WO2010074199A1 - 固体撮像素子およびその制御方法 - Google Patents

固体撮像素子およびその制御方法 Download PDF

Info

Publication number
WO2010074199A1
WO2010074199A1 PCT/JP2009/071540 JP2009071540W WO2010074199A1 WO 2010074199 A1 WO2010074199 A1 WO 2010074199A1 JP 2009071540 W JP2009071540 W JP 2009071540W WO 2010074199 A1 WO2010074199 A1 WO 2010074199A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
transfer
circuit
period
signal charge
Prior art date
Application number
PCT/JP2009/071540
Other languages
English (en)
French (fr)
Inventor
廣津 亜弥子
総吉 廣津
Original Assignee
廣津 和子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廣津 和子 filed Critical 廣津 和子
Priority to CN200980153123.6A priority Critical patent/CN102265605B/zh
Priority to EP09834995.4A priority patent/EP2375728B1/en
Priority to US13/142,228 priority patent/US8552354B2/en
Publication of WO2010074199A1 publication Critical patent/WO2010074199A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance

Definitions

  • the present invention relates to a solid-state image sensor and a control method therefor, and more particularly to expansion of the dynamic range of a solid-state image sensor.
  • Solid-state image sensors such as CCD (Charge-coupled device) and CMOS (Complementary mental-oxide semiconductor) imagers are now built into video cameras and digital cameras as well as mobile phones and are now inexpensive and consumed. Widely used as an image sensor with low power.
  • CCD Charge-coupled device
  • CMOS Complementary mental-oxide semiconductor
  • the sensing ability of the solid-state imaging device is greatly inferior to human visual sensing.
  • human vision it is possible to sufficiently detect the contrast between a bright place and a dark place even if there is a luminance distribution of about 4 to 5 digits in one visual field.
  • This excellent contrast sensing ability is realized by a function that allows the light-receiving cells in the retina to adjust their light-sensitive characteristics for each individual cell.
  • Patent Document 1 expands the dynamic range by providing a mechanism capable of shifting the light receiving sensitivity range in each pixel circuit in accordance with the amount of light incident on the peripheral pixels.
  • the configuration of the semiconductor imaging device is described.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-159274
  • Patent Document 3 discloses a low illuminance signal due to long-time photocharge accumulation, a medium illuminance signal due to short-time photocharge accumulation, and an ultrashort-time photocharge accumulation. It describes that high-illuminance signals are taken out independently and combined with these signals in subsequent signal processing to realize dynamic range adaptive control that dynamically changes imaging conditions in a wide dynamic range. .
  • the first photodetecting element for detecting the amount of received light in each pixel circuit, and another pixel circuit for detecting the average received light amount in the neighboring pixels It is necessary to dispose two light detection elements, the second light detection element and the second light detection element connected to each other via a resistance element. For this reason, there is a possibility that it is difficult to reduce the size of the pixel circuit required for application to mobile devices.
  • Patent Documents 2 and 3 although the pixel circuit can be reduced in size, the control of the transfer gate for transferring the signal charge generated by the light detection element to the floating diffusion region and the subsequent stage of the signal read from the pixel circuit Processing may be complicated.
  • the present invention has been made to solve such problems, and an object of the present invention is to complicate the configuration of the pixel circuit or the control of the pixel circuit and / or the arithmetic processing in the subsequent stage of the pixel circuit. It is an object of the present invention to provide a solid-state imaging device element capable of expanding the dynamic range without making it.
  • the solid-state imaging device includes a pixel circuit and pixel control means for controlling the transfer of signal charges in the pixel circuit.
  • the pixel circuit includes a light detection element that generates a signal charge in response to light reception, a storage area that stores the signal charge generated by the light detection element, a floating diffusion area, and a signal charge in the storage area during operation of the floating diffusion area. And a transfer circuit configured to block the transfer when inactive.
  • the pixel control means controls the transfer circuit according to the light reception level of the pixel circuit so that the operation period of the transfer circuit is extended when the amount of received light is greater than or equal to a predetermined amount compared to when the amount of received light is lower than the predetermined amount.
  • the pixel control unit operates the transfer circuit for a predetermined period, and when the amount of signal charge transferred to the floating diffusion region in the predetermined period is larger than the reference, the operation of the transfer circuit is extended more than the predetermined period, When the signal charge amount is below the reference, the transfer circuit is deactivated at the end of the predetermined period.
  • the solid-state imaging device control method includes a step of accumulating, in the accumulation region, signal charges generated by the photodetecting element when the transfer circuit is in an inoperative state for the pixel circuit configured as described above.
  • the transfer circuit By operating the transfer circuit for a predetermined period from a predetermined timing, the signal charge accumulated in the accumulation region in the accumulation step is transferred to the floating diffusion region, and the amount of signal charge transferred to the floating diffusion region in the predetermined period is a reference.
  • the operation of the transfer circuit is extended to further transfer the signal charge generated by the photodetecting element after the predetermined period to the floating diffusion region.
  • the solid-state imaging device includes a plurality of pixel circuits and a control circuit that controls each pixel circuit.
  • Each pixel circuit includes a light detection element that generates a signal charge in response to light reception, a storage region that stores the signal charge generated by the light detection element, a floating diffusion region, and a signal diffusion in the storage region during operation.
  • a transfer circuit configured to inactivate the transfer while transferring to the area.
  • the control circuit operates the transfer gate over the complete transfer period required to transfer the maximum signal charge accumulation amount in the storage area from the storage area to the floating diffusion region by the transfer gate, and also after the complete transfer period has elapsed.
  • the transfer gate of each pixel circuit is configured to be controlled so as to continue the operation of the transfer gate over the first period.
  • the capacitance value of the floating diffusion region includes a first capacitance value necessary for receiving the maximum signal charge accumulation amount and a second capacitance necessary for receiving the signal charge generated by the photodetecting element in the first period. It is more than the sum with the capacitance value.
  • a method for controlling a solid-state imaging device is configured to store, for each of a plurality of pixel circuits configured as described above, a signal charge generated by a light detection element when a transfer gate is turned off.
  • the capacitance value of the floating diffusion region is a first capacitance value necessary for receiving the maximum signal charge accumulation amount and a second capacitance necessary for receiving the signal charge generated by the photodetecting element in the first period. It is more than the sum with the capacitance value.
  • the dynamic range can be expanded without complicating the configuration of the pixel circuit or the control of the pixel circuit and / or the arithmetic processing in the subsequent stage of the pixel circuit.
  • a possible solid-state imaging device element can be provided. As a result, it is possible to produce a solid-state imaging device that can be mounted on a mobile device or the like and that is compatible with downsizing and a wide dynamic range at low cost.
  • FIG. 2 is a circuit diagram illustrating a configuration of a pixel circuit and a pixel control circuit according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating a configuration example of an inverting amplifier circuit illustrated in FIG. 1.
  • FIG. 6 is a waveform diagram illustrating a control operation of the pixel circuit and the pixel control circuit according to the first embodiment.
  • FIG. 3 is a conceptual diagram illustrating a pixel circuit according to Embodiment 1 and a control operation thereof. It is a figure which shows the output characteristic of the pixel circuit by Embodiment 1 of this invention. It is a conceptual diagram which shows the array structure of the solid-state image sensor according to the modification of Embodiment 1 of this invention.
  • FIG. 10 is a waveform diagram illustrating a control operation of a pixel circuit and a pixel control circuit according to Embodiment 3.
  • FIG. 18 is a waveform diagram for explaining a conventional control operation of the pixel circuit shown in FIG. 17.
  • FIG. 18 is a conceptual diagram illustrating a conventional control operation of the pixel circuit shown in FIG. 17.
  • FIG. 10 is a waveform diagram for explaining a control operation of a pixel circuit in a solid-state imaging device according to a sixth embodiment.
  • FIG. 10 is a conceptual diagram illustrating a pixel circuit control operation in a solid-state imaging device according to a sixth embodiment.
  • FIG. 10 is a conceptual diagram for explaining output characteristics of a pixel circuit in a solid-state imaging device according to a sixth embodiment.
  • FIG. 1 is a circuit diagram showing a configuration of a pixel circuit and a pixel control circuit according to Embodiment 1 of the present invention.
  • a pixel circuit 100 includes a photodiode 10 as a “photodetecting element”, an accumulation region 15, a transfer circuit 20, a floating diffusion region 30, a reset switch 35, and an “amplifier”. And a pixel selection switch 50.
  • the photodiode 10 is provided between the ground node 5 that supplies the ground potential Vss and the transfer circuit 20.
  • the anode of the photodiode 10 is connected to the ground node 5, and the cathode of the photodiode 10 constitutes a storage region 15 for signal charges generated by the photodiode 10. That is, in the example of FIG. 1, the signal charge is an electron (negative charge) that is a majority carrier at the cathode (n-type).
  • the storage region 15 has a predetermined capacitance Cpd due to parasitic capacitance or the like.
  • the light receiving area of the photodiode 10 is ensured as much as possible within the range of the layout constraints, so that the capacitance Cpd of the accumulation region 15 is ensured to some extent.
  • the maximum amount of signal charge that can be accumulated in the accumulation region 15 is determined depending on the capacitance Cpd.
  • the transfer circuit 20 includes a transfer gate 21 connected between the storage region 15 and the floating diffusion region 30.
  • the transfer gate 21 is formed of a transistor whose on / off is controlled by a transfer control signal TG.
  • the transfer gate 21 is composed of an n-type transistor.
  • the transfer gate 21 is turned on / off according to the transfer control signal TG. In the ON period of the transfer gate 21, the signal charge is transferred from the accumulation region 15 to the floating diffusion region 30, and the transfer circuit 20 operates. On the other hand, in the off period of the transfer gate 21, the transfer of the signal charge from the accumulation region 15 to the floating diffusion region 30 is stopped, and the transfer circuit 20 is deactivated.
  • the reset switch 35 electrically connects the floating diffusion region 30 to the power supply node 6 that supplies the power supply potential Vdd as the reset potential in response to the reset signal Rfd. That is, in response to turning on of the reset switch 35, the signal charge (negative charge) existing in the floating diffusion region 30 is attracted to the ground node 5, and the signal charge amount accumulated in the floating diffusion region 30 is cleared (reset). Will be. Note that a potential different from the power supply potential Vdd can be used as the reset potential.
  • the floating diffusion region 30 also has a predetermined capacitance Cfd due to parasitic capacitance or the like.
  • the capacitance Cfd of the floating diffusion region 30 is preferably as small as possible within a range in which the maximum value of the signal charge transferred by the transfer gate 21 can be received. This is because as the capacitance Cfd is smaller, the difference in the FD potential V (FD) generated corresponding to the difference in the signal charge amount in the floating diffusion region 30 is increased, and the detection sensitivity is improved.
  • the pixel selection switch 50 and the transistor 40 constituting the amplifier are connected in series between the power supply node 6 and the output node No of the pixel circuit 100.
  • the pixel selection switch 50 is configured by an n-type transistor that is turned on in response to the pixel selection signal SL. When the pixel selection switch 50 is turned on, a path is formed from the power supply node 6 to the ground node 5 through the transistor 40, the pixel selection switch 50, the output node No, the data line (not shown), and the current source 150.
  • the gate of the transistor 40 is connected to the floating diffusion region 30.
  • the transistor 40 operates as a so-called source follower amplifier, and generates an electric signal having a potential corresponding to the potential of the floating diffusion region 30.
  • This electrical signal is output to the output node No via the pixel selection switch 50. That is, the electrical signal output from the “amplifier” configured by the transistor 40 can be taken out from the output node No via the pixel selection switch 50 that is turned on.
  • the power supply potential Vdd and the ground potential Vss have a relationship of Vdd> Vss, and a bias necessary for circuit operation can be given by a potential difference of (Vdd ⁇ Vss).
  • Each can be set to any potential. That is, it will be described in a positive manner that the ground potential Vss can be set to any potential other than the ground potential (a negative potential is also acceptable).
  • the pixel control circuit 200 includes a path 205 for feeding back the potential of the floating diffusion region 30, an inverting amplifier circuit 210 that generates a signal corresponding to the potential of the floating diffusion region 30, a timer circuit 220, a pulse generator 230, including.
  • FIG. 2 is a diagram illustrating a circuit configuration of the inverting amplifier circuit 210.
  • inverting amplifier circuit 210 includes transistors 212 and 214 connected in series between ground node 5 and power supply node 6. Since the gate of the transistor 212 is connected to the power supply node 6, the transistor 212 functions as a resistance element. Therefore, when the potential of the input node N1 connected to the gate of the transistor 214 exceeds a predetermined potential corresponding to the threshold voltage of the transistor 214, the inverting amplifier circuit 210 is connected to the ground potential Vss (logic low level; simply below). The signal of “L level” is output to the output node N2.
  • inverting amplifier circuit 210 outputs a signal of power supply potential Vdd (logic high level, hereinafter also simply referred to as “H level”) to node N2.
  • Vdd logic high level, hereinafter also simply referred to as “H level”
  • Input node N1 is connected to feedback path 205 shown in FIG.
  • Output node N2 is connected to pulse generator 230 shown in FIG.
  • the inverting amplifier circuit 210 outputs an H level signal when the potential (hereinafter also referred to as FD potential) V (FD) of the floating diffusion region 30 is lower than the reference potential.
  • V (FD) the potential of the floating diffusion region 30 is lower than the reference potential.
  • the FD potential V (FD) is relatively high when the amount of light received by the pixel circuit 100 is large. However, it becomes relatively high when the amount of received light is small. Therefore, depending on the design of the inverting amplifier circuit 210 (threshold voltage of the transistor 214), an H level signal is output when the signal charge amount of the floating diffusion region 30 is greater than the reference, and when the signal charge amount is less than the reference.
  • the inverting amplifier circuit 210 can be configured to output an L level signal.
  • the timer circuit 220 generates a control signal TG1 set to be turned on for a predetermined period from the generation of the transfer control reference signal TG0 based on the transfer control reference signal TG0 for determining the original operation period of the transfer circuit 20.
  • the pulse generator 230 receives the signals TG0 and TG1 and the output signal of the inverting amplifier circuit 210, that is, a signal indicating whether or not the signal charge amount in the floating diffusion region 30 is larger than the reference, and applies the signal to the gate of the transfer gate 21.
  • the transfer control signal TG is generated.
  • the inverting amplifier circuit 210 may be provided inside the pulse generator 230. That is, the FD potential V (FD) is directly input to the pulse generator 230, and whether or not the FD potential V (FD) is lower than the reference potential within the pulse generator 230, in other words, the floating diffusion region. It is also possible to generate a signal indicating whether or not the signal charge amount of 30 is larger than the reference.
  • a reset signal Rfd is generated at time t1, and the reset switch 35 is turned on. Thereby, the FD potential V (FD) is reset to the power supply potential Vdd. In this state, no signal charge is present in the floating diffusion region 30 as shown in FIG. Since the transfer gate 21 is turned off (the transfer circuit 20 is inoperative), a potential barrier exists between the storage region 15 and the floating diffusion region 30, and the signal charge in the storage region 15 exists. However, it is not transferred to the floating diffusion region 30.
  • the signal charge generated by the photodiode 10 in response to the light reception of the pixel circuit 100 is accumulated in the accumulation region 15. Then, immediately before the time t2 when the transfer control reference signal TG0 is generated, as shown in FIG. 4B, an amount of signal charge 90 corresponding to the amount of light received by the pixel circuit 100 generated so far is accumulated. The state is accumulated in the area 15.
  • the transfer control reference signal TG0 is set to turn on the transfer gate 21 between times t2 and t3.
  • the transfer control reference signal TG0 is set to turn on the transfer gate 21 between times t2 and t3.
  • the transfer gate 21 As shown in FIG. 4C, as the potential barrier between the storage region 15 and the floating diffusion region 30 is lowered by the operation of the transfer circuit 20, the storage is performed in the storage region 15 by time t2.
  • the signal charges thus transferred are transferred to the floating diffusion region 30.
  • the period length from time t2 to t3 (setting period of the transfer control reference signal TG0) is such that the signal charge accumulated in the accumulation region 15 by time t2 is transferred as in the control in the general pixel circuit. In general, it is set corresponding to the minimum time required.
  • the FD potential V (FD) changes in accordance with the transfer of the signal charge to the floating diffusion region 30.
  • the pixel control circuit 200 according to the light reception level of the pixel circuit 100, the pixel control circuit 200, specifically, when the light reception amount is greater than or equal to a predetermined time, after time t3, compared to when the light reception amount is lower than the predetermined time.
  • the transfer control signal TG is generated so that the operation period of the transfer circuit 20 is extended. That is, the pulse generator 230 (FIG. 1) generates the transfer control signal TG so that the ON period of the transfer gate 21 changes according to the FD potential V (FD) at time t3.
  • the pulse generator 230 similarly to the transfer control reference signal TG0, TG is generated.
  • the transfer gate 21 is turned off at time t3, and the transfer circuit 20 is deactivated after time t2 to t3, which is the original operation period.
  • the potential barrier by the transfer circuit 20 rises again, so that the transfer of signal charges from the accumulation region 15 to the floating diffusion region 30 is stopped. The At this time, as shown in FIG.
  • the pulse generator 230 extends the on period of the transfer gate 21.
  • the transfer control signal TG is generated. Specifically, the ON period of the transfer gate 21 is extended by the extension time Td set by the timer circuit 220 (FIG. 1), that is, the transfer gate 21 is ON during the H level period of the control signal TG1. Is maintained so that the transfer control signal TG is generated.
  • the pulse generator 230 for example, a signal indicating the comparison result between the FD potential V (FD) and the reference potential at time t3 (output signal of the inverting amplification circuit 210 in FIG. 1), the transfer control reference signal TG0, and the control signal It can be arbitrarily designed by a combination of flip-flops and / or logic gates having TG1 as an input.
  • the FD potential V (FD) is directly input to the pulse generator 230, and a signal indicating the comparison result between the FD potential V (FD) and the reference potential is generated inside the pulse generator 230. May be.
  • the ON period of the transfer gate 21 (the operation period of the transfer circuit 20) is extended, so that the times t3 to t4 are as shown in FIG.
  • the signal charge 90 # newly generated by the photodiode 10 due to the light received at is also transferred to the floating diffusion region 30 and stored.
  • the FD potential V (FD) further decreases after time t3.
  • the capacitance Cfd of the floating diffusion region 30 receives an additional signal charge amount due to the extension of the ON period of the transfer gate 21 (the operation period of the transfer circuit 20). Also designed to be a large value.
  • the ON period of the pixel selection switch 50 can be arbitrarily set as long as it includes the readout timing (time t5). For example, it is possible to generate the pixel selection signal SL so that the pixel selection switch 50 is kept on from before time t2 until immediately before the next reset timing (time t1).
  • the light receiving characteristics of the pixel circuit 100 are as shown in FIG.
  • the horizontal axis of FIG. 5 shows the amount of received light (incident light amount) of the pixel circuit 100, and the vertical axis shows the pixel output signal OUT generated based on the output potential Vout.
  • the reference light amount Lr in FIG. 5 is a reference value indicating a threshold value as to whether or not to extend the ON period of the transfer gate 21, that is, the operation period of the transfer circuit 20.
  • the FD potential V (FD) when the signal charge is accumulated in the floating diffusion region 30 by the reference light amount Lr corresponds to the reference potential of the FD potential V (FD) described above.
  • the pixel circuit 100 When the light amount is less than or equal to the reference light amount Lr, the pixel circuit 100 obtains a pixel output signal OUT corresponding to the signal charge amount accumulated up to time t2 (FIG. 2) according to the normal operation. That is, in such a low illuminance region, the change characteristic of the pixel output signal OUT with respect to the amount of received light, that is, the light receiving sensitivity characteristic can be ensured sharply as before.
  • the pixel output signal OUT when the light amount is larger than the reference light amount Lr, the pixel output signal OUT further reflecting the signal charge amount generated by the photodiode 10 during the extended operation period of the transfer circuit 20 (the on-period of the transfer gate 21). Can be generated.
  • the capacitance Cfd of the floating diffusion region 30 is a normal value (that is, smaller than Cfd in the pixel circuit 100 of the present embodiment), and the signal charge amount accumulated in the accumulation region 15 by time t2 Compared with the conventional pixel control (dotted line in FIG. 5) that generates the pixel output signal OUT based only on this, the change rate of the pixel output signal OUT with respect to the light amount change in the high illuminance region can be increased.
  • the dynamic range of the pixel circuit 100 can be expanded.
  • the dynamic range achieved by the pixel circuit 100 varies depending on the extension time Td.
  • the necessary extension time Td can be uniquely designed in correspondence with a desired dynamic range.
  • the above-described dynamic control is performed only by controlling whether or not the ON period of the transfer gate 21 (the operation period of the transfer circuit 20) is extended without adding any special component to the pixel circuit.
  • the range can be expanded. Therefore, according to the solid-state imaging device on which the pixel circuit 100 and the pixel control circuit 200 according to the present embodiment are mounted, the pixel circuit (control of the pixel circuit) or the calculation in the subsequent stage of the pixel circuit is achieved while achieving the downsizing of the pixel circuit.
  • the dynamic range can be expanded without complicating the processing. As a result, it is possible to manufacture a solid-state imaging device that can be mounted on a mobile device or the like and that is compatible with downsizing and wide dynamic range at low cost.
  • a pixel array 105 in which the pixel circuits 100 shown in FIG. 1 are arranged in a matrix is configured.
  • pixel rows can be sequentially selected by vertical scanning, and pixel columns can be sequentially selected by horizontal scanning.
  • all the pixel circuits 100 in the pixel array 105 are described as being subjected to the pixel control according to the first embodiment.
  • some of the pixels constituting the pixel array 105 are described.
  • the output potential Vout is output from the pixel circuit of the scanning row to the data line 110 provided for each pixel column. Is done.
  • the connection between each pixel circuit 100 and the data line 110 can be controlled by the pixel selection switch 50 (FIG. 1).
  • the pixel control circuit 200 (FIG. 1) is arranged for each pixel column. In each pixel column, selection switches 250 and 255 are disposed between the pixel control circuit 200 and each pixel circuit 100.
  • the selection switch 250 is connected between the pixel control circuit 200 and the transfer circuit 20 of the corresponding pixel circuit 100.
  • the selection switch 255 is connected between the pixel control circuit 200 and the feedback path 205 of the corresponding pixel circuit 100.
  • each pixel circuit 100 is sequentially controlled according to vertical scanning and / or horizontal scanning. Therefore, by controlling on / off of the selection switches 250 and 255 in each pixel column, a plurality of pixels in the same column are controlled.
  • One pixel circuit in the pixel circuit 100 can be selectively connected to the pixel control circuit 200. Thereby, a single pixel control circuit 200 can be shared by a plurality of pixel circuits 100 belonging to the same pixel column. That is, the pixel control according to the first embodiment can be applied to each pixel circuit 100 in accordance with the sequence shown in FIG.
  • the circuit area can be suppressed by suppressing the number of arranged pixel control circuits 200, and the area of the pixel array can be reduced by arranging the pixel control circuit 200 outside the pixel array. This makes it possible to more easily configure a small image sensor suitable for mounting on a mobile device.
  • a configuration example in which one pixel control circuit 200 is arranged for each pixel column and the common pixel control circuit 200 is shared by the pixel circuits 100 in the same pixel column is shown.
  • the pixel control circuit 200 can be shared by other configurations.
  • a common pixel control circuit 200 is disposed for each group other than the pixel example, and selection switches 250 and 255 are appropriately disposed between the plurality of pixel circuits 100 belonging to the group and the pixel control circuit 200. May be.
  • each pixel column may be further divided into a plurality of groups, and a common pixel control circuit 200 may be arranged for each group. That is, the point that the group of the pixel circuits 100 sharing the pixel control circuit 200 can be arbitrarily set will be described in a confirming manner.
  • FIG. 7 is a circuit diagram showing the configuration of the pixel circuit and the pixel control circuit according to the second embodiment of the present invention.
  • the output node No of the pixel circuit 100 is connected to the pixel control circuit 200 through the feedback path 205.
  • the output potential Vout corresponding to the potential V (FD) of the floating diffusion region 30 is output by the transistor 40 operating as the source follower amplifier during the ON period of the pixel selection switch 50. Is generated. Then, the output potential Vout is transmitted to the pixel control circuit 200 through the feedback path 205.
  • the output potential Vout is a potential already amplified by the transistor 40, the necessity of providing the inverting amplifier circuit 210 is reduced. That is, by arranging an inverter or the like in the pulse generator 230, a signal indicating a comparison result between the FD potential V (FD) and the reference potential can be generated based on the output potential Vout. Even if the feedback path 205 is provided for the connection point between the transistor 40 and the pixel selection switch 50, the output potential Vout can be fed back in the same manner. Since the other circuit configuration shown in FIG. 7 is the same as that of FIG. 1, detailed description thereof will not be repeated.
  • FIG. 8 is an operation waveform diagram for explaining the control operation of the pixel circuit according to the second embodiment shown in FIG.
  • the pixel selection switch 50 is turned on and the output node No is driven by the current source 150 even during a certain period before time t ⁇ b> 3. It is necessary to provide a period during which the potential Vout is generated.
  • the comparison between the FD potential V (FD) and the reference potential at time t3 (the amount of received light and the reference light amount Lr: equivalent to the comparison in FIG. 5) can be executed equivalently.
  • the pixel selection switch 50 is turned on by setting the pixel selection signal SL to the H level during the same period (time t2 to t3) as the transfer control reference signal TG0.
  • the transfer control reference signal TG0 can be generated by feedback of the output potential Vout as in FIG.
  • an ON period of the pixel selection switch 50 is provided corresponding to feedback of the output potential Vout at time t3 and reading of the output potential Vout from the pixel circuit 100 at time t5. It is necessary at a minimum.
  • the on period of the pixel selection switch 50 can be arbitrarily set as long as the above minimum period is included. For example, it is possible to generate the pixel selection signal SL so that the pixel selection switch 50 is kept on from before time t2 until immediately before the next reset timing (time t1).
  • the pixel control similar to that of the first embodiment is performed by feeding back the output potential Vout instead of the FD potential V (FD).
  • Vout instead of the FD potential V (FD).
  • the formation of the feedback path 205 does not affect the capacitance Cfd of the floating diffusion region 30. . Accordingly, it is possible to prevent variation in the FD capacitance (Cfd) of the pixel circuit 100 from occurring between pixels and to suppress variation in characteristics of the pixel circuit 100.
  • FIG. 9 is a conceptual diagram illustrating a configuration example of a solid-state imaging device in which pixel circuits and pixel control circuits according to the second embodiment are arranged in an array.
  • each pixel circuit 100 of the pixel array is basically described as being subjected to the pixel control according to the first embodiment, but the pixels constituting the pixel array are described. It is also possible to apply the pixel control according to the first embodiment to only some of the pixels.
  • the output potential Vout is a data line when the pixel selection switch 50 (FIG. 7) in the pixel circuit 100 is turned on. 110 is output. For this reason, in the modification of the second embodiment, if the data line 110 for each pixel column and the pixel control circuit 200 are connected, the selection switch 255 as shown in FIG. 205 can be selectively formed with the pixel circuit 100 in the scanning row.
  • a selection switch 250 similar to that in FIG. 6 is disposed between the pixel control circuit 200 and each pixel circuit 100. Then, by controlling on / off of the selection switch 250 in each pixel column at an appropriate timing, one pixel circuit among the plurality of pixel circuits 100 in the same column can be selectively connected to the pixel control circuit 200.
  • a single pixel control circuit 200 is shared by a plurality of pixel circuits 100 belonging to the same pixel column, and the pixel control according to the second embodiment is applied to each pixel circuit 100 according to the sequence shown in FIG. Can do.
  • a plurality of pixel circuits 100 arranged in an array and a pixel control circuit shared for each pixel column are provided.
  • a small image sensor suitable for mounting on a mobile device can be configured more easily.
  • the number of switch elements arranged between the pixel control circuit 200 and each pixel circuit 100 is reduced as compared with the modification according to the first embodiment. It can further contribute to the conversion.
  • the pixel control circuit 200 can be shared by other configurations. That is, the group of pixel circuits 100 that share the pixel control circuit 200 can be arbitrarily set.
  • the pixel circuit 100 according to the third embodiment is different in the configuration of the transfer circuit 20 from the pixel circuit 100 shown in FIG. Specifically, in the third embodiment, transfer circuit 20 includes transfer gate 21 and auxiliary transfer gate 22 connected in parallel between storage region 15 and floating diffusion region 30. Since the other circuit configuration of pixel circuit 100 is the same as that of FIG. 1, detailed description thereof will not be repeated.
  • the pixel control circuit 200 turns on / off the auxiliary transfer gate 22 in response to the FD potential V (FD) from the feedback path 205 provided in the floating diffusion region 30 and the transfer control reference signal TG0.
  • a transfer control signal TG # for controlling is generated.
  • the transfer control reference signal TG0 is supplied to the gate of the transfer gate 21 as it is.
  • transfer control signal TG # includes a comparison result between transfer control reference signal TG0, control signal TG1 from timer circuit 220 (extended time Td), FD potential V (FD) and reference potential (for example, And the output signal of the inverting amplifier circuit 210), when the amount of light received by the pixel circuit 100 is large, the auxiliary transfer gate 22 is set to be turned on during the period from time t3 to t4. When the received light amount of 100 is small, the auxiliary transfer gate 22 is set to be kept off.
  • the transfer circuit 20 can be operated as in the first embodiment by turning on and off the transfer gate 21 and the auxiliary transfer gate 22 in response to the transfer control reference signal TG0 and the transfer control signal TG #, respectively.
  • the signal charge accumulated in the accumulation region 15 can be transferred to the floating diffusion region 30.
  • on / off of the auxiliary transfer gate 22 is controlled according to the FD potential V (FD), and the transfer circuit 20 operates when the amount of received light is large, while the transfer is performed when the amount of received light is small. Circuit 20 is deactivated.
  • the charge transfer operation from the storage region 15 to the floating diffusion region 30 by the transfer circuit 20 is the same as in the first embodiment.
  • the pixel selection signal SL is also generated in the same manner as described in the first embodiment (FIG. 3).
  • pixel control control of the pixel circuit
  • the dynamic range can be expanded without complicating the arithmetic processing in the subsequent stage of the pixel circuit.
  • the pixel circuit 100 and the pixel control circuit 200 according to the third embodiment shown in FIG. 10 are similar to the modification of the first embodiment shown in FIG. 6 and a plurality of pixel circuits 100 arranged in an array.
  • a small image sensor suitable for mounting on a mobile device can be configured more easily.
  • the selection switch 250 shown in FIG. 6 needs to be arranged independently corresponding to each of the transfer gate 21 and the auxiliary transfer gate 22.
  • FIG. 12 is a circuit diagram showing configurations of a pixel circuit and a pixel control circuit according to a modification of the third embodiment of the present invention.
  • the feedback path 205 is connected to the output node No. for the pixel circuit 100 having the same configuration as in the third embodiment, as in the second embodiment. Provided with the pixel control circuit 200.
  • the pixel control circuit 200 does not directly use the FD potential V (FD) for comparison between the FD potential V (FD) and the reference potential for determining whether or not the amount of light received by the pixel circuit 100 is greater than or equal to the reference.
  • a transfer control reference signal TG0 and a transfer control signal TG # are generated in the same manner as in the third embodiment (FIG. 10) except that the output potential Vout obtained by amplifying the FD potential is used.
  • the feedback path 205 can be provided for the connection point between the transistor 40 and the pixel selection switch 50. Since other configurations are the same as those in the third embodiment, detailed description will not be repeated.
  • the amplifier Pixel control using the output potential Vout amplified by the transistor 40 constituting the source follower amplifier
  • the same effects as those of the second embodiment can be further enjoyed.
  • the pixel circuit 100 and the pixel control circuit 200 according to the modification of the third embodiment shown in FIG. 12 are arranged in a plurality of arrays as in the modification of the second embodiment shown in FIG.
  • a small image sensor suitable for mounting on a mobile device can be configured more easily. .
  • the selection switch 250 shown in FIG. 9 needs to be arranged independently corresponding to each of the transfer gate 21 and the auxiliary transfer gate 22.
  • FIG. 13 is a circuit diagram showing configurations of the pixel circuit 100 and the pixel control circuit 200 according to the fourth embodiment.
  • FIG. 13 is different from FIG. 1 in that pixel circuit 100 according to the fourth embodiment is configured such that transfer circuit 20 is configured by dual gate transistor 23. Since the configuration of other parts of pixel circuit 100 is the same as that of the first embodiment (FIG. 1), detailed description will not be repeated.
  • the pixel control circuit 200 is configured in the same manner as in the third embodiment (FIG. 10), and the transfer control reference signal TG0 and the transfer control signal TG # shown in FIG.
  • the dual gate transistor 23 has a normal gate G and a control gate CG, and controls execution / stop of charge transfer from the storage region 15 to the floating diffusion region 30 according to the potentials of the normal gate G and the control gate CG. Specifically, the n-type dual gate transistor 23 conducts and accumulates when at least one of the normal gate G and the control gate CG is turned on (H level: Vdd for an n-type transistor). Signal charges are transferred from the region 15 to the floating diffusion region 30. On the other hand, when both the normal gate G and the control gate CG are not turned on, the transfer of signal charges from the accumulation region 15 to the floating diffusion region 30 is stopped.
  • the dual gate transistor 23 is configured so as to control the gain coefficient of the transistor by modulating the electric field formed in the channel in accordance with the potential of the control gate CG that is normally formed to overlap the gate G.
  • a semiconductor element capable of adjusting the gain coefficient ⁇ described in International Publication WO02 / 059979 (or Japanese Patent Application Laid-Open No. 2002-222944) or Japanese Patent Application Laid-Open No. 2005-012002 can be used.
  • the transfer circuit 20 can be operated as in the first embodiment.
  • the pixel circuit (pixel circuit control) or the subsequent stage of the pixel circuit can be achieved in combination with the downsizing of the pixel circuit.
  • the dynamic range can be expanded without complicating the arithmetic processing.
  • the pixel circuit 100 and the pixel control circuit 200 according to the fourth embodiment shown in FIG. 13 are a plurality of pixel circuits 100 arranged in an array as in the modification of the first embodiment shown in FIG.
  • a small image sensor suitable for mounting on a mobile device can be configured more easily.
  • the selection switch 250 shown in FIG. 6 needs to be arranged independently corresponding to each of the transfer gate 21 and the auxiliary transfer gate 22. .
  • FIG. 14 is a circuit diagram showing configurations of a pixel circuit and a pixel control circuit according to a modification of the fourth embodiment of the present invention.
  • the feedback path 205 is set to the output node No. for the pixel circuit 100 having the same configuration as in the third embodiment, as in the second embodiment. Provided with the pixel control circuit 200.
  • the pixel control circuit 200 does not directly use the FD potential V (FD) for comparison between the FD potential V (FD) and the reference potential for determining whether or not the amount of light received by the pixel circuit 100 is greater than or equal to the reference.
  • the output potential Vout obtained by amplifying the FD potential is used. Then, the same transfer control reference signal TG0 and transfer control signal TG # as in the fourth embodiment (FIG. 12) are generated. As described with reference to FIG. 7, even when the feedback path 205 is provided for the connection point between the transistor 40 and the pixel selection switch 50, the output potential Vout can be fed back in the same manner. Since other configurations are similar to those of the fourth embodiment, detailed description thereof will not be repeated.
  • an amplifier source follower amplifier
  • Pixel control using the output potential Vout amplified by the transistor 40 can be realized.
  • the pixel circuit 100 and the pixel control circuit 200 according to the modification of the fourth embodiment shown in FIG. 14 are a plurality of pixels arranged in an array as in the modification of the second embodiment shown in FIG.
  • a small image sensor suitable for mounting on a mobile device can be configured more easily.
  • the selection switch 250 shown in FIG. 6 needs to be arranged independently corresponding to each of the transfer gate 21 and the auxiliary transfer gate 22. .
  • the received light amount of the pixel circuit 100 and the reference are based on the FD potential at the end of the original operation period of the transfer circuit 20 (time t2 to t3 in FIG. 3).
  • the light amount is compared, it may be configured such that the received light amount level of the pixel circuit 100 is determined by a method other than this method, and whether or not the operation period of the transfer circuit 20 needs to be extended is controlled according to the determination result.
  • the fifth embodiment whether or not the operation period of the transfer circuit 20 needs to be extended is controlled in common for each pixel circuit in accordance with the light reception level in the entire plurality of pixel circuits (that is, the pixel array 105 in FIGS. 6 and 9).
  • the structure to perform is demonstrated. That is, the fifth embodiment is directed to a solid-state imaging device in which a plurality of pixel circuits 100 according to the first to fourth embodiments and their modifications are arranged as shown in FIGS. .
  • FIG. 15 is a conceptual diagram showing a first example of a solid-state imaging device according to Embodiment 5 of the present invention.
  • the solid-state imaging device according to the first example of the fifth embodiment is provided with a pixel control circuit 201 instead of the pixel control circuit 200 as compared with the solid-state imaging device shown in FIG. 6.
  • the transfer circuit 20 in the pixel circuit 100 is any of those shown in FIG. 1 (transfer gate 21 alone), FIG. 10 (transfer gate 21 and auxiliary transfer gate 22), and FIG. 13 (dual gate transistor 23).
  • a configuration may be applied.
  • the feedback path 205 is not necessary in each pixel circuit 100 and is deleted.
  • the pixel control circuit 201 is different from the pixel control circuit 200 in that it includes a level determination unit 202. Based on the output signal from each pixel circuit 100, the level determination unit 202 determines whether or not the light reception level in the entire plurality of pixel circuits 100 is greater than or equal to a predetermined level. For example, this determination can be realized by comparing the sum or average value of the output signals from each pixel circuit 100 with a predetermined threshold value.
  • the level determination unit 202 is shown for each pixel control circuit 201, but actually, the single level determination unit 202 is shared by the entire plurality of pixel circuits 100 in the pixel array 105. It is reasonable to adopt a configuration that
  • the pixel control circuit 201 is configured such that a signal indicating the determination result in the level determination unit 202 is input to the feedback path 205 in the pixel control circuit 200.
  • transfer control is performed on each pixel circuit 100 according to the control signal TG1 when the light reception level in the entire pixel circuit is equal to or higher than a predetermined level.
  • a signal TG is output.
  • the transfer control signal TG is output to each pixel circuit 100 according to the transfer reference signal TG0.
  • the transfer control signal TG # is fixed to the L level for each pixel circuit 100.
  • FIG. 16 is a conceptual diagram illustrating a second example of the solid-state imaging element according to the fifth embodiment of the present invention.
  • the solid-state imaging device according to the second example of the fifth embodiment is different from the first example shown in FIG. 15 in that operation switch 203 is further provided.
  • the operation switch 203 is provided for the user to input an instruction to select whether or not to expand the dynamic range. Based on the input to the operation switch 203, the level determination unit 202 determines whether or not the light reception level in the entire plurality of pixel circuits 100 is greater than or equal to a predetermined level.
  • the level determination unit 202 determines that the light reception level in the entire pixel circuit is lower than a predetermined level when the operation switch 203 is operated. On the other hand, when the operation switch 203 is not operated, it can be determined that the light reception level in the entire pixel circuit is equal to or higher than a predetermined level. On the other hand, the operation switch 203 can be provided as an input terminal for operation during imaging in a situation where the light quantity level is high.
  • the generation of the transfer control signal TG (or TG #) by the pixel control circuit 201 according to the determination as to whether or not the light reception level in the entire pixel circuit is greater than or equal to a predetermined value is the same as described with reference to FIG. The explanation will not be repeated.
  • the level determination unit 202 and the operation switch 203 are shown for each pixel control circuit 201, but actually, the level determination unit 202 and the operation switch 203 include a plurality of pixel circuits in the pixel array 105. It is reasonable to adopt a configuration in which one by one is arranged so as to be shared by 100 as a whole.
  • the solid-state imaging device for example, common to each pixel circuit in order to cope with each imaging scene having a large difference in light reception level, such as a difference between night imaging and daytime imaging in fine weather.
  • the operation period of the transfer circuit 20 is set to be common and fixed in each of the plurality of pixel circuits 100.
  • FIG. 17 is a circuit diagram showing the configuration of the pixel circuit of the solid-state imaging device according to the sixth embodiment of the present invention.
  • the pixel circuit 100 shown in FIG. 17 is different from the pixel circuit 100 shown in FIG. 1 in that the feedback path 205 is deleted.
  • the configuration itself of the pixel circuit 100 is general, and includes a photodiode 10 as a “photodetecting element”, a storage region 15, a transfer circuit 20, a floating diffusion region 30, a reset switch 35, and an “amplifier”. And a pixel selection switch 50.
  • the pixel control circuit 205 performs control of the pixel circuit 100 such as setting of the operation period of the transfer circuit 20 by the transfer control signal and setting of the reset timing by the reset signal Rfd.
  • the transfer control signal transitions from the H level to the L level, so that the transfer gate 21 is turned off. That is, the operation of the transfer circuit 20 is stopped.
  • the signal charges 90 generated in the previous imaging (previous frame) are all transferred to the floating diffusion region 30. Therefore, the signal charge amount in the storage region 15 is zero.
  • the floating diffusion region 30 is in a state in which an amount of signal charge corresponding to the amount of light received in the previous frame is accumulated, as indicated by a dotted line.
  • the photodiode 10 After time t0, the photodiode 10 generates a signal charge corresponding to light reception in a new imaging (current frame), and the signal charge is stored in the storage region 15.
  • reset signal Rfd is generated.
  • the reset switch 35 (FIG. 17) is turned on, so that the FD potential V (FD) is reset to the power supply potential Vdd.
  • the output potential Vout corresponding to the FD potential V (FD), that is, the output signal corresponding to the previous frame is output via the pixel selection switch 50 that is turned on to the output node No. Is read from.
  • transfer control signal TG is set to turn on transfer gate 21. That is, the transfer control signal TG is equivalent to the transfer control reference signal TG0 in FIG.
  • an amount of signal charge 90 corresponding to the amount of light received in the period from time t0 to t2 is accumulated in the accumulation region 15. Then, as shown in FIG. 19 (d), as the potential barrier between the storage region 15 and the floating diffusion region 30 is lowered by the operation of the transfer circuit 20, it is stored in the storage region 15 by time t2. The signal charge 90 is transferred to the floating diffusion region 30.
  • the photodiode 10 generates a signal charge 90 in response to light reception.
  • the signal charge 90 generated during this period is also transferred to the floating diffusion region 30 by the transfer circuit 20 (transfer gate 21).
  • transfer control signal TG is set to turn off transfer gate 21.
  • the signal charges 90 generated in the current imaging (current frame) are all transferred to the floating diffusion region 30.
  • the output potential Vout corresponding to the FD potential V (FD) can be read from the output node No at an arbitrary timing until the floating diffusion region 30 is reset.
  • TF0 corresponds to a period from when the transfer gate 21 is turned off to when it is turned on again
  • T0 corresponds to an on period of the transfer gate 21.
  • the amount of signal charge generated by the photodiode 10 depends on the product of photoelectric conversion efficiency (quantum efficiency), which is a physical constant depending on the process and structure, light reception intensity, and light irradiation time.
  • the maximum charge amount (saturation charge amount) that can be stored is determined by the capacitance Cpd of the storage region 15 of the photodiode 10. Even if a signal charge exceeding the saturation charge amount is generated, it cannot be accumulated in the accumulation region 15, so that the brightness cannot be detected.
  • the maximum value of the signal charge accumulated in the accumulation region 15 (hereinafter, the maximum signal charge accumulation amount) Qpdmax is determined from the size and structure of the photodiode 10. This maximum signal charge accumulation amount also corresponds to the maximum value of the signal charge amount transferred by the transfer gate 21 (transfer circuit 20).
  • the time required for the transfer gate 21 to transfer a certain amount of signal charge is the physical constant depending on the process and structure, such as the size (W / L) of the transistor constituting the transfer gate 21, and the accumulation. It depends on the potential difference between the region 15 and the floating diffusion region 30. Therefore, it is preferable to set the ON period (T0) of the transfer gate 21 as short as possible within the range in which the maximum signal charge accumulation amount Qpdmax can be transferred by the transfer gate 21. Generally, T0 is set to be equal to the time required for transferring the maximum signal charge accumulation amount Qpdmax by the transfer gate 21.
  • T0 is also referred to as a complete transfer period.
  • the light intensity that generates the maximum signal charge accumulation amount Qpdmax in the exposure time TF1 in one frame period is the upper limit of the light receiving range in which the contrast can be detected.
  • the dynamic range indicating the width of the light receiving range in which contrast can be detected is generally about 60 (dB).
  • the complete transfer period T0 at this time is generally about several ns to several tens (ns).
  • the transfer gate 21 is turned on between time t2 and t4, exceeding time t2 to t3. . That is, the transfer gate 21 is continuously turned on over the extended period T1 even after the complete transfer period T0 has elapsed. That is, the extension period T1 corresponds to the “first period” in the present invention. Since the control operation up to time t2 is the same as that in FIG. 18, the description will not be repeated.
  • FIGS. 21A to 21D are the same as the conventional operation (FIG. 19). That is, from time t2 to t3 (FIG. 21 (d)), the transfer gate 21 is turned on over the complete transfer period T0.
  • FIG. 21E it is assumed that the maximum signal charge accumulation amount Qpdmax is transferred to the floating diffusion region 30 at time t3. That is, in FIG. 21, the imaging corresponding to the received light intensity exceeding the conventional dynamic range is shown. At this time, a signal charge 90 exceeding the maximum signal charge accumulation amount Qpdmax is generated between times t0 and t2, but due to saturation of the accumulation region 15, a charge amount exceeding the maximum signal charge accumulation amount Qpdmax is reduced at time t2. It cannot be accumulated in the accumulation area 15 at the time.
  • the capacitance Cfd of the floating diffusion region 30 is also set to be different from the conventional idea described above. That is, Cfd is determined so as to have a margin for receiving the signal charge generated by the photodiode 10 in the extension period T1 when the maximum signal charge accumulation amount Qpdmax is received. Therefore, the capacitance Cfd of the floating diffusion region 30 is larger than the capacitance Cpd of the storage region 15.
  • the floating diffusion region 30 has the signal charge 90 accumulated in the accumulation region 15 at time t2 and the signal charge 90 generated by the photodiode 10 during the period from time t2 to t4. The sum of and is accumulated.
  • the signal charge 90 generated during the extension period T1 needs to be completely transferred to the floating diffusion region 30. This is because, since exposure for the next frame is started at time t4, if the signal charge 90 remains in the accumulation region 15, an error occurs in detection of the amount of received light in the next frame. Therefore, it is preferable to secure at least the time necessary for transferring the maximum signal charge accumulation amount Qpdmax in the accumulation region 15 by the transfer gate 21, that is, the complete transfer period T0 or more in the extension period T1 (T1 ⁇ T0). .
  • FD potential V (FD) is maintained at the potential at time t4. Then, at an arbitrary timing until the floating diffusion region 30 is next reset, the output potential Vout corresponding to the FD potential V (FD) is read from the output node No.
  • FIG. 22 is a conceptual diagram for explaining the output characteristics of the pixel circuit in the solid-state imaging device according to the sixth embodiment. Note that the horizontal axis in FIG. 22 indicates the amount of light (or the received light intensity), and the vertical axis indicates the potential change ⁇ V (FD) since the resetting of the FD potential V (FD). That is, ⁇ V (FD) is determined by the signal charge amount transferred to the floating diffusion region 30 and Cfd.
  • FIG. 22 shows a conventional control operation (FIGS. 18 and 19) and output characteristics in the case of Cfd by dotted lines.
  • L0 corresponding to the amount of light when the photodiode 10 generates the maximum signal charge accumulation amount Qpdmax during the reference exposure time TF1 corresponds to the upper limit of the dynamic range. That is, the light amount (or the received light intensity) is detected by changing ⁇ V (FD) from 0 to Vmax corresponding to the range of the light amount Lmn (minimum light amount value) to L0. That is, in the range where the light amount is higher than L0, that is, in the range where the received light intensity is higher than the light intensity corresponding to L0, the accumulation region 15 is saturated, so the light amount cannot be detected correctly.
  • ⁇ V FD
  • Cfd is designed to be larger than the conventional one, and therefore ⁇ V (FD) when receiving the maximum signal charge accumulation amount Qpdmax stops at V0 ( ⁇ Vmax).
  • ⁇ V (FD) rises above V0 corresponding to the signal charge amount generated in the extension period T1. That is, ⁇ V (FD) can be changed for a light amount in a range higher than L0.
  • the received light intensity corresponding to the light amount L1 when ⁇ V (FD) reaches Vmax by the total signal charge amount including additional transfer in the extension period T1 becomes the upper limit of the dynamic range. That is, in the solid-state imaging device according to the sixth embodiment, the dynamic range is expanded by ⁇ L (L0 to L1) compared to the conventional case.
  • the capacitance Cfd of the floating diffusion region 30 receives the capacitance value for receiving the maximum signal charge accumulation amount Qpdmax and the signal charge amount generated in the extension period T1 (that is, the signal charge amount corresponding to the expanded dynamic range ⁇ DR). It is necessary to secure more than the sum of the capacity value for entering.
  • the characteristic line in the region where the amount of light is larger than L0 changes depending on the extension time T1.
  • the ratio of V0 and Vmax for ⁇ V (FD) varies depending on Cfd. That is, the range of the amount of light that can be detected in the extension period T1 also changes depending on Cfd.
  • Cfd is preferably determined so that the maximum signal charge accumulation amount Qpdmax can be additionally received in the floating diffusion region 30 even in the extension period T1. For example, if Cfd is secured about twice as large as Cpd, the amount of signal charge can be detected using the range from 0 to Qpdmax in the extended period T1.
  • the reference dynamic range DR corresponding to Lmn to L0 is expressed by the following equation (1).
  • the expanded dynamic range ⁇ DR corresponding to ⁇ L is determined by the ratio of the reference exposure time TF1 to the extension period T1. It is shown by the following formula (2).
  • the expanded dynamic range ⁇ DR 20 ⁇ log 10 (TF1 / T1) (2)
  • the expanded dynamic range ⁇ DR is determined according to the extension period T1.
  • the amount of signal charge that can be held by Cfd is smaller than 2 ⁇ Qpdmax, the floating diffusion region 30 may be saturated during the extension period T1, so that only the light amount range until saturation can be detected. Become. Accordingly, the expanded dynamic range ⁇ DR at this time is smaller than that of the equation (2).
  • the extension period T1 can be appropriately obtained by setting the expanded dynamic range ⁇ DR so as to cover the shortage of the reference dynamic range DR with respect to the desired dynamic range.
  • TF1 is about 33 (ms) corresponding to one frame period.
  • the reference dynamic range DR at this time is about 60 (dB) in the conventional solid-state imaging device as described above.
  • the luminance distribution that humans can detect in the same visual field ranges from about 5 digits to 7 digits (dynamic range is 80 to 140 (dB)). Therefore, the extension period T1 can be determined so as to fill this difference with the expanded dynamic range ⁇ DR.
  • the extended period T1 has a dynamic range of 80 (dB) to 140 (dB) of the solid-state imaging device to which the expanded dynamic range ⁇ DR is added from the viewpoint of providing contrast detection capability equivalent to that of human vision. It is preferable to set within the range.
  • An absolute value output ( ⁇ V (FD)) proportional to the amount of light can be obtained for the range.
  • the amount of light in a range higher than L0 is set to a relative value between the pixel circuits 100 (ie, a contrast component between pixels) by the amount of signal charge additionally generated by exposure in the extension period T1 (time t3 to t4).
  • This operation corresponds to the operation of compressing the background light component signal in human vision.
  • each of the reference exposure time TF1 and the extended exposure time (extended period T1) is equivalent to performing imaging in a different light amount (light reception intensity) range, and the signal charge amount generated in each is calculated.
  • the signal charge amount generated in each is calculated.
  • the on period of the transfer gate 21 in each pixel circuit (the operation period of the transfer circuit 20) and the capacitance Cfd of the floating diffusion region 30 are inconsistent with conventional ideas.
  • the dynamic range can be expanded without complicating the configuration of the pixel circuit or the control of the pixel circuit and / or the arithmetic processing in the subsequent stage of the pixel circuit. That is, it is possible to produce a solid-state imaging device that can be mounted on a mobile device or the like and that is compatible with downsizing and a wide dynamic range at low cost.
  • the concept of extending the operation period of the transfer circuit 20 of the pixel circuit 100 over the extension period T1 is configured by the set of the transfer gate 21 and the auxiliary transfer gate 22 shown in FIG.
  • the present invention can also be applied to a transfer circuit that has been used. However, in terms of simplifying the circuit configuration and pixel control, it is more advantageous to configure the transfer circuit 20 with the transfer gate 21 alone.
  • the extension time Td is preferably determined in the same manner as the extension period T1 in the sixth embodiment.
  • the capacitance Cfd of the floating diffusion region 30 is preferably determined in the same manner as in the sixth embodiment.
  • the transfer is uniformly and unconditionally as in the sixth embodiment.
  • the exposure time can be secured in photographing at low illuminance (such as at night).
  • the solid-state imaging device according to the sixth embodiment is advantageous in that the dynamic range can be greatly expanded by the pixel circuit configuration and the control circuit configuration exactly the same as those of the conventional example.
  • the n-type conductivity type element is exemplified for all the transistors included in the pixel circuit 100.
  • the p-type element can be used by appropriately changing the transistor conductivity type. is there.
  • similar pixel control is realized by appropriately inverting the logic level (H / L) of the transfer control signal output from the pixel control circuit 200 and the connection to the power supply node 6 / ground node 5. be able to.
  • the present invention can be applied to a general solid-state imaging device having a light receiving detection element in each pixel circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 転送回路(20)は、転送制御信号(TG)に応答してオンオフする転送ゲート(21)によって、作動時に蓄積領域(15)の信号電荷をフローティングディフュージョン領域(30)へ転送する一方で非作動時に信号電荷の転送を遮断するように構成される。画素制御回路(200)は、画素回路(100)の受光レベルに応じて、受光量が所定以上のときには、受光量が所定より低いときと比較して転送回路(20)の作動期間が延長されるように、転送回路(20)を制御する。

Description

固体撮像素子およびその制御方法
 本発明は、固体撮像素子およびその制御方法に関し、より特定的には、固体撮像素子のダイナミックレンジ拡大に関するものである。
 CCD(Charge-coupled device)やCMOS(Complementary mental-oxide semiconductor)イメージャーなどの固体撮像素子は、ビデオカメラやデジタルカメラを始めとして、今や携帯電話などにも内蔵されるようになり、廉価で消費電力の少ない撮像素子として広く普及している。
 しかしながら、固体撮像素子の感知能力は、ヒトの視覚感知と比べて、大きく劣っている。ヒトの視覚では、一視野内に、4~5桁程度の輝度分布があっても、明るい所と暗い所のコントラストを十分に検知することが可能である。この優れたコントラスト感知能力は、網膜内にある受光細胞が、その光感応特性を個々の細胞毎に調整できる機能によって実現されている。
 これに対して、従来の固体撮像素子では、あるタイミングにおいて撮像される視野内に極端な輝度の差があった場合には、視野内の明るい所と暗い所で十分なコントラストを同時に得ることが困難である。すなわち、明るい所あるいは暗い所のどちらかを起点として、その対極にある輝度部分が十分なコントラストを維持するように撮像することは困難である。
 このため、特開2000-340779号公報(特許文献1)には、周辺画素への入射光量に応じて、各画素回路での受光感度範囲をシフト可能な機構を備えることによって、ダイナミックレンジを拡大した半導体撮像素子の構成が記載されている。
 また、特開2004-159274号公報(特許文献2)では、画素回路の構成については単純なものとしたままで、長時間の蓄積による低照度信号と、短時間の蓄積による高照度信号とを画素回路から取出すことにより、高照度における光電荷の飽和を防止してダイナミックレンジを広げる構成が記載されている。同様に、特開2004-363666号公報(特許文献3)には、長時間の光電荷蓄積による低照度信号と、短時間の光電荷蓄積による中照度信号と、超短時間の光電荷蓄積による高照度信号とを独立に取出すとともに、後段の信号処理でこれらの信号を組み合わせることによって、広いダイナミックレンジの撮像条件を動的に変更するダイナミックレンジの適応的制御を実現することが記載されている。
特開2000-340779号公報 特開2004-159274号公報 特開2004-363666号公報
 しかしながら、上記特許文献1に記載された構成では、各画素回路において自身の受光量を検知するための第1の光検知素子と、近傍画素での平均受光光量を検知するために他の画素回路との間で抵抗素子を介して互いに接続される第2の光検知素子との2個の光検知素子を配置する必要が生じる。このため、特にモバイル型機器等への適用で要求される画素回路の小型化が困難になるおそれがある。
 また、特許文献2および3では、画素回路は小型化できるものの、光検知素子で発生した信号電荷をフローティングディフュージョン領域へ転送するための転送ゲートの制御、および、画素回路から読出した信号の後段での処理が複雑化するおそれがある。
 すなわち、画素回路の小型化と両立させた上で、画素回路の制御あるいは画素回路後段での演算処理の複雑化をともなうことなくダイナミックレンジの拡大を図ることが困難であった。
 この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、画素回路の構成、あるいは、画素回路の制御および/または画素回路後段での演算処理を複雑化させることなく、ダイナミックレンジを拡大することが可能な固体撮像装置素子を提供することである。
 この発明による固体撮像素子は、画素回路および画素回路での信号電荷の転送を制御するための画素制御手段を備える。画素回路は、受光に応じて信号電荷を発生する光検知素子と、光検知素子によって発生された信号電荷を蓄積する蓄積領域と、フローティングディフュージョン領域と、作動時に蓄積領域の信号電荷をフローティングディフュージョン領域へ転送する一方で非作動時に転送を遮断するように構成された転送回路とを含む。画素制御手段は、画素回路の受光レベルに応じて、受光量が所定以上のときには、受光量が所定より低いときと比較して転送回路の作動期間を延長するように転送回路を制御する。
 好ましくは、画素制御手段は、転送回路を所定期間作動させるとともに、所定期間にフローティングディフュージョン領域へ転送された信号電荷量が基準より大きいときには所定期間よりも転送回路の作動を延長する一方で、転送された信号電荷量が基準以下のときには所定期間終了時に転送回路を非作動とする。
 この発明による固体撮像素子の制御方法は、上記のように構成された画素回路に対して、転送回路が非作動の状態下で光検知素子が発生した信号電荷を蓄積領域に蓄積するステップと、所定タイミングより転送回路を所定期間作動させることによって、蓄積するステップで蓄積領域に蓄積された信号電荷をフローティングディフュージョン領域へ転送するステップと、所定期間にフローティングディフュージョン領域へ転送された信号電荷量が基準より大きいときに、所定期間よりも転送回路の作動を延長することによって、所定期間以降に光検知素子が発生した信号電荷をフローティングディフュージョン領域へさらに転送するステップとを備える。
 この発明の他の局面では、固体撮像素子は、複数の画素回路と、各画素回路を制御する制御回路とを備える。各画素回路は、受光に応じて信号電荷を発生する光検知素子と、光検知素子によって発生された信号電荷を蓄積する蓄積領域と、フローティングディフュージョン領域と、作動時に蓄積領域の信号電荷をフローティングディフュージョン領域へ転送する一方で非作動に転送を遮断するように構成された転送回路とを含む。制御回路は、蓄積領域での最大信号電荷蓄積量を、転送ゲートによって蓄積領域からフローティングディフュージョン領域へ転送するのに必要である完全転送期間にわたって転送ゲートを作動させるとともに、完全転送期間の経過後にも第1の期間にわたって転送ゲートの作動を継続するように、各画素回路の転送ゲートを制御するように構成される。そして、フローティングディフュージョン領域の容量値は、最大信号電荷蓄積量を受入れるために必要な第1の容量値と、第1の期間において光検知素子が発生する信号電荷を受入れるために必要な第2の容量値との和以上である。
 この発明の他の局面では、固体撮像素子の制御方法は、上記のように構成された複数の画素回路の各々に対して、転送ゲートのオフ時に、光検知素子が発生した信号電荷を蓄積領域に蓄積するステップと、蓄積領域での最大信号電荷蓄積量を、転送ゲートによって蓄積領域からフローティングディフュージョン領域へ転送するのに必要である完全転送期間にわたって転送ゲートをオンするステップと、完全転送期間の経過後にも第1の期間にわたって転送ゲートのオンを継続することによって、オンするステップより後に光検知素子が発生した信号電荷をフローティングディフュージョン領域へ追加転送するステップとを備える。そして、フローティングディフュージョン領域の容量値は、最大信号電荷蓄積量を受入れるために必要な第1の容量値と、第1の期間において光検知素子が発生する信号電荷を受け入れるために必要な第2の容量値との和以上である。
 この発明によれば、シンプルな画素回路構成の下で、画素回路の構成、あるいは、画素回路の制御および/または画素回路後段での演算処理を複雑化させることなく、ダイナミックレンジを拡大することが可能な固体撮像装置素子を提供することができる。この結果、モバイル機器等への搭載にも対応できる小型化および広ダイナミックレンジ化が両立された固体撮像素子を低コストで作成できる。
本発明の実施の形態1による画素回路および画素制御回路の構成を示す回路図である。 図1に示した反転増幅回路の構成例を示す回路図である。 実施の形態1による画素回路および画素制御回路の制御動作を説明する波形図である。 実施の形態1による画素回路およびその制御動作を説明する概念図である。 本発明の実施の形態1による画素回路の出力特性を示す図である。 本発明の実施の形態1の変形例に従う固体撮像素子のアレイ構成を示す概念図である。 本発明の実施の形態2による画素回路および画素制御回路の構成を示す回路図である。 本発明の実施の形態2による画素回路および画素制御回路の制御動作を説明する波形図である。 本発明の実施の形態2による画素回路および画素制御回路をアレイ配置した固体撮像素子の構成例を示す概念図である。 本発明の実施の形態3による画素回路および画素制御回路の構成を示す回路図である。 実施の形態3による画素回路および画素制御回路の制御動作を説明する波形図である。 本発明の実施の形態3の変形例による画素回路および画素制御回路の構成を示す回路図である。 本発明の実施の形態4による画素回路および画素制御回路の構成を示す回路図である。 本発明の実施の形態4の変形例による画素回路および画素制御回路の構成を示す回路図である。 本発明の実施の形態5による固体撮像素子の第1の例を示す概念図である。 本発明の実施の形態5による固体撮像素子の第2の例を示す概念図である。 本発明の実施の形態6による固体撮像素子の画素回路の構成を示す回路図である。 図17に示した画素回路の従来の制御動作を説明する波形図である。 図17に示した画素回路の従来の制御動作を説明する概念図である。 実施の形態6による固体撮像素子における画素回路の制御動作を説明する波形図である。 実施の形態6による固体撮像素子における画素回路の制御動作を説明する概念図である。 実施の形態6による固体撮像素子における画素回路の出力特性を説明するための概念図である。
 以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお以下では図中のまたは同一部分には同一符号を付してその説明は繰返さないものとする。
 [実施の形態1]
 図1は、本発明の実施の形態1による画素回路および画素制御回路の構成を示す回路図である。
 図1を参照して、画素回路100は、「光検知素子」としてのフォトダイオード10と、蓄積領域15と、転送回路20と、フローティングディフュージョン領域30と、リセットスイッチ35と、「増幅器」を構成するトランジスタ40と、画素選択スイッチ50とを備える。
 フォトダイオード10は、接地電位Vssを供給する接地ノード5および転送回路20の間に設けられる。図1の例では、フォトダイオード10のアノードが接地ノード5と接続され、フォトダイオード10のカソードは、フォトダイオード10によって発生された信号電荷の蓄積領域15を構成する。すなわち図1の例では、信号電荷はカソード(n型)での多数キャリアである電子(負電荷)となる。蓄積領域15には、寄生容量等により所定の容量Cpdが存在する。一般的な画素構成では、フォトダイオード10の受光面積が、レイアウト制約の範囲内で可能な限り確保されるので、蓄積領域15の容量Cpdがある程度確保される。蓄積領域15に蓄積可能な最大信号電荷量は、容量Cpdに依存して決まる。
 転送回路20は、蓄積領域15およびフローティングディフュージョン領域30の間に接続された転送ゲート21によって構成される。転送ゲート21は、転送制御信号TGによってオンオフを制御されるトランジスタで構成される。図1の例では、転送ゲート21はn型トランジスタで構成される。
 転送ゲート21は、転送制御信号TGに応じてオンオフする。転送ゲート21のオン期間では、蓄積領域15からフローティングディフュージョン領域30へ信号電荷が転送されて、転送回路20が作動する。一方、転送ゲート21のオフ期間では、蓄積領域15からフローティングディフュージョン領域30への信号電荷の転送は停止されて、転送回路20が非作動となる。
 リセットスイッチ35は、リセット信号Rfdに応答して、フローティングディフュージョン領域30を、リセット電位としての電源電位Vddを供給する電源ノード6と電気的に接続する。すなわち、リセットスイッチ35のオンに応答して、フローティングディフュージョン領域30に存在する信号電荷(負電荷)は接地ノード5に吸い寄せられて、フローティングディフュージョン領域30に蓄積された信号電荷量はクリア(リセット)されることとなる。なお、リセット電位としては、電源電位Vddとは異なる電位を適用することも可能である。
 フローティングディフュージョン領域30についても、寄生容量等により所定の容量Cfdが存在する。フローティングディフュージョン領域30の容量Cfdは、転送ゲート21によって転送される信号電荷量の想定される最大値を受入可能な範囲内で、なるべく小さくすることが好ましい。なぜなら、容量Cfdが小さいほど、フローティングディフュージョン領域30の信号電荷量の差に対応して生じるFD電位V(FD)の差が大きくなり、検出感度が向上するからである。
 画素選択スイッチ50と、増幅器を構成するトランジスタ40とは、電源ノード6および画素回路100の出力ノードNoの間に直列に接続される。たとえば、画素選択スイッチ50は、画素選択信号SLに応答してターンオンするn型トランジスタにより構成される。画素選択スイッチ50がオンされると、電源ノード6から、トランジスタ40、画素選択スイッチ50、出力ノードNo、図示しないデータ線、および、電流源150を介して、接地ノード5へ至る経路が形成される。
 トランジスタ40のゲートは、フローティングディフュージョン領域30と接続される。この結果、画素選択スイッチ50のオン期間では、トランジスタ40は、いわゆるソースフォロアアンプとして動作し、フローティングディフュージョン領域30の電位に応じた電位の電気信号を発生する。この電気信号は、画素選択スイッチ50を介して、出力ノードNoへ出力される。すなわち、トランジスタ40によって構成される「増幅器」が出力する電気信号は、ターンオンされた画素選択スイッチ50を介して、出力ノードNoから取出すことが可能となる。
 なお、本実施の形態において、電源電位Vddおよび接地電位Vssは、Vdd>Vssの関係にあり、かつ、(Vdd-Vss)の電位差により回路動作に必要なバイアスを与えることが可能であれば、それぞれ任意の電位に設定できる。すなわち、接地電位Vssについても、接地電位以外の任意の電位(負電位でも可)に設定することが可能であることを確認的に記載する。
 画素制御回路200は、フローティングディフュージョン領域30の電位をフィードバックするための経路205と、フローティングディフュージョン領域30の電位に応じた信号を発生する反転増幅回路210と、タイマー回路220と、パルス発生器230とを含む。
 図2は、反転増幅回路210の回路構成を示す図である。
 図2を参照して、反転増幅回路210は、接地ノード5および電源ノード6の間に直列に接続された,トランジスタ212および214を含む。トランジスタ212のゲートは電源ノード6と接続されるので、トランジスタ212は抵抗素子として機能する。したがって、反転増幅回路210は、トランジスタ214のゲートと接続された入力ノードN1の電位が、トランジスタ214のしきい値電圧に対応する所定電位を超えたときには、接地電位Vss(論理ローレベル、以下単に「Lレベル」と表記する)の信号を出力ノードN2へ出力する。一方、反転増幅回路210は、入力ノードN1の電位が所定電位よりも低いときには、出力ノードN2に電源電位Vdd(論理ハイレベル、以下単に「Hレベル」とも称する)の信号をノードN2に出力する。入力ノードN1は、図1に示したフィードバック経路205と接続される。出力ノードN2は、図1に示したパルス発生器230と接続される。
 再び図1を参照して、反転増幅回路210は、フローティングディフュージョン領域30の電位(以下、FD電位とも称する)V(FD)が基準電位よりも低いときにはHレベルの信号を出力する一方で、FD電位V(FD)が当該基準電位以上のときにはLレベルの信号を出力するように動作する。
 FD電位V(FD)は、電源電位Vddにリセットされた後、信号電荷の蓄積量が大きくなるに従って低下するので、FD電位V(FD)は、画素回路100の受光量大のときに相対的に低くなる一方で、受光量小のときに相対的に高くなる。したがって、反転増幅回路210の設計(トランジスタ214のしきい値電圧)によって、フローティングディフュージョン領域30の信号電荷量が基準より大きいときにHレベルの信号を出力し、信号電荷量が基準以下のときにLレベルの信号を出力するように、反転増幅回路210を構成することができる。
 タイマー回路220は、転送回路20の本来の動作期間を定めるための転送制御基準信号TG0に基づいて、転送制御基準信号TG0の発生から所定期間オンするように設定された制御信号TG1を発生する。パルス発生器230は、信号TG0,TG1および反転増幅回路210の出力信号、すなわち、フローティングディフュージョン領域30の信号電荷量が基準より大きいか否かを示す信号を受けて、転送ゲート21のゲートに与えられる転送制御信号TGを生成する。
 なお、反転増幅回路210については、パルス発生器230の内部に設けてもよい。すなわち、パルス発生器230に対してFD電位V(FD)を直接入力するとともに、パルス発生器230の内部で、FD電位V(FD)が基準電位より低いか否か、言い換えれば、フローティングディフュージョン領域30の信号電荷量が基準より大きいか否かを示す信号を発生する構成とすることも可能である。
 次に図3および図4を用いて画素回路100および画素制御回路200の動作について説明する。
 図3を参照して、時刻t1にリセット信号Rfdが発生されて、リセットスイッチ35がターンオンされる。これにより、FD電位V(FD)が電源電位Vddにリセットされる。この状態では、図4(a)に示すように、フローティングディフュージョン領域30には信号電荷は存在しないことになる。そして、転送ゲート21がオフ(転送回路20が非作動)されているため、蓄積領域15およびフローティングディフュージョン領域30の間にはポテンシャル障壁が存在することとなり、蓄積領域15の信号電荷が存在しても、フローティングディフュージョン領域30へは転送されない。
 再び図3を参照して、画素回路100の受光に応じてフォトダイオード10が発生した信号電荷が、蓄積領域15に蓄積される。そして、転送制御基準信号TG0が発生される時刻t2の直前では、図4(b)に示されるように、これまで発生された画素回路100の受光量に応じた量の信号電荷90が、蓄積領域15に蓄積された状態となる。
 再び図3を参照して、転送制御基準信号TG0は、時刻t2~t3の間、転送ゲート21をオンするように設定される。これにより、図4(c)に示されるように、転送回路20の作動によって蓄積領域15およびフローティングディフュージョン領域30の間のポテンシャル障壁が低下するのに伴って、時刻t2までに蓄積領域15に蓄積された信号電荷が、フローティングディフュージョン領域30へ転送される。なお、時刻t2~t3の期間長(転送制御基準信号TG0の設定期間)は、一般的な画素回路での制御と同様に、時刻t2までに蓄積領域15に蓄積された信号電荷を転送するのに必要最小限な時間に対応させて設定されることが一般的である。
 図3に示されるように、フローティングディフュージョン領域30への信号電荷の転送に従って、FD電位V(FD)が変化する。画素回路100の受光量が大きいほど、すなわち、転送される信号電荷量が多いほど、FD電位V(FD)の低下が大きくなる。
 本実施の形態では、画素制御回路200は、画素回路100の受光レベルに応じて、具体的には、受光量が所定以上のときには、受光量が所定より低いときと比較して、時刻t3以降で転送回路20の作動期間が延長されるように、転送制御信号TGを生成する。すなわち、パルス発生器230(図1)は、時刻t3でのFD電位V(FD)に応じて、転送ゲート21のオン期間が変化するように転送制御信号TGを生成する。
 パルス発生器230は、時刻t3でのFD電位V(FD)が基準電位以上であり、フローティングディフュージョン領域30の信号電荷量が基準以下であるときには、転送制御基準信号TG0と同様に、転送制御信号TGを生成する。この結果、転送ゲート21は時刻t3にターンオフされて、転送回路20は、本来の動作期間である時刻t2~t3以降では非作動とされる。このようにすると、図4(d)に示されるように、時刻t3以降では、転送回路20によるポテンシャル障壁が再び上昇するので、蓄積領域15からフローティングディフュージョン領域30への信号電荷の転送は停止される。このとき、図3に示されるように、時刻t3以降において、FD電位V(FD)は、時刻t3での電位に維持される。そして、時刻t5に画素選択信号SLによって画素選択スイッチ50(図1)がオンされるのに伴って、FD電位V(FD)に応じた出力電位Voutが、出力ノードNoから読出される。
 一方、パルス発生器230は、時刻t3でのFD電位V(FD)が基準電位より低く、フローティングディフュージョン領域30の信号電荷量が基準より大きいときには、転送ゲート21のオン期間が延長されるように、転送制御信号TGを生成する。具体的には、タイマー回路220(図1)によって設定される延長時間Tdだけ、転送ゲート21のオン期間が延長されるように、すなわち、制御信号TG1のHレベル期間中は転送ゲート21のオンが維持されるように、転送制御信号TGが生成される。
 パルス発生器230は、たとえば、時刻t3でのFD電位V(FD)と基準電位との比較結果を示す信号(図1の反転増幅回路210の出力信号)、転送制御基準信号TG0および、制御信号TG1を入力とするフリップフロップおよび/または論理ゲートの組合せによって、任意に設計することができる。あるいは、上述のように、FD電位V(FD)をパルス発生器230へ直接入力して、パルス発生器230の内部でFD電位V(FD)と基準電位との比較結果を示す信号を発生してもよい。
 この結果、画素回路100の受光量が基準より大きいときには、転送ゲート21のオン期間(転送回路20の作動期間)が延長されるので、図4(e)に示されるように、時刻t3~t4での受光によってフォトダイオード10が新たに発生した信号電荷90♯についても、フローティングディフュージョン領域30へ転送され、蓄積される。この結果、図3に示されるように、時刻t3以降においても、FD電位V(FD)はさらに低下する。本実施の形態による画素回路100では、フローティングディフュージョン領域30の容量Cfdは、転送ゲート21のオン期間(転送回路20の作動期間)の延長による追加的な信号電荷量を受入るために、通常よりも大きい値に設計される。そして、図4(f)に示されるように、時刻t3から延長時間Tdが経過した時刻t4において、転送回路20によるポテンシャル障壁が再び上昇するので、蓄積領域15からフローティングディフュージョン領域30への信号電荷の転送は停止される。
 そして、時刻t5に画素選択信号SLによって画素選択スイッチ50(図1)がオンされるのに伴って、FD電位V(FD)に応じた出力電位Voutが、出力ノードNoから読出される。なお、画素選択スイッチ50のオン期間は、上記の読出タイミング(時刻t5)を含む限り、任意に設定できる。たとえば、時刻t2前から、次のリセットタイミング(時刻t1)の直前まで画素選択スイッチ50のオンが維持されるように、画素選択信号SLを生成することも可能である。
 この結果、実施の形態1による画素制御によれば、画素回路100の受光特性は、図5に示すようになる。図5の横軸には画素回路100の受光量(入射光量)が示され、縦軸には、出力電位Voutに基づいて生成される画素出力信号OUTが示される。
 画素出力信号OUTは、出力電位Voutとは逆に、受光量が大きいほど値が高くなる信号として示される。すなわち、画素回路100の受光量が零でFD電位V(FD)がリセット電位から変化することなく、出力電位Vout=Vddのときには画素出力信号OUTは最小値(0)である。反対に、画素回路100の受光量が限界を超えることにより、フローティングディフュージョン領域30の信号電荷が飽和して、出力電位Vout=Vddのときには画素出力信号OUTは最大値となる。
 図5中の基準光量Lrは、転送ゲート21のオン期間、すなわち転送回路20の作動期間を延長するか否かのしきい値を示す基準値である。この基準光量Lrだけ信号電荷がフローティングディフュージョン領域30に蓄積されたときのFD電位V(FD)が、上述したFD電位V(FD)の基準電位に相当する。
 光量が基準光量Lr以下のときには、画素回路100は、通常動作に従い、時刻t2(図2)までに蓄積された信号電荷量に応じた画素出力信号OUTが得られる。すなわち、このような低照度領域では、受光量に対する画素出力信号OUTの変化特性すなわち受光感度特性を、従来通りシャープに確保できる。
 一方で、光量が基準光量Lrよりも大きいときには、延長された転送回路20の作動期間(転送ゲート21のオン期間)における、フォトダイオード10が発生した信号電荷量をさらに反映した画素出力信号OUTを生成できる。この結果、フローティングディフュージョン領域30の容量Cfdが通常値(すなわち、本実施の形態の画素回路100でのCfdよりも小さい)であり、かつ、時刻t2までに蓄積領域15に蓄積された信号電荷量のみに基づいて画素出力信号OUTを生成する従来の画素制御(図5中の点線)と比較して、高照度領域における、光量変化に対する画素出力信号OUTの変化割合を高めることができる。
 この結果、高照度領域におけるコントラスト検知能力が高くなるので、画素回路100のダイナミックレンジを拡大できる。特に、基準光量Lrを適切に設定することによって、規定の低照度領域(<Lr)での受光感度特性の感度特性を従来と同様に確保した上で、高照度領域におけるダイナミックレンジを拡大できる。また、以上の説明から理解されるように、画素回路100によって達成されるダイナミックレンジは、延長時間Tdに依存して変化する。言い換えれば、本実施の形態による画素回路の制御によれば、所望のダイナミックレンジに対応させて、必要な延長時間Tdを一意に設計することができる。
 特に、実施の形態1による画素制御では、画素回路に特別な構成要素を追加することなく、転送ゲート21のオン期間(転送回路20の作動期間)の延長有無を制御するのみで、上述のダイナミックレンジ拡大を実現できる。したがって、本実施の形態に従う画素回路100および画素制御回路200を搭載した固体撮像素子によれば、画素回路の小型化と両立させて、画素制御(画素回路の制御)あるいは画素回路後段での演算処理を複雑化させることなく、ダイナミックレンジを拡大することができる。この結果、モバイル機器等への搭載にも対応できる小型化および広ダイナミックレンジ化が両立された固体撮像素子を、低コストで製作できる。
 [実施の形態1の変形例]
 実施の形態1では、単一の画素回路およびその制御について説明したが、実際には、複数の画素回路100がアレイ上に配置された固体撮像素子への適用が本発明の主眼である。また、画素制御回路200(図1)については、タイマー回路220やパルス発生器230等の構成要素が存在するため、ある程度の回路面積を必要とする。したがって、実施の形態1の変形例では、実施の形態1による画素回路100および画素制御回路200を用いた固体撮像素子の効率的な構成例について説明する。
 図6を参照して、本発明の実施の形態1の変形例に従う固体撮像素子では、図1に示した画素回路100が行列状に配置された画素アレイ105が構成される。当該画素アレイにおいて、画素行は垂直走査により順次選択でき、画素列は水平走査により順次選択できる。なお、基本的には、画素アレイ105内の全ての画素回路100が、実施の形態1による画素制御の適用を受けるものとして説明するが、画素アレイ105を構成する画素のうちの一部の画素のみに対して、実施の形態1による画素制御を適用することも可能である。
 たとえば、垂直走査により、複数の画素行のうちの1つの行が走査対象に選ばれると、当該走査行の画素回路から、画素列ごとに設けられたデータ線110に対して出力電位Voutが出力される。上述のように、各画素回路100とデータ線110との接続は、画素選択スイッチ50(図1)によって制御することができる。
 画素制御回路200(図1)は、画素列ごとに配置される。そして、各画素列において、画素制御回路200と各画素回路100との間には、選択スイッチ250および255が配置される。選択スイッチ250は、画素制御回路200と対応の画素回路100の転送回路20との間に介挿接続される。また、選択スイッチ255は、画素制御回路200と対応の画素回路100のフィードバック経路205との間に介挿接続される。
 固体撮像素子では、垂直走査および/または水平走査に応じて、各画素回路100が順次制御されるので、各画素列において選択スイッチ250および255のオンオフを制御することによって、同一列の複数個の画素回路100のうちの1個の画素回路を選択的に画素制御回路200と接続できる。これにより、同一の画素列に属する複数の画素回路100により、単一の画素制御回路200を共有することができる。すなわち、各画素回路100について、図3に示したシーケンスに従って実施の形態1による画素制御を適用することができる。
 このような構成とすると、画素制御回路200の配置個数を抑止して回路面積を抑制できるとともに、画素アレイ外に画素制御回路200を配置することによって、画素アレイの面積を縮小できる。これによって、モバイル機器への搭載に適した、小型の撮像素子をより容易に構成できるようになる。
 なお、実施の形態1の変形例では、画素列ごとに1個の画素制御回路200を配置するとともに、同一画素列内の画素回路100によって共通の画素制御回路200を共有する構成例を示したが、これ以外の構成によって画素制御回路200を共有することも可能である。たとえば、画素例以外の他のグループ毎に共通の画素制御回路200を配置するとともに、当該グループに属する複数個の画素回路100と画素制御回路200との間に選択スイッチ250,255を適宜配置してもよい。あるいは、各画素列をさらに複数のグループに分割して、グループ毎に共通の画素制御回路200を配置してもよい。すなわち、画素制御回路200を共有する画素回路100のグループについては、任意に設定することが可能である点について、確認的に記載する。
 [実施の形態2]
 実施の形態2では、フローティングディフュージョン領域30の電位V(FD)を直接フィードバックした実施の形態1の構成をアレンジして、FD電位V(FD)を増幅した電気信号のフィードバックに基づいて、転送ゲート21のオン期間(転送回路20の作動期間)を制御する構成について説明する。
 図7には、本発明の実施の形態2による画素回路および画素制御回路の構成を示す回路図が示される。
 図7を図1と比較して、実施の形態2では、画素回路100の出力ノードNoがフィードバック経路205によって画素制御回路200と接続される。実施の形態1でも説明したように、画素選択スイッチ50のオン期間には、ソースフォロアアンプとして作動するトランジスタ40によって、フローティングディフュージョン領域30の電位V(FD)に応じた出力電位Voutが出力ノードNoに生成される。そして、出力電位Voutがフィードバック経路205によって、画素制御回路200へ伝達される。
 出力電位Voutは、トランジスタ40によって既に増幅された電位であるので、反転増幅回路210を設ける必要性は低下する。すなわち、パルス発生器230内にインバータ等を配置することによって、FD電位V(FD)と基準電位との比較結果を示す信号を、出力電位Voutに基づいて発生することができる。なお、トランジスタ40および画素選択スイッチ50の接続点に対してフィードバック経路205を設けても、同様に出力電位Voutをフィードバックすることが可能である。図7に示したその他の回路構成は、図1と同様であるのでその詳細な説明は繰返さない。
 図8は、図7に示した実施の形態2による画素回路の制御動作を説明する動作波形図である。
 図8を図3と比較して、実施の形態2による画素制御では、時刻t3以前の一定期間においても、画素選択スイッチ50をオンさせて、出力ノードNoを電流源150により駆動することによって出力電位Voutが発生される期間を設ける必要がある。これにより、実施の形態1と同様に、時刻t3でのFD電位V(FD)と基準電位との比較(受光量と基準光量Lr:図5との比較に相当)を等価的に実行できる。
 図8の例では、画素選択信号SLを、転送制御基準信号TG0と同様の期間(時刻t2~t3)Hレベルに設定することによって、画素選択スイッチ50をオンさせている。このようにすると、出力電位Voutのフィードバックによって、図3と同様に転送制御基準信号TG0を生成することができる。
 なお、画素制御上は、時刻t3での出力電位Voutのフィードバック、および時刻t5での画素回路100からの出力電位Voutの読出にそれぞれに対応させて、画素選択スイッチ50のオン期間を設けることが、最低限必要である。ただし、図3でも述べたように、上記の最低限期間を含む限り、画素選択スイッチ50のオン期間は任意に設定できる。たとえば、時刻t2前から、次のリセットタイミング(時刻t1)の直前まで画素選択スイッチ50のオンが維持されるように、画素選択信号SLを生成することも可能である。
 画素制御のその他の動作については、実施の形態1(図3)と同様であるので、詳細な説明は繰り返さない。
 したがって、実施の形態2による画素回路100および画素制御回路200(図7)によれば、FD電位V(FD)に代えて出力電位Voutをフィードバックすることによって、実施の形態1と同様の画素制御を実現できる。すなわち、画素回路の小型化を維持した上で、低照度領域での受光感度特性の維持および高照度領域でのダイナミックレンジの拡大を両立した画素制御を実現できる。
 特に、実施の形態2による構成では、フローティングディフュージョン領域30を画素回路100の外部と接続することが回避できるため、フィードバック経路205の形成によって、フローティングディフュージョン領域30の容量Cfdが影響を受けることがない。したがって、画素回路100のFD容量(Cfd)に画素間でばらつきが生じることを防止して、画素回路100の特性ばらつきを抑制することが可能となる。
 [実施の形態2の変形例]
 図9は、実施の形態2による画素回路および画素制御回路をアレイ配置した固体撮像素子の構成例を示す概念図である。
 図9を参照して、図6に示した実施の形態1の変形例と同様に、図7に示した画素回路100が行列状に配置された画素アレイ105が構成されるとともに、画素制御回路200(図7)は、画素列ごとに配置される。なお、実施の形態1の変形例と同様に、基本的には、画素アレイの各画素回路100が、実施の形態1による画素制御の適用を受けるものとして説明するが、画素アレイを構成する画素のうちの一部の画素のみに対して、実施の形態1による画素制御を適用することも可能である。
 実施の形態2による画素制御では、出力電位Voutを画素制御回路200へフィードバックすることが必要であるが、出力電位Voutは、画素回路100での画素選択スイッチ50(図7)のオンによってデータ線110に出力される。このため、実施の形態2の変形例では、画素列ごとのデータ線110と画素制御回路200とを接続すれば、図6のような選択スイッチ255を画素回路100ごとに設けることなく、フィードバック経路205を、走査行の画素回路100との間で選択的に形成できる。
 一方で、画素制御回路200と各画素回路100の間には、図6と同様の選択スイッチ250が配置される。そして、各画素列において選択スイッチ250のオンオフを適切なタイミングで制御することによって、同一列の複数個の画素回路100のうちの1個の画素回路を選択的に画素制御回路200と接続できる。同一の画素列に属する複数の画素回路100により、単一の画素制御回路200を共有した上で、各画素回路100について、図8に示したシーケンスに従って実施の形態2による画素制御を適用することができる。
 このように、実施の形態2による画素回路100および画素制御回路200についても、実施の形態1と同様に、アレイ状に配置した複数の画素回路100と、画素列毎に共有される画素制御回路200のアレイ外への配置とによって、モバイル機器への搭載に適した小型の撮像素子をより容易に構成できるようになる。特に、実施の形態2による変形例では、画素制御回路200と各画素回路100の間を配置するスイッチ素子の個数が実施の形態1の変形例と比較して減少するので、固体撮像素子の小型化にさらに寄与することができる。
 なお、実施の形態2の変形例でも、画素列ごとに1個の画素制御回路200を配置するとともに、同一画素列内の画素回路100によって共通の画素制御回路200を共有する構成例を示したが、実施の形態1の変形例でも述べた様に、これ以外の構成によって画素制御回路200を共有することも可能である。すなわち、画素制御回路200を共有する画素回路100のグループについては、任意に設定することが可能である。
 [実施の形態3]
 実施の形態3では、画素回路構成のさらなるバリエーションについて説明する。
 図10を参照して、実施の形態3による画素回路100は、図1に示した画素回路100と比較して、転送回路20の構成が異なる。具体的には、実施の形態3においては、転送回路20は、蓄積領域15およびフローティングディフュージョン領域30の間に並列に接続された、転送ゲート21および補助転送ゲート22を含む。画素回路100のその他の回路構成は図1と同様であるので詳細な説明は繰返さない。
 画素制御回路200は、実施の形態1と同様に、フローティングディフュージョン領域30に設けられたフィードバック経路205からのFD電位V(FD)および転送制御基準信号TG0に応答して、補助転送ゲート22のオンオフを制御する転送制御信号TG♯を生成する。一方、転送ゲート21のゲートには、転送制御基準信号TG0がそのまま与えられる。
 図11を参照して、転送制御信号TG♯は、転送制御基準信号TG0と、タイマー回路220(延長時間Td)による制御信号TG1と、FD電位V(FD)と基準電位との比較結果(たとえば、反転増幅回路210の出力信号)とに基づいて、画素回路100の受光量が大きい場合には、時刻t3~t4の期間で補助転送ゲート22をオンするように設定される一方で、画素回路100の受光量が小さいときには補助転送ゲート22をオフに維持するように設定される。
 転送制御基準信号TG0および転送制御信号TG♯にそれぞれ応答させて転送ゲート21および補助転送ゲート22をオンオフさせることにより、実施の形態1と同様に転送回路20を作動させることができる。
 すなわち、時刻t2~t3においては転送ゲート21のオンにより転送回路20を作動することによって、それまでに蓄積領域15に蓄積された信号電荷をフローティングディフュージョン領域30へ転送することができる。さらに、時刻t3~t4においては、FD電位V(FD)に応じて、補助転送ゲート22のオンオフが制御されて、受光量が大きいときには転送回路20が作動する一方で、受光量が小さいときには転送回路20が非作動とされる。この結果、転送回路20による蓄積領域15からフローティングディフュージョン領域30への電荷転送動作は、実施の形態1と同様となる。また、画素選択信号SLについても、実施の形態1(図3)で説明したのと同様に生成される。
 したがって、上述したような実施の形態3による画素回路および画素制御回路によっても、画素回路の追加回路要素を最小限に抑えた上で、実施の形態1と同様に、画素制御(画素回路の制御)あるいは画素回路後段での演算処理を複雑化させることなく、ダイナミックレンジを拡大することができる。
 なお図10に示した、実施の形態3による画素回路100および画素制御回路200については、図6に示した実施の形態1の変形例と同様に、アレイ状に配置した複数の画素回路100と、画素列(所定グループ)毎に共有される画素制御回路200のアレイ外への配置とによって、モバイル機器への搭載に適した小型の撮像素子をより容易に構成できるようになる。
 ただし、実施の形態3による画素制御では、転送制御基準信号TG0および転送制御信号TG♯のそれぞれについて、画素制御回路200から各画素回路100への転送を制御する必要がある。したがって、各画素回路100に対して、図6に示した選択スイッチ250については、転送ゲート21および補助転送ゲート22のそれぞれに対応させて独立に配置する必要が生じる。
 [実施の形態3の変形例]
 図12は、本発明の実施の形態3の変形例による画素回路および画素制御回路の構成を示す回路図である。
 図12を図10と比較して、実施の形態3の変形例においては、実施の形態3と同様の構成の画素回路100について、実施の形態2と同様に、フィードバック経路205が出力ノードNoと画素制御回路200との間に設けられる。
 画素制御回路200は、画素回路100の受光量が基準以上か否かを判断するためのFD電位V(FD)と基準電位との比較について、直接FD電位V(FD)を用いるのではなく、FD電位を増幅した出力電位Voutを用いる以外は、実施の形態3(図10)と同様に転送制御基準信号TG0および転送制御信号TG♯を生成する。なお、図12の構成でも、トランジスタ40および画素選択スイッチ50の接続点に対してフィードバック経路205を設けることが可能である。その他の構成については、実施の形態3と同様であるので詳細な説明は繰返さない。
 このような構成とすると、実施の形態3と同様に転送ゲート21および補助転送ゲート22の並列接続によって構成された転送回路20を設けた画素回路100において、実施の形態2と同様に、増幅器(ソースフォロアアンプ)を構成するトランジスタ40によって増幅された出力電位Voutを用いた画素制御を実現できる。
 この結果、実施の形態3の変形例に従う画素回路100および画素制御回路200を備えた固体撮像素子において、実施の形態2と同様の効果をさらに享受することができる。
 なお、図12に示した、実施の形態3の変形例による画素回路100および画素制御回路200については、図9に示した実施の形態2の変形例と同様に、アレイ状に配置した複数の画素回路100と、画素列(所定グループ)毎に共有される画素制御回路200のアレイ外への配置とによって、モバイル機器への搭載に適した小型の撮像素子をより容易に構成できるようになる。
 ただし、実施の形態3と同様に、転送制御基準信号TG0および転送制御信号TG♯のそれぞれについて、画素制御回路200から各画素回路100への転送を制御する必要があるので、各画素回路100に対して、図9に示した選択スイッチ250については、転送ゲート21および補助転送ゲート22のそれぞれに対応させて独立に配置する必要が生じる。
 [実施の形態4]
 図13は、実施の形態4による画素回路100および画素制御回路200の構成を示す回路図である。
 図13を図1と比較して、実施の形態4に従う画素回路100では、転送回路20が、デュアルゲートトランジスタ23によって構成される点が異なる。画素回路100のその他の部分の構成は実施の形態1(図1)と同様であるので詳細な説明は繰返さない。
 そして、画素制御回路200は、実施の形態3(図10)と同様に構成されて、図11に示した転送制御基準信号TG0および転送制御信号TG♯が転送回路20へ与えられる。
 デュアルゲートトランジスタ23は、通常ゲートGおよび制御ゲートCGを有し、通常ゲートGおよび制御ゲートCGの電位に応じて、蓄積領域15からフローティングディフュージョン領域30への電荷転送の実行/停止を制御する。具体的には、n型で構成されたデュアルゲートトランジスタ23は、通常ゲートGおよび制御ゲートCGの少なくとも一方がオン電位(n型トランジスタではHレベル:Vdd)とされることによって導通して、蓄積領域15からフローティングディフュージョン領域30へ信号電荷を転送する。一方で、通常ゲートGおよび制御ゲートCGの両方がオン電位とされない場合には、蓄積領域15からフローティングディフュージョン領域30への信号電荷の転送は停止される。
 たとえば、デュアルゲートトランジスタ23としては、通常ゲートGと重なるように作製された制御ゲートCGの電位に応じて、チャネルに形成される電界を変調することによりトランジスタの利得係数を制御するように構成された、国際公開WO02/059979号公報(あるいは、特開2002-222944号公報)や、特開2005-012002号公報に記載された、利得係数βを調整可能な半導体素子を用いることができる。
 図13のように転送回路20を構成しても、図10に示した転送制御基準信号TG0のHレベル期間および転送制御信号TG♯のHレベル期間の両方において、デュアルゲートトランジスタ23をターンオンさせることによって、蓄積領域15からフローティングディフュージョン領域30へ信号電荷を転送できる。すなわち、実施の形態1と同様に、転送回路20を作動させることができる。
 この結果、実施の形態4による画素回路100および画素制御回路200によっても、実施の形態1と同様に、画素回路の小型化と両立させて、画素制御(画素回路の制御)あるいは画素回路後段での演算処理を複雑化させることなく、ダイナミックレンジを拡大することができる。
 なお、図13に示した、実施の形態4による画素回路100および画素制御回路200については、図6に示した実施の形態1の変形例と同様に、アレイ状に配置した複数の画素回路100と、画素列(所定グループ)毎に共有される画素制御回路200のアレイ外への配置とによって、モバイル機器への搭載に適した小型の撮像素子をより容易に構成できるようになる。
 ただし、実施の形態4による画素制御においても、転送制御基準信号TG0および転送制御信号TG♯のそれぞれについて、画素制御回路200から各画素回路100への転送を制御する必要がある。したがって、実施の形態3と同様に、各画素回路100に対して、図6に示した選択スイッチ250については、転送ゲート21および補助転送ゲート22のそれぞれに対応させて独立に配置する必要が生じる。
 [実施の形態4の変形例]
 図14は、本発明の実施の形態4の変形例による画素回路および画素制御回路の構成を示す回路図である。
 図14を図13と比較して、実施の形態4の変形例においては、実施の形態3と同様の構成の画素回路100について、実施の形態2と同様に、フィードバック経路205が出力ノードNoと画素制御回路200との間に設けられる。
 画素制御回路200は、画素回路100の受光量が基準以上か否かを判断するための、FD電位V(FD)と基準電位との比較について、直接FD電位V(FD)を用いるのではなく、FD電位を増幅した出力電位Voutを用いる。そして、実施の形態4(図12)と同様の転送制御基準信号TG0および転送制御信号TG♯を生成する。なお、図7でも説明したように、トランジスタ40および画素選択スイッチ50の接続点に対してフィードバック経路205を設けても、同様に出力電位Voutをフィードバックすることが可能である。その他の構成については、実施の形態4と同様であるので詳細な説明は繰返さない。
 このような構成とすると、実施の形態4と同様にデュアルゲートトランジスタ23によって構成された転送回路20を設けた画素回路100において、実施の形態2と同様に、増幅器(ソースフォロアアンプ)を構成するトランジスタ40によって増幅された出力電位Voutを用いた画素制御を実現できる。
 この結果、実施の形態4の変形例による画素回路100および画素制御回路200を備えた固体撮像素子において、実施の形態2と同様の効果をさらに享受することができる。
 なお図14に示した、実施の形態4の変形例による画素回路100および画素制御回路200については、図9に示した実施の形態2の変形例と同様に、アレイ状に配置した複数の画素回路100と、画素列(所定グループ)毎に共有される画素制御回路200のアレイ外への配置とによって、モバイル機器への搭載に適した小型の撮像素子をより容易に構成できるようになる。
 ただし、実施の形態4の変形例による画素制御においても、転送制御基準信号TG0および転送制御信号TG♯のそれぞれについて、画素制御回路200から各画素回路100への転送を制御する必要がある。したがって、実施の形態4と同様に、各画素回路100に対して、図6に示した選択スイッチ250については、転送ゲート21および補助転送ゲート22のそれぞれに対応させて独立に配置する必要が生じる。
 実施の形態1~4およびそれらの変形例では、転送回路20の本来の作動期間(図3での時刻t2~t3)の終了時点でのFD電位に基づいて、画素回路100の受光量と基準光量とを比較したが、この手法以外によって、画素回路100の受光量レベルを判断するとともに、その判断結果に従って転送回路20の作動期間の延長要否を制御する構成としてもよい。
 [実施の形態5]
 実施の形態1~4およびそれらの変形例では、画素回路ごとに転送回路20の作動期間の延長要否を制御する構成を説明した。
 実施の形態5では、複数の画素回路全体(すなわち、図6,9の画素アレイ105)での受光レベルに応じて、各画素回路で共通に、転送回路20の作動期間の延長要否を制御する構成について説明する。すなわち、実施の形態5は、図6および図9に示したような、実施の形態1~4およびそれらの変形例に従う画素回路100が複数個配置された固体撮像素子に向けられたものである。
 図15は、本発明の実施の形態5による固体撮像素子の第1の例を示す概念図である。
 図15を参照して、実施の形態5の第1の例による固体撮像素子は、図6に示した固体撮像素子と比較して、画素制御回路200に代えて画素制御回路201を備える点で異なる。また、画素回路100中の転送回路20については、図1(転送ゲート21単体)、図10(転送ゲート21および補助転送ゲート22)、および、図13(デュアルゲートトランジスタ23)に示したいずれの構成を適用してもよい。なお、図示は省略するが、各画素回路100においてフィードバック経路205が不要となるので削除される。
 画素制御回路201は、画素制御回路200と比較して、レベル判断部202を含む点が異なる。レベル判断部202は、各画素回路100からの出力信号に基づいて、複数の画素回路100全体での受光レベルが所定以上であるか否かを判断する。たとえば、各画素回路100からの出力信号の総和や平均値と所定の閾値との比較によって、この判断を実現することができる。
 なお、図15では、画素制御回路201毎にレベル判断部202を表記しているが、実際には、単一のレベル判断部202が、画素アレイ105内の複数の画素回路100全体で共有される構成とすることが合理的である。
 画素制御回路201では、画素制御回路200でのフィードバック経路205に対してレベル判断部202での判断結果を示す信号が入力される構成となる。
 したがって、図1に示した構成の各画素回路100が配置された画素アレイ105では、画素回路全体での受光レベルが所定以上であるときには、各画素回路100に対して、制御信号TG1に従って転送制御信号TGが出力される。一方で、画素回路全体での受光レベルが所定より低いときには、各画素回路100に対して転送基準信号TG0に従って転送制御信号TGが出力される。
 また、図10または図13に示した構成の各画素回路100が配置された画素アレイ105では、画素回路全体での受光レベルが所定以上であるときには、各画素回路100に対して、転送制御信号TG♯は、図11の時刻t3~t4に対応する期間でHレベルとなるように設定される。一方で、画素回路全体での受光レベルが所定より低いときには、各画素回路100に対して、転送制御信号TG♯はLレベルに固定される。
 図16は、本発明の実施の形態5による固体撮像素子の第2の例を示す概念図である。
 図16を参照して、実施の形態5の第2の例による固体撮像素子は、図15に示した第1の例と比較して、操作スイッチ203がさらに設けられる点で異なる。
 操作スイッチ203は、ユーザがダイナミックレンジ拡大の要否を選択する指示を入力するために設けられる。レベル判断部202は、操作スイッチ203への入力に基づいて、複数の画素回路100全体での受光レベルが所定以上であるか否かを判断する。
 たとえば、操作スイッチ203が夜間撮影時に操作するための入力端として設けられた場合には、レベル判断部202は、操作スイッチ203が操作されたときに画素回路全体での受光レベルが所定より低いと判断する一方で、操作スイッチ203が操作されないときに画素回路全体での受光レベルが所定以上であると判断することができる。これとは反対に、操作スイッチ203は、光量レベルが高い状況での撮像時に操作するための入力端として設けることも可能である。
 画素回路全体での受光レベルが所定以上あるか否かの判断に従った、画素制御回路201による転送制御信号TG(またはTG♯)の生成については、図15で説明したのと同様であるので説明は繰り返さない。
 なお、図15では、画素制御回路201毎にレベル判断部202および操作スイッチ203を表記しているが、実際には、レベル判断部202および操作スイッチ203は、画素アレイ105内の複数の画素回路100全体で共有されるように1個ずつ配置される構成とすることが合理的である。
 以上のように、実施の形態5による固体撮像素子では、たとえば、夜間撮像と晴天時の昼間撮像との相違等、受光レベルに大差がある撮像場面のそれぞれに対応するべく、各画素回路で共通にダイナミックレンジを拡大するか否かを選択した撮像を行うことができる。特に、画素回路毎にフィードバック構成を配置する必要がないので、制御構成を簡略化した上で上記のような撮像を行うことができる。
 [実施の形態6]
 実施の形態1~5およびそれらの変形例では、転送回路20の作動期間の延長要否を制御する構成について説明した。実施の形態6では、転送回路20の作動期間についての検討をさらに進めて、従来の発想とは異なる作動期間長の設定によって、ダイナミックレンジの拡大が実現できることを説明する。
 すなわち、以下に説明する実施の形態6による固体撮像素子では、複数個の画素回路100の各々において転送回路20の作動期間は、共通かつ固定的に設定される。
 図17は、本発明の実施の形態6による固体撮像素子の画素回路の構成を示す回路図である。
 図17に示された画素回路100は、図1に示した画素回路100と比較して、フィードバック経路205が削除される点で異なる。画素回路100の構成そのものは一般的であり、「光検知素子」としてのフォトダイオード10と、蓄積領域15と、転送回路20と、フローティングディフュージョン領域30と、リセットスイッチ35と、「増幅器」を構成するトランジスタ40と、画素選択スイッチ50とを備える。画素制御回路205は、転送制御信号による転送回路20の作動期間の設定、および、リセット信号Rfdによるリセットタイミングの設定等の画素回路100の制御を実行する。
 ここで、図18および図19を用いて、画素回路100における転送回路20の作動期間の通常の設定手法について説明する。
 図18を参照して、時刻t0では、転送制御信号がHレベルからLレベルへ遷移することにより、転送ゲート21がオフする。すなわち、転送回路20の作動が停止される。
 図19(a)に示されるように、時刻t0において、前回の撮像(前回フレーム)で発生した信号電荷90は、全てフローティングディフュージョン領域30へ転送された状態となる。したがって、蓄積領域15の信号電荷量は零である。一方、時刻t0において、フローティングディフュージョン領域30には、点線で示されるように、前回フレームでの受光量に応じた量の信号電荷が蓄積された状態となる。
 そして、時刻t0以降では、新たな撮像(今回フレーム)での受光に対応して、フォトダイオード10が信号電荷を発生するとともに、当該信号電荷は、蓄積領域15へ蓄積される。
 再び図18を参照して、時刻t1では、リセット信号Rfdが発生される。これにより、リセットスイッチ35(図17)がターンオンされるので、FD電位V(FD)が電源電位Vddにリセットされる。
 図19(b)に示すように、時刻t1では、上記リセット動作により、フローティングディフュージョン領域30には信号電荷は存在しないことになる。また、蓄積領域15には、時刻t0~t1の期間での受光量に応じた量の信号電荷90が発生しているが、転送ゲート21がオフ(転送回路20が非作動)されているため、蓄積領域15の信号電荷は、フローティングディフュージョン領域30へは転送されない。転送ゲート21がオフされているので、蓄積領域15およびフローティングディフュージョン領域30の間にはポテンシャル障壁が存在するからである。
 また、時刻t0~t1間の任意のタイミングで、FD電位V(FD)に応じた出力電位Vout、すなわち前回フレームに対応する出力信号が、オンされた画素選択スイッチ50を介して、出力ノードNoから読出される。
 再び図18を参照して、時刻t2~t3の間、転送制御信号TGは、転送ゲート21をオンするように設定される。すなわち、転送制御信号TGは、図3等での転送制御基準信号TG0と同等である。
 図19(c)に示されるように、時刻t2の直前では、時刻t0~t2の期間での受光量に応じた量の信号電荷90が蓄積領域15に蓄積されている。そして、図19(d)に示されるように、転送回路20の作動によって蓄積領域15およびフローティングディフュージョン領域30の間のポテンシャル障壁が低下するのに伴って、時刻t2までに蓄積領域15に蓄積された信号電荷90が、フローティングディフュージョン領域30へ転送される。
 また、時刻t2~t3の間でも、フォトダイオード10は受光に応じて信号電荷90を発生する。この期間に発生された信号電荷90についても、転送回路20(転送ゲート21)によって、フローティングディフュージョン領域30へ転送される。
 再び図18を参照して、時刻t3では、転送制御信号TGは、転送ゲート21をターンオフするように設定される。これにより、図19(e)に示されるように、今回の撮像(今回フレーム)で発生した信号電荷90は、全てフローティングディフュージョン領域30へ転送された状態となる。時刻t3以降では、フローティングディフュージョン領域30がリセットされるまでの任意のタイミングにおいて、FD電位V(FD)に応じた出力電位Voutを、出力ノードNoから読出すことができる。
 再び図18を参照して、画素回路100の各々では、1回の撮像(1フレーム)に対応する露光時間は、TF1(TF1=TF0+T0)となる。ここで、TF0は、転送ゲート21がターンオフされてから再びターンオンされるまでの期間に対応し、T0は転送ゲート21のオン期間に対応する。
 ここで、時刻t2~t3の期間長(T0の長さ)の一般的な設定を説明する。
 フォトダイオード10が発生する信号電荷量は、プロセスおよび構造に依存する物理定数となる光電変換効率(量子効率)と、受光強度と、光照射時間との積に依存する。一方で、フォトダイオード10の蓄積領域15の容量Cpdによって、蓄積できる最大電荷量(飽和電荷量)が決まる。飽和電荷量を超える信号電荷が発生されても、蓄積領域15には蓄積できないので、その明るさを検知することができなくなる。
 したがって、フォトダイオード10のサイズおよび構造から、蓄積領域15に蓄積される信号電荷量の最大値(以下、最大信号電荷蓄積量)Qpdmaxが決まる。この最大信号電荷蓄積量は、転送ゲート21(転送回路20)が転送する信号電荷量の最大値にも相当する。
 ここで、転送ゲート21が、一定量の信号電荷を転送するのに要する時間は、転送ゲート21を構成するトランジスタのサイズ(W/L)等の、プロセスおよび構造に依存する物理定数と、蓄積領域15およびフローティングディフュージョン領域30の間の電位差に依存して決まる。したがって、転送ゲート21のオン期間(T0)は、最大信号電荷蓄積量Qpdmaxを転送ゲート21によって転送可能な範囲内で、できるだけ短く設定することが好ましい。一般的には、T0は、最大信号電荷蓄積量Qpdmaxを転送ゲート21によって転送するための所要時間と同等に設定される。以下では、T0を完全転送期間とも称する。
 図17および図18に記載した画素回路の構成および制御方法に従えば、1フレーム期間での露光時間TF1で最大信号電荷蓄積量Qpdmaxを生じさせる光強度が、コントラストを検知可能な受光範囲の上限に対応する。現状のプロセスおよび構造では、たとえば、30フレーム/秒程度の動画撮影時に、コントラストを検知可能な受光範囲の範囲の広さを示すダイナミックレンジは、60(dB)程度が一般的である。また、この際の完全転送期間T0は、一般的に、数(ns)~数十(ns)程度である。
 次に、図20および図21を用いて、実施の形態6による固体撮像素子における画素回路の制御動作を説明する。
 図20および図18の比較から理解されるように、実施の形態6による固体撮像素子の各画素回路100では、転送ゲート21は、時刻t2~t3を超えて、時刻t2~t4の間オンする。すなわち、転送ゲート21は、完全転送期間T0の経過後にも、延長期間T1にわたって継続的にオンされる。すなわち、延長期間T1は、本発明での「第1の期間」に対応する。また、時刻t2までの制御動作は図18と同様であるので、説明は繰返さない。
 図21を参照して、図21(a)~(d)については従来(図19)と同様の動作である。すなわち、時刻t2~t3(図21(d))では、完全転送期間T0にわたって転送ゲート21がオンされる。図21(e)では、時刻t3時点において、最大信号電荷蓄積量Qpdmaxが、フローティングディフュージョン領域30へ転送されたケースを想定する。すなわち、図21では、従来のダイナミックレンジを超えた受光強度に対応する撮像が示される。このとき、時刻t0~t2の間では、最大信号電荷蓄積量Qpdmaxを超える信号電荷90が発生されるが、蓄積領域15の飽和により、最大信号電荷蓄積量Qpdmaxを超える電荷量を、時刻t2の時点で蓄積領域15に蓄積することはできない。
 各画素回路100では、フローティングディフュージョン領域30の容量Cfdについても、上述した従来思想とは異なるように設定される。すなわち、Cfdは、最大信号電荷蓄積量Qpdmaxを受入れた時点で、さらに、延長期間T1においてフォトダイオード10が発生する信号電荷を受入れるための余裕を持つように決められる。したがって、フローティングディフュージョン領域30の容量Cfdは、蓄積領域15の容量Cpdよりも大きい。
 そして、図21(f)に示されるように、時刻t3~t4では、延長期間T1にわたって転送ゲート21のオンを継続することによって、時刻t3以降にフォトダイオード10が受光に応じて発生した信号電荷90が、フローティングディフュージョン領域30へ追加的に転送される。この際に、フローティングディフュージョン領域30の容量Cfdが従来思想に従って設計されていると、追加的に転送された信号電荷90を、フローティングディフュージョン領域30で受入れることができない点を確認的に記載する。
 なお、CfdをCpdの2倍程度確保すれば、延長期間T1においても最大信号電荷蓄積量Qpdmaxを受入れることができる。
 再び図20を参照して、時刻t2から(T0+T1)が経過した時刻t4において、転送ゲート21はターンオフされる。これにより、図21(g)に示されるように、時刻t4以降では、転送回路20によるポテンシャル障壁が再び上昇するので、蓄積領域15からフローティングディフュージョン領域30への信号電荷の転送は停止される。
 したがって、転送ゲート21のオフ時点において、フローティングディフュージョン領域30には、時刻t2時点で蓄積領域15に蓄積されていた信号電荷90と、時刻t2~t4の期間でフォトダイオード10が発生した信号電荷90との和が蓄積された状態となる。
 なお、時刻t4では、延長期間T1の間に発生された信号電荷90が、フローティングディフュージョン領域30へ完全に転送されていることが必要である。なぜなら、時刻t4では、次回フレームのための露光が開始されるので、蓄積領域15に信号電荷90が残留していると、次回フレームでの受光量検知に誤差が発生するからである。したがって、延長期間T1は、少なくとも、蓄積領域15での最大信号電荷蓄積量Qpdmaxを転送ゲート21によって転送するのに必要な時間、すなわち、完全転送期間T0以上確保することが好ましい(T1≧T0)。

 再び図20を参照して、時刻t4以降において、FD電位V(FD)は、時刻t4での電位に維持される。そして、フローティングディフュージョン領域30が次にリセットされるまでの任意のタイミングにおいて、FD電位V(FD)に応じた出力電位Voutが出力ノードNoから読出される。
 すなわち、実施の形態6による固体撮像素子の各画素回路100では、1回の撮像(1フレーム)に対応する露光時間は、TF1(TF1=TF0+T0、以下では「基準露光時間」とも称する)からTF2(=TF1+T1)に延長される。この延長によるダイナミックレンジの拡大の原理を図22を用いて説明する。
 図22は、実施の形態6による固体撮像素子における画素回路の出力特性を説明するための概念図である。なお、図22の横軸は光量(あるいは受光強度)を示し、縦軸は、FD電位V(FD)のリセット時からの電位変化ΔV(FD)を示すものとする。すなわち、ΔV(FD)は、フローティングディフュージョン領域30へ転送された信号電荷量とCfdとによって決まる。
 図22には、従来の制御動作(図18,19)およびCfdとした場合の出力特性が点線で示される。従来の画素回路では、基準露光時間TF1の間にフォトダイオード10が最大信号電荷蓄積量Qpdmaxを発生するときの光量に対応するL0が、ダイナミックレンジの上限に対応する。すなわち、光量Lmn(最小光量値)~L0の範囲に対応して、ΔV(FD)が0~Vmaxまで変化することによって、光量(あるいは受光強度)が検出される。すなわち、L0よりも光量が高い範囲、すなわち、L0に対応する光強度よりも受光強度が高い範囲では、蓄積領域15が飽和するため、光量を正しく検出することができない。
 これに対して、実施の形態6による固体撮像素子では、Cfdが従来よりも大きく設計されるので、最大信号電荷蓄積量Qpdmaxを受けたときのΔV(FD)がV0(<Vmax)に止まる。そして、L0に対応する光強度よりも受光強度が高いときには、延長期間T1で発生される信号電荷量に対応して、ΔV(FD)がV0よりも上昇する。すなわち、L0よりも高い範囲の光量に対しても、ΔV(FD)を変化させることができる。
 そして、延長期間T1での追加転送を加えた合計の信号電荷量によってΔV(FD)がVmaxに達するときの光量L1に対応する受光強度が、ダイナミックレンジの上限となる。すなわち、実施の形態6による固体撮像素子では、従来と比較して、ΔL(L0~L1)だけダイナミックレンジが拡大することになる。
 すなわち、フローティングディフュージョン領域30の容量Cfdは、最大信号電荷蓄積量Qpdmaxを受入れるための容量値と、延長期間T1で発生される信号電荷量(すなわち、拡大ダイナミックレンジΔDRに対応する信号電荷量を受入るための容量値との和以上に確保することが必要である。
 光量がL0よりも大きい領域での特性線は、延長時間T1によって変化する。同一光量に対して延長期間T1で発生される信号電荷の総量が小さいほど、Cfdの余裕分によって検知可能な光量範囲が広くなる。したがって、延長期間T1が小さいほど特性線の傾きは小さくなり、反対に、延長期間T1が大きいほど特性線の傾きは大きくなる。
 また、ΔV(FD)についてのV0とVmaxとの比は、Cfdによって変わる。すなわち、延長期間T1において検知可能な光量の範囲は、Cfdによっても変化する。上述のように、Cfdは、延長期間T1においても最大信号電荷蓄積量Qpdmaxをフローティングディフュージョン領域30に追加的に受入れることができるように、決めることが好ましい。たとえば、CfdをCpdの2倍程度確保すれば、延長期間T1においても信号電荷量が0~Qpdmaxまでの範囲を用いて光量を検知できる。
 ここで、Lmn~L0に対応する基準ダイナミックレンジDRは、下記(1)式で示される。
 DR=20×log10(L0/Lmn)  ・・・(1)
 さらに、延長期間T1でも信号電荷量が0~Qpdmaxまでの範囲を用いて光量を検知できるようにすれば、ΔLに対応する拡大ダイナミックレンジΔDRは、延長期間T1に対する基準露光時間TF1の比によって、下記(2)式で示される。
 ΔDR=20×log10(TF1/T1)  ・・・(2)
 このように、延長期間T1に応じて拡大ダイナミックレンジΔDRが決まる。なお、Cfdによって保持できる信号電荷量が2×Qpdmaxよりも小さい場合には、延長期間T1の間でフローティングディフュージョン領域30が飽和する可能性があるので、飽和するまでの光量範囲のみが検知可能となる。したがって、この際の拡大ダイナミックレンジΔDRは、式(2)よりも小さくなる。逆に言えば、この面からも、CfdはCpdの2倍程度確保することが好ましい。
 一方、図22に示したように、延長期間T1を短くすると、同一のCfdに対するΔLは拡大する一方で、光量に対するΔV(FD)の変化が小さくなるので、コントラストの検知上不利となる。したがって、所望のダイナミックレンジに対する基準ダイナミックレンジDRの不足分をカバーするように、拡大ダイナミックレンジΔDRを設定することにより、延長期間T1を適切に求めることができる。
 たとえば、30フレーム/秒の動画撮影では、1フレーム期間に対応させてTF1=33(ms)程度となる。このときの基準ダイナミックレンジDRは、上述のように、従来の固体撮像素子では60(dB)程度である。一方で、ヒトが同一視野内で検知可能な輝度分布は5桁前後から7桁の範囲(ダイナミックレンジが80~140(dB))まで及ぶ。したがって、この差を拡大ダイナミックレンジΔDRによって埋めるように、延長期間T1を決めることができる。
 一例として、固体撮像素子のダイナミックレンジを140dBとするためには、ΔDR=80(dB)が必要であるから、T1=TF1/104=3.3(μs)と定めることができる。同様に、固体撮像素子のダイナミックレンジを100dBとするためには、ΔDR=40(dB)が必要であるから、T1=TF1/102=330(μs)と定めることができる。現実的には、延長期間T1は、ヒトの視覚と同等のコントラスト検知能力を持たせる観点から、拡大ダイナミックレンジΔDRを加えた固体撮像素子のダイナミックレンジが80(dB)~140(dB)となる範囲内で設定されることが好ましい。
 図22の特性線から理解されるように、実施の形態6による固体撮像素子では、時刻t0~t3(基準露光時間TF1)で蓄積領域15に蓄積された信号電荷量に基づいて、L0以下の範囲について光量に比例した絶対値出力(ΔV(FD))を得ることができる。さらに、延長期間T1(時刻t3~t4)での露光によって追加的に発生された信号電荷量によって、L0より高い範囲の光量を、画素回路100間の相対値(すなわち、画素間のコントラスト成分)と捉えて検出することができる。この動作は、ヒトの視覚において背景光成分の信号を圧縮している動作に対応している。すなわち、基準露光時間TF1および延長露光時間(延長期間T1)のそれぞれでは、異なる光量(受光強度)範囲での撮像を行っていることと等価であり、かつ、それぞれで発生された信号電荷量を単純に足し合わせることによって、これらの撮像結果を合成した広いダイナミックレンジの撮像を等価的に実現できている。
 このように、実施の形態6による固体撮像素子では、各画素回路における転送ゲート21のオン期間(転送回路20の作動期間)および、フローティングディフュージョン領域30の容量Cfdを、従来の発想に反する着想で決めることにより、画素回路の構成、あるいは、画素回路の制御および/または画素回路後段での演算処理を全く複雑化することなく、ダイナミックレンジの拡大を実現することができる。すなわち、モバイル機器等への搭載にも対応できる小型化および広ダイナミックレンジ化が両立された固体撮像素子を低コストで作成できる。
 なお、実施の形態6による固体撮像素子について、画素回路100の転送回路20の動作期間を延長期間T1にわたって延長する概念は、図10に示した、転送ゲート21および補助転送ゲート22の組で構成された転送回路にも適用可能である。しかしながら、回路構成および画素制御の簡素化の面で、転送回路20は転送ゲート21単体で構成する方が利点が高い。
 また、実施の形態1~5およびそれらの変形例による固体撮像素子においても、延長時間Tdは、実施の形態6での延長期間T1と同様に決めることが好ましい。また、フローティングディフュージョン領域30の容量Cfdについても、実施の形態6と同様に決めることが好ましい。
 なお、実施の形態1~5およびそれらの変形例のように、転送回路20の作動期間の延長要否を制御する構成の固体撮像素子では、実施の形態6のように一律かつ無条件に転送回路20の作動期間の延長させる固体撮像素子と比較して、低照度での撮影(夜間等)において、露光時間を確保できる点で有利となる。一方で、実施の形態6による固体撮像素子では、従来と全く同様の画素回路構成および制御回路構成によってダイナミックレンジを大幅に拡大できる点で有利である。
 なお、以上の実施の形態では、画素回路100を構成するトランジスタについてはすべてn型の導電型の素子を例示したが、トランジスタの導電型については適宜変更してp型素子を用いることも可能である。その際には、画素制御回路200から出力される転送制御信号の論理レベル(H/L)や、電源ノード6/接地ノード5への接続を適宜反転することによって、同様の画素制御を実現することができる。
 また、実施の形態1~6およびそれらの変形例では、負電荷(電子)を信号電荷とした構成を例示したが、フォトダイオード10のカソードを電源ノード6と電気的に接続することによって、正電荷(正孔)を信号電荷とするような回路構成とすることも可能である。ただし、正電荷(正孔)の移動度は、負電荷(電子)の移動度よりも小さいので、本実施の形態1~4およびそれらの変形例に示した画素回路および画素制御回路を備えた固体撮像素子は、高速撮像の面で相対的に有利であることが理解される。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、受光検知素子を各画素回路に有する一般的な固体撮像素子に適用できる。
 5 接地ノード、6 電源ノード、10 フォトダイオード、15 蓄積領域、20 転送回路、21 転送ゲート、22 補助転送ゲート、23 デュアルゲートトランジスタ、30 フローティングディフュージョン領域、35 リセットスイッチ、40 トランジスタ(増幅器)、50 画素選択スイッチ、90,90♯ 信号電荷、100 画素回路、105 画素アレイ、110 データ線、150 電流源、200,201 画素制御回路、202 レベル判断回路、203 操作スイッチ、205 フィードバック経路、210 反転増幅回路、212 トランジスタ、214 トランジスタ、220 タイマー回路、230 パルス発生器、250 選択スイッチ、255 選択スイッチ、Cfd 容量(フローティングディフュージョン領域)、CG 制御ゲート、Cpd 容量(蓄積領域)、CG 制御ゲート、G 通常ゲート、Lmn 最小光量値、Lr 基準光量、N1 入力ノード(反転増幅回路)、N2 出力ノード(反転増幅回路)、No 出力ノード(画素回路)、Rfd リセット信号、SL 画素選択信号、T0 完全転送期間、T1 延長期間、Td 延長時間、TG 転送制御信号、TG0 転送制御基準信号、TG1 制御信号、V(FD) FD電位、Vdd 電源電位、Vout 出力電位、Vss 接地電位。

Claims (16)

  1.  複数の画素回路(100)と、
     各前記画素回路を制御する制御回路(205)とを備え、
     各前記画素回路は、
     受光に応じて信号電荷を発生する光検知素子(10)と、
     前記光検知素子によって発生された信号電荷を蓄積する蓄積領域(15)と、
     フローティングディフュージョン領域(30)と、
     作動時に前記蓄積領域の信号電荷を前記フローティングディフュージョン領域へ転送する一方で非作動に前記転送を遮断するように構成された転送回路(20)とを含み、
     前記制御回路は、前記蓄積領域での最大信号電荷蓄積量を、前記転送回路によって前記蓄積領域から前記フローティングディフュージョン領域へ転送するのに必要である完全転送期間(T0)にわたって前記転送回路を作動させるとともに、前記完全転送期間の経過後にも第1の期間(T1)にわたって前記転送回路の作動を継続するように、各前記画素回路の前記転送回路を制御するように構成され、
     前記フローティングディフュージョン領域の容量値(Cfd)は、前記最大信号電荷蓄積量を受入れるために必要な第1の容量値と、前記第1の期間において前記光検知素子が発生する前記信号電荷を受入れるために必要な第2の容量値との和以上である、固体撮像素子。
  2.  前記第1の期間(T1)は、前記完全転送期間(T0)以上の長さを有する、請求の範囲第1項に記載の固体撮像素子。
  3.  前記フローティングディフュージョン領域の容量値(Cfd)は、前記蓄積領域の容量値(Cpd)の2倍以上である、請求の範囲第1項または第2項に記載の固体撮像素子。
  4.  前記転送回路(20)の作動期間は、所定周期で設けられ、
     前記固体撮像素子のダイナミックレンジは、前記転送回路の前回の作動期間の終了時点から今回の作動期間の開始時点までの期間と前記完全転送期間との和である基準露光期間(TF1)において前記光検知素子が前記最大信号電荷蓄積量に相当する信号電荷量を発生する受光量に従う基準ダイナミックレンジと、前記第1の期間(T1)の長さに応じて変化する拡張ダイナミックレンジとの和で示され、
     前記拡張ダイナミックレンジは、前記第1の期間に対する前記基準露光期間の比の対数に従う、請求の範囲第3項に記載の固体撮像素子。
  5.  複数の画素回路(100)を備える固体撮像素子の制御方法であって、
     各前記画素回路は、
     受光に応じて信号電荷を発生する光検知素子(10)と、
     前記光検知素子によって発生された信号電荷を蓄積する蓄積領域(15)と、
     フローティングディフュージョン領域(30)と、
     作動時に前記蓄積領域の信号電荷を前記フローティングディフュージョン領域へ転送する一方で非作動時に前記転送を遮断するように構成された転送回路(20)とを含み、
     前記制御方法は、
     前記転送回路の非作動時に、前記光検知素子が発生した前記信号電荷を前記蓄積領域に蓄積するステップと、
     前記蓄積領域での最大信号電荷蓄積量を、前記転送回路によって前記蓄積領域から前記フローティングディフュージョン領域へ転送するのに必要である完全転送期間(T0)にわたって前記転送回路を作動させるステップと、
     前記完全転送期間の経過後にも第1の期間(T1)にわたって前記転送回路の作動を継続することによって、前記作動させるステップより後に前記光検知素子が発生した前記信号電荷を前記フローティングディフュージョン領域へ追加転送するステップとを備え、
     前記フローティングディフュージョン領域の容量値(Cfd)は、前記最大信号電荷蓄積量を受入れるために必要な第1の容量値と、前記第1の期間において前記光検知素子が発生する前記信号電荷を受入れるために必要な第2の容量値との和以上である、固体撮像素子の制御方法。
  6.  受光に応じて信号電荷を発生する光検知素子(10)と、前記光検知素子によって発生された信号電荷を蓄積する蓄積領域(15)と、フローティングディフュージョン領域(30)と、作動時に前記蓄積領域の信号電荷を前記フローティングディフュージョン領域へ転送する一方で非作動時に前記転送を遮断するように構成された転送回路(20)とを含む画素回路(100)と、
     前記信号電荷の転送を制御するための画素制御手段(200)とを備え、
     前記画素制御手段は、
     前記画素回路の受光レベルに応じて、受光量が所定以上のときには、前記受光量が所定より低いときと比較して前記転送回路の作動期間を延長するように前記転送回路を制御する、固体撮像素子。
  7.  前記画素制御手段(200)は、
     前記転送回路(20)を所定期間作動させる第1の転送制御手段と、
     前記所定期間に前記フローティングディフュージョン領域へ転送された信号電荷量が基準より大きいときには前記所定期間よりも前記転送回路の作動を延長する一方で、前記転送された信号電荷量が前記基準以下のときには前記所定期間終了時に前記転送回路を非作動とするための第2の転送制御手段とを含む、請求の範囲第6項に記載の固体撮像素子。
  8.  前記転送回路(20)は、
     前記光検知素子および前記フローティングディフュージョン領域の間に並列接続された転送ゲート(21)および補助転送ゲート(22)を有し、
     前記第1の転送制御手段は、前記所定期間に前記転送ゲートをオンし、
     前記第2の転送制御手段は、前記所定期間に転送された信号電荷量が前記基準より大きいときに、前記所定期間以後に前記補助転送ゲートを一定期間オンする、請求の範囲第7項に記載の固体撮像素子。
  9.  前記転送回路(20)は、前記光検知素子および前記フローティングディフュージョン領域の間に接続された転送ゲート(21)を有し、
     前記第1の転送制御手段は、前記所定期間にわたって前記転送ゲートをオンし、
     前記第2の転送制御手段は、前記所定期間に転送された信号電荷量が前記基準より大きいときに、前記所定期間の終了後も前記転送ゲートのオンを一定期間維持する、請求の範囲第7項に記載の固体撮像素子。
  10.  前記第2の転送制御手段は、前記所定期間における前記フローティングディフュージョン領域(30)の電位(V(FD))に基づいて、前記所定期間に転送された信号電荷量が前記基準より大きいか否かを判断する、請求の範囲第7項~第9項のいずれか1項に記載の固体撮像素子。
  11.  前記画素回路(100)は、作動時に前記フローティングディフュージョン領域(30)の信号電荷量に応じた電気信号を発生する増幅器(40)をさらに含み、
     前記増幅器は、前記所定期間において作動するように構成され、
     前記第2の転送制御手段は、前記所定期間における前記増幅器からの前記電気信号に基づいて、前記所定期間に転送された信号電荷量が前記基準より大きいか否かを判断する、請求の範囲第7項~第9項のいずれか1項に記載の固体撮像素子。
  12.  前記固体撮像素子は、
     複数個の前記画素回路を有する画素アレイ(105)と、
     各前記画素回路からの出力を読出すためのデータ線(110)とをさらに備え、
     各前記画素回路(100)は、作動時に前記フローティングディフュージョン領域(30)の信号電荷量に応じた電気信号を発生する増幅器(40)、および、前記増幅器と前記データ線との間に配置された画素選択スイッチ素子(50)をさらに含み、
     前記複数個の画素回路は複数のグループに分割されるとともに、前記画素制御手段(200)は、前記複数のグループの各々に対応させて前記画素アレイの外部領域に設けられ、
     前記固体撮像素子は、
     各前記画素回路中の前記転送回路(20)と対応する前記画素制御手段との間に配置される第1のスイッチ素子(250)と、
     各前記画素回路中の前記フローティングディフュージョン領域(30)と対応する前記画素制御手段との間に配置される第2のスイッチ素子(255)とをさらに備え、
     前記第1および前記第2のスイッチ素子は、前記複数のグループの各々において、当該グループ内の前記画素回路のうちの選択された1個を前記画素制御手段と順次接続するように制御され、
     前記第2の転送制御手段は、前記第2のスイッチ素子を介して接続された前記フローティングディフュージョン領域の電位に基づいて、前記所定期間に転送された信号電荷量が前記基準より大きいか否かを判断する、請求の範囲第10項に記載の固体撮像素子。
  13.  前記固体撮像素子は、
     複数個の前記画素回路を有する画素アレイ(105)と、
     各前記画素回路からの出力を読出すためのデータ線(110)とをさらに備え、
     各前記画素回路は、前記データ線と前記増幅器との間に配置された画素選択スイッチ素子(50)をさらに含み、
     前記複数個の画素回路は複数のグループに分割されるとともに、前記画素制御手段(200)は、前記複数のグループの各々に対応させて前記画素アレイの外部領域に設けられ、
     前記固体撮像素子は、
     各前記画素回路中の前記転送回路と対応する前記画素制御手段との間に配置される第1のスイッチ素子(250)をさらに備え、
     前記第1のスイッチ素子は、前記複数のグループの各々において、当該グループ内の前記画素回路のうちの選択された1個を前記画素制御手段と順次接続するように制御され、
     前記第2の転送制御手段は、前記増幅器から前記データ線へ出力された前記電気信号に基づいて、前記所定期間に転送された信号電荷量が前記基準より大きいか否かを判断する、請求の範囲第11項に記載の固体撮像素子。
  14.  前記固体撮像素子は、複数個の前記画素回路(100)を備え、
     前記画素制御手段(201)は、前記複数個の画素回路全体での受光レベルが所定以上のときには、前記複数個の画素回路の各々で共通に、前記作動期間が延長されるように前記転送回路を制御する一方で、前記受光レベルが所定より低いときには、前記複数個の画素回路の各々で共通に、前記作動期間が延長されないように前記転送回路を制御する、請求の範囲第6項または第7項に記載の固体撮像素子。
  15.  前記受光レベルが前記所定以上である状況であるか否かを指定するための操作スイッチ(203)をさらに備え、
     前記画素制御手段(201)は、前記操作スイッチへの入力有無に応じて、前記複数個の画素回路全体での受光レベルが前記所定以上であるか否かを判断する、請求の範囲第14項に記載の固体撮像素子。
  16.  前記画素制御手段(201)は、前記固体撮像素子による直前の撮像時における前記複数個の画素回路(100)からの出力に基づいて、前記複数個の画素回路全体での受光レベルが前記所定以上であるか否かを判断する、請求の範囲第14項に記載の固体撮像素子。
PCT/JP2009/071540 2008-12-26 2009-12-25 固体撮像素子およびその制御方法 WO2010074199A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980153123.6A CN102265605B (zh) 2008-12-26 2009-12-25 固体拍摄元件及其控制方法
EP09834995.4A EP2375728B1 (en) 2008-12-26 2009-12-25 Solid-state image pickup element and method for controlling same
US13/142,228 US8552354B2 (en) 2008-12-26 2009-12-25 Solid-state image pickup element having a control circuit for controlling the operation period of a transfer circuit and method for controlling the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-333535 2008-12-26
JP2008333535 2008-12-26
JP2009123297A JP4538528B2 (ja) 2008-12-26 2009-05-21 固体撮像素子
JP2009-123297 2009-05-21

Publications (1)

Publication Number Publication Date
WO2010074199A1 true WO2010074199A1 (ja) 2010-07-01

Family

ID=42287804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071540 WO2010074199A1 (ja) 2008-12-26 2009-12-25 固体撮像素子およびその制御方法

Country Status (6)

Country Link
US (1) US8552354B2 (ja)
EP (1) EP2375728B1 (ja)
JP (1) JP4538528B2 (ja)
CN (1) CN102265605B (ja)
TW (1) TW201043018A (ja)
WO (1) WO2010074199A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891970A (zh) * 2011-07-21 2013-01-23 佳能株式会社 能够改变摄像装置的操作条件的摄像设备及其控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317647B1 (en) * 2009-10-30 2015-12-16 ST-Ericsson SA Threshold crossing detection
JP5721405B2 (ja) * 2010-11-22 2015-05-20 キヤノン株式会社 撮像システム、その制御方法及びプログラム
JP5885431B2 (ja) * 2011-08-29 2016-03-15 キヤノン株式会社 撮像素子及び撮像装置
JP5935287B2 (ja) * 2011-10-21 2016-06-15 ソニー株式会社 撮像装置および撮像表示システム
KR102008233B1 (ko) 2012-06-29 2019-08-07 삼성전자주식회사 거리 측정 장치 및 상기 거리 측정 장치를 이용한 거리 측정 방법
JP5968146B2 (ja) * 2012-07-31 2016-08-10 キヤノン株式会社 固体撮像装置およびカメラ
US8890572B2 (en) * 2012-09-19 2014-11-18 Broadcom Corporation Low swing dynamic circuit
CN102843524B (zh) * 2012-09-25 2015-09-23 中国科学院上海高等研究院 Cmos图像传感器及其工作方法
US9648263B2 (en) * 2012-11-28 2017-05-09 Infineon Technologies Ag Charge conservation in pixels
JP2015142351A (ja) * 2014-01-30 2015-08-03 キヤノン株式会社 撮像装置、撮像システム
JP6354221B2 (ja) * 2014-03-12 2018-07-11 株式会社リコー 撮像装置及び電子機器
US9521351B1 (en) 2015-09-21 2016-12-13 Rambus Inc. Fractional-readout oversampled image sensor
US9843749B2 (en) * 2016-01-05 2017-12-12 Sensors Unlimited, Inc. Leakage mitigation at image storage node
CN110291782B (zh) * 2017-03-13 2020-09-29 华为技术有限公司 Cmos图像传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092395A (ja) * 1998-09-11 2000-03-31 Nec Corp 固体撮像装置およびその駆動方法
JP2000340779A (ja) 1999-06-01 2000-12-08 Mitsubishi Electric Corp 半導体撮像素子
WO2002059979A1 (fr) 2001-01-26 2002-08-01 Exploitation Of Next Generation Co., Ltd. Dispositif a semi-conducteur
JP2004159274A (ja) 2002-09-13 2004-06-03 Shoji Kawahito 固体撮像装置
JP2004363666A (ja) 2003-06-02 2004-12-24 Shoji Kawahito 広ダイナミックレンジイメージセンサ
JP2005012002A (ja) 2003-06-19 2005-01-13 Sokichi Hirotsu 半導体素子およびそれを備えた論理回路
JP2006041866A (ja) * 2004-07-27 2006-02-09 Sony Corp 固体撮像装置
JP2006074663A (ja) * 2004-09-06 2006-03-16 Renesas Technology Corp 固体撮像装置
JP2008072512A (ja) * 2006-09-14 2008-03-27 Canon Inc 撮像装置及びその制御方法、撮像システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148328A (ja) 2004-11-17 2006-06-08 Matsushita Electric Ind Co Ltd 固体撮像装置
JP4459098B2 (ja) 2005-03-18 2010-04-28 キヤノン株式会社 固体撮像装置及びカメラ
KR100660870B1 (ko) * 2005-07-07 2006-12-26 삼성전자주식회사 조절가능한 전하전송 구동회로를 갖는 이미지 센서
KR100782308B1 (ko) 2006-07-14 2007-12-06 삼성전자주식회사 입사 광량에 따라 광전류 경로를 선택할 수 있는 cmos이미지 센서와 이미지 센싱 방법
CN101021668B (zh) * 2007-03-21 2011-04-06 北京中星微电子有限公司 一种曝光和重构原始图像的方法及装置
US8159585B2 (en) * 2007-05-01 2012-04-17 Omnivision Technologies, Inc. Image sensor pixel with gain control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092395A (ja) * 1998-09-11 2000-03-31 Nec Corp 固体撮像装置およびその駆動方法
JP2000340779A (ja) 1999-06-01 2000-12-08 Mitsubishi Electric Corp 半導体撮像素子
WO2002059979A1 (fr) 2001-01-26 2002-08-01 Exploitation Of Next Generation Co., Ltd. Dispositif a semi-conducteur
JP2002222944A (ja) 2001-01-26 2002-08-09 Kitakiyuushiyuu Techno Center:Kk 半導体素子
JP2004159274A (ja) 2002-09-13 2004-06-03 Shoji Kawahito 固体撮像装置
JP2004363666A (ja) 2003-06-02 2004-12-24 Shoji Kawahito 広ダイナミックレンジイメージセンサ
JP2005012002A (ja) 2003-06-19 2005-01-13 Sokichi Hirotsu 半導体素子およびそれを備えた論理回路
JP2006041866A (ja) * 2004-07-27 2006-02-09 Sony Corp 固体撮像装置
JP2006074663A (ja) * 2004-09-06 2006-03-16 Renesas Technology Corp 固体撮像装置
JP2008072512A (ja) * 2006-09-14 2008-03-27 Canon Inc 撮像装置及びその制御方法、撮像システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2375728A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891970A (zh) * 2011-07-21 2013-01-23 佳能株式会社 能够改变摄像装置的操作条件的摄像设备及其控制方法

Also Published As

Publication number Publication date
EP2375728A4 (en) 2012-12-26
CN102265605B (zh) 2014-10-29
TW201043018A (en) 2010-12-01
EP2375728A1 (en) 2011-10-12
US20110260038A1 (en) 2011-10-27
US8552354B2 (en) 2013-10-08
JP4538528B2 (ja) 2010-09-08
JP2010171918A (ja) 2010-08-05
CN102265605A (zh) 2011-11-30
EP2375728B1 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP4538528B2 (ja) 固体撮像素子
US10567691B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
TWI507035B (zh) 具有補充電容性耦合節點之影像感測器
JP3996618B1 (ja) 半導体撮像素子
US9172895B2 (en) Solid-state imaging device
US8324548B2 (en) Imaging devices and methods for charge transfer
JP3691050B2 (ja) 半導体撮像素子
KR20080038446A (ko) Cmos 이미저에서의 효과적인 전하 전송
JP6384795B2 (ja) 固体撮像装置
EP1223746B1 (en) Active pixel image sensor with improved linearity
JP2006042121A (ja) 増幅型固体撮像装置
JP2011119837A (ja) 固体撮像素子
TW201629444A (zh) 用於影像感測器之感光單元及其感光電路
JP5475418B2 (ja) 固体撮像素子およびその制御方法
JP2011199781A (ja) 固体撮像装置
JP2005184479A (ja) 固体撮像装置
JP4345145B2 (ja) 固体撮像装置
JP2013187233A (ja) 固体撮像装置、固体撮像装置の駆動方法及び電子機器
KR20180096839A (ko) 픽셀의 구동방법 및 이를 이용하는 cmos 이미지센서
JP2006121140A (ja) 固体撮像装置の駆動方法及び撮像装置
JPH11312799A (ja) 固体撮像装置
JP2004179902A (ja) 固体撮像装置
JP2013153319A (ja) 固体撮像素子、固体撮像素子の駆動方法、及び、電子機器
JP2003158683A (ja) 固体撮像装置およびそれを用いた固体撮像システム
JP2004048553A (ja) 固体撮像装置およびその信号読み出し方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153123.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834995

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13142228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4926/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009834995

Country of ref document: EP