WO2010073938A1 - 蒸発器 - Google Patents

蒸発器 Download PDF

Info

Publication number
WO2010073938A1
WO2010073938A1 PCT/JP2009/070883 JP2009070883W WO2010073938A1 WO 2010073938 A1 WO2010073938 A1 WO 2010073938A1 JP 2009070883 W JP2009070883 W JP 2009070883W WO 2010073938 A1 WO2010073938 A1 WO 2010073938A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
path
heat exchange
passage
evaporator
Prior art date
Application number
PCT/JP2009/070883
Other languages
English (en)
French (fr)
Inventor
聡史 上村
正浩 森下
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2010073938A1 publication Critical patent/WO2010073938A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the present invention is applied as an evaporator or the like interposed in a refrigeration cycle of an air conditioner for automobiles, and two heat exchanging parts constituted by a leeward heat exchanging part and an upwind heat exchanging part are arranged to face each other in the ventilation direction.
  • two heat exchanging parts constituted by a leeward heat exchanging part and an upwind heat exchanging part are arranged to face each other in the ventilation direction.
  • the conventional evaporator as described above can compensate the cooling of the air by the two heat exchanging parts, the unevenness of the temperature distribution can be reduced as compared with the evaporator having one heat exchanging part.
  • the temperature distribution unevenness is suppressed to be small when the refrigerant inflow amount is large, but in the state where the refrigerant inflow amount is very small, the refrigerant flowing into the evaporator immediately Evaporates and heat exchange cannot be performed in the subsequent area. Therefore, although the temperature in the vicinity of the refrigerant inlet is low, there are high temperature regions at several positions. Therefore, there is a problem that the temperature distribution at the outlet of the air conditioning unit using such an evaporator is significantly deteriorated.
  • An object of the present invention is to provide an evaporator capable of achieving uniform temperature distribution when the refrigerant inflow amount is extremely small while ensuring uniformity of temperature distribution when the refrigerant inflow amount is large. is there.
  • an evaporator includes a heat exchange passage, an upper tank, and a lower tank, and is disposed so as to face the ventilation direction and the leeward heat exchange unit and the windward side.
  • a heat exchange section, and the leeward heat exchange section and the leeward heat exchange section each have a heat exchange passage, and each heat exchange passage is a partition provided in the upper tank and the lower tank.
  • the plate is divided into a plurality of paths in which the flow direction of the refrigerant is set in the vertical direction, and a refrigerant inlet and a refrigerant outlet are provided at the end position of the upper tank. .
  • the first pass and the second pass of the leeward heat exchange unit Is provided with a refrigerant passage mechanism that guides a part of the refrigerant from the refrigerant introduction port to the third path of the leeward heat exchange section.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1 showing the internal configuration of the evaporator according to the embodiment.
  • the disassembled perspective view which shows the tube structure of the evaporator which concerns on the said Example.
  • the perspective view which shows the tube of the evaporator which concerns on the said Example.
  • the perspective view which shows a metal thin plate provided with the partition plate of the tank in the evaporator which concerns on the said Example.
  • the schematic perspective view which shows the heat exchange part in the evaporator which concerns on the said Example.
  • FIG. 12B is a unit outlet temperature distribution diagram when there is no refrigerant passage hole in the experimental result shown in FIG. 12A.
  • the evaporator 1 in this embodiment is applied as an evaporator interposed in a refrigeration cycle of an automotive air conditioner, and is installed in an air conditioning case inside an instrument panel, and refrigerant that flows inside and air that passes outside. And the refrigerant is evaporated to evaporate and cool the air.
  • the evaporators 1 are arranged in the vertical direction (up and down direction in FIG. 1) and spaced apart in the horizontal direction (left and right direction in FIG. 1), that is, the stacking direction X. It has the structure of the tube laminated body provided with the several tube 30 and the outer fin 33 arrange
  • FIG. Strength reinforcing side plates 35 and 37, a pipe connector 36, and the like are disposed on the outermost side (the outermost side in the horizontal direction) of the tube laminate.
  • the evaporator 1 is manufactured by brazing the tube laminated body, the side plates 35 and 37, the pipe connector 36, and the like in a predetermined evaporator shape, for example, integrally (FIG. 1, FIG. 1).
  • reference numeral 34 indicates a metal thin plate for the outermost end.
  • reference numeral 11 indicates an upper tank
  • 12 indicates a lower tank
  • 21 indicates an upper tank
  • 22 indicates a lower tank
  • 7 indicates a refrigerant.
  • An introduction port, 8 is a refrigerant outlet
  • 9 is a communication part. The upper tank 11, the lower tank 12, the upper tank 21, the lower tank 22, the refrigerant inlet 7, the refrigerant outlet 8, and the communication part 9 will be described later.
  • the tube 30 to be used is formed of a pair of thin metal plates 40, 40 and inner fins 61, 61 disposed between the pair of thin metal plates 40, 40.
  • Each of the pair of thin metal plates 40, 40 has a joint portion 40b formed at the peripheral portion and a partition portion 40a formed at the central portion, and the pair of thin metal plates 40, 40 are separated from each other by the joint portions 40b.
  • the parts 40a are joined together.
  • two heat exchange passages 31, 31 are formed in the tube 30 to allow the refrigerant to flow through the central partition 30 a.
  • tank portions 32 and 32 projecting outward from the both ends of each heat exchange passage 31 in the stacking direction X are formed.
  • each thin metal plate 40 forming the tube 30 has a structure including two heat exchange passage recesses 41 and four tank portions 42 as shown in FIG. 4A.
  • FIG. 5 shows a modified example of the thin metal plate, and the thin metal plate 50 according to this modified example includes a partition plate 51.
  • the metal thin plate 50 in place of the metal thin plate 40 at a predetermined stacking position, the upper tank 11, the lower tank 12, the upper tank 21, and the lower tank 22 are partitioned.
  • the evaporator 1 has a configuration in which the refrigerant leeward heat exchange unit 10 is arranged in parallel on the leeward side, and the refrigerant windward heat exchange unit 20 is arranged in parallel on the leeward side.
  • the leeward side heat exchanging section 10 includes an upper tank 11, a lower tank 12, and a tube 30 as described above that constitutes a plurality of heat exchanging passages 31 connected in communication between the tanks 11 and 12 (FIG. 1). And FIG. 3).
  • the windward side heat exchanging unit 20 includes the above-described tube 30 that forms an upper tank 21, a lower tank 22, and a plurality of heat exchanging passages 31 connected in communication between the tanks 21 and 22 (see FIG. 1 and 3).
  • the leeward side heat exchanging section 10 is divided into a first path 10a, a second path 10b, and a third path 10c in that order from the left to the right.
  • the refrigerant inlet 7 is disposed at the left end of the upper tank 11, and the upper tank 11 is partitioned into an upper first tank portion 11 a and an upper second tank portion 11 b by a partition plate 51.
  • the lower tank 12 is partitioned by a partition plate 51 into a lower first tank portion 12a and a lower second tank portion 12b.
  • the heat exchange passage group is partitioned into a first path 10a, a second path 10b, and a third path 10c in order from the left to the right.
  • the introduced refrigerant is the upper first tank unit 11a ⁇ first path 10a ⁇ lower first tank unit 12a ⁇ second path.
  • the upwind heat exchanging unit 20 has a heat exchange passage group partitioned into a fourth path 20a, a fifth path 20b, and a sixth path 20c in order from right to left.
  • the lower tank 22 is partitioned by the partition plate 51 into a lower first tank portion 22a and a lower second tank portion 22b.
  • the upper tank 21 is divided into an upper first tank portion 21 a and an upper second tank portion 21 b by a partition plate 51, and the refrigerant outlet 8 is provided at the left end of the upper tank 21.
  • the heat exchange passage group is partitioned into a fourth path 20a, a fifth path 20b, and a sixth path 20c in order from right to left.
  • the refrigerant introduced into the windward heat exchange unit 20 from the communication unit 9 is the lower first tank unit 22a ⁇ the fourth path 20a ⁇ the upper first tank unit 21a ⁇ the fifth path 20b ⁇ the lower second tank unit 22b ⁇ It flows in the order of the sixth path 20c ⁇ the upper second tank portion 21b, and is finally led out from the evaporator 1 through the refrigerant outlet port 8.
  • a plurality of partition plates 51 are set, and the plurality of partition plates 51 descend the refrigerant from the refrigerant introduction port 7 from the first path 10a of the leeward heat exchange unit 10. After the flow and the upward flow are repeatedly circulated, the refrigerant is continuously circulated in the upward flow and the downward flow through the paths 20a, 20b, and 20c of the windward heat exchange unit 20, and is the final pass. It is configured to lead to the refrigerant outlet 8 from the six paths 20c.
  • the refrigerant passage mechanism is provided to guide the third path 10c.
  • the refrigerant passage mechanism is constituted by, for example, a refrigerant passage hole 52 (see FIG. 6).
  • the refrigerant passage hole 52 sets a minimum area that can guide a part of the refrigerant to the third path 10c of the leeward heat exchange unit 10 in a state where the refrigerant inflow amount is very small as the minimum hole area.
  • the maximum area that can suppress the amount of refrigerant guided to the third path 10c of the leeward heat exchange unit 10 in a state where the inflow amount is large is set as the maximum hole area
  • the minimum hole area to the maximum hole area It is set to have a hole area within the range.
  • the hole area of the refrigerant passage hole is expressed as an area ratio to the passage cross-sectional area of the first path 10a, it corresponds to 0.8% (minimum hole area) to 13.2% (maximum hole area).
  • this hole area When this hole area is converted into a hole diameter, it becomes ⁇ 1 mm (diameter of the minimum hole area) to ⁇ 4 mm (diameter of the maximum hole area).
  • a hole diameter of ⁇ 3 mm is adopted as the optimum hole diameter.
  • the leeward heat exchange unit 10 has three passes, and the leeward heat exchange unit 20 has three passes.
  • the first path 10a is a downflow path
  • the second path 10b is an upflow path
  • the third path 10c is a downflow path.
  • the fourth path 20a is an upflow path
  • the fifth path 20b is a downflow path
  • the sixth path 20c is an upflow path.
  • the heat exchange passage cross-sectional area of the sixth path 20c in which the refrigerant led to the refrigerant outlet port 8 finally flows upward is set to be smaller than the heat exchange passage sectional area of the refrigerant. It is set to be smaller than the heat exchange passage cross-sectional area of the second path 10b that becomes the upward flow.
  • the heat exchanging part has a two-layer structure including a leeward heat exchanging part and an upwind heat exchanging part, and each heat exchanging path is divided into a plurality of paths (heat exchanging path group). Comparing the cooling of air with each other, a temperature distribution with less unevenness has been proposed as compared with an evaporator composed of a single heat exchange section.
  • Patent Document 3 proposes an evaporator in which the number of heat exchange passages in the path in which the refrigerant becomes an upward flow is set smaller than the path in which the refrigerant becomes an upward flow, in order to reduce the unevenness of the temperature distribution. ing.
  • the number of heat exchange passages in the second path in which the refrigerant flows upward is reduced.
  • the leeward side heat exchange unit reduces the number of heat exchange passages in the first path than the number of heat exchange passages in any other path, and As the heat exchange unit, an evaporator has been proposed in which the number of heat exchange passages is gradually increased from the fourth pass to the final pass (sixth pass).
  • the number of heat exchange passages in the sixth path in which the refrigerant flows up is More than 4 passes and 5th pass are set. For this reason, in the windward heat exchange section, as shown in FIG.
  • a region L6 in which the refrigerant flow rate decreases is formed on the front side in the tank longitudinal direction of the sixth pass of the windward heat exchange section, and this refrigerant flow rate decreases.
  • a high temperature part is partially generated.
  • the heat from the refrigerant introduction port 7 first flows down the heat exchange passage cross-sectional area of the first path 10a, and the refrigerant that leads to the refrigerant outlet 8 finally flows down the heat of the fifth path 20b.
  • the heat exchange passage cross-sectional area of the sixth path 20c which is set smaller than the exchange passage cross-sectional area and the refrigerant leading to the refrigerant outlet port 8 finally flows up, is the first flow of refrigerant from the refrigerant introduction port 7
  • the structure which is set smaller than the heat exchange passage cross-sectional area of the second path 10b is adopted.
  • the flow rate of the refrigerant is such that the downflow that descends according to gravity is fast and the upflow that rises against gravity is slow.
  • the first path 10a which is the heat exchange start region, has a higher ratio of liquid refrigerant than the gas refrigerant, and gradually the gas refrigerant with respect to the liquid refrigerant as the heat exchange proceeds from the second path 10b toward the sixth path 20c. The ratio of becomes higher.
  • the first pass and the fifth pass are set to the same channel cross-sectional area in the descending flow having a high refrigerant flow rate, the liquid refrigerant ratio is high and the channel cross-sectional area is required. In the first pass, the refrigerant drift is more likely to occur than in the fifth pass having a high gas refrigerant ratio.
  • the sixth pass having a higher gas refrigerant ratio is more than the second pass having a higher liquid refrigerant ratio. Refrigerant drift tends to occur.
  • the relationship between the flow path cross-sectional areas of the first path 10 a and the fifth path 20 b is set so that the first path flow path cross-sectional area ⁇ the fifth path flow path cross-sectional area. Therefore, as apparent from the comparison between FIG. 7 and FIG. 8A, the region L1 where the refrigerant flow rate decreases disappears, and even if the introduced refrigerant flow rate is small, refrigerant drift occurs in the first path 10a. Is suppressed. Further, since the relationship between the flow path cross-sectional areas of the sixth path 20c and the second path 10b is set so that the sixth path flow path cross-sectional area ⁇ the second path flow path cross-sectional area, FIG. 7 and FIG.
  • the region L6 where the refrigerant flow rate decreases is greatly reduced to the region L6 ′, and the occurrence of refrigerant drift in the sixth path 20c due to the gasification of the refrigerant is suppressed.
  • the liquid / gas refrigerant ratio is the flow path cross-sectional area.
  • the flow path cross-sectional area of the first path having the high liquid refrigerant ratio is the smallest and the gas refrigerant ratio increases. It is preferable to set the cross-sectional area to be enlarged.
  • the liquid / gas refrigerant in the previous pass Is the largest factor determining the channel cross-sectional area
  • the channel cross-sectional area of the second pass following the first pass having the highest liquid refrigerant ratio and the highest refrigerant push-up energy is set to be the largest.
  • the flow passage cross-sectional area of the fourth pass following the third pass and the sixth pass following the fifth pass is low because the gas refrigerant ratio becomes high, and the flow passage breakage of the second pass is reduced. It is preferable to set the area smaller than the area.
  • the evaporator 1 is set so that the following relationships (1) to (4) are established for the number of heat exchange passages in the first pass 10a to the sixth pass 20c.
  • the relationship of the flow path cross-sectional area is adjusted to increase the flow cross-sectional area as the gas refrigerant ratio increases. It is set so that 1-pass channel cross-sectional area ⁇ third-pass channel cross-sectional area ⁇ fifth-pass channel cross-sectional area. For this reason, as shown in FIG. 7, the region where the refrigerant flow rate in the first pass 10a decreases disappears, and the regions L3 ′ and L5 ′ where the refrigerant flow rate decreases in the third pass 10c and the fifth pass 20b are also lower. It can only be seen in a small area along the tanks 12, 21.
  • the relationship between the flow path cross-sectional areas is increased by the refrigerant in the paths 10a, 10c, and 20b before the respective paths 10b, 20a, and 20c.
  • the second path channel cross-sectional area> the fourth path channel cross-sectional area> the fifth path channel cross-sectional area is set.
  • the evaporator 1 has a great effect of suppressing uneven temperature distribution, particularly when the flow rate of the circulating refrigerant is low.
  • the compressor is driven by a vehicle engine and the like, there is a limitation on the driving force of the compressor, and the refrigerant flow rate from the compressor cannot be increased. Become. For this reason, it is particularly effective to connect the evaporator 1 to such a refrigeration cycle.
  • the paths of the heat exchange units 10 and 20 described above are used. An effect of uniforming the temperature distribution by the partition setting is obtained, and the unevenness of the temperature distribution is suppressed to a small level.
  • the refrigerant that has flowed into the first path 10a of the leeward heat exchange unit 10 immediately evaporates in the next second path 10b. Therefore, heat exchange cannot be performed in the areas of the subsequent paths 10c, 20a, 20b, and 20c. Therefore, the temperature in the vicinity of the refrigerant inlet by the first pass 10a and the second pass 10b is low, but the region of the third pass 10c is a high temperature region without heat exchange, and is at the outlet of the air conditioning unit using the evaporator 1. The temperature distribution of the remarkably deteriorates.
  • the refrigerant inflow amount is very small, the refrigerant that has not exchanged heat flows directly into the third path 10c of the leeward heat exchange unit 10, and heat exchange cannot be performed in the above-described comparative example.
  • the air can be cooled even in the three passes 10c, so that the temperature distribution can be made uniform.
  • FIG. 11A shows a refrigerant passage hole 52 (for example, diameter: 3 mm) in the experimental result showing the temperature distribution characteristic immediately after the evaporator when the evaporator is applied to the vehicle air conditioning unit and the refrigerant inflow amount is very small.
  • FIG. 11B shows the temperature distribution immediately after the evaporator when there is no refrigerant passage hole in this experimental result.
  • FIG. 12A shows a refrigerant passage hole 52 (diameter: 3 mm) in an experimental result showing a unit outlet temperature distribution characteristic when an evaporator (evaporator) is applied to a vehicle air conditioning unit and the refrigerant inflow amount is very small.
  • FIG. 12B shows the unit outlet temperature distribution when there is no refrigerant passage hole.
  • the region corresponding to the third pass 10c becomes the high temperature region H, and the first pass
  • the region where 10a and the second path 10b communicate with each other is a low temperature region, and extreme uneven distribution (bias) of the temperature distribution is observed.
  • the unit outlet temperature distribution is a high temperature region H that coincides with the high temperature region H immediately after the evaporator as shown in FIG. 12B.
  • a region corresponding to the low temperature region becomes a low temperature region, and an extreme uneven distribution of temperature distribution is observed.
  • the unit outlet temperature distribution when the refrigerant inflow amount is very small and the refrigerant passage hole 5 (diameter: 3 mm) is as shown in FIG. 12A is a high temperature region of the temperature distribution immediately after the evaporator.
  • a central region that coincides with H is a high temperature region h ′, and both side portions that coincide with a low temperature region are low temperature regions, and a uniform temperature distribution is seen as compared with FIG. 12B.
  • the average temperature is 22.6 ° C., and the temperature difference ⁇ T between the highest temperature and the lowest temperature at the eight circled intersections. Measurement data of 18.8 ° C was obtained.
  • the temperature setting during cooling becomes substantially ineffective in a state where the refrigerant inflow amount is extremely small, and a large temperature difference is generated between the cold air blown to the left and right passengers. It will give a sense of incongruity.
  • the refrigerant passage hole 52 is provided, the temperature difference between the cold air blown out to the left and right occupants even when the refrigerant inflow amount is extremely small. Can be almost eliminated.
  • a refrigerant passage hole is used in that the frequency of an operation state in which the refrigerant inflow amount is extremely low is increased. This is more advantageous than the case without 52.
  • the leeward side heat exchange unit 10 and the upside heat exchange unit which have the heat exchange passage 31, the upper tanks 11 and 21, and the lower tanks 12 and 22 according to the present invention and are arranged to face each other in the ventilation direction.
  • the leeward side heat exchanging unit 10 and the leeward side heat exchanging unit 20 are provided with partition plates provided in the upper tanks 11 and 21 and the lower tanks 12 and 22, respectively.
  • the refrigerant flow direction is partitioned into a plurality of vertical paths, and a refrigerant inlet 7 and a refrigerant outlet 8 are provided at end positions of the upper tanks 11, 21, and the partition plate 51 Circulates the refrigerant from the refrigerant introduction port 7 through the first path 10a of the leeward side heat exchanging portion 10 repeatedly in the downward flow and the upward flow, and then passes the refrigerant to the leeward heat exchange portion.
  • 20 paths 20a, 20b, 2 It is set so that the upward flow and the downward flow are repeatedly circulated through c and guided from the final path (sixth path 20c) to the refrigerant outlet 8, and among the partition plates 51, the second of the leeward heat exchange unit 10 is set.
  • the partition plate 51 that partitions the first pass 10a and the second pass 10b is provided with a refrigerant passage hole 52 that guides a part of the refrigerant from the refrigerant introduction port 7 to the third path 10c of the leeward heat exchange unit 10. ing. For this reason, it is possible to make the temperature distribution uniform when the refrigerant inflow amount is extremely small, while ensuring the uniformity of the temperature distribution when the refrigerant inflow amount is large.
  • the minimum passage area of the refrigerant passage hole 52 is a minimum area where a part of the refrigerant can be guided to the third path 10c of the leeward heat exchange unit 10 in a state where the refrigerant inflow amount is very small.
  • the maximum area that can suppress the amount of refrigerant guided to the third path 10c of the leeward heat exchange unit 10 in a state where the refrigerant inflow amount is large is the maximum hole area
  • the minimum hole area is changed to the maximum hole.
  • the hole area is set within the area range. For this reason, even if there is a change in the refrigerant inflow amount from a state where the refrigerant inflow amount is very small to a state where the refrigerant inflow amount is large, uniform temperature distribution can be achieved stably.
  • the refrigerant passage hole 52 has a hole area corresponding to an area ratio of 0.8% to 13.2% with respect to the passage cross-sectional area of the first path 10a. Therefore, the hole area can be determined on the basis of the first path passage cross-sectional area, and even if the first path passage cross-sectional area is changed, the temperature distribution becomes uniform when the refrigerant inflow amount is large, and the refrigerant Both uniform temperature distributions can be achieved when the inflow is very low.
  • the leeward side heat exchanging unit 10 includes a first path 10a in which the refrigerant flows downward, a second path 10b in which the refrigerant flows upward, and a third path 10c in which the refrigerant flows downward.
  • the upwind heat exchange unit 20 includes a fourth path 20a in which the refrigerant flows upward, a fifth path 20b in which the refrigerant flows downward, and a sixth path 20c in which the refrigerant flows upward.
  • the heat exchange passage cross-sectional area of the sixth path 20c which is set smaller than the exchange passage cross-sectional area and the refrigerant leading to the refrigerant outlet port 8 finally flows upward, is the refrigerant from the refrigerant inlet port 7 first. Smaller than the cross-sectional area of the heat exchange passage of the second path 10b that becomes an upward flow It is constant. For this reason, the temperature distribution in the heat exchanging portion can be made uniform by minimizing the regions L1 and L6 where the refrigerant flow rate causing the uneven temperature distribution is reduced.
  • the evaporator according to the present invention is applied to an evaporator of a vehicle air conditioner.
  • the present invention is not limited to this and can be applied as an evaporator of an air conditioner using a refrigeration cycle in other technical fields. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

熱交換通路(31)と上部タンク(11,21)と下部タンク(12,22)とを有し通風方向に対向するように配置された風下側熱交換部(10)および風上側熱交換部(20)を備え、これら風下側熱交換部(10)および風上側熱交換部(20)は、それぞれの熱交換通路(31)を、上部タンク(11,21)と下部タンク(12,22)とに設けられた仕切り板51により、冷媒の流通方向が上下方向の複数のパスに区画されると共に、上部タンク(11,21)の端部位置に、冷媒導入口(7)と冷媒導出口(8)とが設けられ、冷媒導入口(7)からの冷媒を、下降流と上昇流を繰り返して冷媒導出口(8)へ導くように設けられた仕切り板(51)のうち、風下側熱交換部(10)の第1パス(10a)と第2パス(10b)とを仕切る仕切り板(51)に、冷媒導入口(7)からの冷媒の一部を、風下側熱交換部(10)の第3パス(10c)に導くための冷媒通過穴(52)が設けられている。

Description

蒸発器
 本発明は、自動車用空調装置の冷凍サイクルに介装されるエバポレータ等として適用され、通風方向に風下側熱交換部と風上側熱交換部とから構成される二つの熱交換部が対向配置された蒸発器に関する。
 従来、この種の蒸発器としては、通風方向に風下側熱交換部と風上側熱交換部とから構成される二つの熱交換部が対向配置され、各熱交換部は、上部タンクおよび下部タンクおよびこれら両タンク間に連通接続される複数の熱交換通路を備え、対向する風下側熱交換部と風上側熱交換部とによって冷媒の流れる方向が逆方向なるようにした蒸発器が知られている(例えば、特許文献1および特許文献2参照)。
特開2007-322007号公報
特開2001-74388号公報
特開2005-83677号公報
特開2006-242406号公報
 上記特許文献1に記載された蒸発器では、風下側熱交換部および風上側熱交換部にはそれぞれ1つのパスが設けられているが、上記特許文献2に記載された蒸発器では、風下側熱交換部および風上側熱交換部には、区画された複数のパス(熱交換通路群)がそれぞれ設けられている。
 上記の如き従来の蒸発器は、二つの熱交換部により空気の冷却を互いに補い合えるため、一つの熱交換部からなる蒸発器に比べ温度分布のムラを小さくすることができる。
 しかしながら、上記の如き従来の蒸発器では、冷媒流入量が多い状態においては、温度分布のムラが小さく抑えられるが、冷媒流入量が非常に少なくなる状態においては、蒸発器に流入した冷媒がすぐに蒸発してしまい、それ以降の領域において熱交換ができなくなる。その為、冷媒入口近傍の温度は低いが、幾つかの位置で高い温度領域が存在し、従って、このような蒸発器を用いる空調ユニット出口での温度分布が著しく悪化するという問題があった。
 特に、近年では、車両用空調ユニットの蒸発器として、高性能のエバポレータが用いられているため、冷媒流入量が非常に少なくなる運転状態の頻度が高くなっている。この冷媒流入量が非常に少なくなる状態では、冷房時の温度設定が実質的に効かなくなり、車両内の左右の乗員に対して吹き出される冷風に大きな温度差が出て違和感を与えるため、このような冷媒流入量が非常に少なくなる状態での対策が要求されてきている。
 本発明の目的は、冷媒流入量が多いときの温度分布の均一性を確保しながら、冷媒流入量が非常に少なくなるときに温度分布の均一化を図ることができる蒸発器を提供することにある。
 上記目的を達成するため、本発明の一実施例に係る蒸発器は、熱交換通路と上部タンクと下部タンクとを有し通風方向に対向するように配置された風下側熱交換部および風上側熱交換部を備え、前記風下側熱交換部と前記風上側熱交換部とは、それぞれ熱交換通路を有し、それぞれの熱交換通路が、前記上部タンクと前記下部タンクとに設けられた仕切り板により、冷媒の流通方向が上下方向に設定された複数のパスに区画されると共に、前記上部タンクの端部位置には、冷媒導入口と冷媒導出口とが設けられるように構成されている。しかも、この冷媒導入口からの冷媒が下降流と上昇流とを繰り返して冷媒導出口へ導かれるように設定された前記仕切り板のうち、前記風下側熱交換部の第1パスと第2パスとを仕切る仕切り板には、前記冷媒導入口からの冷媒の一部を、前記風下側熱交換部の第3パスに導くようにした冷媒通過機構が設けられている。
本発明の一実施例に係る蒸発器を、風上側から視た全体正面図。 上記実施例に係る蒸発器を、上側から視た全体平面図。 上記実施例に係る蒸発器の内部構成を示す図1のIII-III線断面図。 上記実施例に係る蒸発器のチューブ構造を示す分解斜視図。 上記実施例に係る蒸発器のチューブを示す斜視図。 上記実施例に係る蒸発器におけるタンクの仕切り板を備える金属薄板を示す斜視図。 上記実施例に係る蒸発器における熱交換部を示す概略斜視図。 上記実施例に係る蒸発器における風下側熱交換部の各パスと風上側熱交換部の各パスとの区画設定を示す概略図。 従来の蒸発器における風下側熱交換部のパスの区画設定を示す概略図。 従来の蒸発器における風上側熱交換部のパスの区画設定を示す概略図。 冷媒通過穴が無い蒸発器において冷媒流入量が非常に少ないときの冷媒の流れを示す作用説明図。 冷媒通過穴が有する上記実施例に係る蒸発器において冷媒流入量が非常に少ないときの冷媒の流れを示す作用説明図。 車両用空調ユニットにエバポレータ(蒸発器)を適用した場合であって冷媒流入量が非常に少ないときのエバポレータ直後の温度分布特性を示す実験結果における、冷媒通過穴(直径:3mm)を有する場合のエバポレータ直後の温度分布図。 図11Aに示された実験結果における、冷媒通過穴が無い場合のエバポレータ直後の温度分布図。 車両用空調ユニットにエバポレータ(蒸発器)を適用した場合であって冷媒流入量が非常に少ないときのユニット出口温度分布特性をあらわす実験結果における、冷媒通過穴(直径:3mm)を有する場合のユニット出口温度分布図。 図12Aに示された実験結果における、冷媒通過穴が無い場合のユニット出口温度分布図。
 以下、本発明に係る蒸発器を実現する形態を、添付図面に示された実施例に基づいて詳細に説明する。
 以下、図1~図5を参照して本発明の一実施例に係る蒸発器の構成を説明する。
 この実施例における蒸発器1は、自動車用空調装置の冷凍サイクルに介装される蒸発器として適用され、インストルメントパネルの内側の空調ケース内に設置され、内部を流れる冷媒と外側を通過する空気とを熱交換させ、冷媒を蒸発気化させて空気を冷却するように構成されている。
 蒸発器1は、図1に示されるように、それぞれが垂直方向(図1で上下方向)に配置され且つ水平方向(図1で左右方向)、即ち積層方向Xに間隔をあけて配置された複数のチューブ30と、これら複数のチューブ30間に配置されたアウターフィン33とを備えたチューブ積層体の構造を有する。チューブ積層体の最外側(水平方向最外側)には強度補強用のサイドプレート35、37および配管コネクタ36等が配置されている。尚、チューブ積層体、サイドプレート35、37および配管コネクタ36等を、所定の蒸発器の形状とした状態で、一体に、例えば、ロウ付けすることで蒸発器1が製造される(図1、図2、図3、図4Aおよび図4B参照)。なお、図1および図2中、符号34は最外端用の金属薄板を示し、図1において、符号11は上部タンク、12は下部タンク、21は上部タンク、22は下部タンク、7は冷媒導入口、8は冷媒導出口、9は連通部を示す。これら上部タンク11、下部タンク12、上部タンク21、下部タンク22、冷媒導入口7、冷媒導出口8、および連通部9は後述される。
 使用されるチューブ30は、図4Aに示すように、一対の金属薄板40、40とこれら一対の金属薄板40、40間に配置されたインナーフィン61、61とから形成されている。これら一対の金属薄板40、40のそれぞれは、周縁部に形成された接合部40bおよび中央部に形成された仕切り部40aを有し、一対の金属薄板40、40は、接合部40b同士および仕切り部40a同士が接合される。チューブ30内部には、図4Bに示すように、中央部の仕切り部30aを隔てて冷媒を流す2本の熱交換通路31、31が形成されている。また各熱交換通路31の両端部からは積層方向Xに、外方に向けて筒状に突出するタンク部32、32が形成されている。これに相応して、チューブ30を形成する各金属薄板40は、図4Aに示すように、2本の熱交換通路用凹部41と4つのタンク部42とを備えた構造を有する。
 図5は、金属薄板の変形例を示し、この変形例に係る金属薄板50は、仕切り板51を備えている。この金属薄板50を、所定の積層位置の金属薄板40の代わりに利用することで、上部タンク11、下部タンク12、上部タンク21、下部タンク22を仕切るようにされている。
 以下、図6及び図7を参照して、熱交換部の具体的構成を説明する。
 蒸発器1は、冷媒の風下側熱交換部10を風下側に、冷媒の風上側熱交換部20を風上側に、それぞれ並列に配置された構成を有する。
 前記風下側熱交換部10は、上部タンク11、下部タンク12およびこれら両タンク11、12間に連通接続される複数の熱交換通路31を構成する上記の如きチューブ30を備えている(図1および図3参照)。一方、風上側熱交換部20は、同じく上部タンク21、下部タンク22およびこれら両タンク21、22間に連通接続される複数の熱交換通路31を形成する上記の如きチューブ30を備えている(図1および図3参照)。
 前記風下側熱交換部10は、その熱交換通路群が左から右に向けて順に第1パス10a、第2パス10b、第3パス10cに区画されている。具体的には、上部タンク11の左端に冷媒導入口7が配置され、且つ、上部タンク11が仕切り板51によって、上部第1タンク部11aおよび上部第2タンク部11bに区画されている。一方で下部タンク12が仕切り板51によって、下部第1タンク部12aおよび下部第2タンク部12bに区画されている。これにより、熱交換通路群が左から右に向けて順に第1パス10a、第2パス10b、第3パス10cに区画されている。
 そのため、冷媒導入口7から風下側熱交換部10に冷媒が導入されると、この導入された冷媒は、上部第1タンク部11a→第1パス10a→下部第1タンク部12a→第2パス10b→上部第2タンク部11b→第3パス10c→下部第2タンク部12bという順で流れ、最終的に、連通部9を通じて風上側熱交換部20の最上流部(下部第1タンク部22a)に導入される。
 一方、前記風上側熱交換部20は、その熱交換通路群は右から左に向けて順に第4パス20a、第5パス20b、第6パス20cに区画されている。具体的には、下部タンク22が仕切り板51によって、下部第1タンク部22aおよび下部第2タンク部22bに区画される。他方、上部タンク21が仕切り板51によって、上部第1タンク部21aおよび上部第2タンク部21bに区画され、且つ、上部タンク21の左端に冷媒導出口8が設けられている。これにより熱交換通路群が右から左に向けて順に第4パス20a、第5パス20b、第6パス20cに区画されている。
 そのため、連通部9から風上側熱交換部20に導入された冷媒は、下部第1タンク部22a→第4パス20a→上部第1タンク部21a→第5パス20b→下部第2タンク部22b→第6パス20c→上部第2タンク部21bという順で流れ、最終的に冷媒導出口8を通じて蒸発器1から導出される。
 更に詳細に述べると、この実施例では、複数の仕切り板51が設定され、これら複数の仕切り板51は、冷媒導入口7からの冷媒を、風下側熱交換部10の第1パス10aから下降流と上昇流を繰り返して流通させた後、続けてその冷媒を、風上側熱交換部20の各パス20a,20b,20cを上昇流と下降流とに繰り返して流通させ、最終パスである第6パス20cから冷媒導出口8へ導くように構成されている。
 前記複数の仕切り板51のうち、風下側熱交換部10の第1パス10aと第2パス10bとを仕切る仕切り板51に、冷媒導入口7からの冷媒の一部を風下側熱交換部10の第3パス10cに導くための冷媒通過機構が設けられている。この冷媒通過機構は、図示の実施例では、例えば、冷媒通過穴52から成っている(図6参照)。
 この冷媒通過穴52は、冷媒流入量が非常に少ない状態で冷媒の一部を風下側熱交換部10の第3パス10cに導くことのできる最小限の面積を最小穴面積として設定し、冷媒流入量が多い状態で風下側熱交換部10の第3パス10cに導かれる冷媒量を抑えることができる最大限の面積を最大穴面積として設定するとき、前記最小穴面積から前記最大穴面積の範囲内の穴面積を有するように設定されている。この冷媒通過穴の穴面積を、第1パス10aの通路断面積に対する面積比にてあらわすと、0.8%(最小穴面積)~13.2%(最大穴面積)に相当する。この穴面積を穴径に換算すると、φ1mm(最小穴面積の径)~φ4mm(最大穴面積の径)となり、本実施例では、最適穴径としてφ3mmの穴径が採用されている。
 次に、図6及び図7を参照して、蒸発器1におけるパスの区画について説明する。
 この実施例における蒸発器1は、風下側熱交換部10が3パスであり、風上側熱交換部20が3パスである。風下側熱交換部10は、第1パス10aが下降流パスであり、第2パス10bが上昇流パスであり、第3パス10cが下降流パスである。一方、風上側熱交換部20は、第4パス20aが上昇流パスであり、第5パス20bが下降流パスであり、第6パス20cが上昇流パスである。
 蒸発器1は、冷媒導入口7からの冷媒が最初に下降流となる第1パス10aの熱交換通路断面積を、冷媒導出口8へと導く冷媒が最後に下降流となる第5パス20bの熱交換通路断面積より小さく設定し、かつ、冷媒導出口8へと導く冷媒が最後に上昇流になる第6パス20cの熱交換通路断面積を、冷媒導入口7からの冷媒が最初に上昇流となる第2パス10bの熱交換通路断面積より小さく設定している。
 より具体的には、第1パス10a、第2パス10b、第3パス10c、第4パス20a、第5パス20b、第6パス20cの各熱交換通路の断面積(=チューブ断面積)が同一に設定され、第1パス10a~第6パス20cの各熱交換通路数について、次の(a)~(d)の関係が成立するに設定されている。
(a) 第1パス通路数<第2パス通路数~第6パス通路数
(b) 第2パス通路数≧第3パス通路数
(c) 第3パス通路数>第4パス通路数
(d) 第5パス通路数>第6パス通路数≧第4パス通路数
 次に、上記蒸発器1の作用を、「両熱交換部10,20のパス区画設定による温度分布の均一化作用」、「冷媒流入量が非常に少なくなる状態での温度分布の均一化作用」に分けて説明する。
 [両熱交換部10,20のパス区画設定による温度分布の均一化作用]
蒸発器において、温度分布ムラを無くし、高い熱交換効率を得ることが究極の解決課題である。
これに対し、熱交換部を、風下側熱交換部と風上側熱交換部による二層構造とし、各熱交換通路を複数のパス(熱交換通路群)に区画し、二つの熱交換部により空気の冷却を互いに補い、一つの熱交換部からなる蒸発器に比べ、温度分布のムラを小さく抑えたものが提案されている。
しかし、各パスの熱交換通路断面積を均等とした場合、通風する風を冷却できる領域と通風する風を十分に冷却できない領域が形成され、この領域ムラが温度分布ムラの原因となっていることも明らかである。
 これに対し、特許文献3において、温度分布のムラをより小さくするため、冷媒が下降流となるパスよりも、冷媒が上昇流となるパスの熱交換通路数を少なく設定した蒸発器が提案されている。
しかしながら、2つの下降流となるパスと1つの上昇流となるパスを有する風下側熱交換部においては、図8Aに示すように、冷媒が上昇流となる第2パスの熱交換通路数を少なく設定することで、結果的に冷媒が下降流となる第1パスと第3パスの熱交換通路数を多く設定することになる。
このため、風下側熱交換部において、特に、冷媒流量が少量の時、図8Aに示すように、第1パスのタンク長手方向奥側に、冷媒流量が少なくなる領域L1が生じ、この冷媒流量が少なくなる領域L1において、部分的に高温部が発生する。
 また、特許文献4において、温度分布のムラをより小さくするため、風下側熱交換部は、第1パスの熱交換通路数を他のいずれのパスの熱交換通路数よりも少なくし、風上側熱交換部は、第4パスから最終パス(第6パス)に向けて徐々に熱交換通路数を多くした蒸発器が提案されている。しかしながら、1つの下降流となるパスと2つの上昇流となるパスを有する風上側熱交換部においては、図8Bに示すように、冷媒が上昇流となる第6パスの熱交換通路数を第4パスや第5パスより多く設定することになる。
このため、風上側熱交換部において、図8Bに示すように、風上側熱交換部の第6パスのタンク長手方向手前側に、冷媒流量が少なくなる領域L6が生じ、この冷媒流量が少なくなる領域L6において、部分的に高温部が発生する。
 そこで、風下側熱交換部10の第1パス10aと風上側熱交換部20の第6パス20cとのそれぞれで冷媒流量が少なくなる領域L1,L6を最小限に抑えることができることに着目し、熱交換部全体での温度分布の均一化を図るようにされている。
 そのために、冷媒導入口7からの冷媒が最初に下降流となる第1パス10aの熱交換通路断面積を、冷媒導出口8へと導く冷媒が最後に下降流となる第5パス20bの熱交換通路断面積より小さく設定し、かつ、冷媒導出口8へと導く冷媒が最後に上昇流になる第6パス20cの熱交換通路断面積を、冷媒導入口7からの冷媒が最初に上昇流となる第2パス10bの熱交換通路断面積より小さく設定する構成を採用した。
 この構成を採用することによって、風下側熱交換部10の第1パス10aと風上側熱交換部20の第6パス20cとのそれぞれにおいて冷媒流量が少なくなる領域L1,L6を最小限に抑えることができる理由について説明する。
 まず、冷媒の下降流と上昇流とを比べた場合、冷媒の流速は、重力にしたがって下がる下降流が速く、重力に逆らって上る上昇流が遅くなる。また、熱交換の開始域である第1パス10aはガス冷媒に比べ液冷媒の比率が高く、熱交換が進行する第2パス10bから第6パス20cに向かうにしたがって徐々に液冷媒に対するガス冷媒の比率が高くなる。
 そこで、冷媒偏流の起こり易さを検討すると、冷媒流速が速い下降流において、第1パスと第5パスとを同じ流路断面積に設定すると、液冷媒比率が高く流路断面積を必要としない第1パスの方が、ガス冷媒比率が高い第5パスよりも冷媒偏流が起こり易い。
 また、冷媒流速が遅い上昇流において、第2パスと第6パスとを同じ流路断面積に設定すると、ガス冷媒比率が高い第6パスの方が、液冷媒比率が高い第2パスよりも冷媒偏流が起こり易い。
 これに対し、蒸発器1では、第1パス10aと第5パス20bとの流路断面積の関係が、第1パス流路断面積<第5パス流路断面積になるように設定されているため、図7と図8Aとの対比から明らかなように、冷媒流量が少なくなる領域L1が消滅し、例え導入される冷媒流量が少量であっても第1パス10aでの冷媒偏流の発生が抑えられる。また、第6パス20cと第2パス10bとの流路断面積の関係が、第6パス流路断面積<第2パス流路断面積になるように設定されているため、図7と図8Bとの対比から明らかなように、冷媒流量が少なくなる領域L6が領域L6’まで大幅に縮小し、冷媒のガス化に伴う第6パス20cでの冷媒偏流の発生が抑えられる。
 次に、冷媒偏流の起こり易さをさらに詳しく検討すると、冷媒が自重により流下する第1パスと第3パスと第5パスとの下降流では、液/ガス冷媒比率が、流路断面積を決定する最大要因となり、液冷媒比率が高い第1パスの流路断面積が最も小さくされ、ガス冷媒比率が高くなる第3パスと第5パスとでは、ガス冷媒比率が高くなるにしたがって流路断面積が拡大されるように設定されるのが好ましい。
 また、冷媒が後続の冷媒から押し上げられる第2パスと第4パスと第6パスとの上昇流では、1つ手前のパス(第1パス、第3パス、第5パス)の液/ガス冷媒による押し上げエネルギーが流路断面積を決定する最大要因となり、液冷媒比率が高く冷媒押し上げエネルギーが最も高い第1パスの次の第2パスの流路断面積を最も大きく設定し、流路断面積が大きくてもガス冷媒比率が高くなることで冷媒押し上げエネルギーが低い第3パスの次の第4パスや第5パスの次の第6パスの流路断面積を、第2パスの流路断面積より縮小した面積に設定するのが好ましい。
 これに対し、蒸発器1では、第1パス10a~第6パス20cの各熱交換通路数について、以下の(1)~(4)の関係が共に成立するように設定されている。
(1) 第1パス10aの通路数<第2パス10bの通路数~第6パス20cの通路数
(2) 第2パス10bの通路数≧第3パス10cの通路数
(3) 第3パス10cの通路数>第4パス20aの通路数
(4) 第5パス20bの通路数>第6パス20cの通路数≧第4パス20aの通路数
 つまり、第1パス10a、第3パス10c、第5パス20bの下降流では、流路断面積の関係を、ガス冷媒比率が高くなるにしたがって流路断面積を拡大するのに合わせて、第1パス流路断面積<第3パス流路断面積<第5パス流路断面積となるように設定されている。このため、図7に示すように、第1パス10aでの冷媒流量が少なくなる領域が消滅し、第3パス10c及び第5パス20bでの冷媒流量が少なくなる領域L3’,L5’も下部タンク12,21に沿った僅かの領域に見られるだけとなった。
 他方、第2パス10b、第4パス20a、第6パス20cの上昇流では、流路断面積の関係を、それぞれのパス10b,20a,20cの前のパス10a,10c,20bでの冷媒押し上げエネルギーの大きさに合わせて、第2パス流路断面積>第4パス流路断面積≧第5パス流路断面積となるように設定されている。このため、図7に示すように、第2パス10bでの冷媒流量が少なくなる領域が消滅し、第4パス20aでの冷媒流量が少なくなる領域L4’が上部タンク21の一部に見られ、第6パス20cでの冷媒流量が少なくなる領域L6’が上部タンク21の一部に見られるだけとなった。
 したがって、蒸発器1は、特に循環する冷媒の流量が低流量である場合、温度分布ムラを小さく抑制する効果が大きい。例えば、コンプレッサが車両エンジンによって駆動される場合等は、コンプレッサの駆動力に制限があってコンプレッサからの冷媒流量を高流量にできないため、定常的に冷凍サイクル内を循環する冷媒量が低流量となる。このため、蒸発器1をこのような冷凍サイクルに接続すると、特に有効である。
 [冷媒流入量が非常に少なくなる状態での温度分布の均一化作用]
まず、風下側熱交換部10の第1パス10aと第2パス10bを仕切る仕切り板51に、冷媒導入口7からの冷媒の一部を、風下側熱交換部10の第3パス10cに導くための冷媒通過穴52が設けられていない例を比較例として熱交換作用を説明する。
 冷媒通過穴52が設けられていない場合、循環する冷媒の流量が低流量~高流量であり、蒸発器1への冷媒流入量が多い状態においては、上記した両熱交換部10,20のパス区画設定による温度分布の均一化作用が得られ、温度分布のムラが小さく抑えられる。
 しかし、冷媒流入量が非常に少なくなる状態においては、図9に示すように、風下側熱交換部10の第1パス10aに流入した冷媒が、次の第2パス10bにおいてすぐに蒸発してしまい、それ以降の各パス10c,20a,20b,20cの領域において熱交換ができなくなる。その為、第1パス10aと第2パス10bとによる冷媒入口近傍の温度は低いが、第3パス10cの領域は、熱交換が無く温度が高い領域となり、蒸発器1を用いる空調ユニット出口での温度分布が著しく悪化する。
 次に、風下側熱交換部10の第1パス10aと第2パス10bとを仕切る仕切り板51に、冷媒導入口7からの冷媒の一部を、風下側熱交換部10の第3パス10cに導く冷媒通過穴52を有する蒸発器1での熱交換作用を説明する。
 蒸発器1では、冷媒流入量が非常に少なくなるとき、図10に示すように、冷媒導入口7から導入される冷媒の大半は、最初に下降流となる第1パス19aの熱交換通路へ導かれるが、冷媒導入口7から導入される冷媒の一部は、冷媒通過穴52を経過して風下側熱交換部10の第3パス10cに導かれる。
 このため、冷媒流入量が非常に少ないときには、熱交換していない冷媒が、風下側熱交換部10の第3パス10cに直接流入し、上述の比較例では熱交換させることができなかった第3パス10cでも空気を冷やすことが可能となるため、温度分布の均一化が図れる。
 一方、冷媒流量が多いときには、冷媒の大半は第1パス10aへ流れ込むが、冷媒の一部が第3パス10cへ流れ込むことにより、風下側熱交換部10の第1パス10aと第2パス10bにて熱交換性能の低下がみられる。しかし、風上側熱交換部20の第1パス10aと第2パス10bの対応位置関係にある第5パス20bと第6パス20cでの熱交換により補われるため、蒸発器1の全体からみれば、温度分布の均一性が確保される。この結果、冷媒流入量が多いときの温度分布の均一性を確保しながら、冷媒流入量が非常に少なくなるときに温度分布の均一化を図ることができる。
 図11Aは、車両用空調ユニットに蒸発器を適用した場合であって冷媒流入量が非常に少ないときのエバポレータ直後の温度分布特性をあらわす実験結果における、冷媒通過穴52(例えば、直径:3mm)を有する場合のエバポレータ直後の温度分布を示し、図11Bは、この実験結果における、冷媒通過穴が無い場合のエバポレータ直後の温度分布を示す。図12Aは、車両用空調ユニットにエバポレータ(蒸発器)を適用した場合であって冷媒流入量が非常に少ないときのユニット出口温度分布特性をあらわす実験結果における、冷媒通過穴52(直径:3mm)を有する場合のユニット出口温度分布を示し、図12Bは、冷媒通過穴が無い場合のユニット出口温度分布を示す。
 冷媒流入量が非常に少ないときであって、冷媒通過穴が無い場合のエバポレータ直後の温度分布は、図11Bに示すように、第3パス10cに符合する領域が高温領域Hとなり、第1パス10aと第2パス10bを連通する領域が低温領域となり、温度分布の極端な偏在(偏り)が見られる。
 これに対し、冷媒流入量が非常に少ないときであって、冷媒通過穴52(直径:3mm)を有する場合のエバポレータ直後の温度分布は、図11Aに示すように、中央部の第2パス10bと第3パス10cを斜めに横切る領域が高温領域hとなり、高温領域hの斜め上領域と斜め下領域が低温領域となり、図11Bに比べ、温度分布の均一化が見られる。
 同様に、冷媒流入量が非常に少ないときであって、冷媒通過穴が無い場合のユニット出口温度分布は、図12Bに示すように、エバポレータ直後の温度分布の高温領域Hに符合する領域が高温領域H’となり、低温領域に符合する部分が低温領域となり、温度分布の極端な偏在が見られる。
 これに対し、冷媒流入量が非常に少ないときであって、冷媒通過穴5(直径:3mm)を有する場合のユニット出口温度分布は、図12Aに示すように、エバポレータ直後の温度分布の高温領域Hに符合する中央部領域が高温領域h’となり、低温領域に符合する両側部分が低温領域となり、図12Bに比べ、温度分布の均一化が見られる。
 参考のため述べると、図12Bに示された冷媒通過穴無しでのユニット出口温度の場合には、平均温度は22.6℃であり、8箇所の○印交点の最高温度と最低温度の温度差ΔTは18.8℃という測定データが得られた。これに対し、図12Aに示された冷媒通過穴有りでのユニット出口温度の場合には、平均温度は22.5℃であり、8箇所の○印交点の最高温度と最低温度の温度差ΔTは11.6℃という測定データが得られた。つまり、ユニット出口温度の温度差ΔTについて、ΔT=7.2℃(=18.8℃-11.6℃)という改善を確認した。
 したがって、冷媒通過穴の無い比較例では、冷媒流入量が非常に少なくなる状態において、冷房時の温度設定が実質的に効かなくなり、左右の乗員に対して吹き出される冷風に大きな温度差が出てしまい違和感を与えることになる。
 これに対し、実施例に係る蒸発器1の場合、冷媒通過穴52を有しているため、冷媒流入量が非常に少なくなる状態においても、左右の乗員に対して吹き出される冷風の温度差をほぼ解消することができる。この点は、特に、近年において、車両用空調ユニットの蒸発器として、高性能のエバポレータが用いられるため、冷媒流入量が非常に少なくなる運転状態の頻度が高くなっているという点で冷媒通過穴52が無い場合に比べて有益である。
 上記実施例に示された蒸発器1にあっては、下記に列挙する効果を得ることができる。
 (1) 本発明に係る熱交換通路31と上部タンク11,21と下部タンク12,22とを有し、通風方向に対向するように配置された風下側熱交換部10および風上側熱交換部20を備え、前記風下側熱交換部10と前記風上側熱交換部20とは、それぞれの熱交換通路31を、前記上部タンク11,21と前記下部タンク12,22とに設けられた仕切り板51により、冷媒の流通方向が上下方向の複数のパスに区画されると共に、前記上部タンク11,21の端部位置に、冷媒導入口7と冷媒導出口8とが設けられ、前記仕切り板51は、前記冷媒導入口7からの冷媒を、前記風下側熱交換部10の第1パス10aから下降流と上昇流とを繰り返して流通させた後、続けてその冷媒を前記風上側熱交換部20の各パス20a,20b,20cに上昇流と下降流とを繰り返して流通させ、最終パス(第6パス20c)から冷媒導出口8へ導くように設定され、前記仕切り板51のうち、前記風下側熱交換部10の第1パス10aと第2パス10bとを仕切る仕切り板51に、前記冷媒導入口7からの冷媒の一部を、前記風下側熱交換部10の第3パス10cに導く冷媒通過穴52が設けられている。このため、冷媒流入量が多いときの温度分布の均一性を確保しながら、冷媒流入量が非常に少なくなるときに温度分布の均一化を図ることができる。
 (2) 前記冷媒通過穴52は、冷媒流入量が非常に少ない状態で冷媒の一部を前記風下側熱交換部10の第3パス10cに導くことのできる最小限の面積を最小穴面積とし、冷媒流入量が多い状態で前記風下側熱交換部10の第3パス10cに導かれる冷媒量を抑えることができる最大限の面積を最大穴面積とするとき、前記最小穴面積から前記最大穴面積の範囲内の穴面積に設定されている。このため、冷媒流入量が非常に少なくなる状態から冷媒流入量が多い状態までの冷媒流入量の変動があっても、安定して温度分布の均一化を達成することができる。
 (3) 前記冷媒通過穴52は、前記第1パス10aの通路断面積に対する面積比が0.8%~13.2%に相当する穴面積を有する。このため、第1パス通路断面積を基準として穴面積を決定することができ、第1パス通路断面積の変更等があっても、冷媒流入量が多いときの温度分布の均一化と、冷媒流入量が非常に少なくなるときの温度分布の均一化の両方を達成することができる。
 (4) 前記風下側熱交換部10は、冷媒が下降流となる第1パス10aと、冷媒が上昇流となる第2パス10bと、冷媒が下降流となる第3パス10cと、を備え、前記風上側熱交換部20は、冷媒が上昇流となる第4パス20aと、冷媒が下降流となる第5パス20bと、冷媒が上昇流となる第6パス20cと、を備え、前記冷媒導入口7からの冷媒が最初に下降流となる前記第1パス10aの熱交換通路断面積が、前記冷媒導出口8へと導く冷媒が最後に下降流となる前記第5パス20bの熱交換通路断面積より小さく設定され、かつ、前記冷媒導出口8へと導く冷媒が最後に上昇流になる前記第6パス20cの熱交換通路断面積が、前記冷媒導入口7からの冷媒が最初に上昇流となる前記第2パス10bの熱交換通路断面積より小さく設定されている。このため、温度分布のムラの原因となる冷媒流量が少なくなる領域L1,L6を最小限に抑えることで、熱交換部での温度分布の均一化を図ることができる。
 以上、本発明の蒸発器を一つの実施例に基づき説明してきたが、本発明はこの実施例に限られるものではなく、種々の変更および変形がこの実施例になされ得ることを理解されたい。
 上記実施例では、第1パス10a~第6パス20cの各熱交換通路数の関係を細かく設定した例を示したが、冷媒の流通方向が上下方向の複数のパスに区画するものであれば、具体的なパス区画は、この実施例には限られることはない。
 上記実施例では、本発明の蒸発器を車両用空調装置のエバポレータに適用した例を示したが、これに限られずその他の技術分野における冷凍サイクルを用いる空調装置の蒸発器として適用することができる。
 本願は、2008年12月25日に出願された特願2008-330473号に基づき優先権を主張し、且つその内容が本願に導入されている。

 
 

Claims (6)

  1.  熱交換通路と上部タンクと下部タンクとを有し通風方向に対向するように配置された風下側熱交換部および風上側熱交換部を備え、前記風下側熱交換部と前記風上側熱交換部とは、それぞれ熱交換通路を有し、それぞれの熱交換通路が、前記上部タンクと前記下部タンクに設けられた仕切り板により、冷媒の流通方向が上下方向の複数のパスに区画されると共に、前記上部タンクの端部位置に、冷媒導入口と冷媒導出口とが設けられ、前記冷媒導入口からの冷媒を、下降流と上昇流とを繰り返して冷媒導出口へ導くように設定された前記仕切り板のうち、前記風下側熱交換部の第1パスと第2パスを仕切る仕切り板に、前記冷媒導入口からの冷媒の一部を、前記風下側熱交換部の第3パスに導くようにした冷媒通過機構が設けられている蒸発器。
  2.  前記冷媒通過機構が冷媒通過穴から成っている請求項1に記載の蒸発器。
  3.  前記冷媒通過穴は、冷媒流入量が非常に少ない状態で冷媒の一部を前記風下側熱交換部の第3パスに導くことのできる最小限の面積を最小穴面積に設定され、冷媒流入量が多い状態で前記風下側熱交換部の第3パスに導かれる冷媒量を抑えることができる最大限の面積を最大穴面積に設定されたとき、前記最小穴面積から前記最大穴面積の範囲内の穴面積に設定される請求項2に記載の蒸発器。
  4.  前記冷媒通過穴は、前記第1パスの通路断面積に対する面積比が0.8%~13.2%に相当する穴面積を有する請求項3に記載の蒸発器。
  5.  前記風下側熱交換部は、冷媒が下降流となる第1パスと、冷媒が上昇流となる第2パスと、冷媒が下降流となる第3パスと、を備え、前記風上側熱交換部は、冷媒が上昇流となる第4パスと、冷媒が下降流となる第5パスと、冷媒が上昇流となる第6パスと、を備え、前記冷媒導入口からの冷媒が最初に下降流となる前記第1パスの熱交換通路断面積が、前記冷媒導出口へと導く冷媒が最後に下降流となる前記第5パスの熱交換通路断面積より小さく設定され、かつ、前記冷媒導出口へと導く冷媒が最後に上昇流になる前記第6パスの熱交換通路断面積が、前記冷媒導入口からの冷媒が最初に上昇流となる前記第2パスの熱交換通路断面積をより小さく設定されている請求項1に記載の蒸発器。
  6.  前記冷媒通過機構が冷媒通過穴から成り、前記冷媒通過穴は、冷媒流入量が非常に少ない状態で冷媒の一部を前記風下側熱交換部の第3パスに導くことのできる最小限の面積を最小穴面積に設定され、冷媒流入量が多い状態で前記風下側熱交換部の第3パスに導かれる冷媒量を抑えることができる最大限の面積を最大穴面積に設定されたとき、前記最小穴面積から前記最大穴面積の範囲内の穴面積に設定される請求項5に記載の蒸発器。
     
     
PCT/JP2009/070883 2008-12-25 2009-12-15 蒸発器 WO2010073938A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008330473A JP2010151381A (ja) 2008-12-25 2008-12-25 蒸発器
JP2008-330473 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010073938A1 true WO2010073938A1 (ja) 2010-07-01

Family

ID=42287554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070883 WO2010073938A1 (ja) 2008-12-25 2009-12-15 蒸発器

Country Status (2)

Country Link
JP (1) JP2010151381A (ja)
WO (1) WO2010073938A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759571A (zh) * 2013-12-10 2014-04-30 柳州五菱宝马利汽车空调有限公司 车用平行流蒸发器的整体式集分流管
JP2016169910A (ja) * 2015-03-13 2016-09-23 株式会社デンソー 冷媒蒸発器
WO2018206818A1 (en) 2017-05-12 2018-11-15 Valeo Systemes Thermiques Multi-pass heat exchanger that forms part of a refrigerant circuit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164837B2 (ja) * 2012-12-26 2017-07-19 カルソニックカンセイ株式会社 蒸発器構造
CN104879955B (zh) * 2014-02-27 2018-10-19 杭州三花研究院有限公司 换热器
EP3138709B1 (en) * 2015-09-07 2018-05-09 Volvo Car Corporation Air-conditioning system and a heat exchanger for such an air-conditioning system
JP6693588B1 (ja) 2019-03-29 2020-05-13 株式会社富士通ゼネラル 熱交換器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267462A (ja) * 1997-03-25 1998-10-09 Showa Alum Corp 蒸発器
JPH10325645A (ja) * 1997-05-26 1998-12-08 Denso Corp 冷媒蒸発器
WO2008133203A1 (ja) * 2007-04-25 2008-11-06 Calsonic Kansei Corporation 蒸発器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267462A (ja) * 1997-03-25 1998-10-09 Showa Alum Corp 蒸発器
JPH10325645A (ja) * 1997-05-26 1998-12-08 Denso Corp 冷媒蒸発器
WO2008133203A1 (ja) * 2007-04-25 2008-11-06 Calsonic Kansei Corporation 蒸発器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759571A (zh) * 2013-12-10 2014-04-30 柳州五菱宝马利汽车空调有限公司 车用平行流蒸发器的整体式集分流管
JP2016169910A (ja) * 2015-03-13 2016-09-23 株式会社デンソー 冷媒蒸発器
WO2018206818A1 (en) 2017-05-12 2018-11-15 Valeo Systemes Thermiques Multi-pass heat exchanger that forms part of a refrigerant circuit

Also Published As

Publication number Publication date
JP2010151381A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP4890337B2 (ja) 蒸発器
JP4761790B2 (ja) 蒸発器
WO2010073938A1 (ja) 蒸発器
JP3960233B2 (ja) 熱交換器
JP5348668B2 (ja) 蒸発器
US20100031698A1 (en) Heat exchanger
JP4211998B2 (ja) 熱交換器用プレート
US10168084B2 (en) Refrigerant evaporator
JP2012092991A (ja) エバポレータ
JP5585543B2 (ja) 車両用冷却装置
WO2010098056A1 (ja) 熱交換器
US10408510B2 (en) Evaporator
WO2020179651A1 (ja) 車両用バッテリの冷却モジュール
JP2012197974A5 (ja)
JP5636215B2 (ja) エバポレータ
JP2011257111A5 (ja)
EP1001238B1 (en) Stack type evaporator
US10393445B2 (en) Evaporator
JP5674376B2 (ja) エバポレータ
JP4547205B2 (ja) 蒸発器
JP2017190896A (ja) 熱交換器
JP2018087646A5 (ja)
KR20100056644A (ko) 축냉 열교환기
JP2010038448A (ja) 熱交換器
KR19980061905A (ko) 자동차용 에어컨의 응축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834741

Country of ref document: EP

Kind code of ref document: A1