WO2010073941A1 - 電力増幅装置 - Google Patents

電力増幅装置 Download PDF

Info

Publication number
WO2010073941A1
WO2010073941A1 PCT/JP2009/070949 JP2009070949W WO2010073941A1 WO 2010073941 A1 WO2010073941 A1 WO 2010073941A1 JP 2009070949 W JP2009070949 W JP 2009070949W WO 2010073941 A1 WO2010073941 A1 WO 2010073941A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
voltage
signal
power
output
Prior art date
Application number
PCT/JP2009/070949
Other languages
English (en)
French (fr)
Inventor
和明 國弘
慎吾 山之内
一実 椎熊
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010544015A priority Critical patent/JP5472119B2/ja
Priority to CN200980152649.2A priority patent/CN102265505B/zh
Priority to EP09834744A priority patent/EP2372904A4/en
Priority to US13/133,102 priority patent/US8451054B2/en
Publication of WO2010073941A1 publication Critical patent/WO2010073941A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0244Stepped control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/511Many discrete supply voltages or currents or voltage levels can be chosen by a control signal in an IC-block amplifier circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency

Definitions

  • the present invention relates to a power amplifying apparatus mainly used for a transmitter for wireless communication, and more particularly to a power amplifying apparatus for changing a power supply voltage supplied to an amplifier according to an amplitude modulation component of an input signal.
  • modulation formats such as QPSK (Quadrature Phase Shift Keying) and multi-level QAM (Quadrature Amplitude Modulation) are adopted.
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • PAPR Peak-to-Average Power Ratio
  • a high-frequency amplifier that amplifies a high-frequency signal using a class A or class AB system has a maximum efficiency near its saturated output power, and therefore, when operated in a power region with a large back-off, the average efficiency decreases.
  • the PAPR tends to increase, so high frequency
  • the average efficiency of the amplifier is further reduced. Therefore, it is desirable that the high-frequency amplifier operates with high efficiency even in the power region where the back-off is large.
  • Non-Patent Document 1 discloses a power amplifying device called an envelope elimination and restoration (EER) method as a method for amplifying a signal with high efficiency in a power region with a large back-off and a wide dynamic range. Proposed.
  • EER envelope elimination and restoration
  • an input modulation signal is decomposed into a phase modulation component and an amplitude modulation component.
  • the phase modulation component having a constant amplitude is input to the amplifier while maintaining the phase modulation information.
  • the amplifier is always operated in the vicinity of the saturated output power at which the efficiency is maximized.
  • the amplitude modulation component is amplified with high efficiency using a class D amplifier or the like while maintaining the amplitude modulation information, and supplied to the high frequency amplifier as a power supply voltage (modulation power supply) whose output intensity is modulated.
  • the high-frequency amplifier also operates as a multiplier, and synthesizes and outputs the phase modulation component and the amplitude modulation component of the modulation signal. Therefore, an output modulation signal amplified with high efficiency can be obtained from the high frequency amplifier irrespective of backoff.
  • EER envelope tracking
  • the amplitude modulation component of the modulation signal is amplified with high efficiency using a class D amplifier while maintaining the amplitude modulation information, and supplied to the amplifier as a power supply voltage (modulation power supply) whose output intensity is modulated.
  • the configuration to be performed is common to the EER method.
  • the ET method is less efficient than the EER method because the amplifier operates linearly. However, since only the minimum necessary power corresponding to the amplitude modulation component of the input modulation signal is supplied to the amplifier, a constant power supply voltage is supplied to the amplifier. High efficiency can be obtained as compared with the configuration to be supplied.
  • the ET method has an advantage that it is easier to realize than the EER method because the timing margin for combining the amplitude modulation component and the phase modulation component is relaxed.
  • a modulation power source that converts an amplitude modulation component into a pulse modulation signal and performs switching amplification using a class D amplifier or the like is used.
  • a pulse modulation method a pulse width modulation (PWM) method has been conventionally used.
  • PWM pulse width modulation
  • Patent Document 1 and Patent Document 2 a delta modulation method (or a pulse density modulation method) having better linearity is used.
  • a configuration using (PDM: Pulse Density Modulation) has been proposed.
  • PDM Pulse Density Modulation
  • SNR signal-to-noise ratio
  • ACPR Adjacent Channel Leakage Power Ratio
  • EVM error vector intensity
  • the operable bandwidth of the pulse modulator and class D amplifier provided in the modulation power supply is at least twice the bandwidth of the modulation signal.
  • the above is said to be necessary.
  • the modulation band is about 5 MHz in WCDMA (Wideband Code Division Multiple Access) adopted in a mobile phone system, and the modulation band is about 20 MHz in IEEE 802.11a / g adopted in a wireless LAN.
  • WCDMA Wideband Code Division Multiple Access
  • IEEE 802.11a / g adopted in a wireless LAN.
  • Patent Literature 3 proposes a power amplifying device including a modulation power source having the simplest configuration.
  • FIG. 1 shows a configuration of a power amplifying device (hereinafter referred to as first background art) described in Patent Document 3.
  • the power amplifying device of the first background art is configured to supply average power (power supply voltage) to the amplifier in a steady state and to supply large power (power supply voltage) to the amplifier only when the amplitude exceeds a certain value. is there.
  • the voltage Bc is steadily supplied as a power supply voltage to the amplifier 204 (see FIG. 2C).
  • the voltage Bc is usually set so as to obtain an average output power, and is therefore set lower than the maximum output voltage.
  • the envelope sensor 201 detects a peak at which the envelope (amplitude modulation component) 9 of the input modulation signal is higher than the reference voltage Vref (FIG. 2A), the envelope sensor 201 outputs the control signal 10 (FIG. 2B). ).
  • the power valve 203 is turned on, and the voltage 11 obtained by adding the maximum voltage Bv is applied to the amplifier 204 (c in FIG. 2).
  • a configuration using capacitive coupling is proposed in Patent Document 4
  • a configuration using both capacitive coupling and magnetic coupling is proposed in Patent Document 5.
  • Non-Patent Document 3 proposes another configuration of a modulation power supply that operates with high efficiency and wide bandwidth.
  • the configuration of the power amplifying device (hereinafter referred to as second background art) proposed in Non-Patent Document 3 is shown in FIG.
  • An amplitude signal 9 that is an amplitude modulation component of the modulation signal 8 is input to the linear amplification unit 3 that is configured as a differential amplifier and operates as a voltage follower.
  • the amplitude signal 9 is a sine wave of 2 MHz (9 in FIG. 4C).
  • the output current of the linear amplifier 3 is converted into a voltage signal by the current detection resistor 42 and input to the hysteresis comparator 41.
  • the polarity is selected so that the output voltage of the comparator 41 becomes High when the current flows out from the linear amplifier 3 and the output voltage of the hysteresis comparator 41 becomes Low when the current flows into the linear amplifier 3.
  • the hysteresis comparator 41 outputs a pulse width modulation signal corresponding to the output signal of the linear amplification unit 3 (10 in FIG. 4C).
  • the gate driver 5 turns on or off the switching element 21 configured by, for example, a MOS field effect transistor (MOSFET: Metal Oxide Semiconductor Field Effect Transistor) according to the output signal of the hysteresis comparator 41.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the switching element 21 constitutes the switching regulator unit 2 in combination with the diode 22, and the switching regulator unit 2 amplifies the amplitude of the pulse width modulation signal to Vcc1.
  • the amplified pulse width modulation signal is integrated by the inductor 6 and the switching frequency component is removed (FIG. 4A).
  • the error component included in the output current of the inductor 6 is voltage-corrected by the linear amplifier 3 and supplied to the high-frequency amplifier 1 as a power supply voltage.
  • the current flowing through the linear amplifier 31 with low efficiency (FIG. 4B) is only an error component, the power consumed by the linear amplifier 31 is small, and most signal components of the amplitude signal 9 are highly efficient switching. Amplified by the regulator unit 2. Therefore, the efficiency of the entire power amplifying device can be increased.
  • the power amplifying device of the first background art operates with a voltage margin (backoff) so that the output amplitude of the high-frequency amplifier 204 is always lower than the modulation voltage 11. Since it is necessary ((c) of FIG. 2), there is a problem that the effect of improving the efficiency is small. Further, since the modulated voltage waveform 111 is in a hard clipping state, there is a problem that the output spectrum is deteriorated.
  • the voltage waveform 11 supplied to the amplifier 1 is brought close to the waveform of the amplitude signal 9 by performing voltage correction by the linear amplifier 31, and therefore, compared with the power amplifying device of the first background art.
  • the efficiency is improved and the deterioration of the spectrum is suppressed.
  • the power supply voltage Vcc1 becomes about 28 V. Use
  • Vcc1 the power supply voltage
  • Such a configuration is usually realized by using a bootstrap circuit or the like for the gate driver 5, but it is generally difficult to operate such a large amplitude pulse at high speed.
  • the switching frequency is limited to a low value, and the switching regulator unit 2 can amplify only a signal component in a band from DC to about 100 kHz. For this reason, all the signal components in the higher band are amplified by the linear amplifier 31 having a low efficiency, so that there is a problem that the efficiency of the entire power amplifying apparatus is lowered.
  • amplification is performed by the switching regulator unit 2 including the DC offset.
  • the switching regulator unit 2 including the DC offset.
  • a high efficiency of 90% or more is obtained even if the switching regulator is used. It is difficult.
  • an object of the present invention is to provide a power amplifying apparatus that changes power supply voltage supplied to a high-frequency amplifier in accordance with the amplitude of a modulation signal, and that has high efficiency and small waveform distortion.
  • a power amplifying device of the present invention is a power amplifying device for amplifying a modulation signal including an amplitude modulation component and a phase modulation component, A high-frequency amplifier for amplifying and outputting the modulated signal; A linear amplifying unit for adding an output voltage to a power supply voltage supplied to the high frequency amplifier and amplifying a difference between the output voltage and an amplitude modulation component of the modulation signal; A control signal generation unit that detects a direction in which the output current of the linear amplification unit flows, and generates a pulse modulation signal according to the direction of the current; The pulse modulation signal is used as a control signal, and the output signal of the linear amplifier is switched and amplified by controlling the conduction and non-conduction of a direct current, and added to a predetermined direct current voltage to the high frequency amplifier to the power supply voltage.
  • a switching amplification unit to be supplied as A first DC power supply for supplying the DC current to the switching amplifier; A second DC power supply for supplying
  • a power amplifying apparatus for amplifying a modulation signal including an amplitude modulation component and a phase modulation component, A high-frequency amplifier for amplifying and outputting the modulated signal; A voltage waveform shaping unit for shaping a voltage waveform of an amplitude modulation component of the modulation signal; A linear amplifying unit for adding an output voltage to a power supply voltage supplied to the high frequency amplifier and amplifying a difference between the output voltage and an amplitude modulation component of the modulation signal; A control signal generation unit that detects a direction in which the output current of the linear amplification unit flows, and generates a pulse modulation signal according to the direction of the current; The pulse modulation signal is used as a control signal, and the output signal of the linear amplifier is switched and amplified by controlling the conduction and non-conduction of a direct current, and added to a predetermined direct current voltage to the high frequency amplifier to the power supply voltage.
  • a switching amplification unit to be supplied as A first DC power supply for supplying the DC current to
  • FIG. 1 is a block diagram showing a configuration of a power amplifying device according to a first background art.
  • FIG. 2 is a signal waveform diagram showing the operation of the power amplifying device of the first background art.
  • FIG. 3 is a block diagram showing a configuration of the power amplifying device of the second background art.
  • FIG. 4 is a signal waveform diagram showing the operation of the power amplifying device of the second background art.
  • FIG. 5 is a block diagram illustrating a configuration of the power amplifying apparatus according to the first embodiment.
  • FIG. 6 is a circuit diagram showing a configuration of a specific example of the power amplifying apparatus shown in FIG.
  • FIG. 7 is a signal waveform diagram showing an operation example of the power amplifying device shown in FIG. FIG.
  • FIG. 8 is a signal waveform diagram showing an operation example of the power amplifying device shown in FIG.
  • FIG. 9 is a circuit diagram showing a configuration of another specific example of the power amplifying device shown in FIG.
  • FIG. 10 is a circuit diagram showing a configuration of another specific example of the power amplifying device shown in FIG.
  • FIG. 11 is a block diagram illustrating a configuration of the power amplifying apparatus according to the second embodiment.
  • 12 is a circuit diagram showing a configuration of a specific example of the power amplifying apparatus shown in FIG. 13 is a graph showing an example of a waveform shaping function used in the voltage waveform shaping unit shown in FIG. 14 is a signal waveform diagram showing an example of a waveform after shaping by the voltage waveform shaping unit shown in FIG.
  • FIG. 15 is a signal waveform diagram illustrating an operation example of the power amplifying device illustrated in FIG. 12.
  • FIG. 16 is a block diagram illustrating a configuration of the power amplifying device according to the third embodiment.
  • FIG. 17 is a circuit diagram showing a configuration of a specific example of the power amplifying device shown in FIG.
  • FIG. 5 is a block diagram illustrating a configuration of the power amplifying apparatus according to the first embodiment.
  • the power amplifying apparatus includes a high-frequency amplifier 1, a switching amplifier 2, a linear amplifier 3, and a control signal generator 4.
  • the linear amplifying unit 3 adds a predetermined DC voltage to the amplitude signal 9 which is an amplitude modulation component of the modulation signal 8, adds the output voltage to the power supply voltage supplied to the high frequency amplifier 1, and outputs the output voltage and the modulation signal.
  • the difference from the amplitude modulation component is amplified and output.
  • the control signal generation unit 4 generates a pulse modulation signal that becomes High or Low depending on the direction of the output current of the linear amplification unit 3, and outputs the pulse modulation signal to the switching amplification unit 2.
  • the switching amplifier 2 uses the pulse modulation signal output from the control signal generator 4 as a control signal to switch and amplify the amplitude signal 9 and add and output a predetermined DC voltage.
  • the output voltage of the switching amplifier 2 is added to the output voltage of the control signal generator 4 to generate a modulation voltage 11 that is a power supply voltage supplied to the high-frequency amplifier 1.
  • the high-frequency amplifier 1 linearly amplifies the modulation signal 8 using a modulation voltage 11 as a power source by a class A or class AB method, and outputs a high-frequency modulation signal 12 whose amplitude and phase are modulated.
  • FIG. 6 is a circuit diagram showing a configuration of a specific example of the power amplifying apparatus shown in FIG.
  • the switching amplifier 2 includes a switching element 21, a transformer 24, a diode (first rectifying element) 22, a diode (second rectifying element) 23, and an inductor (filter) 6.
  • the linear amplification unit 3 includes a linear amplifier 31 and a choke inductor 32.
  • the control signal generation unit 4 includes a hysteresis comparator 41, a current detection resistor 42, and a gate driver 5.
  • a direct current voltage is added to the amplitude modulation component (amplitude signal) of the modulation signal and input to the linear amplification unit 3.
  • the linear amplifying unit 3 is composed of a linear amplifier including a negative feedback loop (for example, a differential amplifier), and the output voltage waveform thereof coincides with the waveform of the amplitude signal 9 including a DC voltage component with high accuracy.
  • the output of the linear amplification unit 3 is input to the control signal generation unit 4.
  • the control signal generation unit 4 includes a current detection resistor 42 and a comparator (hysteresis comparator 41) for detecting the current output from the linear amplification unit 3. For example, when current flows out from the linear abdominal unit 3, the control signal generation unit 4 is high. A control signal that becomes Low when a current flows in is generated. The generated control signal is input to the switching amplifier 2.
  • the switching amplifier 2 uses the control signal generated by the control signal generator 4 to control the conduction / non-passage of the switching element 21 to which a DC voltage is applied via the primary winding of the transformer 24, Switching amplification of the amplitude modulation component of the modulation signal is performed with high efficiency. Furthermore, in the power amplifying apparatus of the present embodiment, a DC voltage is added to the switching-amplified voltage waveform output from the secondary winding of the transformer 24 and output.
  • the current output from the switching amplifier 2 is smoothed by the inductor 6 and is added to the output signal of the linear amplifier 3 to correct the voltage.
  • the high-frequency amplifier 1 can be operated with higher efficiency than when a constant voltage is supplied as the power supply voltage.
  • the FET used as a switching element can be operated with the source grounded, a drive signal for driving the FET needs only about several volts, and high-speed switching operation is possible. become. Therefore, since the band that can be switched and amplified can be expanded, the power consumption of the linear amplification unit 3 can be suppressed, and the efficiency of the entire power amplification device can be improved.
  • linear amplification unit 3 with low efficiency is used only to correct switching amplification errors, power consumption is reduced.
  • the DC voltage component included in the power supply voltage supplied to the high-frequency amplifier 1 is not switched and amplified to the high-frequency amplifier via the secondary winding of the transformer. Since the power is directly supplied, the efficiency of the entire power amplifying device is not reduced.
  • the efficiency of the modulation power source is improved as compared with the power amplifying device of the background art.
  • the waveform reproduction accuracy by the modulation power supply included in the power amplification device of the present embodiment is ultimately determined by a linear amplifier, high waveform reproduction is performed while maintaining high efficiency as compared with the power amplification device of the background art. Accuracy can be achieved.
  • a power amplifying apparatus that can amplify a modulation signal whose amplitude and phase are modulated with little distortion of the output waveform and high efficiency is realized.
  • FIG. 7 and 8 are signal waveform diagrams showing an operation example of the power amplifying apparatus shown in FIG. 7 shows an example of an operation waveform when a sine wave having an amplitude of 4 V and a frequency of 2 MHz is input as the amplitude signal 9 and a 12 V DC voltage is added to the amplitude signal 9 by the linear amplifier 3. ing.
  • FIG. 8 shows an example of the operation waveform of each block when the envelope (amplitude signal) of the WCDMA downlink signal is input.
  • the amplitude signal 9 which is the amplitude modulation component of the amplitude-modulated and phase-modulated modulation signal 8 is input to the linear amplification unit 3.
  • the output current of the linear amplifier 31 (FIG. 7B) is converted into a voltage signal by the current detection resistor 42 and input to the hysteresis comparator 41.
  • the polarity is selected so that the output voltage of the hysteresis comparator 41 becomes High when the current flows out from the linear amplifier 31 and the output voltage of the hysteresis comparator 41 becomes Low when the current flows into the linear amplifier 31,
  • the hysteresis comparator 41 outputs a pulse width modulation signal corresponding to the intensity of the input signal (FIG. 7C).
  • the gate driver 5 turns on or off the switching element 21 composed of, for example, a MOSFET according to the output signal of the hysteresis comparator 41.
  • the switching element 21 has one terminal grounded and the other terminal connected to the first power supply Vcc1 through the primary winding of the transformer 24.
  • the switching element 21 amplifies the amplitude of the output signal of the hysteresis comparator 41 to Vcc1 by controlling conduction / non-conduction of the current flowing between the first power supply Vcc1 and the ground potential according to the output signal of the hysteresis comparator 41. .
  • the switching element 21 since no voltage is applied to both terminals of the switching element 21 when a current flows, the switching element 21 amplifies the output signal of the hysteresis comparator 41 with an ideal efficiency of 100%. .
  • the signal amplified by the switching element 21 is transmitted from the primary winding of the transformer 24 to the secondary winding. Since the DC voltage Vcc2 generated by the second power supply is applied to one terminal of the secondary winding of the transformer 24, the DC voltage Vcc2 is applied to the pulse signal having the amplitude Vcc1 from the secondary winding of the transformer 24. A signal added with is output.
  • a current corresponding to this pulse signal is supplied from the second power source to the secondary winding of the transformer 24.
  • current is alternately output from the rectifying element 22 and the rectifying element 23 in accordance with the High / Low of the pulse signal. Since a pulsed current flows through the secondary winding of the transformer 24, the characteristics of high-efficiency switching amplification by the switching element 21 are maintained even on the secondary winding side of the transformer 24.
  • the current output from the secondary winding of the transformer 24 is integrated by the inductor 6 and the switching frequency component is removed (FIG. 7 (d)).
  • the switching noise component included in the output voltage of the switching amplifier 2 is voltage-corrected (smoothed) by the linear amplifier 31 (FIG. 7 (e)).
  • the linear amplifier 31 since the output signal of the linear amplifier 31 is negatively fed back, the output signal waveform operates so as to match the input signal waveform. Therefore, the linear amplifier 31 outputs a signal for canceling the switching noise included in the output voltage of the switching amplifier 2.
  • the switching noise included in the output voltage of the switching amplifier 2 is smoothed by the linear amplifier 31.
  • the output terminal of the linear amplifier 31 is connected to the output terminal of the switching amplification unit 2 via the current detection resistor 42.
  • the voltage correction operation is thereby performed. Is less affected.
  • the voltage Vout after voltage correction by the linear amplifier 31 is supplied to the high-frequency amplifier 1.
  • the high frequency amplifier 1 linearly amplifies the input modulation signal 8 using the output voltage of the switching amplifier 2 as a power supply voltage. At this time, only a minimum power (power supply voltage) is supplied to the high-frequency amplifier 1 in accordance with the amplitude of the amplitude signal 9, so that the high-frequency amplifier 1 can always operate near a saturated power with high efficiency.
  • the linear amplification unit 3 transmits the amplitude signal 9 to the amplitude signal 9 via the choke inductor 32.
  • the DC voltage Vcc2 is added, and linear amplification is performed by a linear amplifier 31 that operates as a voltage follower and is configured using a differential amplifier.
  • the comparator 41 outputs a pulse width modulation that switches to High or Low depending on the direction of the output current of the linear amplifier 31 (FIG. 8B).
  • the signal 10 is output (c in FIG. 8).
  • the voltage (FIG. 8 (d)) amplified with high efficiency by the switching amplifier 2 based on the pulse width modulation signal 10 and the output voltage (FIG. 8 (b)) of the linear amplifier 3 are added to obtain a smoothing.
  • the converted voltage 11 (FIG. 7E) is supplied to the high frequency amplifier 1 as a power supply voltage.
  • the high frequency amplifier 1 linearly amplifies the input modulation signal 8 using the output voltage of the switching amplifier 2 as a power supply voltage. At this time, only a minimum power (power supply voltage) is supplied to the high-frequency amplifier 1 in accordance with the amplitude of the amplitude signal 9, so that the high-frequency amplifier 1 can always operate near a saturated power with high efficiency.
  • a smooth output voltage waveform 11 obtained by adding a DC voltage can be supplied to the high-frequency amplifier 1 as compared with the power amplifying apparatus of the first background art shown in FIG. Therefore, the waveform distortion of the modulation signal 12 output from the high frequency amplifier 1 can be reduced.
  • the power amplifying device of this embodiment can use a source-grounded MOSFET as the switching element 21, and the gate pulse signal 10 input to the switching element 21. Can be high-speed operation.
  • the switching frequency when the same 2 MHz sine wave is input, the switching frequency is higher than the switching frequency of the second background art shown in FIG. 3 (10 in FIG. 4C). It turns out that it is high (FIG.7 (c)).
  • the operating band of the high-efficiency switching amplification is expanded and the load of the low-efficiency linear amplifier 31 is reduced, so that the power amplifying apparatus can operate with high efficiency.
  • the power amplifying apparatus of this embodiment only the amplitude modulation component excluding the DC offset of the input signal is subjected to switching amplification, and the DC voltage component is directly supplied to the high-frequency amplifier 1 from the secondary side of the transformer. Therefore, higher efficiency can be realized as compared with the power amplification device of the second background art.
  • FIG. 6 shows a configuration example in which a DC voltage is added to the amplitude signal 9 via the choke inductor 32
  • a DC voltage component may be added to the amplitude signal 9 in advance by signal processing.
  • the value of the DC voltage added to the amplitude signal 9 is ideally the same as the second power supply voltage Vcc2 supplied to the secondary winding of the transformer 24. It may be adjusted according to the offset value.
  • the linear amplifier 31 may be a linear feedback amplifier having a gain. In that case, the value of the DC voltage added to the amplitude signal 9 may be reduced according to the value of the gain. Further, the winding ratio of the transformer 24 may be set to an arbitrary value.
  • FIG. 9 is a circuit diagram showing a configuration of another specific example of the power amplifying device shown in FIG.
  • the power amplifying device shown in FIG. 9 includes a switching element (first rectifying element) 22a and a switching element (second rectifying element) 23a instead of the diodes 22 and 23 shown in FIG. 23 a is configured to be turned on / off in synchronization with the control signal 10.
  • the power amplifying apparatus shown in FIG. 9 turns on the switching element 22a when the control signal 11 is High, turns it off when it is Low, turns off the switching element 23a when the control signal 11 is High, and turns it off when the control signal 11 is Low. If it is turned on, it operates in the same manner as the power amplification device shown in FIG.
  • the efficiency of the power amplifying device is improved by a loss due to the forward voltage of the diode.
  • FIG. 10 is a circuit diagram showing a configuration of another specific example of the power amplifying device shown in FIG.
  • the power regeneration circuit 25 is provided for sucking a current corresponding to the exciting current from the ground terminal via the diode 26 and regenerating it to the first power supply Vcc1 when the switching element 21 is turned off.
  • the power regeneration circuit 25 By providing the power regeneration circuit 25, the loss of the excitation current is eliminated, so that the efficiency of the switching amplifier 2 is improved.
  • the power regeneration circuit 25 shown in FIG. 10 and the configuration including the switching elements 22a and 23a shown in FIG. 9 may be used in combination.
  • FIG. 11 is a block diagram illustrating a configuration of the power amplifying apparatus according to the second embodiment.
  • the power amplifying apparatus includes a high-frequency amplifier 1, a switching amplifier 2, a linear amplifier 3, a control signal generator 4, and a waveform shaping unit 7.
  • an amplitude signal 9 that is an amplitude modulation component of the modulation signal 8 is input to the waveform shaping unit 7.
  • the waveform shaping unit 7 shapes the waveform so that a DC voltage component is generated by compressing the dynamic range of the amplitude change of the input amplitude signal 9 and outputs the waveform to the linear amplification unit 3.
  • the linear amplification unit 3 linearly amplifies the amplitude signal 9 that is an amplitude modulation component of the modulation signal 8.
  • the control signal generation unit 4 generates a pulse modulation signal that becomes High or Low according to the direction of the output current of the linear amplification unit 3 and outputs the pulse modulation signal to the switching amplification unit 2 as a control signal.
  • the switching amplifier 2 switches and amplifies the amplitude signal 9 in accordance with the control signal output from the control signal generator 4 and adds and outputs a predetermined DC voltage.
  • the output voltage of the switching amplifier 2 is added to the output voltage of the control signal generator 4 to generate a modulation voltage 11 that is a power supply voltage supplied to the high-frequency amplifier 1.
  • the high-frequency amplifier 1 linearly amplifies the modulation signal 8 using a modulation voltage 11 as a power source by a class A or class AB method, and outputs a high-frequency modulation signal 12 whose amplitude and phase are modulated.
  • FIG. 12 is a circuit diagram showing a configuration of a specific example of the power amplifying apparatus shown in FIG.
  • the switching amplifier 2 includes a switching element 21, a transformer 24, a diode (first rectifying element) 22, a diode (second rectifying element) 23, and an inductor (filter) 6.
  • the linear amplification unit 3 includes a linear amplifier 31.
  • the control signal generation unit 4 includes a hysteresis comparator 41, a current detection resistor 42, and a gate driver 5.
  • the waveform shaping unit 7 includes a voltage waveform shaping unit 7.
  • FIG. 13 is a graph showing an example of a waveform shaping function used in the voltage waveform shaping unit shown in FIG.
  • FIG. 14 is a signal waveform diagram showing a waveform example after shaping by the voltage waveform shaping unit shown in FIG.
  • FIG. 15 is a signal waveform diagram illustrating an operation example of the power amplifying device illustrated in FIG. 12.
  • FIG. 11 and FIG. 12 show examples of operation waveforms when an envelope signal (amplitude signal) of a downlink signal received by a wireless device adopting the WCDMA system is input.
  • an amplitude signal 9 that is an amplitude modulation component of the amplitude-modulated and phase-modulated modulated signal 8 is input to the waveform shaping unit 7 (FIG. 15 (a)).
  • the waveform shaping unit 7 converts the amplitude signal 9 according to a function represented by the following formula (1), for example.
  • FIG. 13 shows the relationship between the input and output signals converted by the function shown in Expression (1), and shows the state when the value of the DC voltage Vcc2 is changed to 5, 10, 15, and 20 V, respectively.
  • the linear amplification unit 3 linearly amplifies the waveform-shaped amplitude signal 9 ′ output from the waveform shaping unit 7 (FIG. 15B).
  • the output current of the linear amplifier 31 (FIG. 15C) is converted into a voltage signal by the current detection resistor 42 and input to the hysteresis comparator 41.
  • the polarity is selected so that the output voltage of the hysteresis comparator 41 becomes High when the current flows out from the linear amplifier 31 and the output voltage of the hysteresis comparator 41 becomes Low when the current flows into the linear amplifier 31,
  • the hysteresis comparator 41 outputs a pulse width modulation signal corresponding to the intensity of the input signal (FIG. 15 (d)).
  • the gate driver 5 turns on or off the switching element 21 composed of, for example, a MOSFET according to the output signal of the hysteresis comparator 41.
  • the switching element 21 has one terminal grounded and the other terminal connected to the first power supply Vcc1 through the primary winding of the transformer 24. According to the output signal of the hysteresis comparator 41, the switching element 21 controls conduction / non-conduction of the current flowing between the first power supply Vcc1 and the ground potential, whereby the amplitude of the output signal of the hysteresis comparator 41 is amplified to Vcc1. .
  • the signal amplified by the switching element 21 is transmitted from the primary winding of the transformer 24 to the secondary winding. Since the DC voltage Vcc2 generated by the second power supply is applied to one terminal of the secondary winding of the transformer 24, the DC voltage Vcc2 is applied to the pulse signal having the amplitude Vcc1 from the secondary winding of the transformer 24. A signal added with is output.
  • a current corresponding to this pulse signal is supplied from the second power source to the secondary winding of the transformer 24.
  • current is alternately output from the rectifying element 22 and the rectifying element 23 in accordance with the High / Low of the pulse signal. Since a pulsed current flows through the secondary winding of the transformer 24, the characteristics of high-efficiency switching amplification by the switching element 21 are maintained even on the secondary winding side of the transformer 24.
  • the current output from the secondary winding of the transformer 24 is integrated by the inductor 6, and the switching frequency component is removed (FIG. 15 (e)).
  • the switching noise component included in the output voltage of the switching amplifier 2 is voltage-corrected (smoothed) by the linear amplifier 31 (FIG. 15 (f)).
  • the output terminal of the switching amplifier 2 is connected to the output terminal of the linear amplifier 31, and the output signal of the linear amplifier 31 is negatively fed back. Therefore, since the linear amplifier 31 operates so that the output signal waveform matches the input signal waveform, the linear amplifier 31 outputs a signal for canceling the switching noise included in the output voltage of the switching amplifier 2. Therefore, the switching noise included in the output voltage of the switching amplifier 2 is smoothed by the linear amplifier 31.
  • the output terminal of the switching amplifier 2 is connected to the output terminal of the linear amplifier 31 via the current detection resistor 42. However, since the value of the current detection resistor 42 is small, voltage correction by this is performed. Is less affected.
  • the voltage Vout after voltage correction by the linear amplifier 31 is supplied to the high-frequency amplifier 1.
  • the high frequency amplifier 1 linearly amplifies the input modulation signal 8 using the output voltage of the switching amplifier 2 as a power supply voltage. At this time, only a minimum power (power supply voltage) is supplied to the high-frequency amplifier 1 in accordance with the amplitude of the amplitude signal 9, so that the high-frequency amplifier 1 can always operate near a saturated power with high efficiency.
  • the current flowing through the linear amplifier 31 having low efficiency is only the switching noise component, so that the power consumed by the linear amplifier 31 is small and the power amplification is performed.
  • the efficiency of the entire apparatus can be increased.
  • a smooth output voltage waveform 11 obtained by adding a DC voltage can be supplied to the high-frequency amplifier 1 as compared with the power amplifying apparatus of the first background art shown in FIG. Therefore, the waveform distortion of the modulation signal 12 output from the high frequency amplifier 1 can be reduced.
  • the power amplifying device of this embodiment can use a source-grounded MOSFET as the switching element 21, and the gate pulse signal 10 input to the switching element 21. Can be high-speed operation.
  • the operating band of the high-efficiency switching amplification is expanded and the load of the low-efficiency linear amplifier 31 is reduced, so that the power amplifying apparatus can operate with high efficiency.
  • the power amplifying apparatus of this embodiment only the amplitude modulation component excluding the DC offset of the input signal is subjected to switching amplification, and the DC voltage component is directly supplied to the high-frequency amplifier 1 from the secondary side of the transformer. Therefore, higher efficiency can be realized as compared with the power amplification device of the second background art.
  • the waveform shaping unit 7 outputs the large amplitude modulation component included in the amplitude signal 9 as it is and generates a DC voltage component so as to compress the small amplitude modulation component. . If the waveform shaping is performed so that a sufficiently large voltage is supplied to the high frequency amplifier 1 with respect to the large amplitude modulation component of the amplitude signal 9, the DC voltage is applied to the small amplitude modulation component of the amplitude signal 9. Since only the components can be used, unnecessary power is not supplied to the high-frequency amplifier 1 (FIG. 15 (f)).
  • the high-frequency amplifier 1 is supplied with power without waste. Can be supplied.
  • the power amplifying apparatus has an advantage that the band and dynamic range required for the linear amplifier 31 and the switching element 21 can be narrowed by performing the waveform shaping.
  • the function used in the waveform shaping unit 7 is not limited to the above formula (1), and can be appropriately changed according to the signal to be amplified and the system.
  • the value of the DC voltage component provided in the amplitude signal 9 in the waveform shaping unit 7 is ideally the second power supply voltage Vcc2 supplied to the secondary winding of the transformer 24. However, it may be adjusted according to the offset value of each circuit.
  • the linear amplifier 31 may be a linear feedback amplifier having a gain. In that case, the value of the DC voltage added to the amplitude signal 9 may be reduced according to the value of the gain. Further, the winding ratio of the transformer 24 may be set to an arbitrary value.
  • the power amplifying apparatus shown in FIG. 12 may include switching elements 22 a and 23 a instead of the diodes 22 and 23, and the switching elements 22 a and 23 a may be turned on / off in synchronization with the control signal 10.
  • the switching elements 22a and 23a are used instead of the diodes 22 and 23, the efficiency of the power amplifying device is improved by a loss due to the forward voltage of the diode.
  • the power amplifying device shown in FIG. 12 may be provided with the power regeneration circuit 25 for recovering the exciting current shown in FIG.
  • the power regeneration circuit 25 By providing the power regeneration circuit 25, the loss of the excitation current is eliminated, so that the efficiency of the switching amplifier 2 is improved.
  • FIG. 16 is a block diagram illustrating a configuration of the power amplifying device according to the third embodiment.
  • the power amplifying apparatus includes a high frequency amplifier 1, a switching amplifier 2, a linear amplifier 3, and a control signal generator 4.
  • the linear amplifying unit 3 adds a predetermined DC voltage to the amplitude signal 9 which is an amplitude modulation component of the modulation signal 8, adds the output voltage to the power supply voltage supplied to the high frequency amplifier 1, and outputs the output voltage and the modulation signal.
  • the difference from the amplitude modulation component is amplified and output.
  • the control signal generation unit 4 generates a pulse modulation signal that becomes High or Low depending on the direction of the output current of the linear amplification unit 3, and outputs the pulse modulation signal to the switching amplification unit 2.
  • the switching amplifier 2 uses the pulse modulation signal output from the control signal generator 4 as a control signal to switch and amplify the amplitude signal 9 and add and output a predetermined DC voltage.
  • the output voltage of the switching amplifier 2 is added to the output voltage of the control signal generator 4 to generate a modulation voltage 11 that is a power supply voltage supplied to the high-frequency amplifier 1.
  • the high-frequency amplifier 1 linearly amplifies the modulation signal 8 using a modulation voltage 11 as a power source by a class A or class AB method, and outputs a high-frequency modulation signal 12 whose amplitude and phase are modulated.
  • the power supply voltage supplied to the high frequency amplifier 1 is negatively fed back to the linear amplification unit 3 of the present embodiment.
  • the high-frequency amplifier 1 linearly amplifies the modulation signal 8 using a modulation voltage 11 as a power source by a class A or class AB method, and outputs a high-frequency modulation signal 12 whose amplitude and phase are modulated.
  • FIG. 17 is a circuit diagram showing a configuration of a specific example of the power amplifying apparatus shown in FIG.
  • the switching amplification unit 2 includes a switching element 21, a transformer 24, a diode 22 (first rectifying element), a diode (second rectifying element) 23, and an inductor (filter) 6.
  • the linear amplification unit 3 includes a linear amplifier 31 and a choke inductor 32.
  • the control signal generation unit 4 includes a hysteresis comparator 41, a current detection resistor 42, and a gate driver 5.
  • the amplitude signal 9 that is the amplitude modulation component of the amplitude-modulated and phase-modulated modulation signal 8 is input to the linear amplification unit 3.
  • Vcc2 12V is added to the amplitude signal 9 through the choke inductor 32 and input to the linear amplifier 31.
  • the output current of the linear amplifier 31 is converted into a voltage signal by the current detection resistor 42 and input to the hysteresis comparator 41.
  • the polarity is selected so that the output voltage of the hysteresis comparator 41 becomes High when the current flows out from the linear amplifier 31 and the output voltage of the hysteresis comparator 41 becomes Low when the current flows into the linear amplifier 31,
  • the hysteresis comparator 41 outputs a pulse width modulation signal corresponding to the intensity of the input signal.
  • the gate driver 5 turns on or off the switching element 21 composed of, for example, a MOSFET according to the output signal of the hysteresis comparator 41.
  • the switching element 21 has one terminal grounded and the other terminal connected to the first power supply Vcc1 through the primary winding of the transformer 24. According to the output signal of the hysteresis comparator 41, the switching element 21 controls conduction / non-conduction of the current flowing between the first power supply Vcc1 and the ground potential, whereby the amplitude of the output signal of the hysteresis comparator 41 is amplified to Vcc1. .
  • the switching element 21 since no voltage is applied to both terminals of the switching element 21 when a current flows, the switching element 21 amplifies the output signal of the hysteresis comparator 41 with an ideal efficiency of 100%. .
  • the signal amplified by the switching element 21 is transmitted from the primary winding of the transformer 24 to the secondary winding. Since the DC voltage Vcc2 generated by the second power supply is applied to one terminal of the secondary winding of the transformer 24, the DC voltage Vcc2 is applied to the pulse signal having the amplitude Vcc1 from the secondary winding of the transformer 24. A signal added with is output.
  • a current corresponding to this pulse signal is supplied from the second power source to the secondary winding of the transformer 24.
  • current is alternately output from the rectifying element 22 and the rectifying element 23 in accordance with the High / Low of the pulse signal. Since a pulsed current flows through the secondary winding of the transformer 24, the characteristics of high-efficiency switching amplification by the switching element 21 are maintained even on the secondary winding side of the transformer 24.
  • the current output from the secondary winding of the transformer 24 is integrated by the inductor 6 and the switching frequency component is removed.
  • the switching noise component included in the output voltage of the switching amplifier 2 is voltage-corrected (smoothed) by the linear amplifier 31.
  • the output signal of the switching amplification unit 2 is negatively fed back to the linear amplifier 31. Therefore, since the linear amplifier 31 operates so that the output signal waveform matches the input signal waveform, the linear amplifier 31 outputs a signal for canceling the switching noise included in the output voltage of the switching amplifier 2. Therefore, the switching noise included in the output voltage of the switching amplifier 2 is smoothed by the linear amplifier 31. At this time, since the output signal of the switching amplifier 2 is negatively fed back to the linear amplifier 31, the influence on the voltage correction by the current detection resistor 42 is greater than that in the first or second embodiment. Is less.
  • the voltage Vout after voltage correction by the linear amplifier 31 is supplied to the high-frequency amplifier 1.
  • the high frequency amplifier 1 linearly amplifies the input modulation signal 8 using the output voltage of the switching amplifier 2 as a power supply voltage. At this time, only a minimum power (power supply voltage) is supplied to the high-frequency amplifier 1 in accordance with the amplitude of the amplitude signal 9, so that the high-frequency amplifier 1 can always operate near a saturated power with high efficiency.
  • the power consumed by the linear amplifier 31 is small, and the efficiency of the entire power amplification device can be increased.
  • a smooth output voltage waveform 11 obtained by adding a DC voltage can be supplied to the high-frequency amplifier 1 as compared with the power amplifying apparatus of the first background art shown in FIG. Therefore, the waveform distortion of the modulation signal 12 output from the high frequency amplifier 1 can be reduced.
  • the power amplifying device of this embodiment can use a source-grounded MOSFET as the switching element 21, and the gate pulse signal 10 input to the switching element 21. Can be high-speed operation.
  • the operating band of the high-efficiency switching amplification is expanded and the load of the low-efficiency linear amplifier 31 is reduced, so that the power amplifying apparatus can operate with high efficiency.
  • the power amplifying apparatus of this embodiment only the amplitude modulation component excluding the DC offset of the input signal is subjected to switching amplification, and the DC voltage component is directly supplied to the high-frequency amplifier 1 from the secondary side of the transformer. Therefore, higher efficiency can be realized as compared with the power amplification device of the second background art.
  • the power supply voltage supplied to the high frequency amplifier 1 is negatively fed back to the linear amplifier 31.
  • the impedance of the power input of the high-frequency amplifier 1 is about several ohms.
  • the value of the current detection resistor 42 included in the control signal generation unit 4 is about 0.5 ⁇ , which occupies about 10% of the impedance of the power input of the high-frequency amplifier 1.
  • the output impedance may be sufficiently lower than the load impedance. That is, the power supply device is required to always supply the same voltage stably even when the load varies.
  • the power supply voltage supplied to the high frequency amplifier 1 is always equal to the amplitude signal 9 by negatively feeding back the power supply voltage supplied to the high frequency amplifier 1 to the linear amplifier 31. That is, the influence of the current detection resistor 42 included in the control signal generation unit 4 is not visible on the output impedance of the modulation power supply that supplies power (power supply voltage) to the high-frequency amplifier 1. Therefore, the output impedance of the modulation power supply approaches 0, and it operates as a more ideal voltage source.
  • FIG. 17 shows a configuration example in which a DC voltage is added to the amplitude signal 9 via the choke inductor 32
  • a DC voltage component may be added to the amplitude signal 9 in advance by signal processing.
  • the value of the DC voltage added to the amplitude signal 9 is ideally the same as the second power supply voltage Vcc2 supplied to the secondary winding of the transformer 24. It may be adjusted according to the offset value.
  • the linear amplifier 31 may be a linear feedback amplifier having a gain. In that case, the value of the DC voltage added to the amplitude signal 9 may be reduced according to the value of the gain. Further, the winding ratio of the transformer 24 may be set to an arbitrary value.
  • the power amplifying apparatus shown in FIG. 17 may include switching elements 22 a and 23 a instead of the diodes 22 and 23, and the switching elements 22 a and 23 a may be turned on / off in synchronization with the control signal 10.
  • the switching elements 22a and 23a are used instead of the diodes 22 and 23, the efficiency of the power amplifying device is improved by a loss due to the forward voltage of the diode.
  • the power amplifying device shown in FIG. 17 may be provided with the power regeneration circuit 25 for recovering the exciting current shown in FIG.
  • the power regeneration circuit 25 By providing the power regeneration circuit 25, the loss of the excitation current is eliminated, so that the efficiency of the switching amplifier 2 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 高周波増幅器は、変調信号またはその位相変調成分を増幅して出力する。線形増幅器は、出力電圧を高周波増幅器に供給する電源電圧に加算すると共に、該出力電圧と変調信号の振幅変調成分との差を増幅して出力する。制御信号生成部は、線形増幅部の出力電流が流れる方向を検知し、その電流の向きに応じたパルス変調信号を生成する。スイッチング増幅部は、パルス変調信号を制御信号に用いて、直流電流の導通および非導通を制御することで線形増幅部の出力信号をスイッチング増幅し、所定の直流電圧と加算して高周波増幅器へ電源電圧として供給する。スイッチング増幅部には直流電流および所定の直流電圧を供給する。

Description

電力増幅装置
 本発明は、主として無線通信の送信機に用いられる電力増幅装置に関し、特に入力信号の振幅変調成分に応じて増幅器に供給する電源電圧を変化させる電力増幅装置に関する。
 携帯電話システムや無線LAN(Local Area Network)等の近年の無線通信システムでは、QPSK(Quadrature Phase Shift Keying)や多値QAM(Quadrature Amplitude Modulation)等の変調フォーマットが採用されている。これらの変調フォーマットでは、一般にシンボル間の遷移時に信号の軌跡が振幅変調を伴うため、マイクロ波帯のキャリア信号に重畳された高周波変調信号は、時間とともに信号の振幅(包絡線)が変化する。このときの高周波変調信号のピーク電力と平均電力の比は、PAPR(Peak-to-Average Power Ratio)と呼ばれる。PAPRが大きい信号を増幅する場合、高い線形性を確保するためには、ピーク電力に対しても波形が歪まないように電源装置から十分に大きな電力を増幅器に供給する必要がある。言い換えると、増幅器を電源電圧によって制限される飽和出力電力よりも十分に低い電力領域で余裕(バックオフ)を持って動作させる必要がある。
 一般に、A級やAB級方式で高周波信号を増幅する高周波増幅器では、その飽和出力電力付近で効率が最大となるため、バックオフが大きい電力領域で動作させると平均的な効率が低下する。
 次世代の携帯電話システムや無線LAN、デジタルテレビ放送等で採用されているマルチキャリアを用いた直交波周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)方式では、PAPRが大きくなる傾向にあるため、高周波増幅器の平均的な効率がさらに低下する。したがって、高周波増幅器は、バックオフが大きい電力領域でも高い効率で動作することが望ましい。
 そこで、バックオフが大きい電力領域で、かつ広いダイナミックレンジで高効率に信号を増幅する方式として、包絡線除去・復元(EER:Envelope Elimination and Restoration)方式と呼ばれる電力増幅装置が非特許文献1で提案されている。
 非特許文献1で提案されたEER方式では、まず入力された変調信号を位相変調成分と振幅変調成分とに分解する。振幅が一定の位相変調成分は、位相変調情報を維持したまま増幅器に入力される。このとき、増幅器は、常に効率が最大となる飽和出力電力付近で動作させる。
 一方、振幅変調成分は、振幅変調情報を維持したままD級アンプ等を用いて高効率に増幅され、出力強度が変調された電源電圧(変調電源)として高周波増幅器に供給される。
 このように動作させることで、高周波増幅器は、乗算器としても動作し、変調信号の位相変調成分と振幅変調成分とを合成して出力する。そのため、高周波増幅器からは、バックオフによらずに高い効率で増幅された出力変調信号が得られる。
 また、EER方式と類似した方式として、包絡線追跡(ET:Envelope Tracking)と呼ばれる方式も知られている。例えば、非特許文献2等でその一例が報告されている。
 ET方式においても、変調信号の振幅変調成分を、振幅変調情報を維持しつつD級アンプ等を用いて高効率に電力増幅し、出力強度が変調された電源電圧(変調電源)として増幅器に供給する構成はEER方式と共通である。
 EER方式は、増幅器に振幅が一定の位相変調信号のみを入力して飽和出力電力付近で動作させ、ET方式は、振幅変調と位相変調の両方を含む入力変調信号をそのまま増幅器に入力して線形動作させる点で異なっている。その他の構成は同一である。
 ET方式は、増幅器が線形動作するため、EER方式よりも効率が低下するが、入力変調信号の振幅変調成分に応じた必要最小限の電力しか増幅器に供給されないため、増幅器に一定の電源電圧を供給する構成に比べれば高い効率が得られる。
 また、ET方式では、振幅変調成分と位相変調成分とを合成するタイミングマージンが緩和されるため、EER方式と比べて実現が容易であるという利点もある。
 EER方式やET方式では、一般に、振幅変調成分をパルス変調信号に変換し、D級アンプなどを用いてスイッチング増幅する変調電源が用いられる。パルス変調方式としては、パルス幅変調(PWM:Pulse Width Modulation)方式が従来から用いられてきたが、特許文献1や特許文献2では、より線形性に優れたデルタ変調方式(またはパルス密度変調方式(PDM:Pulse Density Modulation))を採用した構成が提案されている。また、近年では、パルス変調方式に、信号対雑音比(SNR:Signal to Noise Ratio)が高いシグマデルタ変調方式等も使用されている。
 ところで、携帯電話システムや無線LAN等の、デジタル変調方式を用いる近年の無線通信システムでは、隣接するチャネルへの漏洩電力(ACPR:Adjacent Channel Leakage Power Ratio)や、変調誤差を表すエラーベクトル強度(EVM:Error Vector Magnitude)を一定値以下に抑制することが規格によって定められている。
 EER方式やET方式を採用する電力増幅装置において、これらの規格を満足するためには、変調電源が備えるパルス変調器やD級アンプの動作可能な帯域が、変調信号の帯域の最低でも2倍以上は必要と言われている。例えば、携帯電話システムで採用されているWCDMA(WidebandCode Division Multiple Access)では変調帯域が約5MHzであり、無線LANで採用されているIEEE802.11a/gでは変調帯域が約20MHzである。一般に、大電力を高速にスイッチングするのは困難であり、このような広い帯域で動作する変調電源を実現するのは困難である。
 そこで、最も簡単な構成の変調電源を備えた電力増幅装置が特許文献3で提案されている。図1に、この特許文献3に記載された電力増幅装置(以下、第1背景技術と称す)の構成を示す。
 第1背景技術の電力増幅装置は、定常的には平均的な電力(電源電圧)を増幅器に供給し、振幅が一定値以上になるときだけ大きな電力(電源電圧)を増幅器に供給する構成である。
 この第1背景技術の電力増幅装置の動作について図1及び図2を用いて説明する。
 第1背景技術の電力増幅装置では、定常的には電圧Bcが増幅器204に電源電圧として供給されている(図2(c)参照)。
 電圧Bcは、通常、平均的な出力電力が得られるように設定されるため、最大出力電圧よりも低く設定される。包絡線センサ201は、入力変調信号の包絡線(振幅変調成分)9が参照電圧Vrefよりも高くなるピークを検出すると(図2(a))、制御信号10を出力する(図2(b))。
 この制御信号10に基づいて電力バルブ203がオンし、最大電圧Bvが加算された電圧11が増幅器204に印加される(図2のc)。この電力バルブについては、容量結合を用いた構成が特許文献4で提案され、容量結合と磁気結合を併用した構成が特許文献5で提案されている。
 このような構成を採用することで、変調信号の振幅変調成分が小さい領域では、増幅器204に無駄な電力が供給されないため、増幅器204の平均的な効率を高めることができる。
 また、高効率、広帯域で動作する変調電源の他の構成が非特許文献3で提案されている。この非特許文献3で提案された電力増幅装置(以下、第2背景技術と称す)の構成を図3に示す。
 第2背景技術の電力増幅装置では、広帯域で動作するが効率が低い線形アンプ部3と、狭帯域で動作するが効率が高いスイッチングレギュレータ部2とを連動させることで、高効率・広帯域な変調電力(電源電圧)11を増幅器1に供給している。具体的な動作について図4を用いて説明する。
 差動増幅器で構成された、ボルテージフォロアとして動作する線形増幅部3には、変調信号8の振幅変調成分である振幅信号9が入力される。ここでは、振幅信号9が2MHzの正弦波と仮定している(図4(c)の9)。
 線形増幅部3の出力電流は、電流検知抵抗器42によって電圧信号に変換され、ヒステリシスコンパレータ41に入力される。ここで、例えば線形増幅部3から電流が流れ出るときにコンパレータ41の出力電圧がHighとなり、線形増幅部3に電流が流れ込むときにヒステリシスコンパレータ41の出力電圧がLowとなるように極性を選択すれば、ヒステリシスコンパレータ41からは線形増幅部3の出力信号に応じたパルス幅変調信号が出力される(図4(c)の10)。
 ゲートドライバ5は、ヒステリシスコンパレータ41の出力信号にしたがって、例えばMOS型電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)で構成されるスイッチング素子21をオンまたはオフさせる。スイッチング素子21は、ダイオード22との組み合わせによりスイッチングレギュレータ部2を構成しており、該スイッチングレギュレータ部2によりパルス幅変調信号の振幅がVcc1まで増幅される。
 増幅されたパルス幅変調信号は、インダクタ6によって積分され、スイッチング周波数成分が除去される(図4(a))。
 インダクタ6の出力電流に含まれる誤差成分は、線形増幅部3によって電圧補正され、電源電圧として高周波増幅器1に供給される。このとき、効率が低い線形増幅器31に流れる電流(図4(b))は誤差成分だけであるため、線形増幅器31で消費する電力は少なく、振幅信号9のほとんどの信号成分は高効率なスイッチングレギュレータ部2によって増幅される。したがって、電力増幅装置全体の効率を高めることができる。
 しかしながら、上述した背景技術の電力増幅装置のうち、第1背景技術の電力増幅装置では、高周波増幅器204の出力振幅が変調電圧11よりも常に低くなるように電圧余裕(バックオフ)をもって動作をする必要があるため(図2の(c))、効率の改善効果が少ないという問題がある。また、変調された電圧波形111は、ハードクリッピング状になるため、出力スペクトルの劣化を招くという問題もある。
 一方、第2背景技術の電力増幅装置では、線形アンプ31により電圧補正を行うことで増幅器1に供給する電圧波形11を振幅信号9の波形に近づけるため、第1背景技術の電力増幅装置に比べて、効率が向上し、スペクトルの劣化も抑制される。
 しかしながら、第2背景技術の電力増幅装置を、例えば携帯電話システムの無線基地局のような、送信電力が大きい装置で用いると、電源電圧Vcc1が28V程度になるため、スイッチング素子(通常はFETを使用)21をオンするためには、ゲートドライバ5の出力信号10の振幅をVcc1以上に昇圧する必要がある。このような構成は、通常、ゲートドライバ5にブートストラップ回路等を用いることで実現するが、一般に、このような大振幅のパルスを高速に動作させるのは困難である。
 したがって、第2背景技術の電力増幅装置では、図4(c)に示したように、スイッチング周波数が低い値に制限され、スイッチングレギュレータ部2はDCから100kHz程度の帯域の信号成分しか増幅できない。そのため、より高い帯域の信号成分は、全て効率が低い線形アンプ31で増幅することになるため、電力増幅装置全体の効率が低下する問題がある。
 また、上述したEER方式やET方式のように、増幅器の電源電圧を変調する方式では、変調電源から増幅器1へ供給する電源電圧(電圧波形11)の値が0に近づくと、該増幅器の利得が小さくなるため、出力信号12に波形歪みが生じるという問題もある。そのため、変調電源の出力電圧には一定の下限値(DCオフセット)を設けることが望ましい。
 第2背景技術の電力増幅装置では、DCオフセットも含めてスイッチングレギュレータ部2で増幅しているが、大電力、高速スイッチングで動作する場合、スイッチングレギュレータであっても90%以上の高い効率を得るのは困難である。
特許第3207153号公報(第8頁、第3図) 米国特許第5973556号明細書(第3頁、第3図) 特表2003-526980号公報(第30頁、第2A図) 国際公開第03/103134号パンフレット(第2頁、図.2) 国際公開第2006/114792号パンフレット(第3頁、図.3)
Lenard R. Kahn, "Single-sideband Transmission by Envelope Elimination and Restoration", PROCEEDINGS OF THE I.R.E., Vol. 40, pp. 803-806, 1952. J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sandwniczak, R. Sherman and T. Quach, "HIGH EFFICIENCY CDMA RF POWER AMPLIFIER USING DYNAMIC ENVELOPE TRACKING TECHNIQUE", 2000 IEEE MTT-S Digest, vol. 2, pp. 873-876. F. Wang, A. Ojo, D. Kimball, P Asbeck and L. Larson, "Envelope Tracking Power Amplifier with Pre-Distortion Linearization for WLAN 802.11g", 2004 IEEE MTT-S Digest, vol. 3, pp. 1543-1546.
 そこで本発明は、高周波増幅器に供給する電源電圧を変調信号の振幅に応じて変化させる電力増幅装置において、高効率で、かつ波形歪みの小さい電力増幅装置を提供することを目的とする。
 上記目的を達成するため本発明の電力増幅装置は、振幅変調成分および位相変調成分を含む変調信号を増幅する電力増幅装置であって、
 前記変調信号を増幅して出力する高周波増幅器と、
 出力電圧を前記高周波増幅器に供給する電源電圧に加算すると共に、該出力電圧と前記変調信号の振幅変調成分との差を増幅して出力する線形増幅部と、
 前記線形増幅部の出力電流が流れる方向を検知し、その電流の向きに応じたパルス変調信号を生成する制御信号生成部と、
 前記パルス変調信号を制御信号に用いて、直流電流の導通および非導通を制御することで前記線形増幅部の出力信号をスイッチング増幅し、所定の直流電圧と加算して前記高周波増幅器へ前記電源電圧として供給するスイッチング増幅部と、
 前記スイッチング増幅部に前記直流電流を供給する第1の直流電源と、
 前記スイッチング増幅部に前記所定の直流電圧を供給する第2の直流電源と、
を有する。
 または、振幅変調成分および位相変調成分を含む変調信号を増幅する電力増幅装置であって、
 前記変調信号を増幅して出力する高周波増幅器と、
 前記変調信号の振幅変調成分の電圧波形を成形する電圧波形整形部と、
 出力電圧を前記高周波増幅器に供給する電源電圧に加算すると共に、該出力電圧と前記変調信号の振幅変調成分との差を増幅して出力する線形増幅部と、
 前記線形増幅部の出力電流が流れる方向を検知し、その電流の向きに応じたパルス変調信号を生成する制御信号生成部と、
 前記パルス変調信号を制御信号に用いて、直流電流の導通および非導通を制御することで前記線形増幅部の出力信号をスイッチング増幅し、所定の直流電圧と加算して前記高周波増幅器へ前記電源電圧として供給するスイッチング増幅部と、
 前記スイッチング増幅部に前記直流電流を供給する第1の直流電源と、
 前記スイッチング増幅部に前記所定の直流電圧を供給する第2の直流電源と、
を有する。
図1は、第1背景技術の電力増幅装置の構成を示すブロック図である。 図2は、第1背景技術の電力増幅装置の動作を示す信号波形図である。 図3は、第2背景技術の電力増幅装置の構成を示すブロック図である。 図4は、第2背景技術の電力増幅装置の動作を示す信号波形図である。 図5は、第1の実施の形態の電力増幅装置の構成を示すブロック図である。 図6は、図5に示した電力増幅装置の具体例の構成を示す回路図である。 図7は、図6に示した電力増幅装置の動作例を示す信号波形図である。 図8は、図6に示した電力増幅装置の動作例を示す信号波形図である。 図9は、図5に示した電力増幅装置の他の具体例の構成を示す回路図である。 図10は、図5に示した電力増幅装置の他の具体例の構成を示す回路図である。 図11は、第2の実施の形態の電力増幅装置の構成を示すブロック図である。 図12は、図11に示した電力増幅装置の具体例の構成を示す回路図である。 図13は、図12に示した電圧波形整形部で用いる波形整形関数の例を示すグラフである。 図14は、図12に示した電圧波形整形部による整形後の波形例を示す信号波形図である。 図15は、図12に示した電力増幅装置の動作例を示す信号波形図である。 図16は、第3の実施の形態の電力増幅装置の構成を示すブロック図である。 図17は、図16に示した電力増幅装置の具体例の構成を示す回路図である。
 次に本発明について図面を用いて説明する。
(第1の実施の形態)
 図5は、第1の実施の形態の電力増幅装置の構成を示すブロック図である。
 図5に示すように、第1の実施の形態の電力増幅装置は、高周波増幅器1、スイッチング増幅部2、線形増幅部3および制御信号生成部4を備えている。
 線形増幅部3は、変調信号8の振幅変調成分である振幅信号9に所定の直流電圧を加算し、出力電圧を高周波増幅器1に供給する電源電圧に加算すると共に、該出力電圧と変調信号の振幅変調成分との差を増幅して出力する。
 制御信号生成部4は、線形増幅部3の出力電流の方向に応じてHighまたはLowとなるパルス変調信号を生成し、該パルス変調信号をスイッチング増幅部2に出力する。
 スイッチング増幅部2は、制御信号生成部4から出力されたパルス変調信号を制御信号に用いて、振幅信号9をスイッチング増幅すると共に所定の直流電圧を加算して出力する。このスイッチング増幅部2の出力電圧は、制御信号生成部4の出力電圧と加算されて、高周波増幅器1に供給される電源電圧である、変調電圧11が生成される。
 高周波増幅器1は、変調電圧11を電源に用いてA級またはAB級方式等により変調信号8を線形増幅し、振幅と位相が変調された高周波変調信号12を出力する。
 図6は、図5に示した電力増幅装置の具体例の構成を示す回路図である。
 図6に示すように、スイッチング増幅部2は、スイッチング素子21、トランス24、ダイオード(第1の整流素子)22、ダイオード(第2の整流素子)23およびインダクタ(フィルタ)6を備えている。
 また、線形増幅部3は、線形増幅器31およびチョークインダクタ32を備えている。制御信号生成部4は、ヒステリシスコンパレータ41、電流検知抵抗器42およびゲートドライバ5を備えている。
 本実施形態の電力増幅装置では、変調信号の振幅変調成分(振幅信号)に直流電圧を加算して線形増幅部3に入力する。線形増幅部3は、負帰還ループを含む線形増幅器(例えば差動増幅器)で構成され、その出力電圧波形は直流電圧成分を含む振幅信号9の波形と高い精度で一致する。線形増幅部3の出力は、制御信号生成部4に入力される。
 制御信号生成部4は、線形増幅部3から出力される電流を検出するための電流検知抵抗器42と比較器(ヒステリシスコンパレータ41)とを備え、例えば線形増腹部3から電流が流れ出るときにHigh、電流が流れ込むときにLowとなる制御信号を生成する。生成された制御信号は、スイッチング増幅部2に入力される。
 スイッチング増幅部2は、制御信号生成部4で生成された制御信号を用いて、トランス24の一次巻線を介して直流電圧が印加されたスイッチング素子21の導通/非道通を制御することにより、変調信号の振幅変調成分を高効率にスイッチング増幅する。さらに、本実施形態の電力増幅装置では、トランス24の二次巻線から出力されるスイッチング増幅した電圧波形に直流電圧を加算して出力する。
 スイッチング増幅部2から出力された電流は、インダクタ6によって平滑化され、線形増幅部3の出力信号と加算されることで電圧補正される。
 この補正後の電圧を、変調信号8を線形増幅する高周波増幅器1に電源電圧として供給することで、高周波増幅器1には常に必要最小限の電力(電源電圧)しか供給されない。したがって、本実施形態の電力増幅装置では、高周波増幅器1を、電源電圧として一定の電圧が供給される場合と比べて高い効率で動作させることができる。
 背景技術の電力増幅装置では、FETから成るスイッチング素子21を駆動するパルス信号に電源電圧よりも高い振幅を備えた信号を用いるため、高速に動作させるのが困難であった。そのため、スイッチング周波数が低くなり、スイッチング誤差を補正する線形増幅器3に大きい電力負荷がかかり、電力増幅装置全体の効率が低下する要因となっていた。また、振幅信号9に直流電圧を加算する場合、直流電圧成分もスイッチング増幅する必要があるため、ある程度の効率低下は避けられなかった。それに対して本実施形態の電力増幅装置では、スイッチング素子として用いるFETをソース接地で動作させることができるため、該FETを駆動するための駆動信号が数ボルト程度で済み、高速なスイッチング動作が可能になる。したがって、スイッチング増幅できる帯域が拡大するため、線形増幅部3の消費電力を抑制でき、電力増幅装置全体の効率を向上させることができる。
 また、効率が低い線形増幅部3は、スイッチング増幅の誤差を補正するためだけに用いられるため、消費電力が低減する。
 また、高周波増幅器1の出力波形の歪を低減するために、高周波増幅器1に供給する電源電圧に含まれる直流電圧成分は、スイッチング増幅されることなくトランスの二次巻線を介して高周波増幅器に直接供給されるため、電力増幅装置全体の効率の低下を招くことがない。
 以上より、本実施形態の電力増幅装置では、背景技術の電力増幅装置に比べて変調電源の効率が向上する。また、本実施形態の電力増幅装置が備える変調電源による波形の再生精度は、最終的には線形増幅器で決まるので、背景技術の電力増幅装置に比べて、高い効率を維持したまま、高い波形再生精度を実現できる。その結果、本実施形態による変調電源を用いることで、振幅と位相が変調された変調信号を、出力波形の歪が少なく、高い効率で増幅できる、電力増幅装置が実現される。
 次に、第1の実施の形態の電力増幅装置の動作について図6から図8を用いて説明する。
 図7及び図8は、図6に示した電力増幅装置の動作例を示す信号波形図である。なお、図7は、振幅信号9として、振幅が4V、周波数が2MHzの正弦波が入力され、線形増幅部3により該振幅信号9に12Vの直流電圧が加算される場合の動作波形例を示している。また、図8は、WCDMAダウンリンク信号の包絡線(振幅信号)を入力した場合の各ブロックの動作波形例を示している。
 図6に示したように、線形増幅部3には振幅変調および位相変調された変調信号8の振幅変調成分である振幅信号9が入力される。
 振幅信号9にはチョークインダクタ32を介してVcc2=12Vの直流電圧が加算され(図7の(a))、例えば差動増幅器を用いて構成された、ボルテージフォロアとして動作する線形増幅器31に入力される。
 線形増幅器31の出力電流(図7(b))は、電流検知抵抗器42で電圧信号に変換され、ヒステリシスコンパレータ41に入力される。ここで、例えば線形増幅器31から電流が流れ出るときにヒステリシスコンパレータ41の出力電圧がHighとなり、線形増幅器31に電流が流れ込むときにヒステリシスコンパレータ41の出力電圧がLowとなるように極性を選択すれば、ヒステリシスコンパレータ41からは入力信号の強度に応じたパルス幅変調信号が出力される(図7(c))。
 ゲートドライバ5は、ヒステリシスコンパレータ41の出力信号にしたがって、例えばMOSFETで構成されるスイッチング素子21をオンまたはオフさせる。
 スイッチング素子21は、一方の端子が接地され、他方の端子がトランス24の一次巻線を介して第1の電源Vcc1と接続されている。スイッチング素子21は、ヒステリシスコンパレータ41の出力信号にしたがって、第1の電源Vcc1と接地電位間に流れる電流の導通/非導通を制御することで、ヒステリシスコンパレータ41の出力信号の振幅をVcc1まで増幅する。
 ここで、スイッチング素子21の両端子には、電流が流れているときに電圧が印加されていないため、スイッチング素子21は、理想的には100%の効率でヒステリシスコンパレータ41の出力信号を増幅する。
 スイッチング素子21で増幅された信号は、トランス24の一次巻線から二次巻線に伝達される。トランス24の二次巻線の一方の端子には第2の電源で生成された直流電圧Vcc2が印加されているため、トランス24の二次巻線からは、振幅Vcc1のパルス信号に直流電圧Vcc2が加算された信号が出力される。
 トランス24の二次巻線には、このパルス信号に応じた電流が第2の電源から供給される。このとき、整流素子22および整流素子23の整流作用により、電流はパルス信号のHigh/Lowに応じて整流素子22と整流素子23から交互に出力される。トランス24の二次巻線にはパルス状の電流が流れるため、トランス24の二次巻線側でもスイッチング素子21による高効率なスイッチング増幅の特徴が維持される。トランス24の二次巻線から出力された電流は、インダクタ6によって積分され、スイッチング周波数成分が除去される(図7(d))。
 さらに、スイッチング増幅部2の出力電圧に含まれるスイッチングノイズ成分は線形増幅器31によって電圧補正(平滑化)される(図7(e))。
 図6に示したように、線形増幅器31はその出力信号が負帰還されているため、その出力信号波形が入力信号波形と一致するように動作する。そのため、線形増幅器31からはスイッチング増幅部2の出力電圧に含まれるスイッチングノイズを打ち消すための信号が出力される。
 したがって、線形増幅器31によりスイッチング増幅部2の出力電圧に含まれるスイッチングノイズが平滑化される。このとき、線形増幅器31の出力端は、電流検知抵抗器42を介してスイッチング増幅部2の出力端と接続されているが、電流検知抵抗器42の値は小さいため、これによる電圧補正動作への影響は少なくて済む。
 線形増幅器31による電圧補正後の電圧Voutは高周波増幅器1に供給される。高周波増幅器1は、スイッチング増幅部2の出力電圧を電源電圧に用いて、入力された変調信号8を線形に増幅する。このとき高周波増幅器1には振幅信号9の振幅に応じて最小限の電力(電源電圧)しか供給されないため、高周波増幅器1は常に効率が高い飽和電力付近で動作できる。
 一方、振幅信号9として、WCDMAダウンリンク信号の包絡線信号(図8(a))が線形増幅部3に入力された場合も、線形増幅部3は、振幅信号9にチョークインダクタ32を介して直流電圧Vcc2を加算し、差動増幅器を用いて構成された、ボルテージフォロアとして動作する線形増幅器31により線形増幅する。
 また、図7に示した正弦波が入力された場合と同様に、コンパレータ41からは、線形増幅器31の出力電流(図8(b))の向きに応じてHighまたはLowに切り換わるパルス幅変調信号10が出力される(図8のc)。
 このパルス幅変調信号10に基づいてスイッチング増幅部2で高効率に増幅された電圧(図8(d))と、線形増幅部3の出力電圧(図8(b))とが加算され、平滑化された電圧11(図7(e))が高周波増幅器1に電源電圧として供給される。
 高周波増幅器1は、スイッチング増幅部2の出力電圧を電源電圧に用いて入力された変調信号8を線形に増幅する。このとき高周波増幅器1には振幅信号9の振幅に応じて最小限の電力(電源電圧)しか供給されないため、高周波増幅器1は常に効率が高い飽和電力付近で動作できる。
 本実施形態の電力増幅装置では、図7(b)や図8(b)に示したように、効率が低い線形増幅器31には、スイッチングノイズ成分の電流だけが流れるため、線形増幅器31で消費する電力は少なくて済み、電力増幅装置全体の効率を高くすることができる。
 また、本実施形態の電力増幅装置では、図1に示した第1背景技術の電力増幅装置に比べて、直流電圧を加算した滑らかな出力電圧波形11を高周波増幅器1に供給できる。したがって、高周波増幅器1から出力される変調信号12の波形歪を小さくできる。
 また、本実施形態の電力増幅装置では、図3に示した第2背景技術と異なって、スイッチング素子21としてソース接地のMOSFETを用いることが可能であり、スイッチング素子21に入力するゲートパルス信号10の振幅が数V程度でよいため、高速な動作が可能になる。
 本実施形態の電力増幅装置では、同じ2MHzの正弦波を入力した場合を比較すると、図3に示した第2背景技術のスイッチング周波数(図4(c)の10)と比べて、スイッチング周波数が高いことが分かる(図7(c))。
 したがって、本実施形態の電力増幅装置では、高効率なスイッチング増幅の動作帯域が拡大し、効率の低い線形増幅器31の負荷が減るため、電力増幅装置の高効率な動作が可能となる。加えて、本実施形態の電力増幅装置では、スイッチング増幅するのは入力信号のDCオフセットを除いた振幅変調成分のみであり、直流電圧成分はトランスの2次側から高周波増幅器1に直接供給されるため、第2背景技術の電力増幅装置に比べさらに高い効率を実現できる。
 なお、図6では、チョークインダクタ32を介して振幅信号9に直流電圧を加算する構成例を示しているが、信号処理によって、予め振幅信号9に直流電圧成分を加えてもよい。
 振幅信号9に加算する直流電圧の値は、線形増幅器31の利得が1の場合、理想的にはトランス24の二次巻線に供給する第2の電源電圧Vcc2と同じになるが、各回路のオフセット値などに応じて調整してもよい。
 また、線形増幅器31には、利得を持つ線形帰還アンプを用いてもよい。その場合、振幅信号9に加算する直流電圧の値も該利得の値に応じて小さくすればよい。また、トランス24の巻き数比も任意の値に設定してよい。
 図9は、図5に示した電力増幅装置の他の具体例の構成を示す回路図である。
 図9に示す電力増幅装置は、図6に示したダイオード22,23に代えてスイッチング素子(第1の整流素子)22a、スイッチング素子(第2の整流素子)23aを備え、該スイッチング素子22a、23aが制御信号10に同期してオン・オフする構成である。
 図9に示す電力増幅装置は、スイッチング素子22aを制御信号11がHighのときにONさせ、LowのときにOFFさせ、スイッチング素子23aを制御信号11がHighのときにOFFさせ、LowのときにONさせれば、図6に示した電力増幅装置と同様に動作する。
 ダイオード22,23に代えてスイッチング素子22a、23aを用いると、ダイオードの順方向電圧による損失分だけ電力増幅装置の効率が向上する。
 図10は、図5に示した電力増幅装置の他の具体例の構成を示す回路図である。
 図10に示す電力増幅装置は、図6に示したトランス24の一次巻線に電磁電流を回収するための電力回生回路25が設けられた構成である。
 図6に示した構成では、スイッチング素子21がオフ(非導通)になったとき、それまでトランス24に流れていた励磁電流の行き先がなくなり、該励磁電流が電源等に接続されたコンデンサや抵抗スナバ回路で消費されるため、損失が発生する。
 電力回生回路25は、スイッチング素子21がオフになったとき、ダイオード26を介して、励磁電流に相当する電流を、接地端子から吸い上げ、第1の電源Vcc1に回生するために設けられている。電力回生回路25を備えることで、励磁電流の損失が無くなるため、スイッチング増幅部2の効率が向上する。なお、図10に示した電力回生回路25と、図9に示したスイッチング素子22a、23aを備える構成とは併用してよいことは言うまでもない。
(第2の実施の形態)
 次に第2の実施の形態の電力増幅装置について図面を用いて説明する。
 図11は、第2の実施の形態の電力増幅装置の構成を示すブロック図である。
 図11に示すように、第2の実施の形態の電力増幅装置は、高周波増幅器1、スイッチング増幅部2、線形増幅部3、制御信号生成部4および波形整形部7を備えている。
 図11に示す電力増幅装置では、変調信号8の振幅変調成分である振幅信号9が波形整形部7に入力される。
 波形整形部7は、入力された振幅信号9の振幅変化のダイナミックレンジを圧縮することで直流電圧成分が発生するように波形整形し、線形増幅部3へ出力する。
 線形増幅部3は、変調信号8の振幅変調成分である振幅信号9を線形増幅する。
 制御信号生成部4は、線形増幅部3の出力電流の方向に応じてHighまたはLowとなるパルス変調信号を生成し、スイッチング増幅部2に制御信号として出力する。
 スイッチング増幅部2は、制御信号生成部4から出力された制御信号にしたがって振幅信号9をスイッチング増幅すると共に所定の直流電圧を加算して出力する。このスイッチング増幅部2の出力電圧は、制御信号生成部4の出力電圧と加算されて、高周波増幅器1に供給される電源電圧である、変調電圧11が生成される。
 高周波増幅器1は、変調電圧11を電源に用いてA級またはAB級方式等により変調信号8を線形増幅し、振幅と位相が変調された高周波変調信号12を出力する。
 図12は、図11に示した電力増幅装置の具体例の構成を示す回路図である。
 図12に示すように、スイッチング増幅部2は、スイッチング素子21、トランス24、ダイオード(第1の整流素子)22、ダイオード(第2の整流素子)23およびインダクタ(フィルタ)6を備えている。
 また、線形増幅部3は、線形増幅器31を備えている。制御信号生成部4は、ヒステリシスコンパレータ41、電流検知抵抗器42およびゲートドライバ5を備えている。
 波形整形部7は、電圧波形整形部7を備えている。
 図13は、図12に示した電圧波形整形部で用いる波形整形関数の例を示すグラフである。また、図14は、図12に示した電圧波形整形部による整形後の波形例を示す信号波形図である。図15は、図12に示した電力増幅装置の動作例を示す信号波形図である。なお、図11および図12は、WCDMA方式を採用した無線装置で受信するダウンリンク信号の包絡線信号(振幅信号)を入力した場合の動作波形例をそれぞれ示している。
 次に第2の実施の形態の電力増幅装置の動作について図12から図15を用いて説明する。
 図12に示すように、波形整形部7には振幅変調および位相変調された変調信号8の振幅変調成分である振幅信号9が入力される(図15(a))。
 波形整形部7は、例えば下記式(1)で示す関数にしたがって振幅信号9を変換する。
Figure JPOXMLDOC01-appb-M000001
 図13は、式(1)で示す関数で変換される入出力信号の関係を示し、直流電圧Vcc2の値を5,10,15,20Vと変化させたときの様子をそれぞれ示している。図14は、Vcc2=10Vとしたとき、入力された振幅信号9を上記式(1)で示した関数にしたがって波形整形した例を示している。
 図14に示すように、波形整形された振幅信号9’は、大きな振幅変調成分がそのまま出力され、低い振幅変調成分が圧縮され、さらにVcc2=10Vの直流電圧が加算された信号となる。
 第2の実施の形態の線形増幅部3は、波形整形部7から出力された波形整形後の振幅信号9’を線形増幅する(図15(b))。
 以降の動作は図5から図8に示した第1の実施の形態の電力増幅装置と同様である。
 線形増幅器31の出力電流(図15(c))は、電流検知抵抗器42で電圧信号に変換され、ヒステリシスコンパレータ41に入力される。ここで、例えば線形増幅器31から電流が流れ出るときにヒステリシスコンパレータ41の出力電圧がHighとなり、線形増幅器31に電流が流れ込むときにヒステリシスコンパレータ41の出力電圧がLowとなるように極性を選択すれば、ヒステリシスコンパレータ41からは入力信号の強度に応じたパルス幅変調信号が出力される(図15(d))。
 ゲートドライバ5は、ヒステリシスコンパレータ41の出力信号にしたがって、例えばMOSFETで構成されるスイッチング素子21をオンまたはオフさせる。
 スイッチング素子21は、一方の端子が接地され、他方の端子がトランス24の一次巻線を介して第1の電源Vcc1と接続されている。ヒステリシスコンパレータ41の出力信号にしたがって、スイッチング素子21により第1の電源Vcc1と接地電位間に流れる電流の導通/非導通を制御することで、ヒステリシスコンパレータ41の出力信号の振幅はVcc1まで増幅される。
 スイッチング素子21で増幅された信号は、トランス24の一次巻線から二次巻線に伝達される。トランス24の二次巻線の一方の端子には第2の電源で生成された直流電圧Vcc2が印加されているため、トランス24の二次巻線からは、振幅Vcc1のパルス信号に直流電圧Vcc2が加算された信号が出力される。
 トランス24の二次巻線には、このパルス信号に応じた電流が第2の電源から供給される。このとき、整流素子22および整流素子23の整流作用により、電流はパルス信号のHigh/Lowに応じて整流素子22と整流素子23から交互に出力される。トランス24の二次巻線にはパルス状の電流が流れるため、トランス24の二次巻線側でもスイッチング素子21による高効率なスイッチング増幅の特徴が維持される。トランス24の二次巻線から出力された電流は、インダクタ6によって積分され、スイッチング周波数成分が除去される(図15(e))。
 さらに、スイッチング増幅部2の出力電圧に含まれるスイッチングノイズ成分は線形増幅器31によって電圧補正(平滑化)される(図15(f))。
 図12に示すように、スイッチング増幅部2の出力端には線形増幅器31の出力端が接続され、線形増幅器31はその出力信号が負帰還されている。したがって、線形増幅器31は、出力信号波形が入力信号波形と一致するように動作するため、線形増幅器31からはスイッチング増幅部2の出力電圧に含まれるスイッチングノイズを打ち消すための信号が出力される。そのため、線形増幅器31によりスイッチング増幅部2の出力電圧に含まれるスイッチングノイズが平滑化される。このとき、線形増幅器31の出力端には、電流検知抵抗器42を介してスイッチング増幅部2の出力端が接続されているが、電流検知抵抗器42の値は小さいため、これによる電圧補正への影響は少なくて済む。
 線形増幅器31による電圧補正後の電圧Voutは高周波増幅器1に供給される。高周波増幅器1はスイッチング増幅部2の出力電圧を電源電圧に用いて、入力された変調信号8を線形に増幅する。このとき高周波増幅器1には振幅信号9の振幅に応じて最小限の電力(電源電圧)しか供給されないため、高周波増幅器1は常に効率が高い飽和電力付近で動作できる。
 本実施形態の電力増幅装置では、図15(c)に示したように、効率が低い線形増幅器31を流れる電流はスイッチングノイズ成分だけであるため、線形増幅器31で消費する電力は少なく、電力増幅装置全体の効率を高くすることができる。
 また、本実施形態の電力増幅装置では、図1に示した第1背景技術の電力増幅装置に比べて、直流電圧を加算した滑らかな出力電圧波形11を高周波増幅器1に供給できる。したがって、高周波増幅器1から出力される変調信号12の波形歪を小さくできる。
 また、本実施形態の電力増幅装置では、図3に示した第2背景技術と異なって、スイッチング素子21としてソース接地のMOSFETを用いることが可能であり、スイッチング素子21に入力するゲートパルス信号10の振幅が数V程度でよいため、高速な動作が可能になる。
 したがって、本実施形態の電力増幅装置では、高効率なスイッチング増幅の動作帯域が拡大し、効率の低い線形増幅器31の負荷が減るため、電力増幅装置の高効率な動作が可能となる。加えて、本実施形態の電力増幅装置では、スイッチング増幅するのは入力信号のDCオフセットを除いた振幅変調成分のみであり、直流電圧成分はトランスの2次側から高周波増幅器1に直接供給されるため、第2背景技術の電力増幅装置に比べさらに高い効率を実現できる。
 また、本実施形態の電力増幅装置では、波形整形部7により、振幅信号9に含まれる大きな振幅変調成分はそのまま出力し、小さい振幅変調成分を圧縮するようにして直流電圧成分を生成している。このような波形整形を行うことで、振幅信号9の大きな振幅変調成分に対して十分に大きな電圧を高周波増幅器1に供給するように設定すれば、振幅信号9の小さい振幅変調成分については直流電圧成分のみでまかなえるので、高周波増幅器1に無駄な電力を供給することが無い(図15(f))。
 したがって、第1の実施の形態の電力増幅装置のように、振幅信号9を直流電圧Vcc2だけ一様にシフトさせた場合(図8(e))と比べて、高周波増幅器1に無駄なく電力を供給することができる。
 さらに、本実施形態の電力増幅装置では、上記波形整形を行うことで、線形増幅器31やスイッチング素子21に要求される帯域やダイナミックレンジが狭くて済む利点もある。
 なお、波形整形部7で用いる関数は上記式(1)に限定されるものではなく、増幅する信号やシステムに応じて、適宜、変更することが可能である。
 また、波形整形部7で、振幅信号9に設ける直流電圧成分の値は、線形増幅器31の利得が1の場合、理想的にはトランス24の二次巻線に供給する第2の電源電圧Vcc2と同じになるが、各回路のオフセット値などに応じて調整してもよい。
 また、線形増幅器31には、利得を持つ線形帰還アンプを用いてもよい。その場合、振幅信号9に加算する直流電圧の値も該利得の値に応じて小さくすればよい。また、トランス24の巻き数比も任意の値に設定してよい。
 さらに、図12に示した電力増幅装置では、ダイオード22,23に代えてスイッチング素子22a、23aを備え、該スイッチング素子22a、23aが制御信号10に同期してオン・オフさせる構成でもよい。ダイオード22,23に代えてスイッチング素子22a、23aを用いると、ダイオードの順方向電圧による損失分だけ電力増幅装置の効率が向上する。
 また、図12に示した電力増幅装置に、図10に示した励磁電流を回収するための電力回生回路25を設けてもよい。電力回生回路25を備えることで、励磁電流の損失が無くなるため、スイッチング増幅部2の効率が向上する。
(第3の実施の形態)
 次に第3の実施の形態の電力増幅装置について図面を用いて説明する。
 図16は、第3の実施の形態の電力増幅装置の構成を示すブロック図である。
 図16に示すように、第3の実施の形態の電力増幅装置は、高周波増幅器1、スイッチング増幅部2、線形増幅部3および制御信号生成部4を備えている。
 線形増幅部3は、変調信号8の振幅変調成分である振幅信号9に所定の直流電圧を加算し、出力電圧を高周波増幅器1に供給する電源電圧に加算すると共に、該出力電圧と変調信号の振幅変調成分との差を増幅して出力する。
 制御信号生成部4は、線形増幅部3の出力電流の方向に応じてHighまたはLowとなるパルス変調信号を生成し、該パルス変調信号をスイッチング増幅部2に出力する。
 スイッチング増幅部2は、制御信号生成部4から出力されたパルス変調信号を制御信号に用いて、振幅信号9をスイッチング増幅すると共に所定の直流電圧を加算して出力する。このスイッチング増幅部2の出力電圧は、制御信号生成部4の出力電圧と加算されて、高周波増幅器1に供給される電源電圧である、変調電圧11が生成される。
 高周波増幅器1は、変調電圧11を電源に用いてA級またはAB級方式等により変調信号8を線形増幅し、振幅と位相が変調された高周波変調信号12を出力する。
 本実施形態の線形増幅部3には、この高周波増幅器1に供給される電源電圧が負帰還される。
 高周波増幅器1は、変調電圧11を電源に用いてA級またはAB級方式等により変調信号8を線形増幅し、振幅と位相が変調された高周波変調信号12を出力する。
 図17は、図16に示した電力増幅装置の具体例の構成を示す回路図である。
 図17に示すように、スイッチング増幅部2は、スイッチング素子21、トランス24、ダイオード22(第1の整流素子)、ダイオード(第2の整流素子)23およびインダクタ(フィルタ)6を備えている。
 また、線形増幅部3は、線形増幅器31およびチョークインダクタ32を備えている。制御信号生成部4は、ヒステリシスコンパレータ41、電流検知抵抗器42およびゲートドライバ5を備えている。
 次に、第3の実施の形態の電力増幅装置の動作について図17を用いて説明する。
 図17に示すように、線形増幅部3には振幅変調および位相変調された変調信号8の振幅変調成分である振幅信号9が入力される。
 振幅信号9にはチョークインダクタ32を介してVcc2=12Vの直流電圧が加算され、線形増幅器31に入力される。
 線形増幅器31の出力電流は、電流検知抵抗器42で電圧信号に変換され、ヒステリシスコンパレータ41に入力される。ここで、例えば線形増幅器31から電流が流れ出るときにヒステリシスコンパレータ41の出力電圧がHighとなり、線形増幅器31に電流が流れ込むときにヒステリシスコンパレータ41の出力電圧がLowとなるように極性を選択すれば、ヒステリシスコンパレータ41からは入力信号の強度に応じたパルス幅変調信号が出力される。
 ゲートドライバ5は、ヒステリシスコンパレータ41の出力信号にしたがって、例えばMOSFETで構成されるスイッチング素子21をオンまたはオフさせる。
 スイッチング素子21は、一方の端子が接地され、他方の端子がトランス24の一次巻線を介して第1の電源Vcc1と接続されている。ヒステリシスコンパレータ41の出力信号にしたがって、スイッチング素子21により第1の電源Vcc1と接地電位間に流れる電流の導通/非導通を制御することで、ヒステリシスコンパレータ41の出力信号の振幅はVcc1まで増幅される。
 ここで、スイッチング素子21の両端子には、電流が流れているときに電圧が印加されていないため、スイッチング素子21は、理想的には100%の効率でヒステリシスコンパレータ41の出力信号を増幅する。
 スイッチング素子21で増幅された信号は、トランス24の一次巻線から二次巻線に伝達される。トランス24の二次巻線の一方の端子には第2の電源で生成された直流電圧Vcc2が印加されているため、トランス24の二次巻線からは、振幅Vcc1のパルス信号に直流電圧Vcc2が加算された信号が出力される。
 トランス24の二次巻線には、このパルス信号に応じた電流が第2の電源から供給される。このとき、整流素子22および整流素子23の整流作用により、電流はパルス信号のHigh/Lowに応じて整流素子22と整流素子23から交互に出力される。トランス24の二次巻線にはパルス状の電流が流れるため、トランス24の二次巻線側でもスイッチング素子21による高効率なスイッチング増幅の特徴が維持される。トランス24の二次巻線から出力された電流は、インダクタ6によって積分され、スイッチング周波数成分が除去される。
 さらに、スイッチング増幅部2の出力電圧に含まれるスイッチングノイズ成分は線形増幅器31によって電圧補正(平滑化)される。
 図17に示したように、本実施形態の電力増幅装置では、線形増幅器31にスイッチング増幅部2の出力信号が負帰還されている。したがって、線形増幅器31は、出力信号波形が入力信号波形と一致するように動作するため、線形増幅器31からはスイッチング増幅部2の出力電圧に含まれるスイッチングノイズを打ち消すための信号が出力される。そのため、線形増幅器31によりスイッチング増幅部2の出力電圧に含まれるスイッチングノイズが平滑化される。このとき、線形増幅器31には、スイッチング増幅部2の出力信号が負帰還されているため、第1の実施の形態や第2の実施の形態よりも電流検知抵抗器42による電圧補正への影響が少なくて済む。
 線形増幅器31による電圧補正後の電圧Voutは高周波増幅器1に供給される。高周波増幅器1はスイッチング増幅部2の出力電圧を電源電圧に用いて、入力された変調信号8を線形に増幅する。このとき高周波増幅器1には振幅信号9の振幅に応じて最小限の電力(電源電圧)しか供給されないため、高周波増幅器1は常に効率が高い飽和電力付近で動作できる。
 本実施形態の電力増幅装置では、効率が低い線形増幅器31を流れる電流はスイッチングノイズ成分だけであるため、線形増幅器31で消費する電力は少なく、電力増幅装置全体の効率を高くすることができる。
 また、本実施形態の電力増幅装置では、図1に示した第1背景技術の電力増幅装置に比べて、直流電圧を加算した滑らかな出力電圧波形11を高周波増幅器1に供給できる。したがって、高周波増幅器1から出力される変調信号12の波形歪を小さくできる。
 また、本実施形態の電力増幅装置では、図3に示した第2背景技術と異なって、スイッチング素子21としてソース接地のMOSFETを用いることが可能であり、スイッチング素子21に入力するゲートパルス信号10の振幅が数V程度でよいため、高速な動作が可能になる。
 したがって、本実施形態の電力増幅装置では、高効率なスイッチング増幅の動作帯域が拡大し、効率の低い線形増幅器31の負荷が減るため、電力増幅装置の高効率な動作が可能となる。加えて、本実施形態の電力増幅装置では、スイッチング増幅するのは入力信号のDCオフセットを除いた振幅変調成分のみであり、直流電圧成分はトランスの2次側から高周波増幅器1に直接供給されるため、第2背景技術の電力増幅装置に比べさらに高い効率を実現できる。
 さらに、本実施形態の電力増幅装置では、線形増幅器31に高周波増幅器1に供給する電源電圧を負帰還している。通常、高周波増幅器1の電源入力のインピーダンスは数オーム程度である。一方、制御信号生成部4が備える電流検知抵抗器42の値は0.5Ω程度であり、高周波増幅器1の電源入力のインピーダンスの1割程度を占める。
 理想的な電源装置の条件として、出力インピーダンスが負荷インピーダンスに対して十分に低いことがある。すなわち、電源装置には負荷が変動しても常に安定して同じ電圧を供給することが要求される。
 本実施形態のように、線形増幅器31に高周波増幅器1に供給する電源電圧を負帰還することで、高周波増幅器1に供給される電源電圧波形は常に振幅信号9と等しくなる。すなわち、高周波増幅器1に電力(電源電圧)を供給する変調電源の出力インピーダンスに、制御信号生成部4が備える電流検知抵抗器42の影響が見えなくなる。したがって、変調電源の出力インピーダンスが0に近づき、より理想的な電圧源として動作する。
 なお、図17では、チョークインダクタ32を介して振幅信号9に直流電圧を加算する構成例を示しているが、信号処理によって、予め振幅信号9に直流電圧成分を加えてもよい。
 振幅信号9に加算する直流電圧の値は、線形増幅器31の利得が1の場合、理想的にはトランス24の二次巻線に供給する第2の電源電圧Vcc2と同じになるが、各回路のオフセット値などに応じて調整してもよい。
 また、線形増幅器31には、利得を持つ線形帰還アンプを用いてもよい。その場合、振幅信号9に加算する直流電圧の値も該利得の値に応じて小さくすればよい。また、トランス24の巻き数比も任意の値に設定してよい。
 さらに、図17に示した電力増幅装置は、ダイオード22,23に代えてスイッチング素子22a、23aを備え、該スイッチング素子22a、23aが制御信号10に同期してオン・オフさせる構成でもよい。ダイオード22,23に代えてスイッチング素子22a、23aを用いると、ダイオードの順方向電圧による損失分だけ電力増幅装置の効率が向上する。
 また、図17に示した電力増幅装置に、図10に示した励磁電流を回収するための電力回生回路25を設けてもよい。電力回生回路25を備えることで、励磁電流の損失が無くなるため、スイッチング増幅部2の効率が向上する。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2008年12月25日に出願された特願2008-330709号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  振幅変調成分および位相変調成分を含む変調信号を増幅する電力増幅装置であって、
     前記変調信号を増幅して出力する高周波増幅器と、
     出力電圧を前記高周波増幅器に供給する電源電圧に加算すると共に、該出力電圧と前記変調信号の振幅変調成分との差を増幅して出力する線形増幅部と、
     前記線形増幅部の出力電流が流れる方向を検知し、その電流の向きに応じたパルス変調信号を生成する制御信号生成部と、
     前記パルス変調信号を制御信号に用いて、直流電流の導通および非導通を制御することで前記線形増幅部の出力信号をスイッチング増幅し、所定の直流電圧と加算して前記高周波増幅器へ前記電源電圧として供給するスイッチング増幅部と、
     前記スイッチング増幅部に前記直流電流を供給する第1の直流電源と、
     前記スイッチング増幅部に前記所定の直流電圧を供給する第2の直流電源と、
    を有する電力増幅装置。
  2.  振幅変調成分および位相変調成分を含む変調信号を増幅する電力増幅装置であって、
     前記変調信号を増幅して出力する高周波増幅器と、
     前記変調信号の振幅変調成分の電圧波形を成形する電圧波形整形部と、
     出力電圧を前記高周波増幅器に供給する電源電圧に加算すると共に、該出力電圧と前記変調信号の振幅変調成分との差を増幅して出力する線形増幅部と、
     前記線形増幅部の出力電流が流れる方向を検知し、その電流の向きに応じたパルス変調信号を生成する制御信号生成部と、
     前記パルス変調信号を制御信号に用いて、直流電流の導通および非導通を制御することで前記線形増幅部の出力信号をスイッチング増幅し、所定の直流電圧と加算して前記高周波増幅器へ前記電源電圧として供給するスイッチング増幅部と、
     前記スイッチング増幅部に前記直流電流を供給する第1の直流電源と、
     前記スイッチング増幅部に前記所定の直流電圧を供給する第2の直流電源と、
    を有する電力増幅装置。
  3.  前記スイッチング増幅部は、
     前記第1の直流電源に一次巻線の一端が接続され、前記第2の直流電源が二次巻線の一端に接続されたトランスと、
     前記トランスの一次巻線の他端に接続されたスイッチング素子と、
     前記トランスの二次巻線の他端に接続された第1の整流素子と、
     前記第2の直流電源と前記第1の整流素子の出力端との間に接続された第2の整流素子と、
     前記第1の整流素子および第2の整流素子の出力電流を平滑化するフィルタと、
    を有する請求項1または2記載の電力増幅器。
  4.  前記第1の整流素子および前記第2の整流素子の少なくとも一方が、ダイオードである請求項3記載の電力増幅装置。
  5.  前記第1の整流素子および前記第2の整流素子の少なくとも一方が、前記パルス変調信号に同期してオンおよびオフが制御されるスイッチング素子である請求項3記載の電力増幅装置。
  6.  前記線形増幅部は、
     該線形増幅部の出力端の電圧が負帰還される差動増幅器を備える請求項1から5のいずれか1項記載の電力増幅装置。
  7.  前記線形増幅部は、
     前記高周波増幅器に供給される電源電圧が負帰還される差動増幅器である請求項1から6のいずれか1項記載の電力増幅装置。
  8.  前記線形増幅部は、
     入力される前記変調信号の振幅変調成分に所定の直流電圧を加算して増幅する請求項1から7のいずれか1項記載の電力増幅器。
  9.  前記電圧波形整形部は、
     前記変調信号の振幅変調成分の振幅変化のダイナミックレンジを圧縮することで直流電圧成分が発生するように波形整形する請求項2から8のいずれか1項記載の電力増幅装置。
  10.  前記制御信号生成部は、
     前記線形増幅部の出力電流が流れる電流検知抵抗器と、
     前記電流検知抵抗器の両端に発生する電圧によって前記線形増幅部の出力電流の向きを判定し、判定した結果をパルス変調信号として出力するヒステリシスコンパレータと、
    を有する請求項1から9のいずれか1項記載の電力増幅装置。
PCT/JP2009/070949 2008-12-25 2009-12-16 電力増幅装置 WO2010073941A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010544015A JP5472119B2 (ja) 2008-12-25 2009-12-16 電力増幅装置
CN200980152649.2A CN102265505B (zh) 2008-12-25 2009-12-16 功率放大装置
EP09834744A EP2372904A4 (en) 2008-12-25 2009-12-16 POWER AMPLIFICATION DEVICE
US13/133,102 US8451054B2 (en) 2008-12-25 2009-12-16 Power amplifying devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008330709 2008-12-25
JP2008-330709 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010073941A1 true WO2010073941A1 (ja) 2010-07-01

Family

ID=42287556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070949 WO2010073941A1 (ja) 2008-12-25 2009-12-16 電力増幅装置

Country Status (5)

Country Link
US (1) US8451054B2 (ja)
EP (1) EP2372904A4 (ja)
JP (1) JP5472119B2 (ja)
CN (1) CN102265505B (ja)
WO (1) WO2010073941A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111100A1 (ja) * 2011-02-16 2012-08-23 富士通株式会社 増幅装置
JP2013511242A (ja) * 2011-02-01 2013-03-28 メディア テック シンガポール ピーティーイー.リミテッド 集積回路、無線通信ユニット及び電源を供給する方法
US8665018B2 (en) 2011-02-01 2014-03-04 Mediatek Singapore Pte. Ltd. Integrated circuit, wireless communication unit and method for a differential interface for an envelope tracking signal
KR20140068590A (ko) * 2012-11-28 2014-06-09 삼성전자주식회사 멀티 채널 오디오 시스템 및 제어 방법
JPWO2012176578A1 (ja) * 2011-06-22 2015-02-23 株式会社村田製作所 高周波電力増幅回路用電源装置および高周波電力増幅装置
US8975960B2 (en) 2011-02-01 2015-03-10 Mediatek Singapore Pte. Ltd. Integrated circuit wireless communication unit and method for providing a power supply
US9166538B2 (en) 2011-02-01 2015-10-20 Mediatek Singapore Pte. Ltd. Integrated circuit wireless communication unit and method for providing a power supply

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
JP5287999B2 (ja) * 2009-11-17 2013-09-11 日本電気株式会社 増幅装置
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
EP2782247B1 (en) 2010-04-19 2018-08-15 Qorvo US, Inc. Pseudo-envelope following power management system
WO2012017579A1 (ja) * 2010-08-03 2012-02-09 日本電気株式会社 電源変調器及びその制御方法
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
WO2012068260A1 (en) 2010-11-16 2012-05-24 Rf Micro Devices, Inc. Digital gain multiplier for envelop tracking systems and corresponding method
JP5614273B2 (ja) * 2010-12-21 2014-10-29 富士通株式会社 増幅装置
WO2012109227A2 (en) 2011-02-07 2012-08-16 Rf Micro Devices, Inc. Group delay calibration method for power amplifier envelope tracking
CN102684494B (zh) * 2011-03-17 2014-10-29 中兴通讯股份有限公司 一种电源调制方法及电源调制器
JPWO2012133593A1 (ja) * 2011-03-28 2014-07-28 古河電気工業株式会社 パルス生成装置
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
CN103748794B (zh) 2011-05-31 2015-09-16 射频小型装置公司 一种用于测量发射路径的复数增益的方法和设备
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
US8942652B2 (en) 2011-09-02 2015-01-27 Rf Micro Devices, Inc. Split VCC and common VCC power management architecture for envelope tracking
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
KR101786587B1 (ko) * 2011-10-14 2017-10-19 삼성전자주식회사 전력 증폭기의 전압을 생성하기 위한 장치 및 방법
US8878606B2 (en) 2011-10-26 2014-11-04 Rf Micro Devices, Inc. Inductance based parallel amplifier phase compensation
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
WO2013063364A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
CN104662792B (zh) 2012-07-26 2017-08-08 Qorvo美国公司 用于包络跟踪的可编程rf陷波滤波器
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
US9207692B2 (en) 2012-10-18 2015-12-08 Rf Micro Devices, Inc. Transitioning from envelope tracking to average power tracking
CN103780206A (zh) * 2012-10-24 2014-05-07 华为技术有限公司 一种反馈链路及其实现方法
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
WO2014116933A2 (en) 2013-01-24 2014-07-31 Rf Micro Devices, Inc Communications based adjustments of an envelope tracking power supply
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US9197162B2 (en) 2013-03-14 2015-11-24 Rf Micro Devices, Inc. Envelope tracking power supply voltage dynamic range reduction
WO2014152876A1 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Noise conversion gain limited rf power amplifier
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
CN103455069B (zh) * 2013-09-12 2015-04-29 电子科技大学 一种宽带幅度信号电源调制器及其调制方法
US9773655B2 (en) * 2014-05-21 2017-09-26 Shimadzu Corporation Radio-frequency voltage generator
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9948240B2 (en) 2015-07-01 2018-04-17 Qorvo Us, Inc. Dual-output asynchronous power converter circuitry
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9484861B1 (en) * 2015-11-24 2016-11-01 King Fahd University Of Petroleum And Minerals Method for system level oriented load-pull-based envelope tracking power amplifiers
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US10447207B2 (en) * 2016-08-08 2019-10-15 Skyworks Solutions, Inc. Switch with envelope injection
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US11328902B1 (en) * 2021-06-09 2022-05-10 XP Power Limited Radio frequency generator providing complex RF pulse pattern

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123210A (ja) * 1982-01-19 1983-07-22 Hitachi Ltd 電源電圧制御型増幅器
JPH03198512A (ja) * 1989-12-27 1991-08-29 Mitsubishi Electric Corp 高周波増幅器
JPH03207153A (ja) 1990-01-09 1991-09-10 Canon Inc 通信端末装置
US5973556A (en) 1997-03-03 1999-10-26 Hewlett-Packard Company Delta-modulated power supply
JP3077285U (ja) * 2000-10-27 2001-05-18 船井電機株式会社 トナー方式印刷装置の高圧発生装置
JP2003526980A (ja) 2000-03-10 2003-09-09 パラゴン コミュニケイションズ リミテッド 大きなピーク対平均比の下で動作する電力増幅器の効率を改善する改善された方法と装置
WO2003103134A1 (en) 2002-06-03 2003-12-11 Paragon Communications Ltd. Efficient supply enhancement circuitry for power amplifiers
US6710646B1 (en) * 2000-05-05 2004-03-23 Telefonaktiebolaget Lm Ericsson Cuk style inverter with hysteretic control
WO2006114792A1 (en) 2005-04-27 2006-11-02 Paragon Communications Ltd. Transformer-capacitor enhancement circuitry for power amplifiers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077285B2 (ja) 1991-07-26 2000-08-14 大同特殊鋼株式会社 真空式金属熱処理炉
JP3988656B2 (ja) 2003-02-26 2007-10-10 株式会社日立製作所 無線通信装置及びそれに使用する集積回路
US7019988B2 (en) 2004-01-08 2006-03-28 Sze Wei Fung Switching-type power converter
JP4012165B2 (ja) * 2004-03-23 2007-11-21 松下電器産業株式会社 送信機
JP4707631B2 (ja) 2005-09-08 2011-06-22 パナソニック株式会社 ポーラ変調送信装置、及び無線通信装置
WO2007149346A2 (en) 2006-06-16 2007-12-27 Pulsewave Rf, Inc. Radio frequency power amplifier and method using a controlled supply
GB2440772B (en) * 2006-08-08 2011-11-30 Asahi Chemical Micro Syst Envelope modulator
JP4753255B2 (ja) 2006-09-01 2011-08-24 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 電力増幅装置および携帯電話端末
CN101512895B (zh) 2006-09-12 2012-03-28 Nxp股份有限公司 用于极化调制的放大器构造
GB0708733D0 (en) 2007-05-04 2007-06-13 Nokia Corp A device
US7949316B2 (en) * 2008-01-29 2011-05-24 Panasonic Corporation High-efficiency envelope tracking systems and methods for radio frequency power amplifiers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123210A (ja) * 1982-01-19 1983-07-22 Hitachi Ltd 電源電圧制御型増幅器
JPH03198512A (ja) * 1989-12-27 1991-08-29 Mitsubishi Electric Corp 高周波増幅器
JPH03207153A (ja) 1990-01-09 1991-09-10 Canon Inc 通信端末装置
US5973556A (en) 1997-03-03 1999-10-26 Hewlett-Packard Company Delta-modulated power supply
JP2003526980A (ja) 2000-03-10 2003-09-09 パラゴン コミュニケイションズ リミテッド 大きなピーク対平均比の下で動作する電力増幅器の効率を改善する改善された方法と装置
US6710646B1 (en) * 2000-05-05 2004-03-23 Telefonaktiebolaget Lm Ericsson Cuk style inverter with hysteretic control
JP3077285U (ja) * 2000-10-27 2001-05-18 船井電機株式会社 トナー方式印刷装置の高圧発生装置
WO2003103134A1 (en) 2002-06-03 2003-12-11 Paragon Communications Ltd. Efficient supply enhancement circuitry for power amplifiers
WO2006114792A1 (en) 2005-04-27 2006-11-02 Paragon Communications Ltd. Transformer-capacitor enhancement circuitry for power amplifiers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IEEE MTT-S DIGEST, vol. 3, 2004, pages 1543 - 1546
J. STAUDINGER, B. GILSDORF, D. NEWMAN, G. NORRIS, G, SANDWNICZAK, R. SHERMAN, T. QUACH: "HIGH EFFICIENCY CDMA RF POWER AMPLIFIER USING DYNAMIC ENVELOPE TRACKING TECHNIQUE", IEEE MTT-S DIGEST, vol. 2, 2000, pages 873 - 876
LENARD R. KAHN: "Single-sideband Transmission by Envelope Elimination and Restoration", PROCEEDINGS OF THE I. R. E., vol. 40, 1952, pages 803 - 80
See also references of EP2372904A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511242A (ja) * 2011-02-01 2013-03-28 メディア テック シンガポール ピーティーイー.リミテッド 集積回路、無線通信ユニット及び電源を供給する方法
US8665018B2 (en) 2011-02-01 2014-03-04 Mediatek Singapore Pte. Ltd. Integrated circuit, wireless communication unit and method for a differential interface for an envelope tracking signal
US8803605B2 (en) 2011-02-01 2014-08-12 Mediatek Singapore Pte. Ltd. Integrated circuit, wireless communication unit and method for providing a power supply
US8878607B2 (en) 2011-02-01 2014-11-04 Mediatek Singapore Pte. Ltd. Integrated circuit, wireless communication unit and method for a differential interface for an envelope tracking signal
US8975960B2 (en) 2011-02-01 2015-03-10 Mediatek Singapore Pte. Ltd. Integrated circuit wireless communication unit and method for providing a power supply
US9166538B2 (en) 2011-02-01 2015-10-20 Mediatek Singapore Pte. Ltd. Integrated circuit wireless communication unit and method for providing a power supply
WO2012111100A1 (ja) * 2011-02-16 2012-08-23 富士通株式会社 増幅装置
JPWO2012176578A1 (ja) * 2011-06-22 2015-02-23 株式会社村田製作所 高周波電力増幅回路用電源装置および高周波電力増幅装置
US9148090B2 (en) 2011-06-22 2015-09-29 Murata Manufacturing Co., Ltd. Power supply device for high frequency power amplification circuit and high frequency power amplification device
KR20140068590A (ko) * 2012-11-28 2014-06-09 삼성전자주식회사 멀티 채널 오디오 시스템 및 제어 방법
KR102035605B1 (ko) * 2012-11-28 2019-10-23 삼성전자주식회사 멀티 채널 오디오 시스템 및 제어 방법

Also Published As

Publication number Publication date
EP2372904A1 (en) 2011-10-05
EP2372904A4 (en) 2012-07-04
JPWO2010073941A1 (ja) 2012-06-14
CN102265505B (zh) 2014-04-23
US8451054B2 (en) 2013-05-28
US20110241775A1 (en) 2011-10-06
CN102265505A (zh) 2011-11-30
JP5472119B2 (ja) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5472119B2 (ja) 電力増幅装置
JP5505311B2 (ja) 電力増幅装置
Wang Demystifying envelope tracking: Use for high-efficiency power amplifiers for 4G and beyond
US9270241B2 (en) Power supply device, transmission device using same, and method for operating power supply device
JP2005167805A (ja) 送信機
JP5472115B2 (ja) 電力増幅器
JP5867501B2 (ja) 電源装置および制御方法
JP5516400B2 (ja) 電力増幅装置と電力増幅方法
EP1264395B1 (en) Improved method and apparatus for improving the efficiency of power amplifiers, operating under a large peak-to-average ratio
JP5621780B2 (ja) 電力増幅器、無線通信機および電力増幅方法
Watkins et al. How not to rely on Moore's Law alone: low-complexity envelope-tracking amplifiers
JP5991199B2 (ja) 電源装置、およびそれを用いた電力増幅装置
JP6115477B2 (ja) 電源装置及びこれを用いた送信装置
Bräckle et al. Power supply modulation for RF applications
Kimball et al. Analog & digital envelope tracking power amplifier reduced bandwidth techniques for 5G Nr
KR101405453B1 (ko) 바이어스 변조 장치, 그리고 이를 이용한 광대역 이동 통신용 신호 송신 장치 및 방법
KR20090056209A (ko) 무선통신 시스템에서 고주파 손실 감소를 위한 전력 증폭장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152649.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834744

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009834744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009834744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13133102

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010544015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE