WO2010073381A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2010073381A1
WO2010073381A1 PCT/JP2008/073784 JP2008073784W WO2010073381A1 WO 2010073381 A1 WO2010073381 A1 WO 2010073381A1 JP 2008073784 W JP2008073784 W JP 2008073784W WO 2010073381 A1 WO2010073381 A1 WO 2010073381A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
fuel cell
flow path
water amount
fuel
Prior art date
Application number
PCT/JP2008/073784
Other languages
English (en)
French (fr)
Inventor
雅宏 奥吉
真明 松末
政史 戸井田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010543714A priority Critical patent/JP5310739B2/ja
Priority to PCT/JP2008/073784 priority patent/WO2010073381A1/ja
Publication of WO2010073381A1 publication Critical patent/WO2010073381A1/ja
Priority to US13/163,381 priority patent/US8293421B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/045Humidity; Ambient humidity; Water content of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04507Humidity; Ambient humidity; Water content of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04529Humidity; Ambient humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/0485Humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system using estimation of water content of a polymer electrolyte fuel cell.
  • Patent Document 1 As a technique for controlling the amount of water in the cell surface of a fuel cell, for example, one described in Patent Document 1 is known. This Patent Document 1 adjusts at least one of pressure loss characteristics depending on the pressure, humidity, temperature, flow rate, and flow path shape of a reaction gas (a general term for an oxidizing gas typified by air and a fuel gas typified by hydrogen gas). Thus, it is disclosed to control the distribution of the amount of water as droplets or water vapor in the cell surface. JP 2004-335444 A
  • Patent Document 1 does not consider water movement between the electrodes, and it is difficult to accurately estimate and control the distribution of moisture in the cell plane.
  • An object of the present invention is to improve the estimation accuracy of the remaining water amount in a fuel cell system that adopts an intermittent operation mode, and to accurately suppress a decrease in cell voltage caused by a pool of water due to intermittent operation. .
  • a fuel cell system includes a cell stack comprising a plurality of single cells each having an anode electrode, a cathode electrode, an electrolyte membrane therebetween, and a reaction gas flow path. And a mode in which the fuel cell is intermittently operated, in consideration of water movement between the anode electrode and the cathode electrode through the electrolyte membrane, the reaction gas in the cell plane of each single cell When the residual water amount distribution in the flow path and the water content distribution in the electrolyte membrane are estimated, and the residual water amount in the reaction gas flow path estimated by the estimation part is equal to or greater than a predetermined threshold, the content of the intermittent operation is changed. And an operation control unit.
  • the present invention since the water movement between the electrodes is considered, it is possible to improve the estimation accuracy of the residual water amount distribution and the water content distribution not only in the cell plane but also in the cell stacking direction. And since the content of intermittent operation is changed using this improved estimation result, the fall of the cell voltage resulting from the water pool by intermittent operation can be suppressed accurately. For example, when the residual water amount equal to or greater than the threshold is estimated, the content of the intermittent operation can be changed so as to suppress a further increase in the residual water amount or promote the reduction of the residual water amount.
  • the operation control unit may prohibit intermittent operation when a remaining water amount equal to or greater than a threshold value is estimated.
  • the operation control unit may not stop the supply of the reaction gas only to the anode electrode side and the cathode electrode side for which the remaining water amount equal to or greater than the threshold is estimated.
  • the operation control unit may permit intermittent operation after scavenging the fuel cell when the remaining water amount equal to or greater than the threshold value is estimated.
  • the amount of remaining water can be reduced by the scavenging process, so that the amount of remaining water does not become excessive even if intermittent operation is executed. Thereby, the fall of the cell voltage after intermittent operation can be suppressed.
  • the operation control unit may change at least one of the control amount and the control time in the scavenging process according to at least one of the position and the size of the remaining water amount equal to or greater than the threshold value.
  • the efficiency of the scavenging process can be improved.
  • the scavenging time can be shortened by shortening the control time of the scavenging process compared to when the remaining water amount is relatively large.
  • the water discharge performance of the reaction gas flow path due to the flow of the reaction gas differs depending on the position in the cell stacking direction and the position in the cell plane.
  • the operation control unit may increase at least one of the control amount and the control time in the scavenging process as the single cell on the downstream side in the reaction gas supply direction in the cell stack.
  • the operation control unit may increase at least one of the control amount and the control time in the scavenging process toward the reaction gas inlet side to the reaction gas flow channel in the cell plane.
  • the scavenging process can be appropriately performed when water accumulates in a cell stacking direction or a position where it is difficult to be discharged in the cell plane.
  • the reaction gas flow path has a fuel gas flow path for supplying fuel gas to the anode electrode and an oxidant gas flow path for supplying oxidizing gas to the cathode electrode.
  • the operation control unit executes the scavenging process on the fuel gas channel when it is estimated that the remaining water amount equal to or greater than the threshold value is in the fuel gas channel, while the remaining water amount equal to or greater than the threshold value is the oxidizing gas channel. If it is estimated that the scavenging process is performed, the scavenging process may be performed on the oxidizing gas flow path.
  • the necessary scavenging process can be performed by separating the fuel gas channel and the oxidizing gas channel.
  • the estimation unit estimates the residual water amount distribution even during the scavenging process, and the operation control unit performs intermittent operation when the residual water amount estimated during the scavenging process becomes smaller than a predetermined threshold. Allow it.
  • the operation control unit intermittently performs a circulation operation process in which the fuel gas discharged from the anode electrode side is supplied to the anode electrode again when the remaining water amount equal to or greater than the threshold value is estimated. It is good to do it inside.
  • the operation control unit may change at least one of the control amount and the control time in the circulation operation process according to at least one of the position and the size of the remaining water amount equal to or greater than the threshold value.
  • the above-mentioned predetermined threshold value is between the fuel gas channel side and the oxidizing gas channel side, the position of the single cell in the cell stacking direction, or the reaction gas inlet side to the reaction gas channel in the cell plane. It may be different between the exit side.
  • a fuel cell 1 having a stack structure has a cell laminate 3 formed by laminating a plurality of solid polymer electrolyte type single cells 2.
  • Current collector plates 5a and 5b, insulating plates 6a and 6b, and end plates 7a and 7b are arranged outside the single cells 2 (hereinafter referred to as “end cell 2a”) at both ends of the cell stack 3, respectively.
  • the Tension plates 8, 8 are bridged between end plates 7a, 7b and fixed with bolts 9, and an elastic module 10 is provided between the end plate 7b and the insulating plate 6b.
  • Hydrogen gas, air and refrigerant are supplied to the manifold 15a in the cell stack 3 from the supply pipe 14 connected to the supply ports 11a, 12a and 13a of the end plate 7a. Thereafter, hydrogen gas, air, and refrigerant flow in the plane direction of the single cell 2, reach the manifold 15b in the cell stack 3, and fuel from the discharge pipe 16 connected to the discharge ports 11b, 12b, and 13b of the end plate 7a. It is discharged out of the battery 1.
  • the supply pipe 14, the manifolds 15a and 15b, and the discharge pipe 16 are provided corresponding to the fluids of hydrogen gas, air, and refrigerant, but in FIG. .
  • the single cell 2 includes an MEA 20 and a pair of separators 22A and 22B.
  • the MEA 20 membrane-electrode assembly
  • the MEA 20 includes an electrolyte membrane 23 made of an ion exchange membrane, and an anode electrode 24A and a cathode electrode 24B sandwiching the electrolyte membrane 23.
  • the electrode 24A faces the hydrogen flow path 25A of the separator 22A
  • the electrode 24B faces the air flow path 25B of the separator 22B.
  • the refrigerant channels 26A and 26B of the separators 22A and 22B communicate between the adjacent single cells 2 and 2.
  • FIG. 4 is a plan view of the separator 22A.
  • the separator 22A has a hydrogen inlet 27a, an air inlet 28a, a refrigerant inlet 29a, a hydrogen outlet 27b, an air outlet 28b, and a refrigerant outlet 29b that are formed through the hydrogen channel 25A.
  • the inlets 27a, 28a, and 29a constitute a part of the manifold 15a corresponding to each fluid, and similarly, the outlets 27b, 28b, and 29b constitute a part of the manifold 15b corresponding to each fluid.
  • hydrogen gas is introduced from the inlet 27a into the hydrogen flow path 40 and discharged to the outlet 27b.
  • air also flows in the planar direction of the separator 22B configured similarly to the separator 22A.
  • hydrogen gas and air are supplied to the electrodes 24A and 24B in the single cell 2, thereby causing an electrochemical reaction in the MEA 20 and obtaining an electromotive force.
  • this electrochemical reaction generates water and generates heat on the electrode 24B side. And the heat
  • 5A to 5C are schematic plan views showing other channel shapes of the separator to which the present embodiment can be applied.
  • the flow path shapes of the flow paths 25A, 25B, 26A, and 26B are changed in the middle as shown in FIG. 5A.
  • a serpentine channel shape having a folded portion at the end can also be used.
  • the flow paths 25A, 25B, 26A, and 26B can be wave-shaped, or as shown in FIG.
  • the orientation of the separators 22A and 22B may be either vertical or horizontal. That is, the estimation of the moisture content of the fuel cell 1 to be described later is not limited to the hardware configuration of the fuel cell 1.
  • the fuel cell system 100 includes an air piping system 300, a hydrogen piping system 400, a refrigerant piping system 500, and a control device 600.
  • the fuel cell system 100 can be mounted on various moving bodies such as vehicles, ships, airplanes, and robots, and can also be applied to stationary power sources.
  • a fuel cell system 100 mounted on an automobile will be described as an example.
  • the air piping system 300 supplies and discharges air to and from the fuel cell 1, and includes a humidifier 30, a supply flow path 31, a discharge flow path 32, and a compressor 33. Air in the atmosphere (air in a low wet state) is taken in by the compressor 33 and is pumped to the humidifier 30, and moisture is exchanged with the oxidizing off gas in a high wet state in the humidifier 30. As a result, moderately humidified air is supplied from the supply channel 31 to the fuel cell 1.
  • the discharge passage 32 is provided with a back pressure valve 34 that adjusts the air back pressure of the fuel cell 1. Further, in the vicinity of the back pressure valve 34, a pressure sensor P1 for detecting air back pressure is provided.
  • the compressor 33 is provided with a flow rate sensor F1 that detects an air supply flow rate to the fuel cell 1.
  • the hydrogen piping system 400 supplies and discharges hydrogen gas to and from the fuel cell 1, and includes a hydrogen supply source 40, a supply channel 41, a circulation channel 42, a shut valve 43, and the like.
  • the hydrogen gas from the hydrogen supply source 40 is decompressed by the regulator 44, and then the flow rate and pressure are adjusted with high accuracy by the injector 45. Thereafter, the hydrogen gas merges with the hydrogen off-gas pumped by the hydrogen pump 46 on the circulation flow path 42 at the merge point A and is supplied to the fuel cell 1.
  • a purge passage 47 with a purge valve 48 is branchedly connected to the circulation passage 42, and the hydrogen off-gas is discharged to the discharge passage 32 by opening the purge valve 48.
  • a pressure sensor P ⁇ b> 2 that detects the supply pressure of hydrogen gas to the fuel cell 1 is provided downstream of the junction A.
  • the hydrogen pump 46 is provided with a flow rate sensor F2.
  • the fuel off-gas may be introduced into a hydrogen diluter or the like, and a gas-liquid separator may be provided in the circulation channel 42.
  • the refrigerant piping system 500 circulates and supplies a refrigerant (for example, cooling water) to the fuel cell 1 and includes a cooling pump 50, a refrigerant channel 51, a radiator 52, a bypass channel 53, and a switching valve 54.
  • the cooling pump 50 pumps the refrigerant in the refrigerant flow path 51 into the fuel cell 1.
  • the refrigerant flow path 51 includes a temperature sensor T1 on the refrigerant inlet side of the fuel cell 1 and a temperature sensor T2 on the refrigerant outlet side of the fuel cell 1.
  • the radiator 52 cools the refrigerant discharged from the fuel cell 1.
  • the switching valve 54 is constituted by, for example, a rotary valve, and switches the refrigerant flow between the radiator 52 and the bypass flow path 53 as necessary.
  • the control device 600 is configured as a microcomputer having a CPU, a ROM, and a RAM inside. Detection information of sensors (P1, P2, F1, F2, T1, T2) for detecting the pressure, temperature, flow rate and the like of the fluid flowing through the piping systems 300, 400, 500 is input to the control device 600. In addition to the detection information of the current sensor 61 that detects the current value generated by the fuel cell 1, detection information such as the outside air temperature sensor 62, the vehicle speed sensor 63, and the accelerator opening sensor is input to the control device 600.
  • the control device 600 controls various devices (the compressor 33, the shut valve 43, the injector 45, the hydrogen pump 46, the purge valve 48, the cooling pump 50, the switching valve 54, etc.) in the system 100 according to the detection information and the like.
  • the overall operation of the fuel cell system 100 is controlled.
  • the control device 600 reads various detection information, and estimates the moisture content of the fuel cell 1 using various maps stored in the ROM.
  • the control device 600 estimates a moisture amount of the fuel cell 1 and implements control based on the moisture amount, and includes a storage unit 65, a detection unit 66, an estimation unit 67, and an operation control unit 68. Is provided.
  • the storage unit 65 stores various programs and various maps for realizing estimation and control of the water content of the fuel cell 1. The map is obtained in advance by experiment or simulation.
  • the detection unit 66 reads detection information of various sensors (P1, P2, F1, F2, T1, T2, 61 to 63).
  • the operation control unit 68 transmits a control command to various devices based on the estimation result by the estimation unit 67, and controls the operation so that the fuel cell 1 is in a desired operation state (for example, a moisture state, a temperature state, etc.). . At this time, the operation control unit 68 executes control in which the anode side and the cathode side are distinguished as necessary.
  • the estimation unit 67 estimates the water content of the fuel cell 1 with reference to various maps in the storage unit 65 based on the information acquired by the detection unit 66. Specifically, the estimation unit 67 estimates the residual water amount distribution and the water content distribution in the cell plane of the single cell 2 in consideration of the water movement performed between the electrodes 24A and 24B via the electrolyte membrane 23. The estimation unit 67 also estimates a residual water amount distribution and a water content distribution in the stacking direction of each single cell 2 (hereinafter referred to as the cell stacking direction).
  • “in the cell plane” means the inside of the single cell 2 in the plane direction of the single cell 2 (refers to a direction parallel to the paper surface of FIG. 4 and a direction perpendicular to the cell stacking direction).
  • “Residual water amount” means the amount of liquid water present in the reaction gas flow path of the single cell 2.
  • the reactive gas flow channel is a general concept of the hydrogen flow channel 25A and the air flow channel 25B.
  • “Water content” means the amount of water contained in the electrolyte membrane 23 of the single cell 2.
  • the residual water amount and the water content are estimated separately, and at that time, the residual water amount distribution is estimated separately for the anode side and the cathode side. Further, regarding the residual water content and the water content, not only the distribution in the cell plane but also the distribution in the cell stacking direction is estimated. Below, the estimation method of the water distribution (residual water amount distribution and water content distribution) in the cell plane will be described first. Next, how to consider the temperature variation / distribution variation in the cell stacking direction for estimation will be described, and a method for estimating the water distribution in the cell stacking direction will be described.
  • step S1 current value I, cell inlet temperature T in, i , cell outlet temperature T OUT, i , air flow rate Q air, i , hydrogen flow rate Q H2 , I , air back pressure P air, i and hydrogen pressure PH 2, i are read (step S1).
  • the subscript “i” in the cell inlet temperature T in, i or the like is a cell channel indicating the position of the single cell 2 in the cell stack 3. Specifically, when the cell stack 3 shown in FIG. 9 is modeled, a reaction gas supply port (corresponding to the supply ports 11a and 12a in FIG. 1) and a discharge port (the discharge ports 11b and 12b in FIG. 1). The cell channel “i” of the end cell 2a closest to (1) is 1. When 200 unit cells 2 are stacked, the cell channel “i” of the other end cell 2 a is 200.
  • the cell inlet temperature T in, i and the cell outlet temperature T OUT, i are the refrigerant temperatures at the refrigerant inlet 29a and the refrigerant outlet 29b of the single cell 2 (cell channel: i), respectively.
  • the air flow rate Q air, i and the hydrogen flow rate Q H2, i are supply flow rates of air and hydrogen gas flowing into the air inlet 28a and the hydrogen inlet 27a of the single cell 2 i , respectively.
  • the air back pressure P air, i and the hydrogen pressure PH 2, i are the pressures of air and hydrogen gas at the air outlet 28b and the hydrogen inlet 27a of the single cell 2 i , respectively.
  • the fuel cell 1 has a plurality of single cells 2, the amount of heat release, pressure loss, and the like differ depending on the position in the cell stacking direction. There is. Therefore, it is desirable to use the cell inlet temperature Tin , i, etc. in consideration of this point. This consideration will be described later.
  • each detected value used as the cell inlet temperature T in, i or the like can be a value other than the above sensor or a value obtained by a calculation method.
  • the temperature sensor, the flow sensor, and the pressure sensor may be provided at positions other than those shown in FIG.
  • a hydrogen flow rate sensor may be provided near the hydrogen supply port 11a of the fuel cell 1, and the detected value may be used as the hydrogen flow rate QH2, i .
  • the cell inlet temperature T in, i and the cell outlet temperature T OUT, i can be estimated by attaching a temperature sensor to the end cell 2a or the end plates 7a, 7b.
  • the cell inlet temperature T in, i can be used as the cathode inlet dew point T d, CA and the anode inlet dew point T d, AN , respectively.
  • the air inlet 28a and the hydrogen inlet 27a are close to the refrigerant inlet 29a, it can be expressed as follows, and the stacking variation of the dew point can be considered.
  • Td, CA Td
  • AN Tin
  • a cell outlet temperature T out, the cathode inlet dew point of each single cell 2 i from i T d, CA and the anode inlet dew point T d may be calculated AN.
  • a dew point meter may be used. For example, when no humidifier is used in the fuel cell system 1 or when the cell inlet temperature Tin , i is not used, the stack inlet (the anode side supply port 11a and the cathode side supply port 12a) of the fuel cell 1 is used. It is also possible to install a dew point meter in each of these and set the detected values as the cathode inlet dew point Td, CA and the anode inlet dew point Td, AN . By doing so, estimation with higher accuracy becomes possible.
  • the cathode inlet dew point Td, CA can be calculated as 0 ° C.
  • the cathode inlet dew point Td, CA outside temperature ⁇ outside temperature can be calculated by the outside temperature and outside humidity sensor. That is, this estimation method can be applied to a non-humidified system.
  • step S3 shown in FIG. 8 the water movement speed V H2O between the electrodes 24A and 24B , CA ⁇ AN is obtained.
  • the water moving speed V H2O, CA ⁇ AN is calculated by the following equation.
  • V H2O, CA ⁇ AN D H2O ⁇ (P H2O, CA ⁇ P H2O, AN )
  • P H2 O CA is a water vapor partial pressure of the electrode 24B side of the unit cell 2 i, the cathode inlet dew point T d, is calculated by the CA.
  • PH 2 O, AN is the water vapor partial pressure on the electrode 24A side of the single cell 2 i and is calculated from the anode inlet dew point T d, AN .
  • DH 2 O is a water diffusion coefficient in the electrolyte membrane 23.
  • D H2 O which can also be used fixed values, because it is intended to change by humidity, it is desirable to consider this.
  • a characteristic map representing the relationship between the relative humidity of the electrolyte membrane 23 and DH 2 O as shown in FIG. 10 is created in advance, and the value of DH 2 O corresponding to the relative humidity of the electrolyte membrane 23 is created using this characteristic map.
  • the relative humidity ⁇ of the electrolyte membrane 23 estimated at the time of shutdown of the fuel cell stem 1 in the previous operation the relative humidity ⁇ of the electrolyte membrane 23 estimated when the fuel cell stem 1 is left (stopped), or the fuel cell.
  • the value ( ⁇ ) of DH 2 O used for the current estimation can be determined from the map.
  • step S4 shown in FIG. 8 the water movement speed VH2O, CA ⁇ AN , dew point Td, CA , dew point Td, AN , temperature TOUT, i , air back pressure Pair, i , hydrogen pressure PH2, i
  • a current density i x (where x is an arbitrary natural number) is calculated using a map.
  • the current density i x is a current density in an arbitrary area in the cell plane.
  • step S4 a current distribution and a relative humidity distribution in the cell plane are calculated.
  • Functions I and RH indicating these are expressed as follows.
  • each parameter ( Td, CA , Td, AN , TOUT, i , Pair, i , PH2, i , Qair, i , QH2, i , VH2O, CA of the functions I and RH ⁇ Sensitivity to AN , i x ) is mapped in advance. Further, the overvoltage distribution in the cell plane may be calculated from these parameters.
  • I f (T d, CA , T d, AN, T OUT, i, P air, i, P H2, i, Q air, i, Q H2, i, V H2O, CA ⁇ AN, i x)
  • RH f (T d, CA , T d, AN, T OUT, i, P air, i, P H2, i, Q air, i, Q H2, i, V H2O, CA ⁇ AN, i x)
  • FIG. 12 is a diagram showing an example of the relative humidity distribution in the cell plane (relative humidity distribution of the reaction gas flow path and the electrolyte membrane) calculated in step S4.
  • the flow form of the counter flow is taken as an example in this embodiment so that the flow of hydrogen gas and air is shown in relation to the position in the cell plane.
  • the AN channel hydrogen channel 25A
  • the CA channel air channel 25B
  • the relative humidity is less than 100% on the air outlet 28b side.
  • the center part center part of the single cell 2 is in a supersaturated state.
  • step S5 shown in FIG. 8 for each of the anode side and the cathode side, the degree of supersaturation ⁇ 1 (relative humidity exceeds 100%) and the degree of unsaturation ⁇ 2 (relative) from the result of the relative humidity distribution shown in FIG.
  • the liquid water generation rate V vap ⁇ liq and the liquid water evaporation rate V liq ⁇ vap are calculated by the following equations. This is because V vap ⁇ liq and V liq ⁇ vap in the hydrogen flow path 25A and the air flow path 25B are calculated in consideration of the change of the water phase (gas phase, liquid phase) in the reaction gas flow path. It was decided.
  • the coefficients k 1 and k 2 are factors due to temperature and water repellency, and are due to the physical properties of the reaction gas flow path.
  • the coefficients k 1 and k 2 are mapped in advance from the experiment.
  • step S6 shown in FIG. 8 the water movement speed V_liq in the reaction gas flow path is calculated by the following equation for each of the anode side and the cathode side. Since the liquid water is blown off by the flow of the reaction gas in the reaction gas channel and is discharged from the cell surface, the water movement speed V_liq in each of the hydrogen channel 25A and the air channel 25B is set in consideration of this. It is decided to calculate.
  • V_liq k 3 ⁇ V_gas
  • the water movement speed V_liq is the movement speed of the liquid water blown off by the reaction gas.
  • V_gas is a water vapor flow rate in the reaction gas flow path, and is calculated from a map relating to a state quantity such as a reaction gas supply flow rate or a water vapor partial pressure.
  • Coefficient k 3 is the factor with temperature or water repellency is due to the physical properties of the reaction gas channel. Coefficient k 3 is mapped in advance from experiments.
  • FIG. 13 is a diagram showing an example of the residual water amount distribution in the cell plane calculated through steps S4 to S6.
  • This residual water amount distribution is based on the relative humidity distribution (FIG. 12) of the reaction gas flow path calculated in step S4, and the change in liquid water in the reaction gas flow path (that is, V vap ⁇ liq calculated in steps S5 and S6). , V liq ⁇ vap and V_liq).
  • the hydrogen outlet 27b side has a larger amount of residual water than the hydrogen inlet 27a side, and in the air channel 25B, the residual water amount gradually decreases toward the air outlet 28b side.
  • the moisture content distribution in the cell plane can be obtained from the relative humidity distribution (FIG. 12) of the electrolyte membrane 23 calculated in step S4, and approximated to this relative humidity distribution. It will be a thing.
  • the amount of residual water and the change in water content (water balance) of the single cell 2 i in a certain calculation time can be calculated, the residual water amount distribution in the hydrogen passage 25A, the residual water amount distribution in the air passage 25B, and the electrolyte.
  • the moisture content distribution of the membrane 23 can be obtained. It is possible to calculate the water balance with the roughness of sensitive meshes (for example, five meshes shown in FIG. 13) in the cell plane, and accurately estimate how much residual water content and water content exist in which part. be able to.
  • T IN for temperature variation flow distribution variation in consideration each single cell 2 i in the cell lamination direction during estimation, i, T OUT, i, P air, i, P H2, i, Q air, i and Q H2, i Is obtained as follows.
  • T IN is a value detected by the temperature sensor T1.
  • Q LLC is the flow rate of the refrigerant supplied to the fuel cell 1 and can be estimated from the rotational speed of the cooling pump 50 and other detected values.
  • a flow rate sensor may be provided in the refrigerant flow path 51, and a detection value obtained by the flow rate sensor may be used.
  • T outside air is a detected value by the outside air temperature sensor 62
  • V vehicle speed is a detected value by the vehicle speed sensor 63.
  • the heat radiation increases as the distance from the reactant gas supply port 14 increases, that is, as the cell channel “i” increases.
  • the influence of heat dissipation changes according to the refrigerant flow rate, the outside air temperature, and the vehicle speed.
  • the larger the refrigerant flow rate Q LLC (Q 1 > Q 2 ) the less the stack inlet temperature TIN is affected by heat dissipation. That is, the cell inlet temperature T IN, i need not be lower than the stack inlet temperature T IN .
  • the higher the T outside air is (T outside air 1 > T outside air 1 ) the less the stack inlet temperature TIN is affected by heat radiation.
  • the cell inlet temperature TIN , i is calculated as the following function in consideration of such a decrease in the refrigerant temperature due to heat dissipation (step S12).
  • T IN, i f (Q LLC , T IN , T outside air , V vehicle speed )
  • the cell inlet temperature T IN, i corresponding to the cell channel i can be obtained from the above values of Q LLC , T IN , T outside air, and vehicle speed.
  • step S21 air flow rate Q air , air back pressure P air , stack inlet temperature T IN , stack outlet temperature T OUT and current value I are read (step S21).
  • the air flow rate Q air , the air back pressure P air and the stack outlet temperature T OUT are values detected by the flow rate sensor F1, the pressure sensor P1 and the temperature sensor T2, respectively.
  • the gas density of the air flowing into the manifold 15a is calculated as a function of the stack inlet temperature T IN and the air flow rate Q air .
  • determining the P-Q characteristic of the single cell 2 i (characteristic representing the relationship between the air back pressure and air flow rate). For example, as shown in FIG. 17, a map showing PQ characteristics (pressure-flow characteristics) corresponding to a plurality of remaining water amounts (x> y) is acquired in advance, and immediately before the calculation shown by the flow shown in FIG. PQ characteristics corresponding to the remaining water amount (total amount of cathode-side residual water of the single cell 2 i ) are determined.
  • cell inlet pressure distribution cell inlet flow distribution as a function of air flow rate Q air , air back pressure P air , stack outlet temperature T OUT , gas density calculated above, and PQ characteristics of each single cell 2 i
  • the cell outlet pressure distribution is calculated from the map (step S23). An example of these is shown in FIGS. 18A to 18C.
  • the cell inflow flow rate shown in FIG. 18B and the cell outlet pressure shown in FIG. 18C correspond to the air flow rate Q air, i and the air back pressure P air, i corresponding to the cell channel i. Yes (step S24).
  • the hydrogen flow rate Q H2, i and the hydrogen pressure P H2, i of the single cell 2 i are also calculated by the same method as the calculation of the air flow rate Q air, i and the air back pressure P air, i. can do.
  • the cell inlet pressure shown in FIG. 18A corresponds to the hydrogen pressure PH2, i
  • the cell inflow rate shown in FIG. 18B corresponds to the hydrogen flow rate QH2, i .
  • the stack outlet temperature T OUT is read as the detection value of the temperature sensor T2 (step S31). Further, as in the case of the stack inlet temperature T IN described above, the refrigerant flow rate Q LLC , the outside air temperature T outside air , and the vehicle speed V vehicle speed are read. Further, reads the cell voltage V i and the current value I, to estimate the heat generation amount Q cell, i of each single cell 2 i from the I-V characteristic of each unit cell 2 i.
  • the voltage value of each single cell 2 i detected by a cell monitor can be used as the cell voltage V i .
  • the cell voltage V i can be set by providing each single cell 2 i with an IV map (depending on power generation amount, air flow rate, hydrogen flow rate, air back pressure, hydrogen pressure). It can also be estimated.
  • the calorific value Q cell, i is due to heat generation due to T ⁇ S and heat loss due to overvoltage.
  • the stack outlet temperature T OUT is affected by heat radiation depending on the position of the single cell 2 i in the cell stack 3. For example, as shown in FIG. 20, the stack outlet temperature T OUT is less affected by heat dissipation as the refrigerant flow rate Q LLC increases (Q LLC1 ⁇ Q LLC2 ).
  • the cell outlet temperature T OUT, i is calculated as the following function in consideration of the heat generation amount Q cell, i , the refrigerant flow rate Q LLC, i and the heat radiation (step S32).
  • T OUT, i f (Q cell, i , Q LLC, i , T OUT , T outside air , V vehicle speed )
  • the cell outlet temperature T OUT, i corresponding to the cell channel i can be obtained from each detected value or estimated value indicated by these parameters.
  • Q LLC, i is the refrigerant flow rate supplied to each single cell 2, and the distribution amount of the refrigerant flow rate Q LLC when considering the fuel cell stack 1 as one point is taken into consideration.
  • a map representing the relationship between the refrigerant flow rate Q LLC and the cell channel i is created in advance for each of the several refrigerant flow rates Q LLC , and this map is used to select the Q corresponding to the cell channel i. LLC, i can be calculated.
  • the temperature distribution in the cell stacking direction (the amount of heat radiation) of the state quantity of each single cell 2 i .
  • the intermittent operation refers to an operation in which the power generation of the fuel cell 1 is stopped under a light load condition (such as idling) where the system efficiency of the fuel cell 1 decreases.
  • the operation of the auxiliary devices compressor 33, injector 45, hydrogen pump 46, etc.
  • the driving force required during the intermittent operation and the auxiliary power of the fuel cell vehicle are supplied from an auxiliary power source such as a secondary battery (not shown).
  • the storage unit 65 of the control device 600 stores a mode in which intermittent operation is performed and a normal operation mode in which intermittent operation is not performed.
  • the operation control unit 68 switches from the normal operation mode to the intermittent operation mode. Switch as necessary to perform intermittent operation.
  • a plurality of examples for changing the contents of intermittent operation in this control example will be described.
  • the first control example changes the content of intermittent operation in the sense of prohibiting intermittent operation.
  • step S101 the residual water amount distribution and the water content distribution of each of the hydrogen flow paths 25A and the air flow paths 25B of all the single cells 2 are estimated by the above estimation method.
  • This estimation is executed by the estimation unit 67.
  • step S102 it is determined whether or not the estimated remaining water amount is greater than or equal to a threshold value. This determination is made by the operation control unit 68.
  • step S102 When the estimated remaining water amount is less than the threshold value (step S102: No), the operation control unit 68 permits the intermittent operation of the fuel cell 1. (Step S103). This is because, if the remaining water amount is less than the threshold value, there is no possibility that the cell voltage will drop after the intermittent operation even if the intermittent operation mode is executed. On the other hand, when the estimated remaining water amount is equal to or greater than the threshold (step S102: Yes), the operation control unit 68 prohibits intermittent operation (step S104).
  • the remaining water amount (estimated value) to be compared with the threshold value in step S102 is the remaining water amount in all parts of the hydrogen channel 25A and the air channel 25B.
  • the threshold value used for the comparison differs between the hydrogen flow path 25A side and the air flow path 25B side, and also varies depending on the position of the single cell 2 in the cell stacking direction, and further depends on the position in the cell plane. Is also different. This is because the discharge of liquid water carried away by the flow of the reaction gas differs depending on the type of the reaction gas (hydrogen gas, air), the position in the cell stacking direction, and the position in the cell plane. This point will be specifically described with reference to FIGS.
  • the single cell 2 (end cell 2a) located on the far side in the cell stacking direction is less likely to flow the reaction gas due to pressure loss or the like in the manifold 15a. That is, the closer the single cell 2 is to the front side in the cell stacking direction, the easier it is for the reaction gas to flow from the gas inlet (27a, 28a) to the gas outlet (28a, 28b), and the higher the drainage of liquid water.
  • the back side and the near side in the cell stacking direction refer to the downstream side and the upstream side in the reaction gas supply direction in the cell stack 3, respectively.
  • the flow path form of the counterflow is taken as an example so that the flow of hydrogen gas and air is shown in relation to the position in the cell plane.
  • FIG. 23A and FIG. 23B are diagrams showing the relationship between the threshold used in the single cell 2 located on the innermost side in the cell stacking direction and the position in the hydrogen flow path 25A and the air flow path 25B.
  • the arrows on the horizontal axis shown in these figures indicate the flow directions of hydrogen gas and air in the cell plane, and these flow directions coincide with the flow directions shown in FIG. Therefore, for example, in FIG. 23A, the intersection of the vertical axis and the horizontal axis is the hydrogen outlet 27b, and a larger threshold is used as the position is closer to the hydrogen outlet 27b.
  • FIG. 23A the intersection of the vertical axis and the horizontal axis is the hydrogen outlet 27b, and a larger threshold is used as the position is closer to the hydrogen outlet 27b.
  • the intersection of the vertical axis and the horizontal axis is the air inlet 28a, and a larger threshold is used as the position is closer to the air outlet 28b.
  • the larger threshold value is set to a position closer to the gas outlets (27b, 28b) because the accumulated liquid water is easily discharged as described above.
  • FIG. 24A and FIG. 24B are diagrams showing the relationship between the threshold used in the single cell 2 located on the most front side in the cell stacking direction and the position in the hydrogen flow path 25A and the air flow path 25B. Similar to FIG. 23A, in FIG. 24A, the intersection of the vertical axis and the horizontal axis is the hydrogen outlet 27b, and a larger threshold is used as the position is closer to the hydrogen outlet 27b. This also applies to FIG. 24B. As can be understood by comparing FIG. 23A and FIG. 24A, for the same position in the cell plane, a threshold value larger on the near side than on the far side in the cell stacking direction is used. For example, the threshold value in the vicinity of the hydrogen outlet 27b has a relationship of g A, 1 ⁇ g A, 2 . This is because, as described above, the liquid water that accumulates is more easily discharged as it is closer to the cell stacking direction.
  • the threshold value used in step S102 is not a constant value, but a predetermined value corresponding to the position where liquid water is present is used in consideration of drainage.
  • intermittent operation can be accurately prohibited when the amount of remaining water is large. Thereby, the increase in the amount of remaining water accompanying execution of intermittent operation can be suppressed, and the fall of the cell voltage resulting from the water pool by intermittent operation can be suppressed accurately. In addition, fuel efficiency can be improved as a whole system. In particular, since the threshold value is changed depending on the location and amount of liquid water, the prohibition of intermittent operation can be appropriately executed.
  • step S104 both after the prohibition of the intermittent operation (step S104) and after the permission of the intermittent operation (step S103), the process returns to step S101 and this flow is performed.
  • Second control example (scavenging process before intermittent operation)
  • the second control example changes the content of the intermittent operation in the sense that the scavenging process is performed before the intermittent operation.
  • step S111 the residual water amount distribution and the water content distribution of all the single cells 2 are estimated (step S111), and is the estimated residual water amount equal to or greater than the threshold value? It is determined whether or not (step S112).
  • the threshold used in step S112 is also the same as the threshold used in step S102 (see: FIGS. 23A and B and FIGS. 24A and 24B).
  • step S112 No
  • the intermittent operation is permitted without performing the scavenging process of the fuel cell 1.
  • step S114 the scavenging process of the fuel cell 1 is executed (step S114). Since the remaining water amount is reduced by the scavenging process, the intermittent operation is permitted after the scavenging process is executed (step S114) (step S113).
  • the scavenging process can be performed with a certain control amount and control time. However, it is desirable to appropriately change the mode of the scavenging process in consideration of the water distribution of the fuel cell 1 estimated by the estimation unit 67. Specifically, the operation control unit 68 determines the gas system for performing the scavenging process, and the control amount and the control time in the scavenging process, according to at least one of the position and the size of the remaining water amount equal to or greater than the threshold. . For example, the control amount and the control time in the scavenging process are increased as the remaining water amount equal to or greater than the threshold value is increased.
  • examples of the position of the remaining water amount to be considered when changing the mode of the scavenging process include (1) the anode-side / cathode-side flow path to be subjected to the scavenging process, and (2) the cell stacking direction and the cell surface. The position in is mentioned.
  • Anode-side / cathode-side channel For example, when it is estimated that the remaining water amount equal to or greater than the threshold is in the hydrogen channel 25A, the scavenging process is performed on the hydrogen channel 25A.
  • the scavenging process in this case can be performed, for example, by rotating the hydrogen pump 46 and taking away the liquid water in the hydrogen flow path 25A with the gas fed thereby.
  • the scavenging process is performed on the air flow path 25B.
  • the scavenging process in this case can be performed, for example, by supplying air with the compressor 33 in a state where the supply of hydrogen gas to the fuel cell 1 is stopped and taking away liquid water in the air flow path 25B with air. Note that the air back pressure may be lowered by the back pressure valve 34.
  • the remaining water amount on the side where the remaining water amount exceeds the threshold can be appropriately reduced.
  • the flow rate of hydrogen gas and air is increased while keeping the power generation amount of the fuel cell 1 constant (that is, the stoichiometric ratio is increased).
  • an inert gas for example, nitrogen
  • the reaction gas passage at least one of the hydrogen passage 25A, the air passage 25B, or both. It is also possible to perform a scavenging process.
  • the discharge of liquid water differs depending on the position of the single cell 2 in the cell stacking direction and the position in the cell plane.
  • the scavenging gas is air from the compressor 33, hydrogen gas from the hydrogen pump 46, or inert gas from equipment not shown.
  • the efficiency of the scavenging process can be improved by executing the scavenging process in consideration of the discharge performance of the liquid water.
  • the scavenging process can be performed accurately when the residual water amount is large, and the residual water amount can be reduced. . Thereby, even if the intermittent operation permitted after the scavenging process is performed, it is possible to suppress the amount of remaining water from becoming excessive, and thus it is possible to suppress a decrease in the cell voltage after the intermittent operation. As shown in FIG. 25, after permitting intermittent operation (step S113), the process returns to step S111, and this flow is performed.
  • the water distribution is estimated even during the scavenging process in step S124 (step S125).
  • the estimation of the water distribution estimates the residual water amount distribution and the water content distribution of each of the hydrogen flow paths 25A and the air flow paths 25B of all the single cells 2 in the same manner as the water distribution estimation in step S101 described above.
  • it is determined whether or not the estimated remaining water amount is less than a threshold value (step S126). Note that the threshold value used in step S126 is the same as the threshold value used in step 102 described above.
  • Step S126 If it is determined that the estimated remaining water amount is equal to or greater than the threshold value (No at Step S126), the scavenging process and the water distribution are subsequently estimated (Steps S124 and S125). On the other hand, when it is determined that the estimated remaining water amount is less than the threshold (step S126: Yes), the scavenging process is terminated and the intermittent operation of the fuel cell 1 is permitted. (Step S123).
  • intermittent operation can be permitted after confirming that the amount of remaining water has been reduced by the scavenging process by the above-described accurate estimation method.
  • the fall of the cell voltage after an intermittent operation can be suppressed more reliably than the case shown in FIG.
  • the water distribution is estimated while the scavenging process is performed, and the scavenging process is terminated based on the estimated water distribution. For this reason, unlike the second control example, it is not necessary to determine the control amount and the control time in the scavenging process according to the position and size of the remaining water amount equal to or greater than the threshold value.
  • the following method may be executed in addition to the method of estimating the water distribution during the scavenging process. That is, after the scavenging process is performed to some extent, the scavenging process is temporarily stopped to estimate the water distribution, and it is determined whether or not the estimated remaining water amount is less than the threshold value. As a result, when it is less than the threshold value, intermittent operation is permitted without performing the scavenging process. On the other hand, if it is equal to or greater than the threshold value, the scavenging process is executed again and the water distribution is estimated again.
  • Third control example supply stop of only one of the reaction gases
  • the supply of the reaction gas is not stopped only for the flow path in which the remaining water amount equal to or greater than the threshold is estimated.
  • This third control example changes the content of the intermittent operation in the sense that the intermittent operation is permitted after the water distribution is estimated, as compared with the case where the intermittent operation is uniformly performed without estimating the water distribution. Is. In this sense, it is common to the first and second control examples.
  • step S134 when the estimated remaining water amount is equal to or greater than the threshold (step S32: Yes), the reaction gas is not stopped only for the electrode side having the remaining water amount equal to or greater than the threshold (step S134).
  • the reaction gas is not stopped only for the electrode side having the remaining water amount equal to or greater than the threshold (step S134).
  • step S134 when it is estimated that the amount of remaining water equal to or greater than the threshold is in the hydrogen flow path 25A, the supply of hydrogen gas to the hydrogen flow path 25A is continued, while the supply of air to the air flow path 25B is continued. To stop.
  • the remaining water amount equal to or greater than the threshold when it is estimated that the remaining water amount equal to or greater than the threshold is in the air flow path 25B, the supply of air is continued to the air flow path 25B, while the supply of hydrogen gas to the hydrogen flow path 25A.
  • liquid water is discharged from the reaction gas channel having a remaining water amount equal to or greater than the threshold by supplying the reaction gas while suppressing generation of new water in the fuel cell 1 in which power generation stops. can do. Therefore, the amount of remaining water equal to or greater than the threshold can be accurately reduced, so that the intermittent operation can be executed in a state where there is no concern about water accumulation due to the intermittent operation. Therefore, it is possible to suppress a decrease in cell voltage after intermittent operation.
  • the supply of only one of the reaction gases in step 134 is performed for a certain period of time, and then the process returns to step S131 again to perform this flow.
  • Fourth control example driving auxiliary equipment during intermittent operation
  • auxiliary devices such as the compressor 33, the injector 45, and the hydrogen pump 46
  • the content of the intermittent operation is changed in the sense that the anode side auxiliary machines are moved even during the intermittent operation while the power generation of the fuel cell 1 is stopped.
  • Steps S141 and S142 shown in FIG. 28 are the same as steps S101 and S102 shown in FIG. 21, but these are performed during intermittent operation.
  • step 142 when the estimated remaining water amount is less than the threshold value (step 142: No), the circulation of hydrogen gas to the anode electrode 24A is continuously stopped (step S143). That is, the fuel cell 1 is maintained in a state where neither air nor hydrogen gas is supplied.
  • step S144 hydrogen gas is circulated during the intermittent operation (step S144). That is, the hydrogen pump 46 is driven to perform a circulation operation process for supplying the hydrogen off-gas to the anode electrode 24A again. At this time, hydrogen gas from the hydrogen supply source 40 is not supplied to the anode electrode 24A, but only hydrogen off-gas is circulated and supplied to the anode electrode 24A. By the circulation operation process, liquid water can be discharged from the hydrogen flow path 25A, and the amount of residual water can be reduced. In the circulation operation process in step 144, it is preferable to open the purge valve 48 at a predetermined timing to discharge the liquid water taken away by the hydrogen off gas.
  • the hydrogen pump 46 can be driven ON / OFF.
  • the method of driving the hydrogen pump 46 (the control amount and the control amount) according to at least one of the position and the size of the remaining water amount equal to or greater than the threshold value. It is preferable to change the control time. An example of this will be described with reference to FIG.
  • Curves L 1 to L 3 in FIG. 29 are control lines of the hydrogen pump 46 used in the circulation operation process according to the position and magnitude of the remaining water amount equal to or greater than the threshold value.
  • the control line L 3 used in case the threshold value or more residual water content is relatively large, the control line L 1 is used if the threshold or more residual water content is relatively low. Further, there is a threshold or more residual water content position, if it is located close to the gas inlet (27a, 28a) in the cell lamination direction of the back side or cell surface, it is used control line L 3.
  • the fourth control example since the estimation result of the water distribution with high accuracy is used, when the remaining water amount is large during intermittent operation, the circulation operation process can be performed with high accuracy. it can. Thereby, since the amount of residual water can be reduced, the fall of the cell voltage by the water pool after an intermittent operation can be suppressed.
  • the fourth control example is advantageous when liquid water is accumulated in the hydrogen flow path 25A. As a modification of the fourth control example, it is also possible to drive the compressor 33 during intermittent operation when the estimated remaining water amount is greater than or equal to a threshold value.
  • 1 is a perspective view of a fuel cell according to an embodiment. It is a side view which shows a part of inside of the fuel cell which concerns on embodiment. It is sectional drawing of the single cell which concerns on embodiment. It is a top view of the separator which concerns on embodiment. It is a schematic plan view which shows the flow-path shape of the separator which concerns on the 1st modification of embodiment. It is a schematic plan view which shows the flow-path shape of the separator which concerns on the 2nd modification of embodiment. It is a schematic plan view which shows the flow-path shape of the separator which concerns on the 3rd modification of embodiment.
  • 1 is a configuration diagram of a fuel cell system according to an embodiment. It is a functional block diagram of a control device concerning an embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 【課題】間欠運転のモードを取り入れている燃料電池システムにおいて、残水量の推定精度を向上し、間欠運転による水溜りを起因としたセル電圧の低下を精度良く抑制することを目的とする。 【解決手段】燃料電池システムは、セル積層体を含む燃料電池と、電解質膜を介してアノード電極とカソード電極との間で行われる水移動を考慮して、各単セルのセル面内における反応ガス流路の残水量分布及び電解質膜の含水量分布を推定する推定部と、推定部により推定された反応ガス流路の残水量が所定の閾値以上である場合に、間欠運転の内容を変更する運転制御部と、を備えたものである。

Description

燃料電池システム
 本発明は、固体高分子型燃料電池の水分量の推定を利用した燃料電池システムに関する。
 従来から広く知られているように、固体高分子型燃料電池で効率良く発電を行うには、電解質膜を適度な湿潤状態とし、燃料電池内の水分量を過不足な状態にしないことが望ましい。燃料電池のセル面内における水分量を制御する技術として、例えば特許文献1に記載のものが知られている。この特許文献1は、反応ガス(空気に代表される酸化ガス及び水素ガスに代表される燃料ガスの総称。)の圧力、湿度、温度、流量及び流路形状による圧損特性の少なくとも一つを調整して、セル面内の液滴または水蒸気としての水分量の分布を制御することを開示している。
特開2004-335444号公報
 しかしながら、実際の単セルでは、アノード電極とカソード電極との間で電解質膜を通った水分の移動がある。この点、特許文献1では、電極間の水移動を考慮しておらず、セル面内における水分量の分布を精度良く推定し制御することが難しい。
 また一般に、燃費向上のために燃料電池の間欠運転を行うモードを取り入れている燃料電池システムもある。この間欠運転では、アノード電極及びカソード電極に反応ガスを供給する補機類の作動を停止する。
 しかし、間欠運転中に、停止前から残る空気及び水素ガスが成り行きで電気化学反応して、水が生成され得る場合がある。また、外気温が低い場合にあっては、水蒸気が凝縮する場合もある。その結果、間欠運転中に、反応ガスの流路に液水としての残水量が多くなり、間欠運転後に、反応ガスを供給して燃料電池から電流を取り出そうとすると、残水量の多い単セルでセル電圧が下がり、電極の触媒が劣化するおそれがある。
 本発明は、間欠運転のモードを取り入れている燃料電池システムにおいて、残水量の推定精度を向上し、間欠運転による水溜りを起因としたセル電圧の低下を精度良く抑制することをその目的としている。
 上記目的を達成するべく、本発明の燃料電池システムは、アノード電極、カソード電極、これらの間の電解質膜、及び反応ガス流路を有する単セルを複数積層してなるセル積層体を含む燃料電池を備えると共に、燃料電池の間欠運転を行うモードを備えるものにおいて、電解質膜を介してアノード電極とカソード電極との間で行われる水移動を考慮して、各単セルのセル面内における反応ガス流路の残水量分布及び電解質膜の含水量分布を推定する推定部と、推定部により推定された反応ガス流路の残水量が所定の閾値以上である場合に、間欠運転の内容を変更する運転制御部と、を備えたものである。
 本発明によれば、電極間の水移動を考慮しているので、セル面内のみならずセル積層方向の残水量分布及び含水量分布の推定精度を向上することができる。そして、この向上した推定結果を利用して間欠運転の内容を変更するので、間欠運転による水溜りを起因としたセル電圧の低下を精度良く抑制することができる。例えば、閾値以上の残水量が推定された場合に、残水量のさらなる増加を抑制したり、あるいは残水量の低減を推進したりするように、間欠運転の内容を変更することができる。
 好ましい一態様によれば、運転制御部は、閾値以上の残水量が推定された場合に、間欠運転を禁止するとよい。
 こうすることで、間欠運転の実行に伴う残水量の増加を抑制することができるため、間欠運転による水溜りを起因としたセル電圧の低下を精度良く抑制することができる。
 別の好ましい態様によれば、運転制御部は、アノード電極側及びカソード電極側のうち閾値以上の残水量が推定された方に対してのみ、反応ガスの供給を停止しないようにしてもよい。
 こうすることで、反応ガスの供給によって残水量の排出を促進することができ、セル電圧の低下を精度良く抑制することができる。
 また別の好ましい態様によれば、運転制御部は、閾値以上の残水量が推定された場合に、燃料電池を掃気処理した後で間欠運転を許可するとよい。
 こうすることで、掃気処理により残水量を減らすことができるので、間欠運転を実行しても残水量が過剰にならずに済む。これにより、間欠運転後のセル電圧の低下を抑制することができる。
 より好ましくは、運転制御部は、閾値以上の残水量の位置及び大きさの少なくとも一方に応じて、掃気処理における制御量及び制御時間の少なくとも一つを変更するとよい。
 これにより、掃気処理の効率を向上することができる。例えば、残水量が比較的少ない場合には、残水量が比較的多い場合よりも掃気処理の制御時間を短くすれば、掃気時間を短縮することができる。
 ここで、反応ガスの流れによる反応ガス流路の水の排出性は、セル積層方向の位置及びセル面内の位置で異なる。排出され難い位置に水が溜まっている場合には、セル電圧の低下のおそれがあるので、掃気処理をしっかりと行うことが望ましい。
 したがって、本発明の好ましい一態様において、セル積層体が、セル積層方向に反応ガスを供給されることにより各単セルの反応ガス流路に反応ガスを供給されるように構成されている場合、運転制御部は、セル積層体における反応ガスの供給方向下流側の単セルほど、掃気処理における制御量及び制御時間の少なくとも一つを大きくするとよい。また、運転制御部は、セル面内における反応ガス流路への反応ガスの入口側ほど、掃気処理における制御量及び制御時間の少なくとも一つを大きくするとよい。
 このような構成によれば、セル積層方向又はセル面内における排出され難い位置に水が溜まっている場合に、掃気処理を適切に行うことができる。
 また、好ましくは、反応ガス流路は、アノード電極に燃料ガスを供給する燃料ガス流路と、カソード電極に酸化ガスを供給する酸化ガス流路と、を有するとよい。そして、運転制御部は、閾値以上の残水量が燃料ガス流路にあると推定された場合に、燃料ガス流路に対して掃気処理を実行する一方、閾値以上の残水量が酸化ガス流路にあると推定された場合に、酸化ガス流路に対して掃気処理を実行するとよい。
 こうすることで、燃料ガス流路と酸化ガス流路とで切り分けて必要な掃気処理を行うことができる。
 さらに、好ましくは、推定部は、掃気処理中も残水量分布を推定するとよく、運転制御部は、掃気処理中に推定された残水量が所定の閾値よりも小さくなった場合に、間欠運転を許可するとよい。
 これにより、残水量が低減したことを推定により確認してから間欠運転を許可するので、間欠運転による水溜りを確実性良く抑制することができる。
 また、別の好ましい一態様によれば、運転制御部は、閾値以上の残水量が推定された場合に、アノード電極側から排出される燃料ガスを再度アノード電極へ供給する循環運転処理を間欠運転中に行うとよい。
 こうすることで、間欠運転中にアノード電極側で残留水が溜まるのを抑制することができ、間欠運転後のセル電圧の低下を抑制することができる。
 この場合、運転制御部は、閾値以上の残水量の位置及び大きさの少なくとも一方に応じて、循環運転処理における制御量及び制御時間の少なくとも一つを変更するとよい。
 これにより、上記掃気処理の場合と同様に、循環運転処理の効率を向上することができる。
 好ましくは、上記した所定の閾値は、燃料ガス流路側と酸化ガス流路側との間、セル積層方向における単セルの位置、又は、セル面内における反応ガス流路への反応ガスの入口側と出口側との間で異なるとよい。
 これにより、燃料ガス流路及び酸化ガス流路のそれぞれの特性や、上記した水の排出性に応じた閾値を用いることができる。
 以下、添付図面を参照して、本発明の好適な実施形態について説明する。先ず、燃料電池及びその水分量推定装置を含む燃料電池システムの概要について説明し、次いで、燃料電池の水分量の推定及びその推定を利用した制御例について説明する。以下では、燃料ガスとして水素ガスを例に説明し、酸化ガスとして空気を例に説明し、燃料ガス及び酸化ガスを反応ガスと総称することがある。
A.燃料電池の概要
 図1及び図2に示すように、スタック構造の燃料電池1は、固体高分子電解質型の単セル2を複数積層してなるセル積層体3を有する。セル積層体3の両端にある単セル2(以下、「端部セル2a」という。)の外側に、それぞれ、集電板5a、5b、絶縁板6a、6b及びエンドプレート7a、7bが配置される。テンションプレート8,8がエンドプレート7a、7b間に架け渡されてボルト9で固定され、エンドプレート7bと絶縁板6bとの間に弾性モジュール10が設けられる。
 水素ガス、空気及び冷媒は、エンドプレート7aの供給口11a,12a及び13aに接続した供給管14からセル積層体3内のマニホールド15aに供給される。その後、水素ガス、空気及び冷媒は、単セル2の平面方向に流れて、セル積層体3内のマニホールド15bに至り、エンドプレート7aの排出口11b,12b及び13bに接続した排出管16から燃料電池1外に排出される。なお、供給管14、マニホールド15a,15b及び排出管16は、水素ガス、空気及び冷媒の各流体に対応して設けられているが、図2では同一符号を付して説明を省略している。
 図3に示すように、単セル2は、MEA20及び一対のセパレータ22A,22Bを備える。MEA20(膜―電極アッセンブリ)は、イオン交換膜からなる電解質膜23と、電解質膜23を挟んだアノード電極24A及びカソード電極24Bと、で構成される。電極24Aにはセパレータ22Aの水素流路25Aが面し、電極24Bにはセパレータ22Bの空気流路25Bが面する。また、セパレータ22A,22Bの冷媒流路26A,26Bが、隣接する単セル2,2間で連通する。
 図4は、セパレータ22Aの平面図である。セパレータ22Aは、水素流路25Aの外側にそれぞれ貫通形成された水素入口27a、空気入口28a、冷媒入口29a、水素出口27b、空気出口28b及び冷媒出口29bを有する。入口27a、28a及び29aは、それぞれの流体に対応するマニホールド15aの一部を構成し、同様に、出口27b、28b及び29bは、それぞれの流体に対応するマニホールド15bの一部を構成する。
 セパレータ22Aでは、水素ガスが入口27aから水素流路40に導入され、出口27bへと排出される。この点、冷媒の流れも同様である。また、詳述しないが、セパレータ22Aと同様に構成されたセパレータ22Bでも、その平面方向に空気が流れる。このようにして、単セル2内の電極24A、24Bに水素ガス及び空気が供給され、それによりMEA20内で電気化学反応が生じ、起電力が得られる。また、この電気化学反応により、電極24B側に水が生成されると共に発熱する。そして、冷媒が流れることで、各単セル2の熱が低減される。
 図5A~Cは、本実施形態を適用可能なセパレータの他の流路形状を示す概略平面図である。図4に示した直線溝流路(凹凸の繰り返しが一方向に延びるもの。)の態様に代えて、図5Aに示すように、流路25A、25B、26A,26Bの流路形状を、途中に折り返し部があるサーペンタイン流路形状とすることもできる。また、図5Bに示すように、流路25A,25B,26A,26Bを波状とすることもできるし、図5Cに示すように、凹凸をなくした平板状とすることもできる。さらに、反応ガスの流し方についても、図1及び図4から理解されるようなコフロータイプ(水素ガス及び空気が同方向に流れる。)に代えて、水素ガスと空気とが逆方向に流れるカウンターフロータイプを採用することもできる。また、セパレータ22A,22Bの向きも縦、横のどちらでもよい。つまり、後述する燃料電池1の水分量の推定は、燃料電池1のハード構成に限定されるものではない。
B.燃料電池システムの概要
 図6に示すように、燃料電池システム100は、空気配管系300、水素配管系400、冷媒配管系500及び制御装置600を備える。燃料電池システム100は、車両、船舶、飛行機、ロボットなどの各種移動体に搭載できるほか、定置型電源にも適用可能である。ここでは、自動車に搭載した燃料電池システム100を例に説明する。
 空気配管系300は、燃料電池1に空気を給排するものであり、加湿装置30、供給流路31、排出流路32及びコンプレッサ33を有する。コンプレッサ33により大気中のエア(低湿潤状態の空気)が取り込まれて加湿装置30に圧送され、加湿装置30にて高湿潤状態の酸化オフガスとの間で水分交換が行われる。その結果、適度に加湿された空気が供給流路31から燃料電池1に供給される。排出流路32には、燃料電池1のエア背圧を調整する背圧弁34が設けられる。また、背圧弁34の近傍には、エア背圧を検出する圧力センサP1が設けられる。コンプレッサ33には、燃料電池1へのエア供給流量を検出する流量センサF1が設けられる。
 水素配管系400は、燃料電池1に水素ガスを給排するものであり、水素供給源40、供給流路41、循環流路42及びシャットバルブ43などを有する。水素供給源40からの水素ガスは、レギュレータ44によって減圧された後、インジェクタ45によって流量及び圧力を高精度に調整される。その後、水素ガスは、循環流路42上の水素ポンプ46によって圧送された水素オフガスと合流点Aで合流して、燃料電池1に供給される。循環流路42には、パージ弁48付きのパージ路47が分岐接続されており、パージ弁48を開弁することで、水素オフガスが排出流路32に排出される。合流点Aの下流側には、燃料電池1への水素ガスの供給圧力を検出する圧力センサP2が設けられる。また、水素ポンプ46には、流量センサF2が設けられる。なお、別の実施態様では、燃料オフガスを水素希釈器などに導入してもよいし、循環流路42に気液分離器を設けてもよい。
 冷媒配管系500は、燃料電池1に冷媒(例えば冷却水)を循環供給するものであり、冷却ポンプ50、冷媒流路51、ラジエータ52、バイパス流路53及び切替え弁54を有する。冷却ポンプ50は、冷媒流路51内の冷媒を燃料電池1内へと圧送する。冷媒流路51は、燃料電池1の冷媒入口側にある温度センサT1と、燃料電池1の冷媒出口側にある温度センサT2と、を有する。ラジエータ52は、燃料電池1から排出される冷媒を冷却する。切替え弁54は、例えばロータリーバルブにより構成され、必要に応じて、ラジエータ52とバイパス流路53との間で冷媒の通流を切り替える。
 制御装置600は、内部にCPU,ROM,RAMを備えたマイクロコンピュータとして構成される。制御装置600には、各配管系300,400,500を流れる流体の圧力、温度、流量等を検出するセンサ(P1,P2,F1,F2,T1,T2)の検出情報が入力される。また、制御装置600には、燃料電池1が発電した電流値を検出する電流センサ61の検出情報のほか、外気温センサ62、車速センサ63、アクセル開度センサなどの検出情報が入力される。制御装置600は、これら検出情報等に応じて、システム100内の各種機器(コンプレッサ33、シャットバルブ43、インジェクタ45、水素ポンプ46、パージ弁48、冷却ポンプ50、切替え弁54など)を制御し、燃料電池システム100の運転を統括制御する。また、制御装置600は、各種検出情報を読み込み、ROMに格納されている各種マップを利用して、燃料電池1の水分量を推定する。
 図7に示すように、制御装置600は、燃料電池1の水分量を推定してそれに基づく制御を実現するための機能ブロックとして、記憶部65、検出部66、推定部67及び運転制御部68を備える。記憶部65は、燃料電池1の水分量の推定及び制御を実現するための各種のプログラムや、各種のマップを記憶する。なお、マップは、実験又はシミュレーションにより事前に得られたものである。検出部66は、各種センサ(P1,P2,F1,F2,T1,T2,61~63)などの検出情報を読み込む。運転制御部68は、推定部67による推定結果に基づいて、各種機器に制御指令を送信し、燃料電池1が所望の運転状態(例えば水分状態、温度状態など)となるように運転を制御する。このとき、運転制御部68は、必要に応じて、アノード側とカソード側とを区別した制御を実行する。
 推定部67は、検出部66で取得された情報に基づいて、記憶部65にある各種マップを参照して燃料電池1の水分量を推定する。具体的には、推定部67は、電解質膜23を介して電極24A、24B間で行われる水移動を考慮し、単セル2のセル面内における残水量分布及び含水量分布を推定する。また、推定部67は、各単セル2の積層方向(以下、セル積層方向という。)の残水量分布及び含水量分布も推定する。
 ここで、「セル面内」とは、単セル2の平面方向(図4の紙面と平行な方向をいい、セル積層方向と直交する方向をいう。)における単セル2の内部を意味する。「残水量」とは、単セル2の反応ガス流路内に存在する液水の量を意味する。反応ガス流路とは、水素流路25A及び空気流路25Bを総称した概念である。「含水量」とは、単セル2の電解質膜23に含まれる水の量を意味する。
C.燃料電池の水分量の推定方法
 本実施形態の水分量の推定方法では、残水量と含水量とを区別して推定し、その際、アノード側とカソード側とを分けて残水量分布を推定する。また、残水量と含水量とについて、セル面内での分布のみならずセル積層方向での分布も推定する。以下では、先ず、セル面内での水分布(残水量分布及び含水量分布)の推定方法について説明する。次いで、推定に際してセル積層方向の温度バラツキ・配流バラツキをどのように考慮するかについて説明し、セル積層方向での水分布の推定方法に言及する。
1.セル面内での水分布の推定方法
 図8に示すように、先ず、電流値I、セル入口温度Tin,i、セル出口温度TOUT,i、エア流量Qair,i、水素流量QH2,i、エア背圧Pair,i及び水素圧PH2,iを読み込む(ステップS1)。
 ここで、電流値Iは、電流センサ61によって検出されたものである。セル入口温度Tin,i等における下付き添え字の「i」は、セル積層体3における単セル2の位置を示すセルチャンネルである。具体的には、図9に示すセル積層体3をモデルにした場合、反応ガスの供給口(図1の供給口11a,12aに相当する。)及び排出口(図1の排出口11b,12bに相当する。)に最も近い端部セル2aのセルチャンネル「i」は1となる。200枚の単位セル2が積層されている場合には、もう一方の端部セル2aのセルチャンネル「i」は200となる。
 セル入口温度Tin,i及びセル出口温度TOUT,iは、それぞれ、単セル2(セルチャンネル:i)の冷媒入口29a及び冷媒出口29bでの冷媒温度である。エア流量Qair,i及び水素流量QH2,iは、それぞれ、単セル2の空気入口28a及び水素入口27aに流入する空気及び水素ガスの供給流量である。エア背圧Pair,i及び水素圧PH2,iは、それぞれ、単セル2の空気出口28b及び水素入口27aでの空気及び水素ガスの圧力である。燃料電池が一つの単セル2しか有しない場合や、セル積層方向の温度バラツキ・配流バラツキを考慮しない場合は、次のとおりとなる。
 Tin,i:温度センサT1による検出値
 TOUT,i:温度センサT2による検出値
 Qair,i:流量センサF1による検出値
 QH2,i:流量センサF2による検出値から求めた水素供給流量
 Pair,i:圧力センサP1による検出値
 PH2,i::圧力センサP2による検出値
 一方、燃料電池1が複数の単セル2を有する場合には、セル積層方向の位置に応じて放熱量や圧損等が異なるので、単セル2間で放熱量バラツキ並びに反応ガス及び冷媒の配流バラツキがある。したがって、この点を考慮したセル入口温度Tin,i等を用いることが望ましい。この考慮の仕方については後述する。
 なお、セル入口温度Tin,i等として用いる各検出値は、上記センサ以外のセンサや算出方法による値を用いることもできる。換言すると、温度センサ、流量センサ及び圧力センサは、図6に示す以外の位置にも設けられてもよく、その数及び位置は、適宜設計変更することができる。例えば、水素流量センサを燃料電池1の水素供給口11aの近くに設けて、その検出値を水素流量QH2,iとして用いるようにしてもよい。また、セル入口温度Tin,i及びセル出口温度TOUT,iは端部セル2aもしくはエンドプレート7a,7bに温度センサを取り付けることで、推定することも可能である。このように、冷媒の温度に代えて燃料電池スタック自体の温度を測定することで、より精度の高い水分推定が可能となる。
 図8に示すステップS2では、セル入口温度Tin,iから各単セル2のカソード入口露点Td、CA及びアノード入口露点Td、ANを算出する。本実施形態では、燃料電池システム1に加湿器30が用いられているので、カソード入口露点Td、CA及びアノード入口露点Td、ANとして、それぞれセル入口温度Tin,iを用いることができる。すなわち、空気入口28a及び水素入口27aが冷媒入口29aに近い場合は、次のとおり表すことができ、露点の積層バラツキを考慮することができる。
 Td、CA=Td、AN=Tin,i
 なお、ステップS2では、セル出口温度Tout,iから各単セル2のカソード入口露点Td、CA及びアノード入口露点Td、ANを算出してもよい。また、別の実施態様によれば、露点計を用いてもよい。例えば、燃料電池システム1に加湿器が用いられていない場合や、セル入口温度Tin,iを利用しない場合には、燃料電池1のスタック入口(アノード側供給口11a及びカソード側供給口12a)にそれぞれ露点計を設置し、その検出値をカソード入口露点Td、CA及びアノード入口露点Td、ANと設定することもできる。こうすることで、より精度の高い推定が可能となる。
 また、空気配管系300に加湿器30が搭載されていないエア系無加湿システムでは、カソード入口露点Td、CAを0℃として計算することもできる。あるいは、外気温及び外部湿度センサにより、カソード入口露点Td、CA=外気温×外部温度として計算することも可能である。つまり、本推定方法は無加湿システムにも適用可能である。
 図8に示すステップS3では、電極24A,24B間の水移動速度VH2O、CA→ANを求める。水移動速度VH2O、CA→ANは、次式により算出される。
 VH2O、CA→AN=DH2O×(PH2O、CA-PH2O、AN
 ここで、PH2O、CAは、単セル2の電極24B側の水蒸気分圧であり、カソード入口露点Td、CAにより算出される。また、PH2O、ANは、単セル2の電極24A側の水蒸気分圧であり、アノード入口露点Td、ANにより算出される。DH2Oは、電解質膜23中の水拡散係数である。DH2Oは、一定値を用いることもできるが、湿度により変化するものであるため、この点を考慮することが望ましい。
 例えば、図10に示すような電解質膜23の相対湿度とDH2Oとの関係を表す特性マップを予め作成しておき、この特性マップを用いて電解質膜23の相対湿度に対応するDH2Oの値を用いることができる。具体的には、燃料電池ステム1の前回運転におけるシャットダウン時に推定した電解質膜23の相対湿度α、燃料電池ステム1の放置(停止)中に推定した電解質膜23の相対湿度α、又は、燃料電池ステム1において今回の推定の直前に推定した電解質膜23の相対湿度αを用いて、今回の推定に用いるDH2Oの値(β)をマップから決定することができる。
 図8に示すステップS4では、水移動速度VH2O、CA→AN、露点Td、CA、露点Td、AN、温度TOUT,i、エア背圧Pair,i、水素圧PH2,i、エア流量Qair,i、水素流量QH2,i及び電流値Iから、マップを用いて電流密度i(ただし、xは任意の自然数。)を算出する。電流密度iは、セル面内の任意の面積での電流密度であり、例えばx=4のときの各面積をs~sとすると、I=i×s+i×s2+i×s+i×sとなる。電流密度iの分布を算出した結果の一例を図11に示す。
 また、ステップS4では、セル面内の電流分布及び相対湿度分布を算出する。これらを示す関数I及びRHは、以下のとおり表される。なお、関数I及びRHのそれぞれのパラメータ(Td、CA、Td、AN、TOUT,i、Pair,i、PH2,i、Qair,i、QH2,i、VH2O、CA→AN、i)に対する感度が予めマップ化される。また、これらのパラメータにより、セル面内の過電圧分布も算出するようにしてもよい。
 I=f(Td、CA、Td、AN、TOUT,i、Pair,i、PH2,i、Qair,i、QH2,i、VH2O、CA→AN、i
 RH=f(Td、CA、Td、AN、TOUT,i、Pair,i、PH2,i、Qair,i、QH2,i、VH2O、CA→AN、i
 図12は、ステップS4で算出したセル面内の相対湿度分布(反応ガス流路及び電解質膜の相対湿度分布)の一例を示す図である。図12において、セル面内位置に関連して水素ガス及び空気の流れが示されるように、本実施形態ではカウンターフローの流路形態を例にしている。図12に示されるように、AN流路(水素流路25A)では水素入口27aから水素出口27bにかけて相対湿度が100%を越えて過飽和の状態にある一方、CA流路(空気流路25B)では空気出口28b側で相対湿度が100%を下回る。また、電解質膜23では、その中央部(単セル2の中心部)が過飽和の状態になっている。
 図8に示すステップS5では、アノード側及びカソード側のそれぞれについて、図12に示す相対湿度分布の結果から過飽和度σ(相対湿度が100%を越えた分)及び未飽和度σ(相対湿度が100%を下回った分)を算出し、液水生成速度Vvap→liq及び液水蒸発速度Vliq→vapを以下の式により算出する。これは、反応ガス流路での水の相(気相、液相)が変化することに鑑みて、水素流路25A及び空気流路25BにおけるVvap→liq及びVliq→vapをそれぞれ算出することにしたものである。
 Vvap→liq=k×σ
 Vliq→vap=k×σ
 ここで、係数k1、は、温度や撥水性による因子であり、反応ガス流路の物性によるものである。係数k1、は、実験から予めマップ化される。
 図8に示すステップS6では、アノード側及びカソード側のそれぞれについて、反応ガス流路での水移動速度V_liqを以下の式により算出する。反応ガス流路での反応ガスの流れによって液水が吹き飛ばされてセル面内から排出されるので、このことを考慮して、水素流路25A及び空気流路25Bのそれぞれにおける水移動速度V_liqを算出することにしたものである。
 V_liq=k×V_gas
 ここで、水移動速度V_liqとは、反応ガスによって吹き飛ばされる液水の移動速度である。また、V_gasとは、反応ガス流路での水蒸気流量であり、反応ガスの供給流量や水蒸気分圧等の状態量に関するマップから算出されたものが用いられる。係数kは、温度や撥水性による因子であり、反応ガス流路の物性によるものである。係数kは、実験から予めマップ化される。
 図13は、ステップS4~S6を経て算出したセル面内の残水量分布の一例を示す図である。この残水量分布は、ステップS4で算出した反応ガス流路の相対湿度分布(図12)に、反応ガス流路での液水の変化(すなわち、上記ステップS5及びS6で算出したVvap→liq、Vliq→vap及びV_liq)を考慮することで求められる。図13から理解されるように、水素流路25Aでは水素出口27b側の方が水素入口27a側よりも残水量が多く、空気流路25Bでは空気出口28b側に向かうにつれて徐々に残水量が減っている。なお、図面として表さないが、セル面内の含水量分布は、ステップS4で算出した電解質膜23の相対湿度分布(図12)から求めることができるものであり、この相対湿度分布と近似したものとなる。
 以上説明した手順により、ある計算時間における単セル2の残水量及び含水量の変化量(水収支)が計算でき、水素流路25Aの残水量分布、空気流路25Bの残水量分布及び電解質膜23の含水量分布を求めることができる。セル面内を感度のあるメッシュ(例えば図13に示す5つのメッシュ)の粗さで水収支を計算することができ、どの部分にどれだけの残水量及び含水量があるのかを精度良く推定することができる。
2.推定に際してのセル積層方向の温度バラツキ・配流バラツキの考慮
 各単セル2についてのTIN,i、TOUT,i、Pair,i、PH2,i、Qair,i及びQH2,iを求めるには、次のように行う。
(1)セル入口温度T IN,i の算出について
 図14に示すように、先ず、スタック入口温度Tin、冷媒流量QLLC、外気温T外気、及び車速V車速を読み込む(ステップS11)。ここで、Tinは、温度センサT1による検出値である。QLLCは、燃料電池1に供給される冷媒流量であり、冷却ポンプ50の回転数その他の検出値から推定することができる。あるいは、冷媒流路51に流量センサを設け、流量センサによる検出値を用いてもよい。T外気は、外気温センサ62による検出値であり、V車速は、車速センサ63による検出値である。
 一般に、セル積層体3では、反応ガスの供給口14から遠ざかるにつれて、つまりセルチャンネル「i」が大きくなるにつれて放熱量が大きくなる。また、放熱の影響は、冷媒流量、外気温及び車速に応じて変化する。例えば、図15Aに示すように、冷媒流量QLLCが多いほど(Q>Q)、スタック入口温度TINは放熱の影響を受けずに済む。つまり、セル入口温度TIN,iがスタック入口温度TINよりも低下せずに済む。また、図15Bに示すように、T外気が高いほど(T外気1>T外気1)、スタック入口温度TINは放熱の影響を受けずに済む。
 そこで、このような放熱による冷媒温度の低下を考慮し、セル入口温度TIN,iを次の関数として算出する(ステップS12)。
IN,i=f(QLLC、TIN、T外気、V車速
 これにより、上記したQLLC、TIN、T外気及び車速の各値からセルチャンネルiに対応するセル入口温度TIN,iを求めることができる。
(2)エア流量Q air,i 及びエア背圧P air,i の算出について
 図16に示すように、先ず、エア流量Qair、エア背圧Pair、スタック入口温度TIN、スタック出口温度TOUT及び電流値Iを読み込む(ステップS21)。ここで、エア流量Qair、エア背圧Pair及びスタック出口温度TOUTは、それぞれ、流量センサF1、圧力センサP1及び温度センサT2による検出値である。また、ステップS21では、マニホールド15aに流入するエアのガス密度をスタック入口温度TIN及びエア流量Qairの関数として算出する。
 次のステップS22では、単セル2における残水量に基づいて、当該単セル2のP-Q特性(エア背圧とエア流量との関係を表す特性)を決定する。例えば、図17に示すような、複数の残水量(x>y)に応じたP-Q特性(圧力―流量特性)を示すマップを予め取得しておき、図8に示すフローによって算出した直前の残水量(単セル2のカソード側残水量の合計量。)に対応するP-Q特性を決定する。
 次に、エア流量Qair、エア背圧Pair、スタック出口温度TOUT、上記で算出したガス密度及び各単セル2のP-Q特性の関数として、セル入口圧力分布、セル流入流量分布及びセル出口圧力分布をマップより算出する(ステップS23)。これらの一例を示すと、図18A~Cに示すとおりとなる。ここで、図18Bに示すセル流入流量及び図18Cに示すセル出口圧力は、セルチャンネルiに対応するエア流量Qair,i及びエア背圧Pair,iに相当するので、これらを求めることができる(ステップS24)。
 なお、詳述しないが、単セル2の水素流量QH2,i及び水素圧PH2,iについても、エア流量Qair,i及びエア背圧Pair,iの算出と同様の手法により算出することができる。この場合には、図18Aに示すセル入口圧力が水素圧PH2,iに相当し、図18Bに示すセル流入流量が水素流量QH2,iに相当するので、これらを求めることができる。
(3)セル出口温度T OUT,i の算出について
 図19に示すように、先ず、温度センサT2の検出値として、スタック出口温度TOUTを読み込む(ステップS31)。また、上述したスタック入口温度TINの場合と同様に、冷媒流量QLLC、外気温T外気、及び車速V車速を読み込む。さらに、セル電圧V及び電流値Iを読み込み、単セル2ごとのI-V特性から各単セル2の発熱量Qcell,iを推定する。
 ここで、セル電圧Vは、図示省略したセルモニタによって検出される各単セル2の電圧値を用いることができる。ただし、セルモニタ等のセンサを使うのではなく、各単セル2にI-Vマップ(発電量、エア流量、水素流量、エア背圧、水素圧に依存)をもたせることでセル電圧Vを推定することもできる。なお、発熱量Qcell,iは、T△Sによる発熱と過電圧による熱損失とに起因したものである。
 上述したスタック入口温度TINと同様に、セル積層体3における単セル2の位置に応じて、スタック出口温度TOUTは放熱の影響を受ける。例えば、図20に示すように、冷媒流量QLLCが多いほど(QLLC1<QLLC2)、スタック出口温度TOUTは放熱の影響を受けずに済む。
 そこで、発熱量Qcell,iのほか、冷媒流量QLLC,i及び放熱を考慮し、セル出口温度TOUT,iを次の関数として算出する(ステップS32)。
OUT,i=f(Qcell,i、QLLC,i、TOUT、T外気、V車速
 これにより、これらのパラメータに示す各検出値又は推定値からセルチャンネルiに対応するセル出口温度TOUT,iを求めることができる。
 なお、QLLC,iは、各単セル2に供給される冷媒流量であり、燃料電池スタック1を一点として考えたときの上記の冷媒流量QLLCについて配流バラツキを考慮したものである。具体的には、冷媒流量QLLCとセルチャンネルiとの関係を表すマップをいくつかの冷媒流量QLLCごとに予め作成しておくことで、このマップを用いて、セルチャンネルiに対応するQLLC,iを算出することができる。
 以上説明した(1)~(3)の手順によれば、図8に示すフロー(ステップS1,S2及びS4)において、各単セル2の状態量についてセル積層方向の温度分布(放熱量のバラツキなど)及び圧損分布(酸化ガス、燃料ガス及び冷媒の配流バラツキなど)を考慮した値を用いることができる。これにより、燃料電池1をスタックとしての一点で捉える場合に比べて、全ての単セル2について(つまりセル積層方向において)残水量分布及び含水量分布を精度良く推定することができる。
D.推定結果を利用した制御例
 次に、上記推定方法による推定結果を利用した制御例について説明する。本制御例は、精度の高い推定結果を利用して、燃料電池1の水分布を考えた上で燃料電池1の間欠運転の内容を変更し、セル電圧の低下による劣化を抑制することができるものである。
 ここで、間欠運転とは、燃料電池1のシステム効率が低下する軽負荷条件時(アイドリング時など)に燃料電池1の発電を停止する運転をいう。具体的には、間欠運転では、電極24A,24Bへ水素ガス及び空気を供給する補機類(コンプレッサ33、インジェクタ45、水素ポンプ46など)の作動を停止すると共に、燃料電池1の発電を停止する。そして、この間欠運転中に必要な駆動力及び燃料電池車両の補機動力は、図示省略した二次電池などの補助電源から供給される。上記した制御装置600の記憶部65には、間欠運転を行うモード及び間欠運転を行わない通常運転のモードなどが記憶されており、運転制御部68が、通常運転のモードから間欠運転のモードに必要に応じて切り替えて、間欠運転を実行する。以下、本制御例における間欠運転の内容を変更する複数の例を説明する。
1.第1の制御例(間欠運転の禁止)
 第1の制御例は、間欠運転を禁止するという意味で、間欠運転の内容を変更するものである。
 図21に示すように、先ず、ステップS101において、上記した推定方法により、全ての単セル2の水素流路25A及び空気流路25Bそれぞれの残水量分布並びに含水量分布を推定する。この推定は、推定部67によって実行される。次いで、この推定された残水量が閾値以上であるか否かが判断される(ステップS102)。この判断は運転制御部68によってなされる。
 推定された残水量が閾値未満である場合には(ステップS102:No)、運転制御部68は燃料電池1の間欠運転を許可する。(ステップS103)。残水量が閾値未満であれば、間欠運転のモードを実行しても、間欠運転後にセル電圧が下がるおそれがないからである。一方で、推定された残水量が閾値以上である場合には(ステップS102:Yes)、運転制御部68は、間欠運転を禁止する(ステップS104)。
 ここで、ステップS102において閾値と比較する残水量(推定値)は、水素流路25A及び空気流路25Bのあらゆる部分の残水量である。そして、比較に用いる閾値は、水素流路25A側と空気流路25B側とで異なると共に、セル積層方向における単セル2の位置に応じても異なり、さらには、セル面内における位置に応じても異なる。これは、反応ガスの種類(水素ガス、空気)、セル積層方向の位置及びセル面内の位置に応じて、反応ガスの流れによって持ち去られる液水の排出性が異なるからである。この点について、図22~24を参照して具体的に説明する。
 図22に示すように、セル積層方向の奥側に位置する単セル2(端部セル2a)であるほど、マニホールド15aでの圧損等に起因して反応ガスが流れにくい。つまり、セル積層方向の手前側に位置する単セル2であるほど、反応ガスがガス入口(27a,28a)からガス出口(28a、28b)へと流れ易く、液水の排出性が高い。なお、セル積層方向の奥側及び手前側とは、それぞれ、セル積層体3における反応ガスの供給方向下流側及び上流側をいう。また、セル面内においては、ガス入口(27a,28a)側であるほど、ガス出口(27b、28b)までの距離が長くなるので、液水が排出されにくい。つまり、セル面内においては、溜まった液水がガス出口(28a、28b)側に近いほど、反応ガス流路(25A,25B)外へと排出され易い。なお、図22においては、セル面内位置に関連して水素ガス及び空気の流れが示されるように、カウンターフローの流路形態を例にしている。
 図23A及び図23Bは、それぞれ、セル積層方向の最も奥側に位置する単セル2で用いる閾値について、水素流路25A及び空気流路25Bにおける位置との関係を示す図である。これらの図に示す横軸の矢印は、セル面内における水素ガス及び空気の流れ方向を示しており、これらの流れ方向は図22に示す流れ方向と合致している。したがって、例えば、図23Aでは、縦軸と横軸との交差点が水素出口27bであり、水素出口27bに近い位置ほど大きな閾値が用いられる。また、図23Bでは、縦軸と横軸との交差点が空気入口28aであり、空気出口28bに近い位置ほど大きな閾値が用いられる。このように、ガス出口(27b、28b)に近い位置ほど大きな閾値としているのは、上記のとおり、溜まった液水が排出され易いからである。
 図24A及び図24Bは、それぞれ、セル積層方向の最も手前側に位置する単セル2で用いる閾値について、水素流路25A及び空気流路25Bにおける位置との関係を示す図である。図23Aと同様に、図24Aでは、縦軸と横軸との交差点が水素出口27bであり、水素出口27bに近い位置ほど大きな閾値が用いられる。この点、図24Bも同様である。そして、図23Aと図24Aとを比較して理解されるように、セル面内の同じ位置に関しては、セル積層方向の奥側よりも手前側の方が大きな閾値が用いられる。例えば、水素出口27b近傍の閾値は、gA,1<gA,2という関係となる。これは、上記のとおり、セル積層方向の手前側であるほど、溜まった液水が排出され易いからである。
 このように、ステップS102で用いる閾値は、一定値ではなく、排水性を考慮して、液水の存在する位置に応じた所定の値が用いられる。
 以上説明したように、第1の制御例によれば、精度の高い水分布の推定結果を利用しているので、残水量が多い場合に間欠運転を精度良く禁止することができる。これにより、間欠運転の実行に伴う残水量の増加を抑制することができ、間欠運転による水溜りを起因としたセル電圧の低下を精度良く抑制することができる。また、システム全体としても燃費を向上することができる。特に、液水の存在する場所及びその量により閾値を変更しているので、間欠運転の禁止を適切に実行することができる。
 なお、図21に示すように、間欠運転の禁止後(ステップS104)及び間欠運転の許可後(ステップS103)のいずれも、ステップS101に戻り、本フローが行われる。
2.第2の制御例(間欠運転前の掃気処理)
 第2の制御例は、間欠運転の前に掃気処理を行うという意味で、間欠運転の内容を変更するものである。
 図25に示すように、図21のステップS101及びS102と同様に、全ての単セル2の残水量分布並びに含水量分布が推定され(ステップS111)、推定された残水量が閾値以上であるか否かが判断される(ステップS112)。このステップS112で用いる閾値も、ステップS102で用いた閾値(参照:図23A,B及び図24A,B)と同じである。そして同様に、推定された残水量が閾値未満である場合には(ステップS112:No)、燃料電池1の掃気処理を行うことなく間欠運転を許可する。(ステップS113)。
 一方、推定された残水量が閾値以上である場合には(ステップS112:Yes)、燃料電池1の掃気処理を実行する(ステップS114)。掃気処理により残水量が低減されるので、掃気処理を実行した後(ステップS114)、間欠運転が許可されることになる(ステップS113)。
 ここで、掃気処理は、ある一定の制御量及び制御時間で行うことができる。ただし、推定部67により推定された燃料電池1の水分布を考えた上で、掃気処理の態様を適宜変更することが望ましい。具体的には、運転制御部68が、閾値以上の残水量が存在する位置及び大きさの少なくとも一方に応じて、掃気処理を実行するガス系統、並びに掃気処理における制御量及び制御時間を決定する。例えば、閾値以上の残水量が多いほど、掃気処理における制御量及び制御時間を大きくする。また、掃気処理の態様を変更する際に、考慮する残水量の位置の例としては、(1)掃気処理の対象となるアノード側・カソード側の流路、(2)セル積層方向及びセル面内の位置が挙げられる。
(1)アノード側・カソード側の流路
 例えば、閾値以上の残水量が水素流路25Aにあると推定された場合には、水素流路25Aに対して掃気処理を実行する。この場合の掃気処理は、例えば、水素ポンプ46を回転させ、それにより送り込んだガスで水素流路25A内の液水を持ち去ることで行うことができる。一方、閾値以上の残水量が空気流路25Bにあると推定された場合には、空気流路25Bに対して掃気処理を実行する。この場合の掃気処理は、例えば、燃料電池1への水素ガスの供給を停止した状態でコンプレッサ33によって空気を供給し、空気流路25B内の液水を空気で持ち去ることで行うことができる。なお、背圧弁34によりエア背圧を下げてもよい。
 このように、アノード側とカソード側とで切り分けた掃気処理を実行することで、閾値以上の残水量が存在する方(カソード側又はアノード側)の残水量を適切に低減することができる。なお、アノード側及びカソード側の両方で閾値以上の残水量が推定された倍には、燃料電池1の発電量を一定にしつつ、水素ガス及び空気の流量を増加させる(つまり、ストイキ比を上げる)ようにすればよい。なお、上記した反応ガスを用いた掃気処理に代えて、不活性ガス(例えば窒素)を反応ガス流路(水素流路25A、空気流路25B及びその両方の少なくとも一つ)に供給することで、掃気処理を行うことも可能である。
(2)セル積層方向及びセル面内の位置
 上記したように、セル積層方向における単セル2の位置や、セル面内における位置に応じて、液水の排出性が異なる。この点を考慮し、閾値以上の残水量の存在位置が液水排出性の低い場所であるほど、掃気処理における制御量及び制御時間の少なくとも一つを大きくするとよい。つまり、セル積層方向の奥側やセル面内のガス入口(27a,28a)に近い位置であるほど、反応ガス流路に送り込む掃気ガスの量を増やしたり、掃気時間を長くしたりするとよい。なお、掃気ガスは、コンプレッサ33からの空気、水素ポンプ46からの水素ガス又は図示省略した機器からの不活性ガスである。
 一方、閾値以上の残水量の存在位置が液水排出性の高い場所であるほど、掃気処理における制御量及び制御時間の少なくとも一つを小さくするとよい。つまり、セル積層方向の手前側やセル面内のガス出口(27b、28b)に近い位置であるほど、反応ガス流路に送り込む掃気ガスの量を減らしたり、掃気時間を短くしたりするとよい。このように、液水の排出性も考慮して掃気処理を実行することで、掃気処理の効率を向上することができる。
 以上説明したように、第2の制御例によれば、精度の高い水分布の推定結果を利用しているので、残水量が多い場合に精度良く掃気処理を行い、残水量を減らすことができる。これにより、掃気処理後に許可された間欠運転を行っても、残水量が過剰になることを抑制できるため、間欠運転後のセル電圧の低下を抑制することができる。なお、図25に示すように、間欠運転の許可後(ステップS113)はステップS111に戻り、本フローが行われる。
3.第2の制御例の変形例
 図26に示すように、本変形例は、図25に示すフローにステップS125及びS126を追加したものである。なお、ステップS121~123は、ステップS111~S113と同じであるので、説明を省略する。
 具体的には、ステップS124での掃気処理中にも水分布を推定する(ステップS125)。この水分布の推定は、上記したステップS101の水分布推定と同様に、全ての単セル2の水素流路25A及び空気流路25Bそれぞれの残水量分布並びに含水量分布を推定する。その後、推定された残水量が閾値未満になったか否かが判断される(ステップS126)。なお、ステップS126で用いる閾値は、上記したステップ102で用いる閾値と同じである。
 そして、推定された残水量が閾値以上であると判断される場合には(ステップS126:No)、引き続き掃気処理及び水分布の推定を行う(ステップS124及びS125)。一方、推定された残水量が閾値未満になったと判断された場合には(ステップS126:Yes)、掃気処理を終了し、燃料電池1の間欠運転を許可する。(ステップS123)。
 本変形例によれば、掃気処理により残水量が低減したことを、上記した精度の良い推定方法により確認してから間欠運転を許可することができる。これにより、図25に示した場合よりも、より確実に、間欠運転後のセル電圧の低下を抑制することができる。特に、本変形例によれば、掃気処理をしながら水分布を推定し、それに基づいて掃気処理を終了するようにしている。このため、上記第2の制御例のように、閾値以上の残水量の位置及び大きさに応じて、掃気処理における制御量及び制御時間を決定する必要がない。
 なお、掃気処理中に水分布を推定する方法のみならず、次の方法を実行してもよい。すなわち、掃気処理をある程度行ってから、掃気処理を一旦停止して水分布を推定し、推定された残水量が閾値未満になったか否かを判断する。その結果、閾値未満である場合には、掃気処理を行うことなく間欠運転を許可する。一方、閾値以上である場合には、再び掃気処理実行及び水分布の推定を行う。
4.第3の制御例(反応ガスの一方のみ供給停止)
 第3の制御例は、閾値以上の残水量が推定された流路に対してのみ、反応ガスの供給を停止しないというものである。この第3の制御例は、水分布を推定せずに一律に間欠運転を行う場合と比較して、水分布を推定してから間欠運転を許可するという意味で、間欠運転の内容を変更するものである。なお、そういう意味では、第1及び第2の制御例とも共通する。
 図27に示すステップS131~S133は、図21に示すステップS101~S103と同じである。本制御例では、推定された残水量が閾値以上である場合に(ステップS32:Yes)、その閾値以上の残水量がある電極側に対してのみ反応ガスを止めないようにする(ステップS134)。例えば、閾値以上の残水量が水素流路25Aにあると推定された場合には、水素流路25Aに対しては水素ガスの供給を続行する一方、空気流路25Bに対しては空気の供給を停止する。一方、閾値以上の残水量が空気流路25Bにあると推定された場合には、空気流路25Bに対しては空気の供給を続行する一方、水素流路25Aに対しては水素ガスの供給を停止する。
 このような方法によれば、発電が止まる燃料電池1で水が新たに生成されるのを抑制しつつ、反応ガスの供給によって、閾値以上の残水量がある反応ガス流路から液水を排出することができる。したがって、閾値以上の残水量を精度良く減らすことができるので、間欠運転による水溜りの懸念がなくなった状態で、間欠運転を実行することができる。よって、間欠運転後のセル電圧の低下を抑制することができる。なお、ステップ134における反応ガスの一方のみの供給は、ある一定時間だけ行われ、その後、再びステップS131に戻って本フローを行う。
5.第4の制御例(間欠運転中の補機類の駆動)
 上記のとおり、一般に間欠運転では、電極24A,24Bへ水素ガス及び空気を供給する補機類(コンプレッサ33、インジェクタ45、水素ポンプ46など)の作動を停止する。第4の制御例は、燃料電池1の発電を停止したまま、間欠運転中もアノード側の補機類を動かすという意味で、間欠運転の内容を変更するものである。
 図28に示すステップS141及びS142は、図21に示すステップS101及びS102と同じであるが、これらは間欠運転中に行われる。ステップ142の結果、推定された残水量が閾値未満である場合には(ステップ142:No)、アノード電極24Aに対して水素ガスの循環は引き続き停止される(ステップS143)。つまり、燃料電池1は、空気及び水素ガスのいずれも供給されない状態が維持される。
 一方、推定された残水量が閾値以上である場合には(ステップS142:Yes)、間欠運転中の水素ガスの循環がなされることになる(ステップS144)。つまり、水素オフガスを再度アノード電極24Aに供給する循環運転処理を行うべく、水素ポンプ46が駆動される。このとき、水素供給源40からの水素ガスはアノード電極24Aに供給されず、単に水素オフガスのみがアノード電極24Aに対して循環供給されることになる。循環運転処理により、水素流路25A内から液水を排出することができ、残水量を低減することができる。なお、ステップ144での循環運転処理では、所定のタイミングでパージ弁48を開弁し、水素オフガスが持ち去った液水を排出することが好ましい。
 ここで、ステップS144における水素ポンプ46の駆動の仕方として、ON/OFFで駆動することもできる。ただし、上記のステップS114に関連して説明した掃気処理の場合と同様に、閾値以上の残水量が存在する位置及び大きさの少なくとも一方に応じて、水素ポンプ46の駆動の仕方(制御量及び制御時間)を変更することが好ましい。この一例について図29を参照して説明する。
 図29では、縦軸に水素ポンプ46の制御量(つまり、回転数)を示し、横軸に水素ポンプ46の制御時間(つまり、回転させる時間)を示している。図29の曲線L~Lは、閾値以上の残水量の位置及び大きさに応じて、循環運転処理の際に用いる水素ポンプ46の制御線である。閾値以上の残水量が比較的多い場合には制御線Lが用いられ、閾値以上の残水量が比較的少ない場合には制御線Lが用いられる。また、閾値以上の残水量がある位置が、セル積層方向の奥側又はセル面内のガス入口(27a,28a)に近い位置である場合には、制御線Lが用いられる。逆に、閾値以上の残水量がある位置が液水排出性の高い場所であるには、制御線Lが用いられる。このような方法で、水素ポンプ46を駆動することで、循環運転処理の効率を向上することができ、燃費損失を最小限に抑えることができる。なお、別の例では、水素ポンプ46の制御量及び制御時間の一方だけを可変するようにしてもよい。
 以上説明したように、第4の制御例によれば、精度の高い水分布の推定結果を利用しているので、間欠運転中に残水量が多い場合に、精度良く循環運転処理を行うことができる。これにより、残水量を減らすことができるので、間欠運転後の水溜りによるセル電圧の低下を抑制することができる。なお、第4の制御例は、水素流路25Aに液水が溜まっている場合に有利である。第4の制御例の変形例として、推定された残水量が閾値以上である場合に、間欠運転中にコンプレッサ33を駆動することも可能である。
実施形態に係る燃料電池の斜視図である。 実施形態に係る燃料電池の内部の一部を示す側面図である。 実施形態に係る単セルの断面図である。 実施形態に係るセパレータの平面図である。 実施形態の第1の変形例に係るセパレータの流路形状を示す概略平面図である。 実施形態の第2の変形例に係るセパレータの流路形状を示す概略平面図である。 実施形態の第3の変形例に係るセパレータの流路形状を示す概略平面図である。 実施形態に係る燃料電池システムの構成図である。 実施形態に係る制御装置の機能ブロック図である。 実施形態に係るセル面内での水分布の推定方法を示すフローチャートである。 実施形態に係るセル積層体について、反応ガスの供給及び排出とセルチャンネルとの関係を示す図である。 実施形態に係る電解質膜の相対湿度とDH2Oとの関係を表す特性マップである。 実施形態に係るセル面内位置に対する電流密度を示す図である。 実施形態に係るセル面内における反応ガス流路及び電解質膜の相対湿度分布を示す図である。 実施形態に係るセル面内の残水量分布を示す図である。 実施形態に係るセル入口温度の算出方法を示すフローチャートである。 実施形態に係るスタック入口温度が受ける放熱の影響について、単セルの位置及び冷媒流量との関係を示す図である。 実施形態に係るスタック入口温度が受ける放熱の影響について、単セルの位置及び外気温との関係を示す図である。 実施形態に係る単セルごとのエア流量及びエア背圧の算出方法を示すフローチャートである。 実施形態に係る残水量に応じた単セルのP-Q特性を示すマップである。 実施形態に係るセル入口圧力分布を示す図である。 実施形態に係るセル流入流量分布を示す図である。 実施形態に係るセル出口圧力分布を示す図である。 実施形態に係るセル出口温度の算出方法を示すフローチャートである。 実施形態に係るスタック出口温度が受ける放熱の影響について、単セルの位置及び冷媒流量との関係を示す図である。 実施形態の第1の制御例に係る間欠運転の禁止フローを示すフローチャートである。 実施形態に係るセル積層体における反応ガスの流れ及び液水を模式的に示す図である。 実施形態に係る電流制限の最適化で用いる閾値と、セル積層方向の奥側にある酸化ガス流路における位置との関係を示す図である。 実施形態に係る電流制限の最適化で用いる閾値と、セル積層方向の奥側にある燃料ガス流路における位置との関係を示す図である。 実施形態に係る電流制限の最適化で用いる閾値と、セル積層方向の手前側にある酸化ガス流路における位置との関係を示す図である。 実施形態に係る電流制限の最適化で用いる閾値と、セル積層方向の手前側にある燃料ガス流路における位置との関係を示す図である。 実施形態の第2の制御例に係る間欠運転前の掃気処理フローを示す図である。 第2の制御例の変形例に係る間欠運転前の掃気処理フローを示す図である。 実施形態の第3の制御例に係る間欠運転の内容を変更するフローを示すフローチャートである。 実施形態の第4の制御例に係る間欠運転中の循環運転処理フローを示すフローチャートである。 第4の制御例に係る循環運転処理フローにおける水素ポンプの駆動方法の一例を示す図である。
符号の説明
 1:燃料電池、2:単セル、2a:主セル、2b:端部セル、23:電解質膜、24A:アノード電極、24B:カソード電極、25A:水素流路(燃料ガス流路)、25B:空気流路(酸化ガス流路)、67:推定部、68:運転制御部、100:燃料電池システム、300:空気配管系、400:水素配管系、500:冷媒配管系、600:制御装置

Claims (14)

  1.  アノード電極、カソード電極、これらの間の電解質膜、及び反応ガス流路を有する単セルを複数積層してなるセル積層体を含む燃料電池を備えると共に、前記燃料電池の間欠運転を行うモードを備える燃料電池システムにおいて、
     前記電解質膜を介して前記アノード電極と前記カソード電極との間で行われる水移動を考慮して、各単セルのセル面内における前記反応ガス流路の残水量分布及び前記電解質膜の含水量分布を推定する推定部と、
     前記推定部により推定された前記反応ガス流路の残水量が所定の閾値以上である場合に、前記間欠運転の内容を変更する運転制御部と、を備えた燃料電池システム。
  2.  前記運転制御部は、前記閾値以上の残水量が推定された場合に、前記間欠運転を禁止する、請求項1に記載の燃料電池システム。
  3.  前記運転制御部は、前記アノード電極側及びカソード電極側のうち前記閾値以上の残水量が推定された方に対してのみ、反応ガスの供給を停止しない、請求項1に記載の燃料電池システム。
  4.  前記運転制御部は、前記閾値以上の残水量が推定された場合に、前記燃料電池を掃気処理した後で前記間欠運転を許可する、請求項1に記載の燃料電池システム。
  5.  前記運転制御部は、前記閾値以上の残水量の位置及び大きさの少なくとも一方に応じて、前記掃気処理における制御量及び制御時間の少なくとも一つを変更する、請求項4に記載の燃料電池システム。
  6.  前記セル積層体は、セル積層方向に反応ガスを供給されることにより各単セルの反応ガス流路に反応ガスが供給されるものであり、
     前記運転制御部は、前記セル積層体における反応ガスの供給方向下流側の単セルほど、前記掃気処理における制御量及び制御時間の少なくとも一つを大きくする、請求項5に記載の燃料電池システム。
  7.  前記運転制御部は、セル面内における前記反応ガス流路への反応ガスの入口側ほど、前記掃気処理における制御量及び制御時間の少なくとも一つを大きくする、請求項5に記載の燃料電池システム。
  8.  前記反応ガス流路は、前記アノード電極に燃料ガスを供給する燃料ガス流路と、前記カソード電極に酸化ガスを供給する酸化ガス流路と、を有しており、
     前記運転制御部は、前記閾値以上の残水量が前記燃料ガス流路にあると推定された場合に、前記燃料ガス流路に対して前記掃気処理を実行する一方、前記閾値以上の残水量が前記酸化ガス流路にあると推定された場合に、前記酸化ガス流路に対して前記掃気処理を実行する、請求項4に記載の燃料電池システム。
  9.  前記推定部は、前記掃気処理中も前記残水量分布を推定し、
     前記運転制御部は、前記掃気処理中に推定された残水量が前記閾値よりも小さくなった場合に、前記間欠運転を許可する、請求項4ないし8のいずれか一項に記載の燃料電池システム。
  10.  前記運転制御部は、前記閾値以上の残水量が推定された場合に、前記アノード電極側から排出される燃料ガスを再度アノード電極へ供給する循環運転処理を前記間欠運転中に行う、請求項1に記載の燃料電池システム。
  11.  前記運転制御部は、前記閾値以上の残水量の位置及び大きさの少なくとも一方に応じて、前記循環運転処理における制御量及び制御時間の少なくとも一つを変更する、請求項10に記載の燃料電池システム。
  12.  前記反応ガス流路は、前記アノード電極に燃料ガスを供給する燃料ガス流路と、前記カソード電極に酸化ガスを供給する酸化ガス流路と、を有しており、
     前記閾値は、前記燃料ガス流路側と前記酸化ガス流路側との間で異なる、請求項1ないし7のいずれか一項、請求項10又は11に記載の燃料電池システム。
  13.  前記閾値は、セル積層方向における単セルの位置に応じて異なる、請求項1ないし7のいずれか一項、請求項10又は11に記載の燃料電池システム。
  14.  前記閾値は、セル面内における前記反応ガス流路への反応ガスの入口側と出口側との間で異なる、請求項1ないし7のいずれか一項、請求項10又は11に記載の燃料電池システム。
PCT/JP2008/073784 2008-12-26 2008-12-26 燃料電池システム WO2010073381A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010543714A JP5310739B2 (ja) 2008-12-26 2008-12-26 燃料電池システム
PCT/JP2008/073784 WO2010073381A1 (ja) 2008-12-26 2008-12-26 燃料電池システム
US13/163,381 US8293421B2 (en) 2008-12-26 2011-06-17 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073784 WO2010073381A1 (ja) 2008-12-26 2008-12-26 燃料電池システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/163,381 Continuation US8293421B2 (en) 2008-12-26 2011-06-17 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2010073381A1 true WO2010073381A1 (ja) 2010-07-01

Family

ID=42287048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073784 WO2010073381A1 (ja) 2008-12-26 2008-12-26 燃料電池システム

Country Status (3)

Country Link
US (1) US8293421B2 (ja)
JP (1) JP5310739B2 (ja)
WO (1) WO2010073381A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444115B2 (en) * 2010-05-07 2016-09-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system with calculation of liquid water volume

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454556B2 (ja) * 2011-11-22 2014-03-26 トヨタ自動車株式会社 燃料電池システム、および、燃料電池システムの制御方法
JP7115430B2 (ja) * 2019-07-16 2022-08-09 株式会社デンソー 燃料電池システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111196A (ja) * 2002-09-18 2004-04-08 Nissan Motor Co Ltd 燃料電池システムの運転方法
JP2004207139A (ja) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd 燃料電池水分排出装置
JP2006196262A (ja) * 2005-01-12 2006-07-27 Denso Corp 燃料電池システム
JP2007287547A (ja) * 2006-04-19 2007-11-01 Nippon Soken Inc 燃料電池内部状態観測装置
JP2008041505A (ja) * 2006-08-08 2008-02-21 Toyota Motor Corp 燃料電池システム、燃料電池の水分量推定装置及び方法
JP2008091329A (ja) * 2006-09-07 2008-04-17 Sumitomo Chemical Co Ltd 単セルの耐久性評価方法、耐久性評価装置、耐久性評価プログラム及び燃料電池の単セル
JP2008140734A (ja) * 2006-12-05 2008-06-19 Honda Motor Co Ltd 燃料電池システム
JP2009004151A (ja) * 2007-06-20 2009-01-08 Toyota Motor Corp 燃料電池システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870455B2 (ja) * 1996-09-27 2007-01-17 トヨタ自動車株式会社 一酸化炭素濃度低減装置およびその方法並びに燃料電池発電装置
JP3840908B2 (ja) * 2001-03-19 2006-11-01 日産自動車株式会社 燃料電池システム
JP4522097B2 (ja) 2003-04-16 2010-08-11 トヨタ自動車株式会社 燃料電池の制御方法
JP4678132B2 (ja) 2004-02-06 2011-04-27 トヨタ自動車株式会社 燃料電池システム
JP2006073427A (ja) 2004-09-03 2006-03-16 Nissan Motor Co Ltd 燃料電池システム
JP4495578B2 (ja) * 2004-11-26 2010-07-07 本田技研工業株式会社 燃料電池システム
JP5086584B2 (ja) * 2005-10-21 2012-11-28 本田技研工業株式会社 燃料電池システム及び該システムにおける掃気処理方法
JP2007207560A (ja) * 2006-02-01 2007-08-16 Yokogawa Electric Corp 燃料電池及び燃料電池の水分量計測装置
JP2007288850A (ja) * 2006-04-13 2007-11-01 Honda Motor Co Ltd 燃料電池車両
JP4612584B2 (ja) * 2006-05-11 2011-01-12 本田技研工業株式会社 燃料電池システム
JP2008034136A (ja) * 2006-07-26 2008-02-14 Toyota Motor Corp 燃料電池システム
JP5168848B2 (ja) * 2006-08-10 2013-03-27 日産自動車株式会社 燃料電池システム
JP2008293805A (ja) * 2007-05-24 2008-12-04 Toyota Motor Corp 燃料電池面内状態推定システム及び燃料電池面内状態推定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111196A (ja) * 2002-09-18 2004-04-08 Nissan Motor Co Ltd 燃料電池システムの運転方法
JP2004207139A (ja) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd 燃料電池水分排出装置
JP2006196262A (ja) * 2005-01-12 2006-07-27 Denso Corp 燃料電池システム
JP2007287547A (ja) * 2006-04-19 2007-11-01 Nippon Soken Inc 燃料電池内部状態観測装置
JP2008041505A (ja) * 2006-08-08 2008-02-21 Toyota Motor Corp 燃料電池システム、燃料電池の水分量推定装置及び方法
JP2008091329A (ja) * 2006-09-07 2008-04-17 Sumitomo Chemical Co Ltd 単セルの耐久性評価方法、耐久性評価装置、耐久性評価プログラム及び燃料電池の単セル
JP2008140734A (ja) * 2006-12-05 2008-06-19 Honda Motor Co Ltd 燃料電池システム
JP2009004151A (ja) * 2007-06-20 2009-01-08 Toyota Motor Corp 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444115B2 (en) * 2010-05-07 2016-09-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system with calculation of liquid water volume

Also Published As

Publication number Publication date
JP5310739B2 (ja) 2013-10-09
US20110250519A1 (en) 2011-10-13
JPWO2010073381A1 (ja) 2012-05-31
US8293421B2 (en) 2012-10-23

Similar Documents

Publication Publication Date Title
JP5397387B2 (ja) 燃料電池システム
JP5273251B2 (ja) 燃料電池の含水量制御方法及び燃料電池システム
JP5156797B2 (ja) 燃料電池システム
JP5310738B2 (ja) 燃料電池の水分量推定装置及び燃料電池システム
JP5459223B2 (ja) 燃料電池システム
US8580447B2 (en) Fuel cell system and control method for the same
JP2007220538A (ja) 燃料電池システム
WO2011024581A1 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP5310739B2 (ja) 燃料電池システム
JP2008071539A (ja) 燃料電池システム及び燃料電池スタックの流体配分方法
JP5310740B2 (ja) 燃料電池システム
JP5517098B2 (ja) 燃料電池システム
JP5140993B2 (ja) 燃料電池システム
JP2008059933A (ja) 燃料電池システム及び水量推定方法
JP4849195B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP5286741B2 (ja) 燃料電池システム
JP2009277620A (ja) 燃料電池システム
JP2008305686A (ja) 燃料電池システム
JP2006032092A (ja) 燃料電池システム
JP2009187689A (ja) 燃料電池システム
JP2007115480A (ja) 燃料電池、燃料電池システム、及び燃料電池の水分収支制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010543714

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879176

Country of ref document: EP

Kind code of ref document: A1