KR100660870B1 - 조절가능한 전하전송 구동회로를 갖는 이미지 센서 - Google Patents

조절가능한 전하전송 구동회로를 갖는 이미지 센서 Download PDF

Info

Publication number
KR100660870B1
KR100660870B1 KR1020050061242A KR20050061242A KR100660870B1 KR 100660870 B1 KR100660870 B1 KR 100660870B1 KR 1020050061242 A KR1020050061242 A KR 1020050061242A KR 20050061242 A KR20050061242 A KR 20050061242A KR 100660870 B1 KR100660870 B1 KR 100660870B1
Authority
KR
South Korea
Prior art keywords
signal
unit
charge transfer
boosting
switch
Prior art date
Application number
KR1020050061242A
Other languages
English (en)
Inventor
노재섭
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020050061242A priority Critical patent/KR100660870B1/ko
Priority to US11/430,093 priority patent/US7397020B2/en
Application granted granted Critical
Publication of KR100660870B1 publication Critical patent/KR100660870B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/779Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/1506Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation with addressing of the image-sensor elements
    • H04N3/1512Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation with addressing of the image-sensor elements for MOS image-sensors, e.g. MOS-CCD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

가변 전하전송 구동회로를 갖는 이미지센서를 개시한다. 이미지 센서는 화소 어레이부와 행구동부를 구비한다. 상기 화소 어레이부는 광전 변환부에 축적된 전하를 전하전송 구동신호에 의해 전하검출부로 전송하는 전하전송부를 구비하는 다수의 단위화소가 매트릭스 형태로 배열된다. 상기 행 구동부는 부스팅전압 가변 제어신호에 응답하여 전압을 가변적으로 부스팅시켜 전원전압보다 높은 부스팅전압을 발생한다. 상기 행 구동부는 전하전송 실행신호를 상기 전하전송 실행신호의 반전신호에 응답하여, 상기 화소 어레이부에 상기 전하전송 구동신호로 제공하거나 또는 전하전송 제어신호에 응답하여 상기 부스팅전압을 상기 화소 어레이부에 상기 전하전송 구동신호로 제공한다.

Description

조절가능한 전하전송 구동회로를 갖는 이미지 센서{Image sensor with controllable charge transfer driving circuit}
도 1은 본 발명의 실시예에 따른 이미지 센서의 블록도이다.
도 2a는 본 발명의 실시예에 따른 이미지 센서의 단위화소의 회로도이다.
도 2b는 본 발명의 실시예에 따른 이미지 센서의 단위화소의 개략적인 평면도이다.
도 3은 본 발명의 실시예에 따른 행구동부의 블록도이다.
도 4는 본 발명의 실시예에 따른 이미지 센서의 가변 부스팅부 및 스위칭부의 개념도이다.
도 5는 본 발명의 실시예에 따른 이미지 센서의 가변 부스팅부 및 스위칭부의 상세회로도이다.
도 6은 본 발명의 이미지센서의 행 구동부의 동작 파형도이다.
도 7은 본 발명의 다른 실시예에 따른 이미지 센서의 가변 부스팅부 및 스위칭부의 개념도이다.
도 8은 본 발명의 다른 실시예에 따른 이미지 센서의 가변 부스팅부 및 스우칭부의 상세회로도이다.
<도면의 주요 부분에 대한 부호의 설명>
23 : 가변 부스팅부 231 : 부스팅전압 조절부
233 : 부스팅부 25 ; 전하전송신호 전달부
233a, CBST[1] - CBST[m] : 부스팅 캐패시더
231a, 231b : 스위치 MUX1, MUX2 : 멀티플렉서
본 발명은 이미지 센서에 관한 것으로서, 보다 상세하게는 전하전송구동전압을 가변시켜 줄 수 있는 CMOS 이미지 센서에 관한 것이다.
이미지센서(image sensor)는 광학영상을 전기신호로 변환시키는 소자이다. 최근 들어, 컴퓨터산업과 통신산업의 발달에 따라 디지털 카메라, 캠코더, PCS(personal computer system), 게임기기, 경비용 카메라, 의료용 마이크로 카메라, 로봇 등 다양한 분야에서 성능이 향상된 이미지 센서의 수요가 증대하고 있다.
이미지센서는 CCD(charge coupled device) 이미지센서와 CMOS 이미지센서로 나눌 수 있는데, 이중에서 CMOS 이미지센서는 구동방식이 간편하고 CMOS 공정 기술을 호환하여 사용할 수 있어 제조단가를 낮출 수 있는 장점이 있다. 이러한 CMOS 이미지센서는 다양한 구조로 구현될 수 있으나, 일반적으로 4개의 트랜지스터와 포토다이오드를 사용한 구조가 사용되고 있으나, 최근에는 3개의 트랜지스터가 사용되기도 한다. 이러한 이미지화소의 트랜지스터구조는 CMOS 제작공정을 통해 제작된다. CMOS 이미지센서는 포토다이오드에 빛이 수광되면, 포토 다이오드는 빛에너지 를 흡수하여 광량에 해당하는 전하를 축적하고, 전하전송부는 포토다이오드에 축적된 전하를 전하검출부로 전송한다. 증폭부는 정전류원과 조합하여 소스 팔로우 버퍼증폭기역할을 하여, 전하검출부의 전위에 응답하여 변하는 전압을 수직신호라인으로 출력한다.
그러나, 이미지 센서의 크기가 작아짐에 따라 전원전압레벨의 전하전송 구동신호가 상기 전하전송부에 제공되어도, 상기 전하전송부는 포토다이오드에 축적된 전하를 모두 전하검출부로 전송되지 못하는 경우가 많이 발생되었다. 이와 같이 전하 검출부로 전송되지 않고 포토다이오드에 남겨진 전하는 다음 회의 읽기 동작시에 잔상으로 나타난다. 또한, 결과적으로 광량에 상응하여 발생된 전하가 포토다이오드와 전하 검출부에 분배되었기 때문에 광전자 하나당 발생하는 전하의 양에 해당하는 변환이득이 줄어들게 된다. 뿐만 아니라 포토다이오드에 남겨진 전하는 포토다이오드의 전하축적용량을 감소시키는 문제가 있다.
따라서, 본 발명이 이루고자 하는 기술적 과제는 전하전송 구동전압을 가변시켜 전하전송을 최적화할 수 있는 이미지센서를 제공하는 것이다.
상기한 본 발명의 기술적 과제를 달성하기 위하여, 본 발명의 이미지 센서는 화소 어레이부와 행구동부를 구비한다. 상기 화소 어레이부는 광전 변환부에 축적된 전하를 전하전송 구동신호에 의해 전하검출부로 전송하는 전하전송부를 구비하는 다수의 단위화소가 매트릭스 형태로 배열된다. 상기 행 구동부는 부스팅전압 가 변 제어신호에 응답하여 전압을 가변적으로 부스팅시켜 전원전압보다 높은 부스팅전압을 발생한다. 상기 행 구동부는 전하전송 실행신호를 상기 전하전송 실행신호의 반전신호에 응답하여, 상기 화소 어레이부에 상기 전하전송 구동신호로 제공하거나 또는 전하전송 제어신호에 응답하여 상기 부스팅전압을 상기 화소 어레이부에 상기 전하전송 구동신호로 제공한다.
상기 행 구동부는 상기 전하전송 실행신호를 발생하는 구동신호 발생부와, 가변 부스팅부 및 전하전송신호 전달부를 구비한다. 상기 가변 부스팅부는 상기 부스팅전압 가변 제어신호에 응답하여 상기 전압을 가변적으로 부스팅시켜 상기 전원전압보다 높은 상기 부스팅전압을 발생한다. 상기 전하전송신호 전달부는 상기 가변 부스팅부의 상기 부스팅전압을 상기 전하전송 제어신호에 응답하여 상기 화소 어레이부에 상기 전하전송 구동신호로 제공하거나 또는 상기 전하전송 실행신호를 상기 전하전송 실행신호의 상기 반전신호에 응답하여 상기 화소 어레이부에 상기 전하전송 구동신호로 제공한다.
상기 가변 부스팅부는 부스팅전압 조절부와 부스트 캐패시터 그리고 상기 부스트 캐패시터에 전원전압을 제공하는 제1스위치를 구비한다. 상기 부스트 캐패시터는 다수의 캐패시터가 병렬연결되어, 부스트 제어신호에 응답하여 상기 전압을 부스팅시켜 상기 전원전압보다 높은 상기 부스팅전압을 제공한다.
상기 부스팅전압 조절부는 상기 부스트 캐패시터의 상기 일단에 연결되는 제2스위치; 상기 부스트 캐패시터의 타단에 연결되는 제3스위치를 구비한다. 상기 제2스위치와 제3스위치는 원하는 부스팅 전압레벨에 따라 상기 부스트 캐패시터의 상 기 다수의 캐패시터중 해당하는 캐패시터에 선택적으로 상기 부스팅제어신호를 제공하고, 나머지 캐패시터는 플로팅시켜 준다.
또한, 상기 부스팅 전압 조절부는 상기 부스트 캐패시터의 상기 일단에 연결되는 제2스위치; 및 상기 부스트 캐패시터의 상기 일단과 접지사이에 연결되는 제3스위치를 구비한다. 상기 제2스위치와 제3스위치는 원하는 부스팅 전압레벨에 따라 상기 부스트 캐패시터의 상기 다수의 캐패시터중 해당하는 캐패시터에 선택적으로 상기 부스팅 제어신호를 제공하고, 나머지 캐패시터는 접지시켜준다. 상기 제1 및 상기 제2스위치는 멀티플렉서를 포함한다.
이하 첨부한 도면에 의거하여 본 발명의 바람직한 실시예를 설명하도록 한다. 그러나, 본 발명의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들로 인해 한정되어지는 것으로 해석되어져서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다. 따라서, 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어진 것이며, 도면상에서 동일한 부호로 표시된 요소는 동일한 요소를 의미한다.
도 1은 본 발명의 실시예에 따른 이미지 센서의 블록도를 도시한 것이다. 도 1을 참조하면, 이미지센서는 화소 어레이부(10), 행 구동부(20), 상관이중 샘플링부(CDS, correlated double sampler, 30) 및 아날로그 디지털 변환부(40)를 구비한다. 상기 화소 어레이부(10)는 예를 들어, 열과 행방향으로 배열되는 다수개의 단위화소가 배열된다. 상기 화소 어레이부(10)에 배열된 다수개의 단위화소는 광학적 영상신호를 전기적 영상신호로 변환한다. 상기 화소 어레이부(10)에서 변환된 전기적 영상신호는 수직신호라인(15)을 통해 상기 상관이중 샘플링부(30)로 제공된다. 상기 행 구동부(20)는 상기 화소 어레이부(10)의 단위화소가 열과 행의 매트릭스형태로 배열되는 경우, 다수의 단위화소를 행단위로 구동하는 구동신호를 제공한다.
상기 상관 이중 샘플링부(30)는 수직신호라인(15)을 통해 상기 화소 어레이부(10)로부터 제공되는 전기적 신호를 수신하여 유지 및 샘플링한다(hold and sampling). 상기 상관 이중 샘플링부(30)는 특정한 기준전압레벨, 예를 들어 잡음레벨과 상기 화소 어레이부(10)의 전기적 신호에 의한 전압레벨, 즉 신호레벨을 이중으로 샘플링하여 상기 잡음레벨과 신호레벨의 차이에 해당하는 차이레벨를 출력한다. 따라서, 상기 상관이중 샘플링부(30)는 상기 화소 어레이부(10)에 배열된 단위화소와 상기 수직신호라인(15)의 특성분산으로 인한 고정적인 잡음레벨을 억제한다.
상기 상관이중 샘플링부(40)와 아날로그-디지탈 변환부(ADC)사이에는 증폭부(도면상에는 도시되지 않음)가 구성되어, 상기 상관이중 샘플링부(30)로부터 제공되는 차이레벨을 입력하여 적정한 이득을 갖는 아날로그 신호를 출력한다. 상기 아날로그-디지탈 변환부(40)는 아날로그 출력신호를 입력하여 오프셋보정을 위한 디지털신호를 출력한다. 상기 아날로그-디지탈 변환부(40)의 디지털 출력신호는 래치부(도면상에는 도시되지 않음)에 의해 래치된다. 상기 래치부에 래치된 디지털신호는 다중화부(도면상에는 도시되지 않음)로 제공된다. 상기 다중화부는 상기 래치부로부터 제공되는 디지털신호를 다중화하여 영상신호 처리부(도면상에는 도시되지 않음)로 제공한다.
도 2a 및 도 2b를 참조하면, 화소 어레이부(10)의 단위화소(100)는 광전 변환부(101), 전하 전송부(102), 전하 검출부(103), 리세트부(104), 증폭부(105) 및 선택부(106)를 포함한다. 상기 광전 변환부(101)는 물체에서 반사된 빛 에너지를 흡수하고, 광량에 대응하여 발생된 전하를 축적한다. 상기 광전 변환부(101)는 포토 다이오드, 포토 트랜지스터, 포토 게이트, 핀트 포토다이오드(PPD, Pinned Photo Diode) 및 이들의 조합을 사용 가능하다. 상기 전하 검출부(103)는 플로팅 확산영역(Floating diffusion region)이 주로 사용되며, 상기 광전 변환부(101)에 축적된 전하가 상기 전하전송부(102)를 통해 전송된다. 상기 전하 검출부(103)는 기생 캐패시턴스를 갖고 있으므로, 전하가 누적적으로 저장된다. 상기 전하 검출부(103)는 상기 증폭부(105)에 연결되어 상기 증폭부(105)를 제어한다.
상기 전하 전송부(102)는 상기 광전 변환부(101)에 축적된 전하를 상기 전하 검출부(103)로 전하를 전송한다. 상기 전하 전송부(102)는 일반적으로 하나의 트랜지스터, 예를 들어 NMOS 트랜지스터로 이루어진다. 상기 NMOS 트랜지스터는 게이트가 상기 전하전송 신호라인(26)에 연결되고, 드레인이 상기 광전 변환부(10)에 연결되며, 소오스가 상기 전하 검출부(103)에 연결된다. 상기 전하 전송부(102)는 상기 행구동부(20)의 상기 구동신호 발생부(21)로부터 게이트에 제공되는 상기 전하전송 구동신호(TG)에 의해 제어된다. 특히, 상기 전하 전송부(102)는 상기 광전 변환부(101)에 축적된 전하는 모두 상기 전하 검출부(103)로 전송될 필요가 있다. 상기 광전자 변환부(101)에 남겨진 전하는 다음 회의 읽기 동작시에 잔상으로 나타나 며, 변환이득(gain)의 감소요인, 상기 광전자 변환부(101)의 전하축적용량의 감소요인이 된다.
상기 전하전송부(102)는 과도한 빛에너지가 조사되었을 때 발생할 수 있는 광전 변환부(101)에서의 오버플로우(overflow) 및 블루밍(blooming) 현상을 방지하기 위해 낮은 문턱전압을 갖는 증가형(enhancement type) MOS 트랜지스터 또는 공핍형(depletion type) MOS 트랜지스터를 사용할 수 있으며, 이에 반드시 제한되는 것은 아니다. 예를 들어, CMOS 이미지 센서가 별도의 오버플로우 경로를 구비하는 경우에는, 통상의 증가형 MOS 트랜지스터를 사용할 수도 있다.
따라서, 본 발명에서는 행구동부(20)의 가변 부스팅부(23)를 이용하여 부스팅전압신호(SBTD)가 제공되는 노드(236)의 전압을 부스팅시켜 외부 전원전압(Vdd)보다 높은 부스팅전압을 화소 어레이부(10)의 단위화소에 상기 전하전송 구동신호(TG)로 제공한다. 그러므로, 상기 전하전송 구동신호(TG)로 외부 전원전압(Vdd)보다 높은 부스팅전압을 사용하게 되면, 전하전송 구동신호(TG)로 외부 전원전압(Vdd)을 사용하는 종래의 CMOS 이미지 센서의 경우보다 상기 전하 전송부(102)의 전위가 더 높아진다. 이때, 상기 광전 변환부(101)의 전위보다 상기 전하 전송부(102)의 전위를 더 높게 하는 것이 바람직하다.
상기 리세트부(104)는 상기 전하 검출부(103)를 주기적으로 리세트시킨다. 상기 리세트부(104)는 하나의 트랜지스터, 예를 들어 NMOS 트랜지스터로 이루어진다. 상기 NMOS 트랜지스터는 게이트가 상기 리세트 신호라인(27)에 연결되고, 상기 소오스가 상기 전하검출부(103)에 연결되며, 상기 드레인에 전원전압(Vdd)이 인가 된다. 상기 리세트부(104)는 상기 행구동부(20)의 구동신호 발생부(21)로부터 게이트에 제공되는 리세트신호(RG)에 의해 구동된다.
상기 증폭부(105)는 상기 화소 어레이부(10)의 외부에 배치되는 정전류원(도면상에는 도시되지 않음)과 조합하여 소스 팔로워 버퍼증폭기(source follower buffer amplifier)의 역할을 한다. 상기 증폭부(105)는 NMOS 트랜지스터로 구성되며, 상기 NMOS 트랜지스터의 게이트는 상기 전하 검출부(103)에 연결되고, 드레인에 상기 전원전압(Vdd)이 제공되며, 상기 소오스가 상기 선택부(106)에 연결된다. 상기 증폭부(105)는 게이트에 상기 전하검출부(103)가 연결되어, 상기 전하검출부(103)의 전위에 응답하여 변하는 전압을 수직신호라인(15)을 통해 출력한다.
상기 선택부(106)는 상기 화소배열부(10)에 배열된 다수의 단위화소중 행단위로 읽어낼 단위화소(100)를 선택한다. 상기 선택부(106)는 하나의 트랜지스터, 예를 들어 NMOS 트랜지스터로 구성된다. 상기 NMOS 트랜지스터는 게이트가 상기 화소선택 신호라인(28)에 연결되고, 소오스가 상기 수직신호라인(15)에 연결되며, 드레인이 상기 증폭부(105)에 연결된다. 상기 선택부(106)는 상기 행구동부(20)의 상기 구동신호 발생부(21)로부터 제공되는 화소선택신호(SEL)에 응답하여 구동된다.
구동라인(26, 27, 28)은 상기 다수의 단위화소중 동일한 행에 배열되는 화소들을 동시에 구동시켜 주도록 행방향(수평방향)으로 연장된다. 상기 구동라인(26)은 상기 구동신호 발생부(21)로부터 상기 전하전송 구동신호(TG)를 상기 화소 어레이부(10)의 단위화소(100)의 상기 전하전송부(102)로 제공하기 위한 전하전송 구동신호라인이다. 상기 구동라인(27)은 상기 구동신호 발생부(21)로부터 상기 리세트 신호(RG)를 상기 화소 어레이부(10)의 단위화소(100)의 상기 리세트부(104)로 제공하기 위한 리세트 신호라인이다. 상기 구동라인(28)은 상기 구동신호 발생부(21)로부터 상기 화소선택신호(SEL)를 상기 화소 어레이부(10)의 단위화소(100)의 상기 선택부(106)로 제공하기 위한 화소선택 신호라인이다.
상기 행 구동부(20)는 구동신호 발생부(21), 가변 부스팅부(23) 및 전하전송신호 전달부(25)를 구비한다. 상기 구동신호 발생부(21)는 행단위로 화소선택신호(SEL)와 리세트신호(RG) 그리고 전하전송 실행신호(TGX)를 발생한다. 상기 화소선택신호(SEL)는 상기 화소 어레이부(10)의 단위화소(100)로 제공되어, 단위화소(100)의 선택부(106)를 제어한다. 상기 화소선택신호(SEL)는 다수의 화소선택 신호라인(28)중 해당하는 하나의 화소선택 신호라인, 예를 들어 i 번째 화소선택 신호라인을 통해 화소 어레이부(10)의 다수의 단위화소중 해당하는 하나의 행에 배열된 단위화소, 예를 들어 i 번째 행에 배열된 단위화소의 선택부(106)로 제공된다. 또한, 상기 화소선택신호(SEL)는 상기 전하전송신호 전달부(25)로 제공된다.
상기 리세트신호(RG)는 상기 화소 어레이부(10)의 단위화소(100)로 제공되어, 상기 단위화소(100)의 리세트부(104)를 제어한다. 상기 리세트신호(RG)는 다수의 리세트 신호라인(27)중 해당하는 하나의 리세트 신호라인, 예를 들어 i 번째 리세트 신호라인을 통해 화소 어레이부(10)의 다수의 단위화소중 해당하는 하나의 행에 배열된 단위화소, 예를 들어 i 번째 행에 배열된 단위화소의 리세트부(104)로 제공된다. 또한, 상기 리세트신호(RG)는 상기 전하전송신호 전달부(25)로 제공된다. 상기 전하전송 실행신호(TGX)는 상기 전하전송신호 전달부(25)로 제공되어, 상 기 화소 어레이부(10)의 단위화소(100)의 상기 전하전송부(102)를 제어하기 위한 전하전송 구동신호(TG)로 변환된다. 상기 전하전송 실행신호(TGX)의 반전신호(TGXB)는 상기 가변 부스팅부(23)로 제공된다.
상기 가변 부스팅부(23)는 부스팅전압 가변 제어신호(BSVX)와 부스팅 제어신호(BSTX) 그리고 반전 전하전송 실행신호(TGXB)에 응답하여 노드(236)의 전압을 원하는 전압레벨에 따라 가변적으로 승압시켜 준다. 상기 전하전송신호 전달부(25)는 상기 구동신호 발생부(21)로부터 출력되는 전하전송 실행신호(TGX), 상기 화소선택신호(SEL) 및 리세트신호(RG)에 응답하여 상기 구동신호 발생부(21)로부터 발생된 상기 전하전송 실행신호(TGX) 또는 상기 가변 부스팅부(23)로부터 발생된 상기 전원전압(Vdd)보다 높게 가변적으로 부스팅된 부스팅전압을 상기 전하전송 구동신호(TG)로서 상기 화소 어레이부(10)의 단위 화소(100)의 상기 전하전송부(102)에 제공한다.
도 3은 본 발명의 일 실시예에 따른 CMOS 이미지센서의 회로도이다. 도 3에는 상기 CMOS 이미지 센서중 행 구동부의 상세 블록도를 도시한 것이다. 도 3을 참조하면, 가변 부스팅부(23)는 부스팅 제어신호(BSTX)와 부스팅전압 가변 제어신호(BSVX)에 응답하여 부스팅시키고자 하는 전압레벨을 가변적으로 조절하는 부스팅전압 조절부(231)와, 상기 부스팅전압 조절부(231)에 의해 조절된 부스팅 전압레벨에 따라 상기 노드(236)의 전압을 부스팅시켜주는 부스팅부(233)를 구비한다. 상기 부스팅전압 조절부(231)에 의해 원하는 부스팅전압의 레벨이 정해지면, 상기 부스팅부(233)는 상기 노드(236)의 전압을 부스팅시켜, 상기 전원전압(Vdd)보다 높은 전 압레벨을 갖는 부스팅 전압의 형태로 상기 전하전송신호 전달부(25)에 제공한다.
상기 전하전송신호 전달부(25)는 상기 가변 부스팅부(23)로부터 제공되는 부스팅전압을 상기 화소 어레이부(10)의 단위화소(100)의 전하전송부(102)로 제공된다. 이때, 상기 가변 부스팅부(23)로부터 제공되는 부스팅전압은 상기 화소 어레이부(10)의 모든 행에 배열된 단위화소로 제공된다. 상기 전하전송신호 전달부(25)는 다수의 스위칭부(251 - 25n)를 구비한다. 상기 전하전송신호 전달부(25)의 각 스위칭부(251 - 25n)은 상기 구동신호 발생부(21)로부터 제공되는 리세트신호(RG[1] - RG[n])와 화소선택신호(SEL[1]-SEL[n])에 응답하여 상기 화소 어레이부(10)의 단위화소(10)에 상기 구동신호 발생부(21)로부터 제공된 상기 전하전송 실행신호(TGX[1] - TGX[n])를 전하전송 구동신호(TGi)로 제공하거나 또는 상기 가변 부스팅부(23)에서 제공되는 부스팅전압을 전하전송 구동신호(TGi)로 상기 화소 어레이부(10)에 제공한다.
도 4는 본 발명의 일 실시예에 따른 CMOS 이미지 센서의 행구동부의 동작을 개념적으로 도시한 것이다. 도 4에는 상기 전하전송신호 전달부(25)의 다수의 스위칭부(251 - 25n)중 상기 화소 어레이부(10)의 i 번째 행에 배열된 단위화소(100)로 전하전송 구동신호(TGi)를 제공하기 위한 제i스위칭부(25i)와, i+1 번째 행에 배열된 단위화소(100)로 전하전송 구동신호(TGi+1)를 제공하기 위한 제i+1스위칭부(25i+1)에 한정하여 도시한다.
도 3 및 도 4를 참조하면, 상기 가변 부스팅부(23)의 부스팅부(233)는 상기 부스팅 제어신호(BSTX)가 제공되는 노드(235)와 부스팅전압신호(BSTD)가 제공되는 노드(236)사이에 병렬연결된 캐패시터그룹(CBST[1] - CBST[n])로 구성된 부스팅 캐패시터(233a)와, 상기 노드(236)에 일단이 연결되고 타단에 전원전압(Vdd)이 인가되는 제1스위치(SW1)를 구비한다. 상기 제1스위치(SW1)는 반전 전하전송 실행신호(TGXB[i], TGXB[i+1])에 의해 제어된다. 여기서, 상기 반전 전하전송 실행신호(TGXB[i], TGXB[i+1])는 전하전송 실행신호(TGX0, TGXi+1)이 반전된 신호를 의미한다. 상기 부스팅 캐패시터(233a)의 상기 캐패시터그룹(CBST[1] - CBST[n])은 상기 부스팅전압 조절부(231)에 의해 상기 노드(235)와 노드(236)사이에 선택적으로 연결되어진다.
상기 부스팅전압 조절부(230)은 상기 노드(235)와 상기 부스팅 캐패시터(233a)의 일단에 연결되는 제4스위치(231a)와, 상기 부스팅 캐패시터(233a)의 타단과 상기 노드(236)사이에 연결되는 제5스위치(231b)를 구비한다. 상기 제4스위치(231a)는 상기 노드(235)와 상기 캐패시터그룹(CBST[1] - CBST[m])의 일단 사이에 각각 병렬 연결되는 스위치그룹(SW4[1] - SW4[m])으로 구성된다. 상기 제5스위치(231b)는 상기 노드(236)과 상기 캐패시터그룹(CBST[1] - CBST[m])의 타단 사이에 각각 병렬 연결되는 스위치그룹(SW5[1] - SW5[n])으로 구성된다. 상기 제4스위치(231a)의 스위치그룹(SW4[1] - SW4[m])과 상기 제5스위치(231b)의 스위치그룹(SW5[1] - SW5[m])은 상기 부스팅전압 가변 제어신호(BSVX)에 의해 연동적으로 동작된다.
상기 전송전하신호 전달부(25)는 다수의 스위칭부(25i, 25i+1)를 구비하며, 상기 스위칭부(25i)는 상기 반전 전하전송 실행신호(TGXBi)와 전하전송 제어신호 (BSi)에 의해 제2 및 제3스위치(SW2[i], SW3[i])가 제어되고, 상기 스위칭부(25i+1)는 상기 반전 전하전송 실행신호(TGXBi+1)와 전하전송 제어신호(BSi+1)에 의해 제2 및 제3스위치(SW2[i+1], SE3[i+1])가 제어된다. 따라서, 상기 스위칭부(25i, 25i+1)는 상기 전하전송 실행신호(TGXi, TGXi+1) 또는 부스팅 전압신호(BSTD)를 상기 화소 어레이부(10)의 i 번째 행 또는 i+1 번째 행에 배열된 단위화소에 전하전송신호(TGi, TGi+1)로 제공한다. 이때, 각 스위칭부(25i, 25i+1)의 제2스위치(SW[i], SW2[i+1])가 상기 반전 전하전송 실행신호(TCXBi)에 의해 제어되고, 상기 제3스위치(SW3[i], SW3[i+1])가 상기 전하전송 제어신호(BSi)에 의해 제어된다. 상기 전하전송 제어신호(BSi)는 상기 구동신호 발생부(21)로부터 제공되는 리세트신호(RGi)와 화소선택신호(SELi)에 응답하여 발생되는 제어신호이다.
상기 가변 부스팅부(23)의 부스팅 캐패시터(233a)의 캐패시터 그룹(CBST[1] - CBST[m])은 제1스위치(231a)와 제2스위치(231b)에 의해 원하는 부스팅 전압레벨에 상응하여 선택적으로 노드(235)와 노드(236)에 연결된다. 이때, 원하는 부스팅 전압레벨에 상응하여 i 번째 캐패시터(CBSTi)까지 선택된다고 가정하면, 상기 부스팅전압 가변 제어신호(BSVX)에 의해 상기 제4스위치(231a)의 스위치그룹(SW4[1] - SW4[m])중 해당하는 스위치(SW4[1] - SW4[i])는 턴온되고, 나머지 스위치 SW4[i+1] - SW4[m] 은 턴오프된다. 또한, 상기 제5스위치(231b)의 스위치그룹(SW5[1] - SW5[m])중 해당하는 스위치(SW4[1] - SW5[i])가 턴온되고, 나머지 스위치(SW5[i+1] - SW5[m]은 턴오프된다. 따라서, 상기 노드(235)와 노드(236)사이에는 제4스위치(231a)의 스위치(SW4[1] - SW[i])와 제5스위치(231b)의 스위치(SW5[1] - SW[i])에 의해 부스팅 캐패시터(233a)의 캐패시터(CBST[1] - CBST[i])가 병렬 연결되어진다.
이때, 전하전송 실행신호(TGxi)가 제공되면, 반전 전하전송 실행신호(TGXBi)에 의해 제1스위치(SW1)가 턴오프되고, 상기 선택된 캐패시터(CBST[1] - CBST[i])는 상기 부스팅 제어신호(BSTX)에 응답하여 원하는 전압레벨로 노드(236)의 전압을 부스팅시키고, 상기 전원전압(Vdd)보다 높은 전압레벨의 부스팅 전압신호(BSTD)를 상기 전송전하신호 전달부(25)로 제공한다.
상기 전하전송신호 전달부(25)에는 상기 구동신호 발생부(21)로부터 상기 화소 어레이부(10)의 다수의 단위화소중 i 번째 행의 단위화소를 위한 전하전송 실행신호(TGXi)가 제공된다고 가정한다. 상기 전하전송신호 전달부(25)는 상기 반전 전하전송 실행신호(TGXBi)와 상기 전하전송 제어신호(BSi)에 의해 상기 제2 및 제3스위치(SW2[i], SW3[i])가 제어되어 상기 전하전송 실행신호(TGXi) 또는 부스팅 전압신호(BSTD)를 상기 화소 어레이부(10)의 i 번째 행에 배열된 단위화소에 전하전송 구동신호(TGi)로 제공한다. 상기 반전 전하전송 실행신호(TCXBi)에 의해 상기 스위치(SW2a)가 제어되면 상기 구동신호 발생부(21)의 상기 전하전송 실행신호(TGXi)가 전하전송 구동신호(TGi)로 제공되고, 전하전송 제어신호(BSi)에 의해 상기 스위치(SW2b)가 제어되면 상기 가변 부스팅부(23)의 부스팅 전압신호(BSTD)가 상기 전하전송 구동신호(TGi)로 제공된다.
상기 부스팅 캐패시터(233a)의 캐패시터(CBST[1] - CBST[m])는 모두 동일한 캐패시턴스를 갖으며, 상기 캐패시터(CBST[1] - CBST[m])의 캐패시턴스는 상기 화소 어레이부(10)의 로딩 캐패시터(도 5의 CTGi)보다 큰 값을 갖는다. 상기 캐패시 터(CBST[1] - CBST[m])의 캐패시턴스는 상기 화소 어레이부(10)의 로딩 캐패시터(CTGi)보다 2배이상 큰 값을 갖으며, 바람직하게는 10배이상 큰 값을 갖는다.
본 발명의 실시예에서는 상기 부스팅 캐패시터(233a)의 캐패시터(CBST[1] - CBST[m])가 모두 동일한 값을 갖으며, 부스팅 전압레벨에 따라 부스팅전압 가변 제어신호(BSVX)에 의해 상기 캐패시터(CBST[1] - CBST[m])중 일부가 선택적으로 연결되도록 가변 부스팅부(23)가 구성되었으나, 캐패시터(CBST[1] - CBST[m])가 서로 다른 값을 갖도록 구성되고, 원하는 부스팅 전압레벨에 따라 상기 부스팅 전압 가변 제어신호(BSVX)에 의해 상기 부스팅 캐패시터(CBST[1] - CBST[m])중 하나 이상 선택하여 이들의 조합에 의해 부스팅 전압레벨을 가변적으로 조절하는 것도 가능하다.
도 5는 본 발명의 일 실시예에 따른 CMOS 이미지 센서의 행구동부의 상세 회로도를 도시한 것이다. 도 5에는 상기 행구동부(20)중 가변 부스팅부(23)의 부스팅전압 조절부(231) 및 부스팅부(233) 그리고 상기 전하전송신호 전달부(25)에 대한 상세 회로도를 도시한 것이다. 상기 전하전송신호 전달부(25)는 다수의 스위칭부(251- 25n)중 i 번째 행의 단위화소에 전하전송 구동신호(TGi)를 제공하는 스위칭부(25i)에 대하여 한정 도시한다. 나머지 스위치부(251 - 25i-1), (25i+1 - 25n)의 구성은 상기 스위칭부(25i)와 동일한 구성을 갖는다.
도3, 도 4 및 도 5를 참조하면, 상기 가변 부스팅부(23)의 부스팅전압 조절부(231)는 상기 제4스위치(231a)가 제1멀티플렉서(MUX1)로 구성되어, 상기 제1멀티플렉서(MUX1)의 입력단(I1 - Im)은 상기 노드(235)에 공통 연결되고, 상기 출력단 (Q1 -Qm)은 상기 부스팅 캐패시터(233a)의 캐패시터그룹(CBST[1] - CBST[m])의 일단에 각각 연결된다. 상기 제5스위치(231b)는 제2멀티플렉서(MUX2)로 구성되어, 상기 제2멀티플렉서(MUX2)의 입력단(I1 - Im)은 상기 부스팅 캐패시터(233a)의 캐패시터그룹(CBST[1] - CBST[m])의 타단에 각각 연결되고, 상기 출력단(Q1 -Qm)은 상기 노드(236)에 공통 연결된다. 상기 부스팅부(233)의 제1스위치(SW1)는 소오스가 상기 노드(236)에 연결되고, 드레인에 상기 전원전압(Vdd)이 인가되며, 게이트에 인가되는 상기 반전 전하전송 실행신호(TGXBi)에 의해 구동되는 NMOS 트랜지스터(Q1)로 구성된다.
상기 전하전송신호 전달부(25)의 스위칭부(25i)는 상기 화소 어레이부(10)의 i 번째 행의 단위화소(100)의 전하전송부(102)에 전하전송 구동신호(TGi)를 제공하기 위한 것이다. 상기구동신호 발생부(21)의 상기 전하전송 실행신호(TGXi)를 전하전송 구동신호(TGi)로 제공하는 제2스위치(SW2i)는 게이트에 인가되는 상기 반전 전하전송 실행신호(TGXBi)에 의해 제어되는 NMOS 트랜지스터(Q3)로 구성되고, 상기 가변 부스팅부(23)의 부스팅 전압신호(BSTD)를 상기 전하전송 구동신호(TGi)로 제공하는 제3스위치는(SW3i)는 게이트에 인가되는 상기 전하전송 제어신호(BSi)에 의해 제어되는 NMOS 트랜지스터(Q2)로 구성된다.
상기 스위칭부(25i)는 상기 트랜지스터(Q2)의 게이트와 소오스간에 연결된 부트스트랩 캐패시터(CBGS)와, 상기 트랜지스터(Q2)를 제어하기 위한 전하전송 제어신호(BSi)를 발생하는 제1논리부(25a)와, 상기 트랜지스터(Q3)를 제어하기 위한 전하전송 제어신호인 반전 전하전송 실행신호(TGXBi)를 발생하는 제2논리부(25b)를 더 구비한다. 상기 제2논리부(25b)는 상기 전하전송 실행신호(TGXi)를 입력신호로 하는 제1인버터(IN1)를 구비한다. 상기 제1논리부(25a)는 상기 리세트신호(RGi)와 상기 화소선택신호(SELi)를 두 입력신호로 하는 낸드 게이트(NA)와, 상기 낸드 게이트(NA)의 출력신호를 입력신호로 하는 제2인버터(IN2)와, 상기 화소선택신호(SELi)를 입력신호로 하는 제3인버터(IN3)를 구비한다. 상기 제1제논리(25a)는 상기 전원전압(Vdd)과 접지사이에 직렬연결되고, 게이트에 각각 제2 및 제3인버터(IN2), (IN3)의 출력신호(NAB), (SELB)가 각각 제공되는 NMOS 트랜지스터(Q4, Q5)를 더 구비한다. 상기 부트스트랩 캐패시터는 0.001 내지 0.1pF 의 캐패시턴스를 갖는다.
상기한 바와 같은 구성을 갖는 본 발명의 CMOS 이미지 센서의 동작을 도 6의 동작 파형도를 참조하여 설명하면 다음과 같다. 먼저, 구간(t1)의 초기상태에서, 상기 구동신호 발생부(21)로부터 로우레벨의 상기 화소선택신호(SELi), 하이레벨의 상기 리세트신호(RGi) 그리고 로우레벨의 전하전송 실행신호(TGXi)가 제공된다. 하이레벨의 반전 전하전송 실행신호(TGXBi)에 의해 상기 가변 부스팅부(23)의 제1트랜지스터(Q1)는 턴온된다. 상기 노드(236)에서 부스팅 전압신호(BSTD)는 Vdd-Vth(Q1)이 된다.
상기 제3인버터(IN3)는 하이레벨의 반전 선택신호(SELBi)를 출력하여 상기 제5트랜지스터(Q5)의 게이트로 제공한다. 상기 제2인버터(IN2)는 로우레벨의 출력신호(NAB)를 출력하여 상기 제4 트랜지스터(Q4)의 게이트로 제공한다. 따라서, 상기 제4트랜지스터(Q4)는 턴오프되고 상기 제5트랜지스터(Q5)는 턴온되어, 상기 전 하전송 제어신호(BSi)는 접지전압(Vss)의 로우레벨로 된다. 상기 제2트랜지스터(Q2)는 로우레벨의 전하전송 제어신호(BSi)에 의해 턴오프된다. 상기 제1인버터(IN1)는 하이레벨의 반전 전하전송 실행신호(TGXBi)를 상기 제3트랜지스터(Q3)의 게이트에 제공하여 턴온된다. 따라서, 상기 제3트랜지스터(Q3)는 상기 반전 전하전송 실행신호(TGXi)를 전하전송 제어신호로 하여, 상기 전하전송 실행신호(TGXi)를 상기 화상 어레이부(10)의 i번째 행에 배열된 단위화소(100)의 전하전송부(102)에 전하전송 구동신호(TGi)로 제공한다.
구간(t2)에서, 화소선택신호(SEL)가 하이레벨로 되면, 제2인버터(IN2)를 통해 하이레벨의 출력신호(NAB)가 출력되어 제4트랜지스터(Q4)가 턴온된다. 상기 제3인버터(IN3)를 통해 로우레벨의 반전 화소선택신호(SELB)가 출력되어, 제5트랜지스터(Q5)가 턴오프되고, 노드(238)의 전위는 Vdd-Vth(Q4)로 된다. 따라서, 상기 제2트랜지스터(Q2)의 게이트에는 Vdd-Vth(Q4)의 전하전송 제어신호(BSi)가 제공된다. 이때, 상기 전하전송 실행신호(TGXi)가 로우레벨을 유지하므로, 제1트랜지스터(Q1)가 턴온되어 가변 부스팅부(23)의 노드(236)의 부스팅 전압신호(BSTD)는 여전히 Vdd-Vth(Q1)로 된다. 또한, 하이레벨의 반전 전하전송 실행신호(TGXB)에 의해 제3트랜지스터(Q3)가 계속 턴온상태를 유지하므로, 제2트랜지스터(Q2)의 소오스는 0V 로 되어 제2트랜지스터(Q2)의 게이트와 소오스간에 연결된 부트스트랩 캐패시터(CBGS)에는 Vdd-Vth(Q4)가 충전된다.
여기서, 전하전송 구동신호(TGi)를 전송하기 위한 제2트랜지스터(Q2)와 제3트랜지스터(Q3)가 모두 턴온되므로 상기 화소 어레이부(10)로 전하전송 실행신호 (TGXi)와 가변 부스팅부(23)의 부스팅전압(BSTD)이 상기 화소어레이부(10)의 전하전송 구동신호(TGi)로 제공된다. 상기 제2트랜지스터(Q2)와 제3트랜지스터(Q3)가 모두 NMOS 트랜지스터로 구성되는 경우, 상기 제3트랜지스터(Q3)의 크기(W(width)/L(length))가 상기 제2트랜지스터(Q2)의 크기(W/L)보다 상당히 크게 설계되어 있다. 그러므로, 제2트랜지스터(Q2)와 제3트랜지스터(Q3)가 모두 턴온되더라도, 제2트랜지스터(Q2)를 통해 전달되는 부스팅 전압신호(BSTD)가 전하전송 구동신호(TGi)에 미치는 영향은 아주 미약하다. 이경우에는, 상기구동신호 발생부(21)로부터 제공되는 전하전송 실행신호(TGi)가 주신호가 되고, 가변 부스팅부(23)의 부스팅 전압신호(BSTD)는 부신호가 되어 배타적으로 상기 화소 어레이부(10)의 전하전송 신호(TGi)로 제공된다.
구간(t3)에서, 상기 리세트신호(RGi)가 하이레벨에서 로우레벨로 되고, 화소선택신호(SELi)와 전하전송 실행신호(TGXi)는 계속 하이레벨과 로우레벨을 유지한다. 상기 제2인버터(IN2) 및 제3인버터(IN3)로부터 모두 로우레벨의 출력신호(NAB)와 (SELBi)가 상기 제4트랜지스터(Q4)와 제5트랜지스터(Q5)의 게이트에 제공되어 모두 턴오프되고, 노드(238)는 플로팅상태로 된다. 이때, 상기 제2트랜지스터(Q2)와 제3트랜지스터(Q3)가 모두 턴온상태를 유지하게 되지만, 상기에서 설명한 바와 같이 제3트랜지스터(Q3)의 크기가 제2트랜지스터(Q2)의 크기보다 충분히 크므로, 상기 전하전송 구동신호(TGi)는 그대로 로우레벨을 유지하게 된다.
구간(t4)에서, 상기 전하전송 실행신호(TGXi)가 로우레벨에서 하이레벨로 되고, 상기 화소선택신호(SELi)와 상기 리세트신호(RGi)가 계속 하이레벨과 로우레벨 을 유지한다. 상기 제1인버터(IN1)를 통해 로우레벨의 반전 전하전송 실행신호(TGXBi)가 상기 제1트랜지스터(Q1)의 게이트에 제공되므로, 턴오프된다. 또한, 스위칭부(25i)의 제3트랜지스터(Q3)의 게이트에 상기 반전 전하전송 실행신호(TGXi)가 제공되어 턴오프된다. 이때, 노드(236)의 부스팅 전압신호(BSTD)는 Vdd-Vth(Q1)을 유지하고 있으므로, 턴온되어 있는 제2트랜지스터(Q2)를 통해 노드(237)로 상기 부스팅 전압신호(BSTD)가 전달되어 상기 화소 어레이부(10)에 상기 전하전송 구동신호(TGi)로 전송된다. 이때, 노드(238)가 플로팅되어 있으므로, 부트스트랩 캐패시터(CBGS)의 캐패시턴스 커플링에 의해 노드(238)은 2Vdd-Vth(Q4)-Vth(Q1) 이 된다.
구간(t5)에서, 상기 전하전송 실행신호(TGXi)가 여전히 하이레벨을 유지하므로, 로우레벨의 반전 전하전송 실행신호(TGXBi)에 의해 제1트랜지스터(Q1)가 턴오프되고, 노드(236)이 플로팅상태로 된다. 이때, 부스팅 제어신호(BSTX)가 로우레벨에서 하이레벨로 되고, 원하는 부스팅 전압레벨에 따라 외부 부스팅전압 가변 제어신호(BSVX)에 의해 상기 제1스위치(231a)의 멀티플렉서(MUX1)와 제2스위치(231b)의 멀티플렉서(MUX2)가 제어되어 상기 부스팅 캐패시터(233a)의 캐패시터그룹(CBST[1] - CBST[m])중 해당하는 캐패시터만을 선택적으로 노드(235)와 노드(236)사이에 연결시켜 준다.
원하는 부스팅 전압레벨에 따라 예를 들어 부스팅 캐패시터(233a)의 i 번째 캐패시터(CBST[i])까지 선택되면, 노드(236)의 부스팅 전압신호전압(BSTD)는 VBST(CBST[i])+Vdd-Vth(Q1)로 된다. 상기 노드(236)의 부스팅 전압신호(BSTD)는 턴 온되어 있는 제2트랜지스터(Q2)를 통해 노드(237)로 전송되어, 상기 화소 어레이부(10)에 전하전송 구동신호(TGi)로 제공된다. 이때, 노드(238)는 여전히 플로팅상태를 유지하므로, 부트스트랩 캐패시터(CBGS)에 의해 노드(238)의 전하전송 제어신호(BSi)는 VBST(CBST[i])+2Vdd-Vth(Q4)-Vth(Q1)로 된다.
여기서 VBST(CBST[i]) 는 캐패시터(CBST[i]-CBST[i])의 캐패시턴스에 따라 부스팅된 전압을 의미한다. 상기 부스팅 전압(VBST)는 원하는 부스팅 전압레벨에 따라 부스팅 캐패시터그룹(CBST[1] - CBST[m])중 일부만이 선택되고, 선택된 캐패시터의 캐패시턴스에 대응하여 그 크기가 결정되어진다. 상기 선택된 부스팅 캐패시터의 수에 따라 부스팅전압 VBST 이 가변되고, 그에 따라 노드(236)에서의 부스팅 전압신호(BSTD)가 가변적으로 조절된다. 상기 부스팅전압(VBST)는 상기 선택된 부스팅 캐패시터의 캐패시턴스가 로딩 캐패시터(CTGi)에 비하여 충분히 크다면 부스팅전압(VBST)은 하기의 식(1)과 (2)로부터 알 수 있는 바와 같이, 전원전압(Vdd)과 동일한 전압레벨을 갖게 된다.
상기한 바와 같이, 제2트랜지스터(Q2)의 게이트와 소오스간에 연결된 커플링 캐패시터(CBGS)와 제2트랜지스터(Q2)의 게이트에 연결되는 노드(238)의 플로팅상태를 이용하여 전압손실없이 노드(237)을 통해 화소 어레이부(10)로 부스팅된 전압을 전하전송 구동신호(TGi)로 제공할 수 있다. 이때, 부스트 캐패시터(233)가 병렬연결되는 m개의 캐패시터로 구성되는 경우, 외부로부터 부스팅전압 가변 제어신호(BSVX)에 의해 제1멀티플렉서(MUX1)와 제2멀티플렉서(MUX2)를 제어하여 부스팅되는 전압레벨을 가변적으로 조절할 수 있게 된다.
부스트 캐패시터(233a)가 m 개의 캐패시터(CBST[1] - CBST[m])로 구성되는 경우, 부스트 캐패시터(233a)와 부스트 전압과의 관계를 살펴보면, 부스트 캐패시터(233a)의 총 캐패시턴스(CBST.total)과 총 부스트전압(VBST.total)은 하기의 식(1), (2)으로 표현된다.
CBST.total = CBST[1]+CBST[2]+.....+CBST[m-1]+CBST[m] ..... (1)
VBST.total = Vdd{CBST.total/(CBST.total+CTG)} ..... (2)
이때, m 개의 캐패시터중 i번째 캐패시터(CBST[i])까지 선택되었다고 가정하면, 부스트 캐패시턴스는 CBSTi-th = (i/n)*CBST.total 이 되고, 부스트 전압(VBSTi-th)는 VBSTi-th = (i/n)*VBST.total 이 된다.
구간(t5)에서, 부스팅 제어신호(BSTX)가 하이레벨에서 로우레벨로 되고, 상기 전하전송 실행신호(TGXi)도 하이레벨에서 로우레벨로 된다. 하이레벨의 반전 전하전송 실행신호(TGXBi)에 의해 제1트랜지스터(Q1)가 턴온되어, 노드(236)의 부스팅 전압신호(BSTD)는 Vdd-Vth(Q1)으로 된다. 또한, 제3트랜지스터(Q3)가 턴온되므로, 노드(237)의 전위는 0V 로 되어 전하전송 구동신호(TGi)로 전송된다. 이때, 제2트랜지스터(Q2)도 턴온되어 있으나, 상기한 바와같이 트랜지스터(Q3)의 크기가 제2트랜지스터(Q2)의 크기보다 크므로, 전하전송 실행신호(TGXi)가 주신호로 된다. 노드(237)의 전위가 0V 로 되므로, 노드(238)의 전하전송 제어신호(BSi)의 전압레벨은 Vdd-Vth(Q4)로 된다.
구간(t7)에서 리세트신호(RGi)가 하이레벨에서 로우레벨로 되므로, 트랜지스터(Q4)가 턴온되어 노드(238)의 전하전송 제어신호(BSi)의 전압레벨은 Vdd-Vth(Q4) 로 된다. 하이레벨의 반전 전하전송 실행신호(TGXBi)에 의해 제1트랜지스터(Q1)가 턴온되어, 노드(236)의 부스팅 전압신호(BSTD)는 Vdd-Vth(Q1)으로 된다. 또한, 제3트랜지스터(Q3)가 턴온되므로, 노드(237)의 전위는 0V 로 되어 전하전송 구동신호(TGi)로 전송된다.
본 발명의 일 실시예에서는, 구간(t6)에서 부스팅 제어신호(BSTX)와 전하전송 실행신호(TGXi)가 동시에 하이레벨에서 로우레벨로 천이되는 것을 예시하였으나, 부스팅 제어신호(BSTX)가 먼저 로우레벨로 천이된 다음 전하전송 실행신호(TGXi)가 로우레벨로 천이될 수도 있다. 이런 경우에는, 전하전송 구동신호(TGi)의 전압레벨이 VBST+Vdd-Vth(Q1)에서 바로 0V로 되지 않고 VBST+Vdd-Vth(Q1)에서 Vdd-Vth(Q1)을 거쳐 0V 로 천이될 수도 있다.
도 7은 본 발명의 다른 실시예에 따른 CMOS 이미지 센서의 행구동부의 동작을 개념적으로 도시한 것이다. 도 7에는 상기 전하전송신호 전달부(25)의 다수의 스위칭부(251 - 25n)중 상기 화소 어레이부(10)의 i 번째 행에 배열된 단위화소(100)로 전하전송 구동신호(TGi)를 제공하기 위한 제i스위칭부(25i)와, i+1 번째 행에 배열된 단위화소(100)로 전하전송 구동신호(TGi+1)를 제공하기 위한 제i+1스위칭부(25i+1)에 한정하여 도시한다. 도 8은 본 발명의 다른 실시예에 따른 CMOS 이미지 센서의 행구동부의 상세 회로도를 도시한 것이다. 도 8에는 상기 행구동부(20)중 가변 부스팅부(23)의 부스팅전압 조절부(231) 및 부스팅부(233) 그리고 상기 전하전송신호 전달부(25)에 대한 상세 회로도를 도시한 것이다.
도 3, 도 7 및 도 8을 참조하면, 상기 가변 부스팅부(23)의 부스팅부(233)는 상기 부스팅 제어신호(BSTX)가 제공되는 노드(235)와 노드(236)사이에 병렬연결된 캐패시터그룹(CBST[1] - CBST[m])로 구성된 부스팅 캐패시터(233a)와, 상기 노드(236)에 일단이 연결되고 타단에 전원전압(Vdd)이 인가되는 제1스위치(SW1)를 구비한다. 상기 제1스위치(SW1)는 반전 전하전송 실행신호(TGXB[i], TGXB[i+1])에 의해 제어된다. 상기 부스팅 캐패시터(233a)의 상기 부스팅 캐패시터그룹(CBST[1] - CBST[m])은 상기 부스팅전압 조절부(231)에 의해 상기 노드(235)와 노드(236)사이에 연결되어진다.
상기 부스팅전압 조절부(231)은 상기 노드(235)와 상기 부스팅 캐패시터그룹(CBST[1] - CBST[m])의 일단 사이에 병렬연결되는 스위치그룹(SW4[1] - SW4[m])으로 구성된 제4스위치(231a)와, 일단이 상기 노드(235)에 연결되는 상기 제1스위치(231a)의 스위치그룹(SW4[1] - SW4[m])의 타단과 상기 캐패시터그룹(CBST[1] - CBST[m])의 타단 사이에 병렬연결되는 스위치그룹(SW5[1] - SW5[n])으로 구성된 제5스위치(231b)를 포함한다.
스위치그룹(SW4[1] - SW4[m])으로 구성된 상기 제4스위치(231a)와 스위치그룹(SW5[1] - SW5[m])으로 구성된 상기 제5스위치(231b)은 서로 병렬연결되어, 상기 부스팅전압 가변 제어신호(BSVX)에 의해 연동적으로 동작된다. 상기 제4스위치(231a)는 제1멀티플렉서(MUX1)로 구성되어, 제1멀티플렉서(MUX1)의 입력단(I1 - Im)은 노드(235)에 공통적으로 연결되고, 출력단(Q1 - Qm)은 상기 부스팅 캐패시터(233a)의 캐패시터그룹(CBST[1] - CBST[m])의 일단에 연결된다. 제5스위치(231b)는 제2멀티플렉서(MUX2)로 구성되어, 입력단(I1 - Im)은 상기 부스팅 캐패시터(233a) 의 캐패시터그룹(CBST[1] - CBST[m])의 일단에 연결되고, 출력단(Q1 - Qm)은 접지전압(Vss)에 공통적으로 연결된다.
상기 전하전송신호 전달부(25)의 구성은 도 4 및 도 5에 도시된 일 실시예와 동일한 구성을 가지므로, 여기에서 상세한 설명은 생략한다. 다른 실시예에 따른 CMOS 이미지 센서의 동작은 일실시예와 마찬가지로 도 6에 도시된 동작파형도로 동작하므로, 여기에서 상세한 동작설명은 생략한다.
이상에서 자세히 설명한 바와 같이, 본 발명에 의하면, 전하전송기간중에 전원전압보다 높은 부스팅전압을 전하전송 구동신호로 화소 어레이부의 단위화소의 전하전송부로 제공하므로, 광전변환부에서 발생된 전송전하를 전하검출부로 원활하게 전송시켜 줄 수 있다. 이에 따라 광전변환부에 남겨진 전하에 의한 잔상효과를 감소시켜 줄 수 있으며, 변환이득 및 광전 변환부의 전하축적용량을 형상시킬 수 있다.
또한, 본 발명에서는 전하전송 구동신호를 전원전압보다 높은 전압레벨로 부스팅시켜 화소어레이부에 제공할 때, 부스팅 전압레벨을 가변적으로 설정하는 것이 가능하므로 원하는 전압레벨로 전원전압을 용이하게 부스팅시켜 주는 것이 가능하다.
이상 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형이 가능하다.

Claims (19)

  1. 광전 변환부에 축적된 전하를 전하전송 구동신호에 의해 전하검출부로 전송하는 전하전송부를 구비하는 다수의 단위화소가 매트릭스 형태로 배열된 화소 어레이부; 및
    부스팅전압 가변 제어신호에 응답하여 전압을 가변적으로 부스팅시켜 상기 전원전압보다 높은 부스팅전압을 발생하고, 전하전송 실행신호를 상기 전하전송 실행신호의 반전신호에 응답하여 상기 화소 어레이부에 상기 전하전송 구동신호로 제공하거나 또는 전하전송 제어신호에 응답하여 상기 부스팅전압을 상기 화소 어레이부에 상기 전하전송 구동신호로 제공하는 행구동부를 포함하는 이미지센서.
  2. 제1항에 있어서, 상기 행구동부는
    상기 전하전송 실행신호를 발생하는 구동신호 발생부;
    상기 부스팅전압 가변 제어신호에 응답하여 상기 전압을 가변적으로 부스팅시켜 상기 전원전압보다 높은 상기 부스팅전압을 발생하는 가변 부스팅부;
    상기 가변 부스팅부의 상기 부스팅전압을 상기 전하전송 제어신호에 응답하여 상기 화소 어레이부에 상기 전하전송 구동신호로 제공하거나 또는 상기 전하전송 실행신호를 상기 전하전송 실행신호의 상기 반전신호에 응답하여 상기 화소 어레이부에 상기 전하전송 구동신호로 제공하는 전하전송신호 전달부를 구비하는 것을 특징으로 하는 이미지센서.
  3. 제2항에 있어서, 상기 가변 부스팅부는
    다수의 캐패시터가 병렬연결되어, 부스트 제어신호에 응답하여 상기 부스트 캐패시터의 일단에 연결되는 노드에서의 상기 전압을 부스팅시켜 상기 전원전압보다 높은 상기 부스팅전압을 제공하는 부스트 캐패시터;
    상기 부스트 캐패시터의 상기 일단에 연결되어, 상기 전원전압을 제공하기 위한 제1스위치; 및
    상기 부스트 캐패시터에 연결되어 상기 부스팅전압을 가변시켜 주는 부스팅전압 조절부를 구비하는 특징으로 하는 이미지 센서.
  4. 제3항에 있어서, 상기 제1스위치는 상기 전하전송 실행신호의 상기 반전신호가 게이트에 제공되는 NMOS 트랜지스터로 구성되는 것을 특징으로 하는 이미지 센서.
  5. 제3항에 있어서, 상기 부스트 캐패시터의 다수의 캐패시터들은 상기 화소 어레이부의 로드 캐패시터보다 적어도 2배이상의 캐패시턴스를 갖는 것을 특징으로 하는 이미지센서.
  6. 제5항에 있어서, 상기 부스트 캐패시터의 다수의 캐패시터들은 모두 동일한 캐패시턴스를 갖는 것을 특징으로 하는 이미지센서.
  7. 제3항에 있어서, 상기 가변 부스팅부의 부스팅전압 조절부는
    상기 부스트 캐패시터의 상기 일단에 연결되는 제2스위치; 및
    상기 부스트 캐패시터의 타단에 연결되는 제3스위치를 구비하며,
    상기 제2스위치와 제3스위치는 원하는 부스팅 전압레벨에 따라 상기 부스트 캐패시터의 상기 다수의 캐패시터중 해당하는 캐패시터에 선택적으로 상기 부스팅제어신호를 제공하고, 나머지 캐패시터는 플로팅시키는 것을 특징으로 하는 이미지 센서.
  8. 제7항에 있어서, 상기 부스팅전압 조절부의 제2스위치는 입력단에 공통적으로 상기 부스팅 제어신호가 제공되고, 출력단이 상기 부스트 캐패시터의 상기 다수의 캐패시터에 각각 연결되는 멀티플렉서를 구비하는 것을 특징으로 하는 이미지 센서.
  9. 제7항에 있어서, 상기 부스팅전압 조절부의 제3스위치는 입력단이 상기 부스트 캐패시터의 상기 다수의 캐패시터에 각각 연결되고, 출력단이 상기 제1스위치에 공통적으로 연결되는 것을 특징으로 하는 이미지 센서.
  10. 제3항에 있어서, 상기 가변 부스팅부의 부스팅전압 조절부는
    상기 부스트 캐패시터의 상기 일단에 연결되는 제2스위치; 및
    상기 부스트 캐패시터의 상기 일단과 접지사이에 연결되는 제3스위치를 구비하며,
    상기 제2스위치와 제3스위치는 원하는 부스팅 전압레벨에 따라 상기 부스트 캐패시터의 상기 다수의 캐패시터중 해당하는 캐패시터에 선택적으로 상기 부스팅 제어신호를 제공하고, 나머지 캐패시터는 접지시키는 것을 특징으로 하는 이미지 센서.
  11. 제10항에 있어서, 상기 부스팅전압 조절부의 제2스위치는 입력단에 공통적으로 상기 부스팅 제어신호가 제공되고, 출력단이 상기 부스트 캐패시터의 상기 다수의 캐패시터에 각각 연결되는 제1멀티플렉서를 구비하는 것을 특징으로 하는 이미지 센서.
  12. 제11항에 있어서, 상기 부스팅전압 조절부의 제3스위치는 입력단이 상기 부스트 캐패시터의 상기 다수의 캐패시터와 제1멀티플렉서의 출력단에 각각 연결되고, 출력단이 공통적으로 접지되는 제2멀티플렉서를 구비하는 것을 특징으로 하는 이미지 센서.
  13. 제2항에서, 상기 전하전송신호 전달부는 상기 전송전하 실행신호와 상기 구동신호 발생부에서 제공되는 리세트신호 및 화소선택신호를 입력하여 상기 화소 어레이부의 다수의 단위화소중 각 행에 배열된 단위화소로 상기 전하전송 구동신호를 각각 제공하는 다수의 스위칭부를 구비하는 것을 특징으로 하는 이미지 센서.
  14. 제13항에 있어서, 상기전하전송신호 전달부의 각 스위칭부는
    상기 전하전송 실행신호의 상기 반전신호에 응답하여 상기 전하전송 실행신호를 상기 화소 어레이에 상기 전하전송 구동신호로 제공하는 제1스위치;
    상기 리세트신호와 상기 화소선택신호에 응답하여 상기 부스팅전압을 상기 화소 어레이에 상기 전하전송 구동신호로 제공하는 제2스위치를 구비하는 것을 특징으로 하는 이미지 센서.
  15. 제14항에 있어서, 상기 전하전송 실행신호를 입력하여, 상기 제1스위치의 상기 전하전송 구동신호의 전달을 제어하는 제어신호로서, 상기 제1스위치에 상기 전하전송 실행신호의 상기 반전신호를 제공하는 제1논리부; 및
    상기 리세트신호와 상기 화소선택신호를 입력하여, 상기 제2스위치에 상기 전하전송 구동신호의 전달을 제어하는 제어신호를 제공하는 제2논리부를 더 구비하는 것을 특징으로 하는 이미지센서.
  16. 제15항에 있어서, 상기 제1스위치는 상기 전하전송 실행신호의 상기 반전신호가 게이트에 제공되는 제1NMOS 트랜지스터로 구성되고,
    상기 제2스위치는 상기 제2논리부에서 제공되는 상기 제어신호가 게이트에 제공되는 제2NMOS 트랜지스터로 구성되는 것을 특징으로 하는 이미지 센서.
  17. 제16항에 있어서, 상기 제1NMOS 트랜지스터는 상기 제2NMOS 트랜지스터보다 큰 크기(W/L)를 갖는 것을 특징으로 하는 이미지 센서.
  18. 제16항에 있어서, 상기 각 스위칭부는 상기 제2스위치의 제2NMOS 트랜지스터의 게이트와 소오스사이에 연결되는 부트 스트랩 캐패시터를 더 포함하는 것을 특징으로 하는 이미지센서.
  19. 제1항에 있어서, 상기 부스팅전압은 서로 다른 다수의 전압레벨을 갖는 것을 특징으로 하는 이미지 센서.
KR1020050061242A 2005-07-07 2005-07-07 조절가능한 전하전송 구동회로를 갖는 이미지 센서 KR100660870B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050061242A KR100660870B1 (ko) 2005-07-07 2005-07-07 조절가능한 전하전송 구동회로를 갖는 이미지 센서
US11/430,093 US7397020B2 (en) 2005-07-07 2006-05-09 Image sensor using a boosted voltage and a method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050061242A KR100660870B1 (ko) 2005-07-07 2005-07-07 조절가능한 전하전송 구동회로를 갖는 이미지 센서

Publications (1)

Publication Number Publication Date
KR100660870B1 true KR100660870B1 (ko) 2006-12-26

Family

ID=37617981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050061242A KR100660870B1 (ko) 2005-07-07 2005-07-07 조절가능한 전하전송 구동회로를 갖는 이미지 센서

Country Status (2)

Country Link
US (1) US7397020B2 (ko)
KR (1) KR100660870B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999604B2 (en) 2008-01-22 2011-08-16 Samsung Electronics Co., Ltd. Boost circuit capable of controlling inrush current and image sensor using the boost circuit
CN113302914A (zh) * 2018-11-30 2021-08-24 Ams传感器比利时有限公司 使用电荷泵产生像素驱动电压

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258885A (ja) * 2007-04-04 2008-10-23 Texas Instr Japan Ltd 撮像装置および撮像装置の駆動方法
WO2008124605A1 (en) * 2007-04-04 2008-10-16 Texas Instruments Incorporated Imaging device and imaging device drive method
US7834306B2 (en) * 2008-03-24 2010-11-16 Altasens, Inc. Dark current and lag reduction
JP4538528B2 (ja) * 2008-12-26 2010-09-08 廣津 和子 固体撮像素子
US8963904B2 (en) * 2010-03-22 2015-02-24 Apple Inc. Clock feedthrough and crosstalk reduction method
KR20130046521A (ko) * 2011-10-28 2013-05-08 에스케이하이닉스 주식회사 전압 선택 회로 및 이를 구비한 집적회로

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596130B2 (ja) 1995-12-12 2004-12-02 ソニー株式会社 昇圧回路、これを搭載した固体撮像装置
US7129985B1 (en) * 1998-11-24 2006-10-31 Canon Kabushiki Kaisha Image sensing apparatus arranged on a single substrate
JP2001346377A (ja) 2000-05-31 2001-12-14 Fujitsu Ltd 昇圧装置および昇圧方法
JP4222768B2 (ja) 2002-03-27 2009-02-12 三洋電機株式会社 昇圧装置及びこれを用いた撮像装置
US20060092316A1 (en) * 2004-11-03 2006-05-04 Gazeley William G Boost signal interface method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999604B2 (en) 2008-01-22 2011-08-16 Samsung Electronics Co., Ltd. Boost circuit capable of controlling inrush current and image sensor using the boost circuit
CN113302914A (zh) * 2018-11-30 2021-08-24 Ams传感器比利时有限公司 使用电荷泵产生像素驱动电压
CN113302914B (zh) * 2018-11-30 2024-04-09 Ams传感器比利时有限公司 使用电荷泵产生像素驱动电压

Also Published As

Publication number Publication date
US20070008420A1 (en) 2007-01-11
US7397020B2 (en) 2008-07-08

Similar Documents

Publication Publication Date Title
KR100660870B1 (ko) 조절가능한 전하전송 구동회로를 갖는 이미지 센서
KR100712950B1 (ko) 증폭형 고체 촬상 장치
KR100797506B1 (ko) 증폭형 고체 촬상 장치
US6947088B2 (en) Image pickup apparatus having a common amplifier
EP1885117B1 (en) Photoelectric conversion apparatus and image pickup system using photoelectric conversion apparatus
US7623170B2 (en) Amplification type image pickup apparatus and method of controlling the amplification type image pickup apparatus
JP5203562B2 (ja) Cmosイメージセンサー及びその駆動方法
US7692702B2 (en) Solid-state imaging device with amplifiers corresponding to signal lines and alternating control voltage
KR100920166B1 (ko) 증폭형 고체 촬상장치
JP5489681B2 (ja) 固体撮像装置
US10827143B2 (en) CMOS image sensor clamping method with divided bit lines
JPWO2013179597A1 (ja) 固体撮像装置、その駆動方法及び撮影装置
KR100660905B1 (ko) Cmos 이미지 센서
US11303836B2 (en) Solid-state imaging device and electronic equipment
JP6305818B2 (ja) 半導体装置
JP3313125B2 (ja) Ccd型固体撮像素子
US9241119B2 (en) Image pickup apparatus, method of driving image pickup apparatus, and image pickup system
KR100621558B1 (ko) Cmos 이미지 센서 및 그 구동 방법
JP7330124B2 (ja) 固体撮像装置
JP3597176B2 (ja) Ccd型固体撮像素子
KR100690883B1 (ko) 이미지 센서
CN113438429B (zh) 图像传感器和操作图像传感器的像素簇的方法
JP3585898B2 (ja) Ccd型固体撮像素子を用いたカメラ
KR20090015286A (ko) 이미지 센서 및 그 구동 방법
KR20220125025A (ko) 이미지 센싱 장치

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191129

Year of fee payment: 14