target product with high purity by efficiently separating and removing the product.
  • the present invention also provides a method of producing a diethyl carbonate by transesterifying ethylene carbonate or propylene carbonate with ethanol to efficiently separate and remove a by-product azeotropic with the target product. It is an object of the present invention to provide a method for efficiently producing a high purity product.
  • the present inventors have extracted the same alkylene glycol that is produced by transesterification when producing dialkyl carbonate by transesterification of alkylene carbonate and alcohol.
  • extractive distillation using a solvent, it was found that the by-product azeotropic with the target product and the target product can be easily distilled and separated, and the present invention has been completed.
  • the gist of the present invention is as follows.
  • a method for producing a symmetric dialkyl carbonate and an asymmetric dialkyl carbonate which comprises transesterifying an alkylene carbonate and two or more alcohols in the same reactor.
  • the alkylene carbonate is ethylene carbonate
  • the two or more alcohols are ethanol and methanol
  • the symmetric dialkyl carbonate is diethyl carbonate and dimethyl carbonate
  • the asymmetric dialkyl carbonate is ethyl methyl carbonate.
  • the ether compound is removed by subjecting the transesterification reaction solution to extraction distillation using the same alkylene glycol as the alkylene glycol produced by the transesterification reaction as an extraction solvent.
  • the high boiling point fraction distilled and separated in the second step is mainly composed of alkylene glycol. Distilled into a low-boiling fraction containing alkylene carbonate as a component and a high-boiling fraction containing alkylene carbonate as the main component Fifth step of recycling the fourth step (5) low-boiling fraction which is separated by distillation in the third step of releasing, a high-boiling fraction which is separated by distillation in the fourth step to the first step
  • the alkylene carbonate is ethylene carbonate
  • the two or more alcohols are ethanol and methanol
  • the symmetric dialkyl carbonate is diethyl carbonate and dimethyl carbonate
  • the asymmetric dialkyl carbonate is ethyl methyl carbonate
  • Step i of carrying out a transesterification reaction between ethylene carbonate and a mixture of ethanol and methanol Step (ii)
  • the reaction product of step i is composed mainly of ethanol, methanol, diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate.
  • the low boiling fraction obtained by distillation and the high boiling fraction comprising ethylene carbonate and ethylene glycol as the main components are separated by distillation.
  • the low boiling fraction obtained by distillation separation in the step iii is separated from ethanol and methanol.
  • the fraction is composed mainly of ethylene glycol and contains ethylene carbonate.
  • Step I for transesterification of ethylene carbonate or propylene carbonate with ethanol and
  • Step II a low boiling fraction mainly composed of ethanol and diethyl carbonate as a reaction product of Step I, ethylene carbonate or Step II
  • Step III in which propylene carbonate and ethylene glycol or propylene glycol are the main components are separated by distillation.
  • Step II The low boiling point fraction obtained by distillation separation in Step II is the low boiling point in which ethanol is the main component.
  • the high-boiling fraction distilled and separated in Step III (IV) and Step II is separated into a high-boiling fraction mainly composed of diethyl carbonate by distillation.
  • the method comprises the step VI of hydrolyzing ethylene carbonate or propylene carbonate in the low-boiling fraction distilled and separated in the step IV to obtain ethylene glycol or propylene glycol, [12] or The method for producing diethyl carbonate according to [13].
  • the symmetric dialkyl carbonate and the asymmetric dialkyl carbonate are simultaneously converted by transesterifying the alkylene carbonate and two or more alcohols in the same reactor. And can be manufactured efficiently.
  • the transesterification reaction by performing the transesterification reaction while removing the ether compound produced from the transesterification reaction solution by the transesterification reaction, in particular, the same alkylene glycol as the alkylene glycol produced by the transesterification reaction with respect to the transesterification reaction solution.
  • extractive distillation using as the extraction solvent and removing the by-product ether compound, the by-product azeotropic with the target product is efficiently separated and removed, and the target product is efficiently produced with high purity. be able to.
  • the method for producing the symmetric dialkyl carbonate and the asymmetric dialkyl carbonate of the present invention uses ethylene carbonate as the alkylene carbonate, uses a mixture of ethanol and methanol as the two or more alcohols, and uses diethyl carbonate and dimethyl carbonate as the symmetric dialkyl carbonate. It is effective when producing ethyl methyl carbonate as an asymmetric dialkyl carbonate.
  • the alkylene carbonate as the reaction raw material is not particularly limited.
  • those having an alkylene group having 2 to 10 carbon atoms specifically, ethylene carbonate , Propylene carbonate, butylene carbonate, vinyl ethylene carbonate, cyclohexene carbonate, and styrene carbonate.
  • alkylene carbonates Two or more of these alkylene carbonates can be subjected to a transesterification reaction, but usually one alkylene carbonate is used.
  • alkylene carbonates ethylene carbonate or propylene carbonate, especially ethylene carbonate as raw material alkylene carbonate, in that it is difficult to distill and separate the ether compound by-produced in the transesterification reaction with the target dialkyl carbonate.
  • the effects of the present invention are effectively exhibited.
  • the alcohol to be transesterified with the above alkylene carbonate is not particularly limited, and examples thereof include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol and the like.
  • alcohols having 1 to 10 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol and the like.
  • any two or more, preferably two or three of these alcohols are subjected to a transesterification reaction.
  • the combination is not particularly limited, but among these alcohols, methanol and ethanol are used as raw alcohols in that it is difficult to distill and separate the ether compound by-produced in the transesterification reaction with the target dialkyl carbonate. In this case, the effect of the present invention is effectively exhibited.
  • the method for producing symmetric dialkyl carbonate and asymmetric dialkyl carbonate of the present invention is particularly asymmetric using ethylene carbonate as alkylene carbonate, using a mixture of ethanol and methanol as two or more alcohols, and diethyl carbonate and dimethyl carbonate as symmetric dialkyl carbonate. It is effective in a method for producing ethyl methyl carbonate as a dialkyl carbonate.
  • the transesterification reaction of the alkylene carbonate and the two or more alcohols in the same reactor it is preferable to perform the transesterification reaction while removing the ether compound by-produced by the transesterification reaction from the transesterification reaction solution.
  • “performing the ester exchange reaction while removing the ether compound from the ester exchange reaction solution” means any of the steps up to the step of purifying the symmetric dialkyl carbonate and the asymmetric dialkyl carbonate of the present invention (for example, the following third step). However, it means that the step of removing the ether compound is included.
  • the removal of the ether compound is preferably carried out by extraction distillation using the same alkylene glycol as the alkylene glycol produced by the transesterification reaction as an extraction solvent.
  • the ether compound is removed by adding 0.1 to 5 times by weight of water to the total amount of the symmetric and asymmetric dialkyl carbonate contained in the transesterification reaction solution and extracting with water. You can also. When water is added and left to stand, it is separated into two layers of oily water. Therefore, after the oil layer is separated and obtained by an appropriate method, symmetric dialkyl carbonate and asymmetric dialkyl carbonate can be separated by distillation or the like.
  • the method for producing a symmetric dialkyl carbonate and an asymmetric dialkyl carbonate of the present invention preferably comprises the following first to fifth steps, more preferably the following sixth step, and the above-mentioned extractive distillation is carried out in the second step. Is preferred.
  • the reaction product of the first step is mainly composed of alcohol, symmetric dialkyl carbonate and asymmetric dialkyl carbonate (“ “Main component” means 95% by weight or more of the whole, preferably 99% by weight or more of a low boiling fraction, and alkylene carbonate and alkylene glycol as main components (“main component” means The second step of separating the high-boiling fraction by distillation into a high-boiling fraction (3) (3) The low-boiling fraction distilled and separated in the second step is converted into alcohol.
  • the “main component” means 95% by weight or more, preferably 99% by weight or more) of a low boiling point fraction and a symmetric dialkyl carbo And a high-boiling distillate which is mainly composed of 95% by weight or more, preferably 99% by weight or more of the total.
  • Step (4) The high-boiling fraction distilled and separated in the second step is mainly composed of alkylene glycol (here, “main component” is 80% by weight or more of the whole, preferably 85% by weight or more)
  • the low-boiling fraction distilled and separated in the third step and the high-boiling fraction distilled and separated in the fourth step are recycled to the first step.
  • 5 steps (6) No. 4 Sixth step of obtaining an alkylene glycol alkylene carbonate low-boiling fraction in which is separated by distillation in hydrolyzing
  • the method for producing symmetric dialkyl carbonate and asymmetric dialkyl carbonate of the present invention particularly uses ethylene carbonate as alkylene carbonate, uses a mixture of ethanol and methanol as two or more alcohols, and diethyl carbonate and dimethyl as symmetric dialkyl carbonate.
  • This is effective in a method for producing ethyl methyl carbonate as an asymmetric dialkyl carbonate.
  • the method for producing a symmetric dialkyl carbonate and an asymmetric dialkyl carbonate of the present invention preferably includes the following steps i to v, more preferably the following step vi, and the above extractive distillation is performed in step ii. It is preferable to implement.
  • the reaction product of step i is composed mainly of ethanol, methanol, diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate.
  • Main component means 95% by weight or more, preferably 99% by weight or more
  • main component ethylene carbonate and ethylene glycol
  • Component means 95% by weight or more of the whole, preferably 99% by weight or more
  • Step ii of distilling into high boiling fraction iii
  • the main component is ethanol and methanol
  • main component is 95% by weight or more of the whole, preferably 99% by weight or more.
  • a low-boiling fraction which means that there is a major component of diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate ("main component” is 95% by weight or more, preferably 99% by weight or more of the whole)
  • Step iii of separating into high-boiling fraction by distillation comprises ethylene glycol as a main component (here, “main component” means A low-boiling fraction containing ethylene carbonate (which means 80% by weight or more, preferably 85% by weight or more) and ethylene carbonate as a main component (“main component” means 95% by weight of the whole)
  • main component means A low-boiling fraction containing ethylene carbonate (which means 80% by weight or more, preferably 85% by weight or more) and ethylene carbonate as a main component (“main component” means 95% by weight of the whole)
  • Step iv for separating by distillation into high boiling fractions preferably 99% by weight or more
  • Step v) Low boiling fraction
  • ethylene carbonate or propylene carbonate and ethanol are subjected to a transesterification reaction to produce diethyl carbonate, and the reaction product obtained by the transesterification reaction is subjected to ethylene. It has a step of performing distillation separation using glycol or propylene glycol as an extraction solvent and distilling and separating a fraction containing an ether compound.
  • the method for producing diethyl carbonate of the present invention preferably includes the following Steps I to V, more preferably further includes the following Step VI, and the above-described extractive distillation is preferably performed in Step II.
  • Step I in which transesterification of ethylene carbonate or propylene carbonate with ethanol is performed.
  • Step II The reaction product of Step I is mainly composed of ethanol and diethyl carbonate.
  • main component means (Meaning that it is 95% by weight or more, preferably 99% by weight or more) of the high-boiling fraction (step II)
  • main component means (Meaning that it is 95% by weight or more, preferably 99% by weight or more) of the high-boiling fraction (step II)
  • Main component means 95% by weight or more, preferably 99% by weight or more
  • main component means 95% by weight or more, preferably 99% by weight or more).
  • Step III (IV) The high-boiling fraction distilled and separated in Step II is mainly composed of ethylene glycol or propylene glycol (here, “main component” means 80% by weight or more of the total, preferably 85 A low-boiling fraction containing ethylene carbonate or propylene carbonate (meaning that it is at least wt%), and ethylene carbonate or propylene carbonate as a main component (“main component” means 95% by weight or more, preferably A low-boiling fraction distilled and separated in the third step (V), which is separated into a high-boiling fraction (meaning 99% by weight or more); The high-boiling fraction distilled and separated in the IV step is recycled to the first step.
  • Step V (VI) Ethylene carbonate or propylene carbonate in the low-boiling fraction distilled and separated in the step IV is hydrolyzed to produce ethylene. Step VI to obtain glycol or propylene glycol
  • FIG. 1 showing one embodiment of a production process of a symmetric dialkyl carbonate and an asymmetric dialkyl carbonate production method or a production method of diethyl carbonate of the present invention. It is not limited to the method shown in FIG.
  • ethylene carbonate or propylene carbonate is used as alkylene carbonate
  • a mixture of ethanol and methanol is used as two or more alcohols.
  • the types of alkylene carbonate and alcohol are not limited to these.
  • ethylene carbonate or propylene carbonate may be simply referred to as “raw carbonate”, and ethanol or a mixture of ethanol and methanol may be referred to as “raw alcohol”.
  • target carbonate diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, which are target products generated in the main reaction, are referred to as “target carbonate”
  • ethylene glycol or propylene glycol is referred to as “generated glycol”
  • by-product ethyl glycol ether, Methyl glycol ether, propylene glycol ethyl ether, and propylene glycol methyl ether may be referred to as “by-product glycol ether”.
  • raw material carbonate ethylene carbonate or propylene carbonate
  • raw alcohol ethanol, or a mixture of ethanol and methanol
  • This transesterification reaction is carried out in the presence of a catalyst.
  • a catalyst used here the well-known catalyst generally used as a transesterification reaction catalyst can be selected suitably, and can be used.
  • amines such as triethylamine
  • alkali metals such as sodium
  • alkali metal compounds such as sodium chloroacetate and sodium methylate
  • thallium compounds and the like are used.
  • heterogeneous catalysts for example, ion exchange resins modified with functional groups, amorphous silicas impregnated with silicates of alkali metals and alkaline earth metals, ammonium exchanged Y-type zeolite, mixed oxidation of cobalt and nickel Things are used. These may be used alone or in combination of two or more.
  • the transesterification reaction catalyst a heterogeneous catalyst that does not need to be separated from the reaction product is preferable.
  • an ion exchange resin or the like is used, and a gel-type strongly basic anion exchange resin is preferably used. It is done.
  • the reactor for performing the transesterification reaction may be either a batch type reactor or a fixed bed reactor.
  • the reaction conditions can be appropriately selected depending on the reactor used, the raw materials (raw carbonate, raw alcohol) and the catalyst.
  • the reaction temperature is 40 to 200 ° C.
  • the mixing ratio of the raw materials is carbonate carbonate.
  • the raw material alcohol may be used in a molar ratio of 0.1 to 20 and a reaction pressure of 10 to 2000 kPa for 0.5 to 10 hours.
  • this transesterification reaction is an equilibrium reaction, in addition to the target carbonate (dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate) and the generated glycol (ethylene glycol or propylene glycol) that are target products, Raw material carbonate and raw material alcohol are included. Furthermore, by side reaction occurring simultaneously with the main reaction, ethyl glycol ether is a reaction between ethylene carbonate and ethanol, and propylene glycol ethyl ether is a reaction between ethylene carbonate and methanol when propylene carbonate is reacted with ethanol.
  • methyl glycol ether is a reaction of propylene carbonate and methanol
  • propylene glycol methyl ether is by-produced and contained in the reaction product solution.
  • these by-product glycol ethers are difficult to separate by distillation because they have a boiling point close to that of the target carbonate as described above.
  • hydroxyethyl methyl carbonate and hydroxyethyl ethyl carbonate (hereinafter sometimes referred to as “hydroxy carbonate”), which are intermediates of the main reaction. Is decomposed into raw material carbonate and raw material alcohol by heating in the subsequent distillation separation step, and is circulated to the reaction step as an unreacted raw material, so that mixing into the target product does not become a problem.
  • the reaction product liquid of the transesterification reactor 1 is fed to the light boiling distillation column 2 and contains raw material alcohol and the target carbonate as main components (“main component” is 95% by weight or more, preferably 99% of the total.
  • Low-boiling fraction meaning that it is at least wt%) and raw material carbonate and produced glycol as the main components (“main component” is 95 wt% or more, preferably 99 wt% or more of the whole. Is separated into high boiling fractions (second step, step ii, step II).
  • the reaction product liquid obtained by the transesterification reaction contains the target carbonate which is the target product and the by-product glycol ether which is difficult to be separated by distillation.
  • this by-product glycol ether is subjected to extractive distillation using ethylene glycol as an extraction solvent when ethylene carbonate is used as a raw material carbonate, and propylene glycol as an extraction solvent when propylene carbonate is used as a raw material carbonate. Go to separate the target carbonate.
  • by-product glycol ether and target carbonate are extracted as a high-boiling fraction together with ethylene glycol or propylene glycol as an extraction solvent and raw material carbonate from the bottom of light boiling distillation column 2 in FIG. Can be efficiently separated by distillation.
  • the distillation column for performing such extractive distillation is not particularly limited, but it is preferable to perform extractive distillation in the light boiling distillation column 2 when the production process in FIG. Therefore, the extraction solvent is supplied to the light boiling distillation column 2 together with the reaction product liquid from the transesterification reactor 1, and in this light boiling distillation column 2, the low boiling fraction containing the raw alcohol and the target carbonate, the raw material carbonate, When the high-boiling fraction containing the generated glycol is distilled and separated, the by-product glycol ether is transferred into the high-boiling fraction and effectively separated from the target carbonate by distillation.
  • the by-product glycol ether separated in the high-boiling fraction is mainly composed of the produced glycol in the raw material carbonate recovery tower 4 (here, “main component” means 80% by weight or more, preferably 85% by weight of the whole). Meaning that it is above), it is separated to the low-boiling fraction containing the raw material carbonate.
  • the by-product glycol ether separated in the low-boiling fraction is separated and removed from the produced glycol together with moisture when it is dehydrated after passing through the hydrolysis reactor 5 in the subsequent stage.
  • the distillation column for performing this extractive distillation is a packed column, a regular packing such as a sulzer packing, a mela pack, an MC pack, or an irregular packing such as IMTP or Raschig ring.
  • a regular packing such as a sulzer packing, a mela pack, an MC pack, or an irregular packing such as IMTP or Raschig ring.
  • Any type can be used, such as a packed tower packed with a product, a bubble bell tower, a sieve tray, a plate tower using a valve tray tower, and the like.
  • the supply amount and supply speed of the extraction solvent, and the supply location of the extractive distillation column are appropriately selected depending on the composition and supply amount of the transesterification reaction product liquid. For example, the following conditions are preferably employed.
  • ethylene glycol supply point 0.1 to 10 times the feed amount of the distillation raw material Supply point:
  • the ethylene glycol supply point is not particularly limited as long as it is the same as or higher than the raw material supply point of the extractive distillation column.
  • the upper part of the tower height is preferred because it is not preferable if it is supplied to the top of the tower because it is mixed with the distillate.
  • the propylene glycol supply point is not particularly limited as long as it is the same as or higher than the raw material supply point of the extractive distillation column.
  • the upper part of the tower height is preferred because it is not preferable if it is supplied to the top of the tower because it is mixed with the distillate.
  • the supply amount of the extraction solvent is too smaller than the above range, the effect of the present invention by using the extraction solvent cannot be sufficiently obtained, and if it is too much, the recovery energy of the extraction solvent increases. Also, if the supply location of the extraction solvent is higher than the supply location of the raw material, the extraction effect is increased, and if it is at the top of the column, the extraction solvent is likely to be mixed into the distillate, which is not preferable.
  • the conditions for this extractive distillation are appropriately determined according to the composition of the raw material, but it is preferable to carry out at a pressure of 1 to 100 kPa and a reflux ratio of about 0.01 to 10, for example.
  • the extraction solvent may be one obtained outside the production process of the production method of the symmetric dialkyl carbonate and the asymmetric dialkyl carbonate or diethyl carbonate of the present invention.
  • the extraction solvent of the raw material carbonate recovery tower 4 described below can be used. From the upper part, a low-boiling fraction can be extracted as a side stream and used as an extraction solvent.
  • the position where the low-boiling fraction is withdrawn is above the supply point of the feed liquid in the raw material carbonate recovery tower 4, and the by-product glycol ether concentration in the withdrawn low-boiling fraction is 100 ppm by weight or less, preferably 50 It is a position where the weight is less than ppm.
  • the low-boiling fraction distilled and separated in the light boiling distillation column 2 contains the raw alcohol and the target carbonate and does not substantially contain the by-product glycol ether.
  • substantially free means that the raw alcohol and the target carbonate are 95% by weight or more, preferably 99% by weight or more of the whole.
  • This low-boiling fraction is then fed to the alcohol recovery tower 3 and contains raw material alcohol as the main component (“main component” means 95% by weight or more, preferably 99% by weight or more of the whole. Meaning low-boiling fraction and high-boiling fraction containing the target carbonate as a main component (“main component” means 95% by weight or more, preferably 99% by weight or more).
  • Perform distillation separation step 3, step iii, step III).
  • This high-boiling fraction mainly composed of the target carbonate is further refined as necessary to obtain a product.
  • the target carbonate includes diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate
  • each target carbonate can be recovered as a high-purity component by sequentially distilling them.
  • the high-boiling fraction distilled and separated in the light-boiling distillation column 2 is fed to the raw material carbonate recovery column 4 to have the generated glycol as a main component (“main component” is 80% by weight or more of the total, A low-boiling fraction that is an azeotrope containing a raw material carbonate and a by-product glycol ether (preferably 85% by weight or more) and a raw material carbonate as a main component (“main component” means the whole Distillation and separation into a high-boiling fraction (95% by weight or more, preferably 99% by weight or more) (step 4, step iv, step IV).
  • the high-boiling fraction mainly composed of the raw material carbonate distilled and separated in the raw material carbonate recovery tower 4 and the low-boiling fraction mainly composed of the raw material alcohol distilled and separated in the alcohol recovery tower 3 are converted into a transesterification reactor. 1 and reused as raw material carbonate and raw material alcohol (fifth step, step v, step V), respectively.
  • a low-boiling fraction containing the produced glycol distilled and separated in the raw-material carbonate recovery tower 4 as a main component and containing the raw-material carbonate and by-product glycol ether is fed to the hydrolysis reactor 5, and the low-boiling fraction in the low-boiling fraction is By adding water to the raw material carbonate, the raw material carbonate is hydrolyzed in the presence of a catalyst to form a generated glycol (ethylene glycol or propylene glycol) to obtain a reaction product liquid containing the generated glycol as a main component (sixth step, Vi step, VI step).
  • This hydrolysis reaction product liquid is dehydrated and purified by distillation or the like according to a conventional method to take out ethylene glycol or propylene glycol as a product.
  • the by-product glycol ether has a boiling point sufficiently lower than that of ethylene glycol or propylene glycol, and thus is efficiently separated and removed on the water side.
  • the high-boiling fraction of the raw material carbonate recovery tower may be purged or a part thereof may be supplied to the hydrolysis reactor for carbonate recovery.
  • the produced glycol obtained here can also be used as an extraction solvent.
  • the reaction product liquid is subjected to extraction distillation using ethylene glycol or propylene glycol as an extraction solvent in this manner, and by-product glycol ether originally azeotroped with the target carbonate is efficiently distilled from the target carbonate.
  • the ethylene glycol or propylene glycol used as the extraction solvent is present as a by-product glycol in the reaction product liquid.
  • transesterification reactor a tubular reactor with an inner diameter of 17 mm and a length of 50 cm was used, and 50 mL of a strongly basic ion exchange resin (SA-11A: manufactured by Mitsubishi Chemical Corporation) was packed therein as a catalyst.
  • SA-11A a strongly basic ion exchange resin
  • the resin was washed by passing 500 mL of methanol through this reactor at 100 mL / hr.
  • 250 mL of pure water was circulated at 100 mL / hr to wash the resin, and then 500 mL of 2N-NaOH aqueous solution was circulated at 100 mL / hr to convert the resin from CL type to OH type.
  • 500 mL of pure water was circulated at 100 mL / hr to remove the NaOH aqueous solution.
  • methanol was circulated at 100 mL / hr until there was no water in the resin.
  • the transesterification reactor in which the above catalyst was prepared was held from the outside at a temperature of 60 ° C. with a jacket, and a mixed raw material (composition ratio 1/1/1 (molar ratio)) of ethylene carbonate, methanol, and ethanol was introduced, pressure
  • Example 1 A glass distillation column with an inner diameter of 40 mm is installed at the top of the 1 L flask, and a 600 mm column filled with a Whys packing (coil pack 3 mm ⁇ ) (equivalent to about 12 theoretical plates) is attached to the middle column.
  • the model liquid A was fed. Under conditions of a pressure of 13.4 kPa and a reflux ratio of 1, the distillation raw material model liquid A was fed at 200 mL / hr, and extraction solvent ethylene glycol was fed from the top of the column at 25 mL / hr.
  • the distillate at the top of the column contained 0.01% by weight of methyl glycol ether along with dialkyl carbonate and unreacted alcohol.
  • Ethyl glycol ether was 10 ppm or less in the lower limit of quantification.
  • Example 2 Extractive distillation was carried out under the same conditions as in Example 1 except that the feed amount of the extractant ethylene glycol was 50 mL / hr, and the methyl glycol ether and ethyl glycol ether in the distillate at the top of the column were either Was below the lower limit of quantification.
  • Example 3 Extractive distillation was performed under the same conditions as in Example 1 except that the feed amount of ethylene glycol as an extractant was 100 mL / hr, and either methyl glycol ether or ethyl glycol ether in the distillate at the top of the column was Was below the lower limit of quantification.
  • Tables 1 and 2 show the operating conditions and analysis results of Examples 1 to 3 and Comparative Examples 1 and 2 above.
  • Table 3 shows the calculation results of Comparative Example 2.
  • Example 4 The model liquid B was fed at a flow rate of 2918 kg / hr to the 12th stage of a distillation column having 25 theoretical plates designed in the same manner as in Example 1. Extractive distillation was performed by feeding propylene glycol as an extraction solvent at 300 kg / hr to four stages of a distillation column under the conditions of a pressure of 80 mmHg (10.7 kPa) and a reflux ratio of 0.3. Propylene glycol methyl ether and propylene glycol ethyl ether were only slightly contained, and most of them were removed at the bottom of the column.
  • Table 4 shows the operating conditions of Example 4 and Comparative Example 3, and Table 5 shows the mass balance.
  • the glycol ethers which are by-products having an azeotropic relationship with the dialkyl carbonate such as diethyl carbonate which is the target product are subjected to extractive distillation using ethylene glycol or propylene glycol as an extraction solvent. It turns out that it can distill and separate from the target product efficiently by carrying out.
  • a symmetric and asymmetric dialkyl carbonate when a symmetric and asymmetric dialkyl carbonate is produced by transesterifying an alkylene carbonate and two or more alcohols in the same reactor, a by-product glycol ether is efficiently separated from a target product.
  • symmetric and asymmetric dialkyl carbonate can be simultaneously produced with high purity and efficiency.

Abstract

 本発明はアルキレンカーボネートと2種以上のアルコールとのエステル交換反応で、対称ジアルキルカーボネートと非対称ジアルキルカーボネートを同時に工業的に有利に製造する方法を提供すること、およびエチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換させて、ジエチルカーボネートを高純度で効率良く製造する方法を提供することを課題とする。本発明はアルキレンカーボネートと2種以上のアルコールとを同一の反応器内でエステル交換反応させて、対称ジアルキルカーボネートと非対称ジアルキルカーボネートを同時に製造する方法、および、エチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換反応させて、ジエチルカーボネートを製造する方法において、該エステル交換反応で得られた反応生成物に対して、エチレングリコールまたはプロピレングリコールを抽出溶媒として抽出蒸留を行って、エーテル化合物を含む留分を蒸留分離する工程を有する、ジエチルカーボネートの製造方法に関する。

Description

ジアルキルカーボネートの製造方法
 本発明は、アルキレンカーボネートと2種以上のアルコールとをエステル交換反応させて、対称ジアルキルカーボネートと非対称ジアルキルカーボネートとを製造する方法に関する。
 本発明はまた、エチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換反応させてジエチルカーボネートを製造する方法に関する。
 エチレンカーボネートまたはプロピレンカーボネートと、エタノール、またはエタノールとメタノールの混合物とをエステル交換反応させて、ジエチルカーボネート、エチルメチルカーボネート及びジメチルカーボネートのいずれかのジアルキルカーボネートを製造する際、メチルグリコールエーテル類やエチルグリコールエーテル類が副生する。
 即ち、この反応は下記反応式(1)~(4)に従って進行するが、この際、以下の反応式(5)~(8)の副反応により、グリコールエーテル類が副生する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 反応原料及び目的生成物とこれらの副生物の沸点は以下の通りであり、これらの副生物は目的生成物と共沸し易いため、このような副生物を含む反応生成物から目的生成物と副生物とを蒸留分離することは非常に困難である。
  エチレンカーボネート:246℃
  プロピレンカーボネート:242℃
  エタノール:78.3℃
  メタノール:64.6℃
  ジエチルカーボネート:127℃
  ジメチルカーボネート:90℃
  エチルメチルカーボネート:107℃
  エチルグリコールエーテル:136℃
  プロピレングリコールエチルエーテル:133℃((6)-2の場合)
  メチルグリコールエーテル:125℃
  プロピレングリコールメチルエーテル:120℃((8)-2の場合)
  エチレングリコール:198℃
  プロピレングリコール:188℃
 即ち、エチレンカーボネートとエタノールとのエステル交換反応で得られる反応生成物には、目的生成物であるジエチルカーボネート(沸点127℃)とエチレングリコール(沸点198℃)と、残存する反応原料のエチレンカーボネート(沸点246℃)とエタノール(沸点78.3℃)と、副生物であるエチルグリコールエーテル(沸点136℃)とが含まれる。このうち、ジエチルカーボネート(沸点127℃)とエチルグリコールエーテル(沸点136℃)とは沸点が近く、共沸関係にあり蒸留分離は困難である。
 また、プロピレンカーボネートとエタノールとのエステル交換反応で得られる反応生成物には、目的生成物であるジエチルカーボネート(沸点127℃)とプロピレングリコール(沸点188℃)と、残存する反応原料のプロピレンカーボネート(沸点242℃)とエタノール(沸点78.3℃)と、副生物であるプロピレングリコールエチルエーテル(沸点133℃:(6)-2の場合)とが含まれる。このうち、ジエチルカーボネート(沸点127℃)とプロピレングリコールエチルエーテル(沸点133℃:(6)-2の場合)とは沸点が近く、共沸関係にあり蒸留分離は困難である。
 更に、エチレンカーボネートとエタノール及びメタノールの混合物とのエステル交換反応で得られる反応生成物には、目的生成物であるジエチルカーボネート(沸点127℃)、ジメチルカーボネート(沸点90℃)、エチルメチルカーボネート(沸点107℃)とエチレングリコール(沸点198℃)と、残存する反応原料のエチレンカーボネート(沸点246℃)とエタノール(沸点78.3℃)及びメタノール(沸点64.6℃)と、副生物であるエチルグリコールエーテル(沸点136℃)及びメチルグリコールエーテル(沸点125℃)とが含まれる。このうち、ジエチルカーボネート(沸点127℃)とエチルグリコールエーテル(沸点136℃)及びエチルメチルカーボネート(沸点107℃)とメチルグリコールエーテル(沸点125℃)とは沸点が近く、共沸関係にあり蒸留分離は困難である。
 また、プロピレンカーボネートとエタノール及びメタノールの混合物とのエステル交換反応で得られる反応生成物には、目的生成物であるジエチルカーボネート(沸点127℃)、ジメチルカーボネート(沸点90℃)、エチルメチルカーボネート(沸点107℃)とプロピレングリコール(沸点188℃)と、残存する反応原料のプロピレンカーボネート(沸点242℃)とエタノール(沸点78.3℃)及びメタノール(沸点64.6℃)と、副生物であるプロピレングリコールエチルエーテル(沸点133℃:(6)-2の場合)及びプロピレングリコールメチルエーテル(沸点120℃:(8)-(2)の場合)とが含まれる。このうち、ジエチルカーボネート(沸点127℃)とプロピレングリコールエチルエーテル(沸点133℃:(6)-2の場合)とは沸点が近く、共沸関係にあり、またエチルメチルカーボネート(沸点107℃)とプロピレングリコールメチルエーテル(沸点120℃)及びジエチルカーボネート(沸点127℃)とプロピレングリコールエチルエーテル(沸点133℃)は沸点が近く共沸関係にあり、いずれも蒸留分離は困難である。
 従来、これらの副生物を分離除去する方法として、例えば、特許文献1には、エチレンカーボネートとメタノールのエステル交換反応で副生するメチルグリコールエーテルを蒸留塔の側流から抜き出し、塔頂よりグリコールエーテルを含まないジメチルカーボネートを回収する方法が提案されている。
日本国特開2002-371037号公報
 しかし、特許文献1には、エチルグリコールエーテルを、ジエチルカーボネート、エチルメチルカーボネート及びジメチルカーボネート等と分離する方法は開示されていない。
 また、従来、メチルグリコールエーテル及びエチルグリコールエーテルを含むジメチルカーボネートとエチルメチルカーボネートとジエチルカーボネートの混合物から、これらのグリコールエーテル類を分離除去する方法も提案されていない。
 このように、副生物の分離除去が困難であることから、従来においては、例えば、エチレンカーボネートまたはプロピレンカーボネートと、エタノールとメタノールの混合物とを同一反応器内でエステル交換反応させることは行われていない。
 また、エチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換反応させて、ジエチルカーボネートを製造する際、副生するグリコールエーテル類の分離除去が困難であるために、目的生成物を高純度で効率良く製造することができなかった。
 本発明は、アルキレンカーボネートと2種以上のアルコールとのエステル交換反応で、対称ジアルキルカーボネートと非対称ジアルキルカーボネートを工業的に有利に製造する方法、特にこの方法において、目的生成物と共沸する副生物を効率的に分離除去することにより、目的生成物を高純度で効率良く製造する方法を提供することを課題とする。
 本発明はまた、エチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換させて、ジエチルカーボネートを製造する方法において、目的生成物と共沸する副生物を効率的に分離除去することにより、目的生成物を高純度で効率良く製造する方法を提供することを課題とする。
 本発明者らは、上記課題を解決するため、各種の検討を行った結果、アルキレンカーボネートとアルコールとのエステル交換によりジアルキルカーボネートを製造する際、エステル交換反応で生成するものと同じアルキレングリコールを抽出溶媒とする抽出蒸留を行うことにより、目的生成物と共沸する副生物と目的生成物とを容易に蒸留分離することができることを見出して、本発明を完成させるに至った。
 即ち、本発明は以下を要旨とする。
[1] アルキレンカーボネートと2種以上のアルコールとを同一の反応器内でエステル交換反応させることを特徴とする、対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
[2] 前記アルキレンカーボネートがエチレンカーボネートであり、前記2種以上のアルコールがエタノール及びメタノールであり、前記対称ジアルキルカーボネートがジエチルカーボネート及びジメチルカーボネートであり、前記非対称ジアルキルカーボネートがエチルメチルカーボネートであることを特徴とする、[1]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
[3] 前記エステル交換反応により生成するエーテル化合物をエステル交換反応液から除去しながらエステル交換反応を行うことを特徴とする、[1]または[2]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
[4] 前記エステル交換反応液に対して、前記エステル交換反応で生成するアルキレングリコールと同じアルキレングリコールを抽出溶媒とする抽出蒸留を行うことにより、前記エーテル化合物を除去することを特徴とする、[3]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
[5] 以下の第1工程~第5工程を含み、前記抽出蒸留を第2工程で行うことを特徴とする、[4]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
(1)アルキレンカーボネートと2種以上のアルコールとのエステル交換反応を行う第1工程
(2)第1工程の反応生成物を、アルコールと対称ジアルキルカーボネート及び非対称ジアルキルカーボネートとを主成分とする低沸点留分と、アルキレンカーボネートとアルキレングリコールとを主成分とする高沸点留分に蒸留分離する第2工程
(3)第2工程で蒸留分離された低沸点留分を、アルコールを主成分とする低沸点留分と、対称ジアルキルカーボネート及び非対称ジアルキルカーボネートを主成分とする高沸点留分とに蒸留分離する第3工程
(4)第2工程で蒸留分離された高沸点留分を、アルキレングリコールを主成分としアルキレンカーボネートを含む低沸点留分と、アルキレンカーボネートを主成分とする高沸点留分とに蒸留分離する第4工程
(5)第3工程で蒸留分離された低沸点留分と、第4工程で蒸留分離された高沸点留分とを第1工程にリサイクルする第5工程
[6] 前記第4工程で蒸留分離された低沸点留分中のアルキレングリコールを抽出溶媒として用いることを特徴とする、[5]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
[7] 前記第4工程で蒸留分離された低沸点留分中のアルキレンカーボネートを加水分解してアルキレングリコールを得る第6工程を有することを特徴とする、[5]または[6]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
[8] 前記アルキレンカーボネートがエチレンカーボネートであり、前記2種以上のアルコールがエタノール及びメタノールであり、前記対称ジアルキルカーボネートがジエチルカーボネート及びジメチルカーボネートであり、前記非対称ジアルキルカーボネートがエチルメチルカーボネートであって、以下の第i工程~第v工程を含み、前記抽出蒸留を第ii工程で行うことを特徴とする、[4]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
(i)エチレンカーボネートと、エタノール及びメタノールの混合物とのエステル交換反応を行う第i工程
(ii)第i工程の反応生成物を、エタノール及びメタノールとジエチルカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを主成分とする低沸点留分と、エチレンカーボネートとエチレングリコールとを主成分とする高沸点留分に蒸留分離する第ii工程
(iii)第ii工程で蒸留分離された低沸点留分を、エタノール及びメタノールを主成分とする低沸点留分と、ジエチルカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを主成分とする高沸点留分とに蒸留分離する第iii工程
(iv)第ii工程で蒸留分離された高沸点留分を、エチレングリコールを主成分としエチレンカーボネートを含む低沸点留分と、エチレンカーボネートを主成分とする高沸点留分とに蒸留分離する第iv工程
(v)第iii工程で蒸留分離された低沸点留分と、第iv工程で蒸留分離された高沸点留分とを第i工程にリサイクルする第v工程
[9] 前記第iv工程で蒸留分離された低沸点留分中のエチレングリコールを抽出溶媒として用いることを特徴とする、[8]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
[10] 前記第iv工程で蒸留分離された低沸点留分中のエチレンカーボネートを加水分解してエチレングリコールを得る第vi工程を有することを特徴とする、[8]または[9]に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
[11] エチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換反応させて、ジエチルカーボネートを製造する方法において、該エステル交換反応で得られた反応生成物に対して、エチレングリコールまたはプロピレングリコールを抽出溶媒として抽出蒸留を行って、エーテル化合物を含む留分を蒸留分離する工程を有することを特徴とする、ジエチルカーボネートの製造方法。
[12] 以下の第I工程~第V工程を含み、前記抽出蒸留を第II工程で行うことを特徴とする、[11]に記載のジエチルカーボネートの製造方法。
(I)エチレンカーボネートまたはプロピレンカーボネートとエタノールとのエステル交換反応を行う第I工程
(II)第I工程の反応生成物をエタノールとジエチルカーボネートとを主成分とする低沸点留分と、エチレンカーボネートまたはプロピレンカーボネートとエチレングリコールまたはプロピレングリコールとを主成分とする高沸点留分に蒸留分離する第II工程
(III)第II工程で蒸留分離された低沸点留分を、エタノールを主成分とする低沸点留分と、ジエチルカーボネートを主成分とする高沸点留分とに蒸留分離する第III工程
(IV)第II工程で蒸留分離された高沸点留分を、エチレングリコールまたはプロピレングリコールを主成分としエチレンカーボネートまたはプロピレンカーボネートを含む低沸点留分と、エチレンカーボネートまたはプロピレンカーボネートを主成分とする高沸点留分とに蒸留分離する第IV工程
(V)第III工程で蒸留分離された低沸点留分と、第IV工程で蒸留分離された高沸点留分とを第I工程にリサイクルする第V工程
[13] 前記第IV工程で蒸留分離された低沸点留分中のエチレングリコールまたはプロピレングリコールを抽出溶媒として用いることを特徴とする、[12]に記載のジエチルカーボネートの製造方法。
[14] 前記第IV工程で蒸留分離された低沸点留分中のエチレンカーボネートまたはプロピレンカーボネートを加水分解してエチレングリコールまたはプロピレングリコールを得る第VI工程を有することを特徴とする、[12]または[13]に記載のジエチルカーボネートの製造方法。
 本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法によれば、アルキレンカーボネートと2種以上のアルコールとを同一の反応器内でエステル交換反応させることにより、対称ジアルキルカーボネートと非対称ジアルキルカーボネートとを同時に、かつ効率的に製造することができる。
 特に、エステル交換反応により、生成するエーテル化合物をエステル交換反応液から除去しながらエステル交換反応を行うことにより、とりわけ、エステル交換反応液に対して、エステル交換反応で生成するアルキレングリコールと同じアルキレングリコールを抽出溶媒とする抽出蒸留を行って、副生エーテル化合物を除去することにより、目的生成物と共沸する副生物を効率的に分離除去して、目的生成物を高純度で効率良く製造することができる。
 本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法は、特に、アルキレンカーボネートとしてエチレンカーボネートを用い、2種以上のアルコールとしてエタノール及びメタノールの混合物を用いて、対称ジアルキルカーボネートとしてジエチルカーボネート及びジメチルカーボネートを、非対称ジアルキルカーボネートとしてエチルメチルカーボネートを製造する場合に有効である。
 即ち、エチレンカーボネートと、エタノールとメタノールの混合物とをエステル交換反応させて、ジエチルカーボネート、エチルメチルカーボネート及びジメチルカーボネートを同時に製造する場合、副生するメチルグリコールエーテル及びエチルグリコールエーテルは、それぞれエチルメチルカーボネート、ジエチルカーボネートと共沸関係にあり、通常の蒸留では分離が困難であることから、目的生成物であるエチルメチルカーボネート及びジエチルカーボネートへの副生物の混入が避けられず、このことが目的生成物の純度を下げる原因となる。
 この場合において、本発明によれば、エチレングリコール又はプロピレングリコールを抽出溶媒とする抽出蒸留を行うことにより、これらの副生物を目的生成物と効率的に分離して、目的生成物を高純度で効率良く製造することが可能となる。
 また、エチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換反応させてジエチルカーボネートを製造する際に副生するエチルグリコールエーテルは、ジエチルカーボネートと共沸関係にあり、従来の通常の蒸留では分離が困難であるため、目的生成物であるジエチルカーボネートへの副生物の混入が避けられず、このことが目的生成物の純度を下げる原因となっていたが、本発明のジエチルカーボネートの製造方法によれば、エチレングリコール又はプロピレングリコールを抽出溶媒とする抽出蒸留を行うことにより、これらの副生物を目的生成物と効率的に分離して、目的生成物を高純度で効率良く製造することが可能となる。
本発明によりジアルキルカーボネートを製造する方法の一実施形態を示す製造工程図である。
 以下に、本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施の形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容には特定されない。
 本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法において、反応原料であるアルキレンカーボネートとしては特に制限はないが、例えば、炭素数2~10のアルキレン基を有するもの、具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニルエチレンカーボネート、シクロへキセンカーボネート、およびスチレンカーボネート等が挙げられる。
 これらのアルキレンカーボネートの2種以上をエステル交換反応に供することも可能であるが、通常は、1種のアルキレンカーボネートが用いられる。
 これらのアルキレンカーボネートのうち、特にエステル交換反応で副生するエーテル化合物と目的とするジアルキルカーボネートとの蒸留分離が困難である点において、エチレンカーボネート又はプロピレンカーボネート、とりわけエチレンカーボネートを原料アルキレンカーボネートとする場合に、本発明の効果が有効に発揮される。
 一方、上記のアルキレンカーボネートとエステル交換反応させるアルコールとしては、特に制限はないが、炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等が挙げられ、本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法では、これらのアルコールのうちの任意の2種以上、好ましくは2種又は3種をエステル交換反応に供する。
 その組み合わせについても特に制限はないが、これらのアルコールのうち、特にエステル交換反応で副生するエーテル化合物と目的とするジアルキルカーボネートとの蒸留分離が困難である点において、メタノールとエタノールを原料アルコールとする場合に、本発明の効果が有効に発揮される。
 本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法は特に、アルキレンカーボネートとしてエチレンカーボネートを用い、2種以上のアルコールとしてエタノールとメタノールの混合物を用い、対称ジアルキルカーボネートとしてジエチルカーボネート及びジメチルカーボネートを、非対称ジアルキルカーボネートとしてエチルメチルカーボネートを製造する方法に有効である。
 アルキレンカーボネートと2種以上のアルコールとの同一反応器内でのエステル交換反応においては、エステル交換反応により副生するエーテル化合物をエステル交換反応液から除去しながらエステル交換反応を行うことが好ましい。ここで、「エステル交換反応液からエーテル化合物を除去しながらエステル交換反応を行う」とは、本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートを精製する工程(例えば、以下の第3工程)までのいずれかで、エーテル化合物を除去する工程を含むことを意味する。このエーテル化合物の除去は、エステル交換反応で生成するアルキレングリコールと同じアルキレングリコールを抽出溶媒とする抽出蒸留を行うことにより行うことが好ましい。また、上記エステル交換反応液に、これに含有される対称及び非対称ジアルキルカーボネートの全量に対して0.1~5重量倍の水を添加して、水抽出することにより、エーテル化合物を除去することもできる。水を添加して静置すると、油水の2層に分離するので、油層を適当な方法で分離取得した後、蒸留等により対称ジアルキルカーボネート及び非対称ジアルキルカーボネートを分離することができる。
 本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法は、好ましくは以下の第1工程~第5工程、より好ましくは更に以下の第6工程を含み、上述の抽出蒸留を第2工程で行うことが好ましい。
(1)アルキレンカーボネートと2種以上のアルコールとのエステル交換反応を行う第1工程
(2)第1工程の反応生成物を、アルコールと対称ジアルキルカーボネート及び非対称ジアルキルカーボネートとを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)低沸点留分と、アルキレンカーボネートとアルキレングリコールとを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分に蒸留分離する第2工程
(3)第2工程で蒸留分離された低沸点留分を、アルコールを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)低沸点留分と、対称ジアルキルカーボネート及び非対称ジアルキルカーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分とに蒸留分離する第3工程
(4)第2工程で蒸留分離された高沸点留分を、アルキレングリコールを主成分とし(ここでの「主成分」とは、全体の80重量%以上、好ましくは85重量%以上であることを意味する)アルキレンカーボネートを含む低沸点留分と、アルキレンカーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分とに蒸留分離する第4工程
(5)第3工程で蒸留分離された低沸点留分と、第4工程で蒸留分離された高沸点留分とを第1工程にリサイクルする第5工程
(6)第4工程で蒸留分離された低沸点留分中のアルキレンカーボネートを加水分解してアルキレングリコールを得る第6工程
 前述の如く、本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法は特に、アルキレンカーボネートとしてエチレンカーボネートを用い、2種以上のアルコールとしてエタノールとメタノールの混合物を用い、対称ジアルキルカーボネートとしてジエチルカーボネート及びジメチルカーボネートを、非対称ジアルキルカーボネートとしてエチルメチルカーボネートを製造する方法に有効である。この場合、本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法は、好ましくは下記の第i~第v工程、より好ましくは更に下記の第vi工程を含み、前述の抽出蒸留を第ii工程で実施することが好ましい。
(i)エチレンカーボネートと、エタノール及びメタノールの混合物とのエステル交換反応を行う第i工程
(ii)第i工程の反応生成物を、エタノール及びメタノールとジエチルカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)低沸点留分と、エチレンカーボネートとエチレングリコールとを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分に蒸留分離する第ii工程
(iii)第ii工程で蒸留分離された低沸点留分を、エタノール及びメタノールを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)低沸点留分と、ジエチルカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分とに蒸留分離する第iii工程
(iv)第ii工程で蒸留分離された高沸点留分を、エチレングリコールを主成分とし(ここでの「主成分」とは、全体の80重量%以上、好ましくは85重量%以上であることを意味する)エチレンカーボネートを含む低沸点留分と、エチレンカーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分とに蒸留分離する第iv工程
(v)第iii工程で蒸留分離された低沸点留分と、第iv工程で蒸留分離された高沸点留分とを第i工程にリサイクルする第v工程
(vi)第iv工程で蒸留分離された低沸点留分中のエチレンカーボネートを加水分解してエチレングリコールを得る第vi工程
 本発明のジエチルカーボネートの製造方法は、エチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換反応させて、ジエチルカーボネートを製造する方法において、該エステル交換反応で得られた反応生成物に対して、エチレングリコールまたはプロピレングリコールを抽出溶媒として抽出蒸留を行って、エーテル化合物を含む留分を蒸留分離する工程を有することを特徴とする。
 本発明のジエチルカーボネートの製造方法は、好ましくは下記の第I~第V工程、より好ましくは更に下記の第VI工程を含み、上述の抽出蒸留を第II工程で実施することが好ましい。
(I)エチレンカーボネートまたはプロピレンカーボネートとエタノールとのエステル交換反応を行う第I工程
(II)第I工程の反応生成物をエタノールとジエチルカーボネートとを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)低沸点留分と、エチレンカーボネートまたはプロピレンカーボネートとエチレングリコールまたはプロピレングリコールとを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分に蒸留分離する第II工程
(III)第II工程で蒸留分離された低沸点留分を、エタノールを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)低沸点留分と、ジエチルカーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分とに蒸留分離する第III工程
(IV)第II工程で蒸留分離された高沸点留分を、エチレングリコールまたはプロピレングリコールを主成分とし(ここでの「主成分」とは、全体の80重量%以上、好ましくは85重量%以上であることを意味する)エチレンカーボネートまたはプロピレンカーボネートを含む低沸点留分と、エチレンカーボネートまたはプロピレンカーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分とに蒸留分離する第IV工程
(V)第3工程で蒸留分離された低沸点留分と、第IV工程で蒸留分離された高沸点留分とを第I工程にリサイクルする第V工程
(VI)第IV工程で蒸留分離された低沸点留分中のエチレンカーボネートまたはプロピレンカーボネートを加水分解してエチレングリコールまたはプロピレングリコールを得る第VI工程
 以下に、本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法ないしジエチルカーボネートの製造方法の製造工程の一実施形態を示す図1を参照して本発明を詳細に説明するが、本発明は何ら図1に示す方法に限定されるものではない。また、以下においては、本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法において、アルキレンカーボネートとしてエチレンカーボネートまたはプロピレンカーボネートを用い、2種以上のアルコールとしてエタノール及びメタノールの混合物を用いる場合を例示しているが、アルキレンカーボネート及びアルコールの種類は何らこれに限定されるものではない。
 なお、以下において、エチレンカーボネートまたはプロピレンカーボネートを単に「原料カーボネート」と称し、エタノール、又はエタノール及びメタノールの混合物を「原料アルコール」と称す場合がある。
 また、主反応で生成する目的生成物であるジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートを「目的カーボネート」と称し、エチレングリコールまたはプロピレングリコールを「生成グリコール」と称し、副生物であるエチルグリコールエーテル、メチルグリコールエーテル、プロピレングリコールエチルエーテル、プロピレングリコールメチルエーテルを「副生グリコールエーテル」と称す場合がある。
 図1の方法においては、原料カーボネート(エチレンカーボネートまたはプロピレンカーボネート)と原料アルコール(エタノール、またはエタノール及びメタノールの混合物)を、後述のアルコール回収塔3からの低沸点留分と原料カーボネート回収塔4からの高沸点留分と共に、エステル交換反応器1に導入してエステル交換反応を行う(第1工程,第i工程,第I工程)。
 このエステル交換反応は、いずれも、触媒の存在下で行われる。ここで用いる触媒としては、エステル交換反応触媒として一般的に使用されている公知の触媒を適宜選択して用いることができる。均一触媒の場合は、例えば、トリエチルアミン等のアミン類、ナトリウム等のアルカリ金属、クロロ酢酸ナトリウムやナトリウムメチラート等のアルカリ金属化合物、タリウム化合物等が用いられる。不均一触媒の場合には、例えば、官能基により変性したイオン交換樹脂、アルカリ金属、アルカリ土類金属の珪酸塩を含浸した無定型シリカ類、アンモニウム交換Y型ゼオライト、コバルトとニッケルとの混合酸化物等が用いられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
 エステル交換反応触媒としては、反応生成物との分離操作を行う必要がない不均一触媒が好ましく、具体例としては、イオン交換樹脂等が用いられ、ゲル型の強塩基性アニオン交換樹脂が好ましく用いられる。
 エステル交換反応を行う反応器としては、バッチ型反応器又は固定床反応器のいずれでもよい。また、反応条件としては、用いる反応器や原料(原料カーボネート、原料アルコール)及び触媒によって適宜選択することができるが、例えば、反応温度としては40~200℃、原料の混合比としては、原料カーボネートに対して原料アルコールがモル比で0.1~20の範囲で、反応圧力は10~2000kPaで0.5~10時間反応させる条件等が挙げられる。
 このエステル交換反応は、平衡反応であるため、反応生成液には、目的生成物である目的カーボネート(ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート)、生成グリコール(エチレングリコールまたはプロピレングリコール)の他に、原料カーボネートと原料アルコールが含まれている。更に主反応と同時に起こる副反応により、エチレンカーボネートとエタノールとの反応であればエチルグリコールエーテルが、プロピレンカーボネートとエタノールとの反応であればプロピレングリコールエチルエーテルが、エチレンカーボネートとメタノールとの反応であれば、メチルグリコールエーテルが、プロピレンカーボネートとメタノールとの反応であればプロピレングリコールメチルエーテルが副生し、それぞれ反応生成液中に含まれることとなる。
 しかし、これらの副生グリコールエーテルは、前述の如く、目的カーボネートと沸点が近いことにより、蒸留分離が困難である。
 なお、反応生成液中には、主反応の中間体であるヒドロキシエチルメチルカーボネート、ヒドロキシエチルエチルカーボネート(以下、これらを「ヒドロキシカーボネート」と称す場合がある。)が存在するが、これらの中間体は、後段の蒸留分離工程での加熱により原料カーボネートと原料アルコールに分解され、未反応の原料として反応工程に循環されるので目的生成物への混入が問題となることはない。
 エステル交換反応器1の反応生成液は、軽沸蒸留塔2に送給して、原料アルコールと目的カーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)低沸点留分と、原料カーボネートと生成グリコールを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分に蒸留分離する(第2工程,第ii工程,第II工程)。
 この軽沸蒸留塔2における蒸留の際に、前述の反応中間体であるヒドロキシカーボネートは、原料カーボネートと原料アルコールに加熱分解される。
 前述の如く、エステル交換反応で得られる反応生成液には、目的生成物である目的カーボネートと蒸留分離が困難な副生グリコールエーテルが含まれている。本発明においては、この副生グリコールエーテルを、原料カーボネートとしてエチレンカーボネートを用いた場合にはエチレングリコールを、また原料カーボネートとしてプロピレンカーボネートを用いた場合にはプロピレングリコールをそれぞれ抽出溶媒とする抽出蒸留を行って、目的カーボネートを分離する。
 即ち、副生グリコールエーテルを抽出溶媒であるエチレングリコールまたはプロピレングリコールと原料カーボネートと共に高沸点留分として、図1の軽沸蒸留塔2の塔底より抜き出すことにより、副生グリコールエーテルと目的カーボネートとを効率的に蒸留分離することができる。
 本発明において、このような抽出蒸留を行う蒸留塔は、特に制限はないが、図1における製造工程を経る場合には、この軽沸蒸留塔2において抽出蒸留を行うことが好ましい。
 従って、軽沸蒸留塔2に、エステル交換反応器1からの反応生成液と共に抽出溶媒を供給し、この軽沸蒸留塔2で、原料アルコールと目的カーボネートを含む低沸点留分と、原料カーボネートと生成グリコールを含む高沸点留分とに蒸留分離する際に、副生グリコールエーテルを高沸点留分中に移行させて目的カーボネートと効果的に蒸留分離する。高沸点留分中に分離された副生グリコールエーテルは、原料カーボネート回収塔4において、生成グリコールを主成分とし(ここで「主成分」とは、全体の80重量%以上、好ましくは85重量%以上であることを意味する)、原料カーボネートを含む低沸点留分側に分離される。この低沸点留分中に分離された副生グリコールエーテルは、後段の加水分解反応器5を通過した後、脱水する際、水分と共に生成グリコールから分離除去される。
 本発明において、この抽出蒸留を行う蒸留塔(図1においては軽沸蒸留塔2)としては、充填塔、スルザーパッキング、メラパック、MCパック等の規則充填物、又はIMTP、ラシヒリング等の不規則充填物を充填した充填塔、泡鐘塔、シーブトレイ、バルブトレイ塔を用いた棚段塔等、いずれの型式でも用いることができる。
 抽出溶媒の供給量及び供給速度、抽出蒸留塔の供給箇所としては、エステル交換反応生成液の組成や供給量によって適宜選択されるが、例えば次のような条件を採用することが好ましい。
<抽出溶媒としてエチレングリコールを用いた場合>
  供給量:蒸留原料フィード量に対して0.1~10重量倍
  供給箇所:エチレングリコールの供給箇所は、抽出蒸留塔の原料供給箇所と同じか又はそれより高い位置であれば特に制限はないが、塔頂に供給すると留出液と混合するので好ましくないことから、塔高の上部が好ましい。
<抽出溶媒としてプロピレングリコールを用いた場合>
  供給量:蒸留原料フィード量に対して0.1~10重量倍
  供給箇所:プロピレングリコールの供給箇所は、抽出蒸留塔の原料供給箇所と同じか又はそれより高い位置であれば特に制限はないが、塔頂に供給すると留出液と混合するので好ましくないことから、塔高の上部が好ましい。
 抽出溶媒の供給量が上記範囲よりも少な過ぎると、抽出溶媒を用いることによる本発明の効果を十分に得ることができず、多過ぎると抽出溶媒の回収エネルギーが大きくなる。 また、抽出溶媒の供給箇所が、原料供給箇所より高いと抽出効果が増大し、塔頂であると留出液に抽出溶媒が混入しやすくなるので好ましくない。
 なお、この抽出蒸留の条件としては、原料の組成により適宜決定されるが、例えば圧力1~100kPa、還流比0.01~10程度で行うことが好ましい。また、上記抽出溶媒は、本発明の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートないしはジエチルカーボネートの製造方法の製造プロセスの外で得られるものを用いても良いが、例えば、下述する原料カーボネート回収塔4の上部より、側流として低沸点留分を抜き出して抽出溶媒として用いることができる。ここで、低沸点留分を抜き出す位置は、原料カーボネート回収塔4の供給液の供給箇所より上部で、抜き出される低沸点留分中の副生グリコールエーテル濃度が100重量ppm以下、好ましくは50重量ppm以下となるような位置である。
 軽沸蒸留塔2で蒸留分離された低沸点留分は、原料アルコールと目的カーボネートを含み、副生グリコールエーテルを実質的に含まないものである。ここで「実質的に含まない」とは、原料アルコールと目的カーボネートが全体の95重量%以上、好ましくは99重量%以上であることを意味する。この低沸点留分は、次いで、アルコール回収塔3に送給して原料アルコールを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)低沸点留分と、目的カーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分とに蒸留分離する(第3工程,第iii工程,第III工程)。
 この目的カーボネートを主成分とする高沸点留分は、必要に応じて更に精製して製品とする。例えば、目的カーボネートとして、ジエチルカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む場合には、これらを順次蒸留することにより各目的カーボネートを高純度成分として回収することができる。
 一方、軽沸蒸留塔2で蒸留分離された高沸点留分は、原料カーボネート回収塔4に送給して、生成グリコールを主成分とし(「主成分」とは、全体の80重量%以上、好ましくは85重量%以上であることを意味する)原料カーボネートと副生グリコールエーテルを含む共沸混合物である低沸点留分と、原料カーボネートを主成分とする(「主成分」とは、全体の95重量%以上、好ましくは99重量%以上であることを意味する)高沸点留分とに蒸留分離する(第4工程,第iv工程,第IV工程)。
 この原料カーボネート回収塔4で蒸留分離された原料カーボネートを主成分とする高沸点留分と、アルコール回収塔3で蒸留分離された原料アルコールを主成分とする低沸点留分は、エステル交換反応器1に返送してそれぞれ原料カーボネート、原料アルコールとして再利用する(第5工程,第v工程,第V工程)。
 また、原料カーボネート回収塔4で蒸留分離された生成グリコールを主成分とし原料カーボネートと副生グリコールエーテルを含む低沸点留分は、加水分解反応器5に送給し、この低沸点留分中の原料カーボネートに対して水の添加により、触媒の存在下、原料カーボネートを加水分解して生成グリコール(エチレングリコールまたはプロピレングリコール)とし、生成グリコールを主成分とする反応生成液を得る(第6工程,第vi工程,第VI工程)。この加水分解反応生成液は常法に従って蒸留等により脱水、精製して製品のエチレングリコールまたはプロピレングリコールを取り出す。この際、副生グリコールエーテルはエチレングリコールまたはプロピレングリコールよりも沸点が十分に低いものであるため、水側に効率的に分離除去される。なお、原料カーボネート回収塔の高沸点留分は、パージしても良いし一部をカーボネート回収の為に加水分解反応器へ供給してもよい。また、ここで得られる生成グリコールを抽出溶媒として用いることもできる。
 本発明では、このように反応生成液に対して、エチレングリコールまたはプロピレングリコールを抽出溶媒とする抽出蒸留を行って、本来、目的カーボネートと共沸する副生グリコールエーテルを目的カーボネートから効率的に蒸留分離するが、ここで、抽出溶媒として用いられるエチレングリコールまたはプロピレングリコールは、反応生成液中に、副生グリコールとして存在するものである。
 この様な量で副生グリコールを含む反応生成液に対して、抽出溶媒として抽出蒸留塔にエチレングリコールまたはプロピレングリコールを供給することにより、抽出溶媒とグリコールエーテルとの親和性を利用することにより、グリコールエーテルと目的カーボネートとの相対揮発度を大きくするという作用機構で良好な副生グリコールエーテルの分離効果を得ることができる。
 以下に、実施例及び比較例を挙げて本発明をより具体的に説明する。
[原料カーボネートとしてエチレンカーボネートを用いるエステル交換反応]
<触媒調整>
 エステル交換反応器として、内径17mm、長さ50cmのジャケット付き管型反応器を用い、内部に触媒として強塩基性イオン交換樹脂(SA-11A:三菱化学(株)製)を50mL充填した。この反応器にメタノール500mLを100mL/hrで流通させて樹脂を洗浄した。次に、純水250mLを100mL/hrで流通させて樹脂を水洗した後、2N-NaOH水溶液500mLを100mL/hrで流通させて樹脂をCL型からOH型に変換させた。その後、純水500mLを100mL/hrで流通させてNaOH水溶液を取り除いた。最後に樹脂中の水分が無くなるまでメタノールを100mL/hrで流通させた。
<エステル交換反応>
 上記触媒調整を行ったエステル交換反応器を外部よりジャケットで温度60℃に保持して、エチレンカーボネートとメタノールとエタノールの混合原料(組成比1/1/1(モル比))を導入し、圧力101.3kPa、滞留時間2時間(SV=0.5hr-1)で反応を実施し、下記の組成の反応生成液を得た。
(反応生成液組成)
  ジメチルカーボネート       :7.5重量%
  エチルメチルカーボネート     :8.5重量%
  ジエチルカーボネート       :2.1重量%
  メチルグリコールエーテル     :0.007重量%
  エチルグリコールエーテル     :0.002重量%
  エチレングリコール        :11.4重量%
  ヒドロキシエチルメチルカーボネート:5.8重量%
  ヒドロキシエチルエチルカーボネート:7.2重量%
  エチレンカーボネート       :27.9重量%
  メタノール            :9.7重量%
  エタノール            :19.9重量%
<モデル液の設定>
 上記エステル交換反応で得られた反応生成液中には反応中間体であるヒドロキシエチルメチルカーボネート、ヒドロキシエチルエチルカーボネートが存在するが、これらは蒸留塔で加熱されそれぞれエチレンカーボネートとメタノール、エチレンカーボネートとエタノールに分解される。従って、以下の実施例1~3及び比較例1,2の蒸留実験では、この中間体の分解を考慮して、以下の組成のモデル液Aを蒸留原料として蒸留分離することとした。
(モデル液Aの組成)
  ジメチルカーボネート        :7.5重量%
  エチルメチルカーボネート      :8.5重量%
  ジエチルカーボネート        :2.1重量%
  メチルグリコールエーテル      :0.01重量%
  エチルグリコールエーテル      :0.01重量%
  エチレングリコール         :11.4重量%
  エチレンカーボネート        :36.8重量%
  メタノール             :11.3重量%
  エタノール             :22.3重量%
<実施例1>
 1L容のフラスコの上部に、内径40mmのガラス製蒸留塔を設け、ステレンス製充填剤(コイルパック3mmφ)を600mmカラムに充填した(理論段約12段に相当)ものを取り付け、カラムの中段に上記モデル液Aをフィードした。
 圧力13.4kPa、還流比1の条件で、蒸留原料のモデル液Aを、200mL/hrでフィードすると共に抽出溶媒のエチレングリコールを25mL/hrでカラムの最上部よりフィードした。塔頂の留出液と塔底のフラスコの缶出液を分析したところ、塔頂の留出液にはジアルキルカーボネートと未反応アルコールとともにメチルグリコールエーテル0.01重量%が含まれていたが、エチルグリコールエーテルは定量下限10ppm以下であった。
<実施例2>
 抽出剤のエチレングリコールのフィード量を50mL/hrとし、それ以外は実施例1と同条件にて抽出蒸留を行ったところ、塔頂の留出液中のメチルグリコールエーテル、エチルグリコールエーテルは、いずれも定量下限以下であった。
<実施例3>
 抽出剤のエチレングリコールのフィード量を100mL/hrとし、それ以外は実施例1と同条件にて抽出蒸留を行ったところ、塔頂の留出液中のメチルグリコールエーテル、エチルグリコールエーテルは、いずれも定量下限以下であった。
<比較例1>
 抽出溶媒を用いず、600mmカラムの代りに、ステレンス製充填剤(コイルパック3mmφ)を充填した800mmカラムを用い(理論段約16段に相当)、それ以外は実施例1と同条件にて蒸留を行ったところ、メチルグリコールエーテル、エチルグリコールエーテルのいずれも塔頂留出液に混入が見られた。
<比較例2>
 エチレングリコールを抽出溶媒として用いた場合、実験ではジエチルカーボネートが全て留出せず、少量塔底に混入していた。そこで比較例2では抽出溶媒を入れず、シミュレーションソフトにてジエチルカーボネートを少量缶出として抜出した場合を計算によって求めた結果、抽出溶媒が無い場合はメチルグリコールエーテル、エチルグリコールエーテルのいずれも塔頂留出液に混入することが推定された。
 上記実施例1~3及び比較例1,2の運転条件と分析結果を表1,表2に示す。また、比較例2の計算結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
[原料カーボネートとしてプロピレンカーボネートを用いるエステル交換反応]
<モデル液の設定>
 上記のエチレンカーボネートを用いたエステル交換反応において、エチレンカーボネートの代わりにプロピレンカーボネートを用いた場合のエステル交換反応をシミュレーションソフトによる計算により行った。プロピレンカーボネートを用いた場合は、エチレングリコールがプロピレングリコールに置き換わる。また、副生成物のメチルグリコールエーテル、エチルグリコールエーテルはそれぞれプロピレングリコールメチルエーテル、プロピレングリコールエチルエーテルに置き換わる。
 従って、以下の実施例4及び比較例3では、以下の組成のモデル液Bを蒸留原料として蒸留分離することとした。
(モデル液Bの組成)
  ジメチルカーボネート       :16.7重量%
  エチルメチルカーボネート     :8.4重量%
  ジエチルカーボネート       :1.4重量%
  プロピレングリコールメチルエーテル:0.02重量%
  プロピレングリコールエチルエーテル:0.002重量%
  プロピレングリコール       :10.9重量%
  プロピレンカーボネート      :34.2重量%
  メタノール            :16.3重量%
  エタノール            :12.2重量%
<実施例4>
 実施例1と同様にして設計した理論段数25段の蒸留塔の12段目に、上記モデル液Bを2918kg/hrの流量でフィードした。圧力80mmHg(10.7kPa)、還流比0.3の条件で、抽出溶媒のプロピレングリコールを300kg/hrで蒸留塔の4段にフィードする抽出蒸留を行ったところ、塔頂の留出液にはプロピレングリコールメチルエーテル、プロピレングリコールエチルエーテルは僅かに含まれるのみで大部分は塔底に除去された。
<比較例3>
 抽出溶媒を用いず、環流比を1.0とした以外は実施例4と同条件にて蒸留を行ったところ、塔頂留出液にプロピレングリコールエーテル類の混入が見られた。
 上記実施例4及び比較例3の運転条件を表4に、マスバランスを表5に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 以上の結果から、本発明によれば、目的生成物であるジエチルカーボネート等のジアルキルカーボネートと共沸関係にある副生物であるグリコールエーテル類を、エチレングリコールまたはプロピレングリコールを抽出溶媒とする抽出蒸留を行うことにより効率的に目的生成物から蒸留分離することができることが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2008年12月26日出願の日本特許出願(特願2008-333601)、2009年12月22日出願の日本特許出願(特願2009-290722)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、アルキレンカーボネートと2種以上のアルコールを同一反応器内でエステル交換反応させて対称及び非対称ジアルキルカーボネートを製造するにあたり、副生するグリコールエーテル類を目的生成物と効率的に分離して、対称及び非対称ジアルキルカーボネートを同時に高純度で効率良く製造することが可能となる。
 1 エステル交換反応器
 2 軽沸蒸留塔
 3 アルコール回収塔
 4 原料カーボネート回収塔
 5 加水分解反応器

Claims (14)

  1.  アルキレンカーボネートと2種以上のアルコールとを同一の反応器内でエステル交換反応させることを特徴とする、対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
  2.  前記アルキレンカーボネートがエチレンカーボネートであり、前記2種以上のアルコールがエタノール及びメタノールであり、前記対称ジアルキルカーボネートがジエチルカーボネート及びジメチルカーボネートであり、前記非対称ジアルキルカーボネートがエチルメチルカーボネートであることを特徴とする、請求項1に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
  3.  前記エステル交換反応により生成するエーテル化合物をエステル交換反応液から除去しながらエステル交換反応を行うことを特徴とする、請求項1または2に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
  4.  前記エステル交換反応液に対して、前記エステル交換反応で生成するアルキレングリコールと同じアルキレングリコールを抽出溶媒とする抽出蒸留を行うことにより、前記エーテル化合物を除去することを特徴とする、請求項3に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
  5.  以下の第1工程~第5工程を含み、前記抽出蒸留を第2工程で行うことを特徴とする、請求項4に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
    (1)アルキレンカーボネートと2種以上のアルコールとのエステル交換反応を行う第1工程
    (2)第1工程の反応生成物を、アルコールと対称ジアルキルカーボネート及び非対称ジアルキルカーボネートとを主成分とする低沸点留分と、アルキレンカーボネートとアルキレングリコールとを主成分とする高沸点留分に蒸留分離する第2工程
    (3)第2工程で蒸留分離された低沸点留分を、アルコールを主成分とする低沸点留分と、対称ジアルキルカーボネート及び非対称ジアルキルカーボネートを主成分とする高沸点留分とに蒸留分離する第3工程
    (4)第2工程で蒸留分離された高沸点留分を、アルキレングリコールを主成分としアルキレンカーボネートを含む低沸点留分と、アルキレンカーボネートを主成分とする高沸点留分とに蒸留分離する第4工程
    (5)第3工程で蒸留分離された低沸点留分と、第4工程で蒸留分離された高沸点留分とを第1工程にリサイクルする第5工程
  6.  前記第4工程で蒸留分離された低沸点留分中のアルキレングリコールを抽出溶媒として用いることを特徴とする、請求項5に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
  7.  前記第4工程で蒸留分離された低沸点留分中のアルキレンカーボネートを加水分解してアルキレングリコールを得る第6工程を有することを特徴とする、請求項5または6に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
  8.  前記アルキレンカーボネートがエチレンカーボネートであり、前記2種以上のアルコールがエタノール及びメタノールであり、前記対称ジアルキルカーボネートがジエチルカーボネート及びジメチルカーボネートであり、前記非対称ジアルキルカーボネートがエチルメチルカーボネートであって、以下の第i工程~第v工程を含み、前記抽出蒸留を第ii工程で行うことを特徴とする、請求項4に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
    (i)エチレンカーボネートと、エタノール及びメタノールの混合物とのエステル交換反応を行う第i工程
    (ii)第i工程の反応生成物を、エタノール及びメタノールとジエチルカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを主成分とする低沸点留分と、エチレンカーボネートとエチレングリコールとを主成分とする高沸点留分に蒸留分離する第ii工程
    (iii)第ii工程で蒸留分離された低沸点留分を、エタノール及びメタノールを主成分とする低沸点留分と、ジエチルカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを主成分とする高沸点留分とに蒸留分離する第iii工程
    (iv)第ii工程で蒸留分離された高沸点留分を、エチレングリコールを主成分としエチレンカーボネートを含む低沸点留分と、エチレンカーボネートを主成分とする高沸点留分とに蒸留分離する第iv工程
    (v)第iii工程で蒸留分離された低沸点留分と、第iv工程で蒸留分離された高沸点留分とを第i工程にリサイクルする第v工程
  9.  前記第iv工程で蒸留分離された低沸点留分中のエチレングリコールを抽出溶媒として用いることを特徴とする、請求項8に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
  10.  前記第iv工程で蒸留分離された低沸点留分中のエチレンカーボネートを加水分解してエチレングリコールを得る第vi工程を有することを特徴とする、請求項8または9に記載の対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法。
  11.  エチレンカーボネートまたはプロピレンカーボネートと、エタノールとをエステル交換反応させて、ジエチルカーボネートを製造する方法において、該エステル交換反応で得られた反応生成物に対して、エチレングリコールまたはプロピレングリコールを抽出溶媒として抽出蒸留を行って、エーテル化合物を含む留分を蒸留分離する工程を有することを特徴とする、ジエチルカーボネートの製造方法。
  12.  以下の第I工程~第V工程を含み、前記抽出蒸留を第II工程で行うことを特徴とする、請求項11に記載のジエチルカーボネートの製造方法。
    (I)エチレンカーボネートまたはプロピレンカーボネートとエタノールとのエステル交換反応を行う第I工程
    (II)第I工程の反応生成物をエタノールとジエチルカーボネートとを主成分とする低沸点留分と、エチレンカーボネートまたはプロピレンカーボネートとエチレングリコールまたはプロピレングリコールとを主成分とする高沸点留分に蒸留分離する第II工程
    (III)第II工程で蒸留分離された低沸点留分を、エタノールを主成分とする低沸点留分と、ジエチルカーボネートを主成分とする高沸点留分とに蒸留分離する第III工程
    (IV)第II工程で蒸留分離された高沸点留分を、エチレングリコールまたはプロピレングリコールを主成分としエチレンカーボネートまたはプロピレンカーボネートを含む低沸点留分と、エチレンカーボネートまたはプロピレンカーボネートを主成分とする高沸点留分とに蒸留分離する第IV工程
    (V)第III工程で蒸留分離された低沸点留分と、第IV工程で蒸留分離された高沸点留分とを第I工程にリサイクルする第V工程
  13.  前記第IV工程で蒸留分離された低沸点留分中のエチレングリコールまたはプロピレングリコールを抽出溶媒として用いることを特徴とする、請求項12に記載のジエチルカーボネートの製造方法。
  14.  前記第IV工程で蒸留分離された低沸点留分中のエチレンカーボネートまたはプロピレンカーボネートを加水分解してエチレングリコールまたはプロピレングリコールを得る第VI工程を有することを特徴とする、請求項12または13に記載のジエチルカーボネートの製造方法。
PCT/JP2009/071654 2008-12-26 2009-12-25 ジアルキルカーボネートの製造方法 WO2010074256A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09835052A EP2380868A4 (en) 2008-12-26 2009-12-25 METHOD FOR THE PRODUCTION OF A CARBON DIOXIDE ELITE
CN2009801529024A CN102264687A (zh) 2008-12-26 2009-12-25 碳酸二烷基酯的制造方法
US13/166,940 US20110313185A1 (en) 2008-12-26 2011-06-23 Production process of dialkyl carbonate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-333601 2008-12-26
JP2008333601 2008-12-26
JP2009-290722 2009-12-22
JP2009290722A JP2010168365A (ja) 2008-12-26 2009-12-22 対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/166,940 Continuation US20110313185A1 (en) 2008-12-26 2011-06-23 Production process of dialkyl carbonate

Publications (1)

Publication Number Publication Date
WO2010074256A1 true WO2010074256A1 (ja) 2010-07-01

Family

ID=42287860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071654 WO2010074256A1 (ja) 2008-12-26 2009-12-25 ジアルキルカーボネートの製造方法

Country Status (6)

Country Link
US (1) US20110313185A1 (ja)
EP (1) EP2380868A4 (ja)
JP (1) JP2010168365A (ja)
KR (1) KR20110105379A (ja)
CN (1) CN102264687A (ja)
WO (1) WO2010074256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159586A (zh) * 2013-03-26 2013-06-19 沈阳化工大学 碳酸二甲酯-甲醇共沸混合物连续萃取精馏分离方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5958549B2 (ja) 2012-10-15 2016-08-02 宇部興産株式会社 ジエチルカーボネートの製造方法
CN103804124B (zh) * 2014-03-04 2015-07-01 东营石大胜华新材料有限公司 一种碳酸二乙酯以及碳酸甲乙酯的制备方法
CN108290818B (zh) * 2015-11-24 2021-03-09 大金工业株式会社 非对称链状碳酸酯的制造方法
CN105646219A (zh) * 2016-01-24 2016-06-08 辽宁会福化工有限公司 一种利用强酸性阳离子树脂催化合成碳酸二乙酯的方法
CN109534999B (zh) * 2018-11-30 2021-08-10 潞安化工集团有限公司 一种碳酸二甲酯的合成工艺及装置
KR20210105351A (ko) 2018-12-18 2021-08-26 쉘 인터내셔날 리써취 마트샤피지 비.브이. 디알킬 카보네이트 및 알칸디올의 제조 공정
CN109704968B (zh) * 2019-02-21 2021-10-15 南开大学 一种离子液体催化合成碳酸二甲酯的方法
CN114555553B (zh) * 2019-10-03 2024-04-05 国际壳牌研究有限公司 用于制备碳酸二烷基酯和链烷二醇的方法
WO2021110627A1 (en) * 2019-12-06 2021-06-10 Shell Internationale Research Maatschappij B.V. Process for removing an ether alkanol impurity from an organic carbonate stream
EP3831805A1 (en) * 2019-12-06 2021-06-09 Shell Internationale Research Maatschappij B.V. Process for the preparation of a dialkyl carbonate and an alkanediol
KR102644180B1 (ko) * 2020-11-26 2024-03-05 롯데케미칼 주식회사 우수한 용해도를 가지는 촉매를 이용한 이종 선형 카보네이트를 제조하는 방법
KR102644183B1 (ko) 2020-11-27 2024-03-05 롯데케미칼 주식회사 산성 이온교환수지를 이용한 이종 선형 카보네이트 제조방법
KR102644181B1 (ko) 2020-11-27 2024-03-05 롯데케미칼 주식회사 염기성 이온교환수지를 이용한 이종 선형 카보네이트의 제조 방법
CN113061087A (zh) * 2021-03-31 2021-07-02 河南红东方化工股份有限公司 一种碳酸甲乙酯生产方法及其装置
CN113457735A (zh) * 2021-07-22 2021-10-01 沈阳化工大学 强碱性均相二元醇金属盐类催化剂制备及其合成碳酸酯方法
KR20230080590A (ko) 2021-11-30 2023-06-07 롯데케미칼 주식회사 카보네이트의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166660A (ja) * 1992-12-01 1994-06-14 Mitsui Petrochem Ind Ltd 鎖状炭酸エステル化合物の製造方法
JP2002371037A (ja) 2001-06-12 2002-12-26 Mitsubishi Chemicals Corp 高純度ジメチルカーボネートの製造方法
JP2003089675A (ja) * 2001-07-10 2003-03-28 Mitsubishi Chemicals Corp ジアルキルカーボネートの製造方法
JP2003300917A (ja) * 2002-04-11 2003-10-21 Mitsubishi Chemicals Corp ジメチルカーボネート及びエチレングリコールの製造方法
JP2007534674A (ja) * 2004-04-08 2007-11-29 キャタリティック・ディスティレイション・テクノロジーズ 炭酸ジアルキルの製造方法
JP2009290722A (ja) 2008-05-30 2009-12-10 Fujifilm Corp 固体撮像素子、固体撮像装置及び固体撮像素子の駆動方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489703A (en) * 1995-05-19 1996-02-06 Amoco Corporation Reaction extraction of alkyl carbonate
JP2007334674A (ja) * 2006-06-15 2007-12-27 Ntt Docomo Inc アクセス制御システム、このアクセス制御システムに用いて好適なサービス要求ノード及びサービス提供ノード

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166660A (ja) * 1992-12-01 1994-06-14 Mitsui Petrochem Ind Ltd 鎖状炭酸エステル化合物の製造方法
JP2002371037A (ja) 2001-06-12 2002-12-26 Mitsubishi Chemicals Corp 高純度ジメチルカーボネートの製造方法
JP2003089675A (ja) * 2001-07-10 2003-03-28 Mitsubishi Chemicals Corp ジアルキルカーボネートの製造方法
JP2003300917A (ja) * 2002-04-11 2003-10-21 Mitsubishi Chemicals Corp ジメチルカーボネート及びエチレングリコールの製造方法
JP2007534674A (ja) * 2004-04-08 2007-11-29 キャタリティック・ディスティレイション・テクノロジーズ 炭酸ジアルキルの製造方法
JP2009290722A (ja) 2008-05-30 2009-12-10 Fujifilm Corp 固体撮像素子、固体撮像装置及び固体撮像素子の駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2380868A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159586A (zh) * 2013-03-26 2013-06-19 沈阳化工大学 碳酸二甲酯-甲醇共沸混合物连续萃取精馏分离方法

Also Published As

Publication number Publication date
JP2010168365A (ja) 2010-08-05
KR20110105379A (ko) 2011-09-26
US20110313185A1 (en) 2011-12-22
CN102264687A (zh) 2011-11-30
EP2380868A1 (en) 2011-10-26
EP2380868A4 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2010074256A1 (ja) ジアルキルカーボネートの製造方法
JP3659109B2 (ja) エチレングリコールと炭酸エステルの併産方法
JP5474565B2 (ja) アルカンジオールおよびジアルキルカーボネートの調製方法
EP2231572B1 (en) Production of propylene glycol monoalkyl ether
JP5322658B2 (ja) アルカンジオールおよびジアルキルカーボネートの調製方法
JP5726880B2 (ja) アルカンジオール及びジアルキルカーボネートの製造方法
US8987523B2 (en) Method for obtaining ditrimethylolpropane and trimethylolpropane-enriched product streams from the side-streams in trimethylolpropane production
TWI412515B (zh) 製備烷二醇及碳酸二烷酯之方法
JP5730892B2 (ja) アルカンジオールおよびジアルキルカルボナートの調製方法
TWI415843B (zh) 製備1,2-碳酸伸烷酯之方法
JP2012515751A (ja) N,n−ジメチルアミノエチルアクリレート合成中に生じる共沸留分の精製方法
JP5955975B2 (ja) ジトリメチロールプロパンを獲得するための蒸留方法
JP2011519892A (ja) アルカンジオールおよびジアルキルカルボナートの調製プロセス
CN114555553B (zh) 用于制备碳酸二烷基酯和链烷二醇的方法
CN113166031B (zh) 用于制备碳酸二烷基酯和链烷二醇的方法
JP4356342B2 (ja) エチレングリコールの精製方法
EP3831805A1 (en) Process for the preparation of a dialkyl carbonate and an alkanediol
TW202128606A (zh) 自有機碳酸酯流中移除醚烷醇雜質之方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152902.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117014125

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009835052

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE