JP2009004151A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2009004151A
JP2009004151A JP2007162250A JP2007162250A JP2009004151A JP 2009004151 A JP2009004151 A JP 2009004151A JP 2007162250 A JP2007162250 A JP 2007162250A JP 2007162250 A JP2007162250 A JP 2007162250A JP 2009004151 A JP2009004151 A JP 2009004151A
Authority
JP
Japan
Prior art keywords
water
electrode assembly
membrane electrode
fuel cell
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007162250A
Other languages
English (en)
Other versions
JP5332139B2 (ja
Inventor
Masaaki Matsusue
真明 松末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007162250A priority Critical patent/JP5332139B2/ja
Publication of JP2009004151A publication Critical patent/JP2009004151A/ja
Application granted granted Critical
Publication of JP5332139B2 publication Critical patent/JP5332139B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】コスト増加を抑制しつつ水分布の推定精度を向上させる技術を提供することを課題とする。
【解決手段】膜電極接合体の表面を流れるガスの湿度から水滴の大きさを推定する水滴状態推定手段5Aと、ガスの流速と水滴の大きさとに基づいて水滴の移動速度を推定する移動速度推定手段5Bと、移動速度推定手段5Bが推定した水滴の移動速度から膜電極接合体の表面の水分布を推定する水分布推定手段5Cと、推定した前記水分布に基づいて膜電極接合体の発電を制御する制御手段5Dと、を備える。
【選択図】図2

Description

本発明は、燃料電池システムに関する。
燃料電池は、燃料ガスである水素と酸化剤ガスである酸素との電気化学反応によって発電を行う。水素と酸素との電気化学反応は、膜電極接合体やガス拡散層を担持した燃料電池セルで行われる。
燃料電池セルには、電気化学反応によって生成される生成水が付着する。燃料電池セルに生成水が付着すると、燃料ガスや酸化剤ガスの流れが変化し、電気化学反応に様々な影響を及ぼす。よって、燃料電池セルの運転において、生成水の分布を制御する技術が開発されている。例えば、特許文献1〜4には、セル面内の水量を推定し、燃料電池の水量や水分布を制御する技術が記載されている。
特開2004−146236号公報 特開2005−108673号公報 特開2004−146267号公報 特開2004−335444号公報
燃料電池システムは、燃料電池セルの劣化を防ぐため、負荷に応じて燃料電池に供給するガスや冷媒を制御したり、発電電圧に応じて負荷を制限したりしている。また、燃料電池システムは、燃料電池の製品ばらつきを補償するために余剰なガス供給やガス排気を行っているため、発電効率の低下を生じている。これにより燃料電池スタックや補機類の部品点数、及び処理容量の増加による高コスト化を招いている。
これらの問題点を解消しつつ安定的に且つ高効率に発電を行うには、燃料電池セルの表面にできるだけ均一に且つ最小量のガスを供給することが望ましい。燃料電池セルの表面のガス等の分布のバラつきが大きいと、発電効率が低下するだけでなく、燃料電池セルの劣化を促進するからである。ここで、燃料電池セルの表面にできるだけ均一に且つ最小量のガスを供給するには、燃料電池セルの電流や湿度等の分布をセンサで検出する必要がある。しかしながら、燃料電池セルの表面のガス等の分布を精密に把握するには多数のセンサが必要となり、発電有効面積の減少やシステムの複雑化、高コスト化を招く。この問題を解消する方法として、演算による状態推定を行うことでセンサを減らす方法がある。しかし、要求される演算能力や推定結果の精度とセンサの数とは相反する関係にある。
本発明は、上記した問題に鑑み、コスト増加を抑制しつつ水分布の推定精度を向上させる技術を提供することを課題とする。
本発明は、上記の課題を解決するため、燃料電池セルの状態推定に際し、膜電極接合体に付着している水滴の移動速度を考慮する。
詳細には、燃料電池システムであって、燃料電池の膜電極接合体の表面を流れるガスの湿度から、該膜電極接合体の表面の水滴の大きさを推定する水滴状態推定手段と、前記膜電極接合体の表面を流れる前記ガスの流速と前記水滴状態推定手段が推定した前記水滴の大きさとに基づいて該水滴の移動速度を推定する移動速度推定手段と、前記移動速度推定
手段が推定した前記水滴の移動速度から、前記膜電極接合体の表面の水分布を推定する水分布推定手段と、前記水分布推定手段が推定した前記水分布に基づいて前記膜電極接合体の発電を制御する制御手段と、を備える。
本発明に係る燃料電池システムは、膜電極接合体の表面の水分布を推定し、推定結果に基づいて運転制御するシステムであることを前提としている。ここで、膜電極接合体の表面を流れる水は、水滴の大きさによって移動速度が大きく変化する。すなわち、膜電極接合体の表面を流れる水の移動速度は、水蒸気の状態であればガスの流速とほぼ同一であるし、水滴の状態であればガスの流速よりも遅くなる。
本発明は、水滴の大きさとガスの流速との関係に着目し、水滴の状態に応じた解析を行うことで精度の高い状態推定結果を得る。すなわち、本発明に係る燃料電池システムは、膜電極接合体の表面の水滴の大きさを推定し、水滴の大きさとガスの流速との関係に基づいて水滴の移動速度を推定し、推定した移動速度に基づいて膜電極接合体の表面の水分布の変化を推定する。なお、本願において、水滴の移動速度とは、水滴が単位時間内に移動する実際の移動距離を示すもののみならず、任意の速度と正比例する係数を示すものであってもよい。
水滴の大きさは、水滴状態推定手段によって推定される。水滴状態推定手段は、水滴の大きさ零、すなわち、水滴無し、という推定結果も推定し得る。水滴状態推定手段が「水滴無し」を推定する場合とは、すなわち、膜電極接合体の表面を流れるガスの湿度が100%RH未満の場合である。また、水滴状態推定手段は、膜電極接合体の表面を流れるガスの湿度が100%RH以上の場合、この湿度の度合いに応じて水滴の大きさを推定する。水滴の大きさは、予め作成された湿度の度合いと水滴の大きさとの関係を示すマップから推定してもよいし、予め作成したシミュレーション式に湿度を代入して演算することにより推定してもよい。
水滴の移動速度は、移動速度推定手段によって推定される。水滴の移動速度は、水滴の大きさとガスの流速、膜電極接合体の表面と水との間の親和性等に基づいて物理的に定まる。そこで、移動速度推定手段は、予め作成されたシミュレーション式あるいはマップ等に基づいて水滴の移動速度を推定する。
水分布推定手段は、移動速度推定手段から水滴の移動速度の推定結果を取得することにより、水蒸気と水滴との移動速度の違い等を加味した膜電極接合体の表面の水分布の推定を行うことが可能となる。制御手段は、水分布推定手段によって推定された精度の高い推定結果に基づいて動作することにより、燃料電池システムを適切に制御することができる。
以上、本発明に係る燃料電池システムによれば、コスト増加を抑制しつつ水分布の推定精度を向上させることが可能となる。
また、前記水分布推定手段は、前記膜電極接合体が単位区域当たりに発電する電気量を示すマップと、一の区域で生成される生成水の量を前記マップが示す電気量に基づいて算出し、該一の区域よりもガスの流れ方向で上流側の区域から該一の区域に流入する水滴の量を前記移動速度に基づいて算出し、算出した該生成水の量と該水滴の量とを各区域毎に合算することにより、該膜電極接合体の水分布を推定する演算手段と、を有するようにしてもよい。
上記水分布推定手段は、ガス流路の上流側で発生した生成水が下流側に順次流れていくことに着目し、水分布の推定を行っている。すなわち、水分布推定手段は、各区域で生成
される生成水の水量と、その区域よりも上流側からの区域から流入する水の量とを合算することにより各区域の水量を算出し、膜電極接合体の水分布を推定する。
生成される生成水の量は、電気化学反応によって発生する水の量であるから、発電した電気量によって物理的に定まる。そこで、水分布推定手段は、各区域が発電する電気量を示すマップを参照し、各区域で生成される生成水の量をこのマップが示す電気量から推定する。なお、単位区域とは、膜電極接合体の表面をガスの流路に沿って複数に分割することで形成される複数の区域のうち一の区域をいう。
以上、上記水分布推定手段を備えた燃料電池システムによれば、水分布の推定精度を向上させることが可能となる。
また、前記移動速度推定手段は、前記水滴が移動する流路の進行方向における曲率を含む形状特性に応じた移動速度を推定するようにしてもよい。水滴の移動速度は、流路の勾配や移動方向の変化に伴って変動する。従って、燃料電池セルの表面の水分布を推定するにあたり、これら流路の進行方向における形状特性に応じた移動速度を加味して解析を行うことにより、水分布の推定精度を高めることが可能となる。なお、ここで、流路の進行方向における曲率とは、流路がカーブしている部分の流路の形状の曲率であり、水滴の溜まりやすさに比例する値である。
また、前記制御手段は、前記膜電極接合体のカソード側の表面とアノード側の表面との何れにも制御目標値を超える量の水が分布している場合に、該カソード側を流れるガスの流量を上げる又は圧力を下げるようにしてもよい。
膜電極接合体のカソード側およびアノード側の何れの側にも生成水が多量に付着していると、膜電極接合体とガスとの接触が阻害されて電気化学反応が低下する。そこで、制御手段は、何れの側にも制御目標値を超える湿度が分布している場合、カソード側とアノード側の両方にある生成水を系外に排出する。これにより、電気化学反応の状態を良好にすることができる。
なお、制御手段は、生成水を系外に排出するに際し、カソード側の生成水を排出する。アノード側は水素であるため、生成水を系外に排出するのに適さないためである。カソード側のガスの流量を上げるか又は圧力を下げることでカソード側の生成水を系外に排出すると、アノード側の水がカソード側に透過し、アノード側の水の量も合わせて減らすことができる。
また、前記制御手段は、前記膜電極接合体のカソード側の表面に分布している水の量が制御目標値を超え且つ該膜電極接合体のアノード側の表面に分布している水の量が制御目標値よりも下回っている場合に、該アノード側の表面を流れるガスの流量を上げるようにしてもよい。
膜電極接合体の水分が少ないと電気化学反応が弱まる。ここで、膜電極接合体は、アノード側のガスの流量を増加させるとカソード側の水がアノード側に浸透する性質を有する。そこで、アノード側が乾いている場合にアノード側のガスの流量を上げることにより、アノード側に水分を与えて電気化学反応の状態を良好にすることができる。
また、前記制御手段は、前記膜電極接合体のカソード側の表面に分布している水の量が制御目標値を超え且つ該膜電極接合体のアノード側の表面に分布している水の量が制御目標値よりも下回っており、更にカソード側の膜電極接合体表面のうち少なくとも2点間の水の量の差が所定の値を超えている場合に、該カソード側の表面を流れるガスの流量を上
げ又は圧力を下げた後、該アノード側の表面を流れるガスの流量を上げるようにしてもよい。
膜電極接合体の表面の2点間の水の量の差が所定の値を超えている場合(すなわち、膜電極接合体の表面の水分布が略均一でなく、例えば、ガス流路が途中で曲がっており、ターン部分等に水が溜まっているような場合)、水量が高い部分の水を膜電極接合体を介して反対側に透過させるには多くの時間を要する。そこで、アノード側のガスの流量を上げてカソード側の水をアノード側に透過させる前に、カソード側のガスの流量を上げ又は圧力を下げることでカソード側の水分布を略均一にする。これにより、カソード側の水を効率よくアノード側に透過させることが可能となる。なお、所定の値とは、膜電極接合体の表面に分布している水の量の2点間の差分であり、例えば、カソード側の水をアノード側に透過させる前にカソード側の水分布を略均一にしておくことが望ましい場合の差分である。
コスト増加を抑制しつつ水分布の推定精度を向上させることが可能となる。
以下、本発明の一実施形態を例示的に説明する。以下に示す実施形態は例示であり、本発明はこれらに限定されるものではない。
<実施形態の構成>
図1Aは、本実施形態に係る燃料電池システム1の構成図である。図1Aにおいて示すように、燃料電池システム1は、燃料電池スタック2、燃料電池スタック2のアノード側に燃料ガスである水素を供給する水素貯蔵タンク3、及び燃料電池スタック2のカソード側に酸化剤ガスである酸素を含む空気を供給する空気圧縮機4を備えている。また、燃料電池システム1は、各機器を制御する制御装置5(ECU)を備えている。なお、本実施形態に係る燃料電池システム1は、電気モータで走行する燃料電池自動車に搭載されることを前提としている。しかし、本発明はこれに限定されるものでなく、本発明に係る燃料電池システムは、地上に設置したり、自動車以外の移動媒体に搭載したりしてもよい。
燃料電池スタック2は、燃料電池自動車等の移動媒体に適する高分子電解質形燃料電池(PEFC)であり、水素と酸素の供給を受けて発電する。燃料電池スタック2は、燃料ガスである水素と酸化剤ガスである酸素との電気化学反応によって発電する膜電極接合体(MEA)を多数備えており、これら膜電極接合体を有する燃料電池セルが積層されていることにより、所望の電圧を出力するように構成されている。
燃料電池システム1は、水素貯蔵タンク3から燃料電池スタック2へ水素を供給する通路の途中に、水素入口弁6を備えている。水素入口弁6は、制御装置5の指令で開度を調整可能なコントロールバルブであり、水素貯蔵タンク3から燃料電池スタック2に流れる水素を制御する。
また、燃料電池システム1は、燃料電池スタック2のアノード側から大気へ水素オフガスを放出する通路の途中に水素出口弁7を備えている。水素出口弁7は、制御装置5の指令で開度を調整可能なコントロールバルブであり、大気へ放出するオフガスを制御する。
また、燃料電池システム1は、空気圧縮機4から燃料電池スタック2へ空気を供給する通路の途中に、加湿器8を備えている。加湿器8は、制御装置5の指令に応じて空気圧縮機4から燃料電池スタック2へ流れる空気の湿度を制御する。
また、燃料電池システム1は、燃料電池スタック2のカソード側から大気へ空気オフガスを放出する通路の途中に空気出口弁9を備えている。空気出口弁9は、制御装置5の指令で開度を調整可能なコントロールバルブであり、大気へ放出するオフガスを制御する。
制御装置5は、CPU(Central Processing Unit)、RAM(Random Access Memory
)、ROM(Read Only Memory)、及び入出力インターフェース等で構成されており、空気圧縮機4、加湿器8、空気出口弁9、水素入口弁6、及び水素出口弁7を制御する。なお、制御装置5は、ROMの内部に電流密度マップや水移動量マップ、抵抗値マップが格納されている。これらマップについては後述する。図1Bにおいて、制御装置5の機能ブロック図を示す。図1Bにおいて示すように、制御装置5は、CPUやRAM等によって所定の演算処理が実行されることにより、水滴の状態を推定する状態推定部5A、水滴の移動速度を推定する移動速度推定部5B、膜電極接合体の表面の水分布を推定する水分布推定部5C、および発電を制御する制御部5Dとしての諸機能を実現する。
なお、制御装置5は、水素入口弁6と燃料電池スタック2との間の通路に設けられた水素流量センサ10から燃料電池セルのアノード側を流れる水素の流量を検知する。また、制御装置5は、加湿器8と燃料電池スタック2との間の通路に設けられた空気流量センサ11および湿度センサ12から、燃料電池セルのアノード側に流入する空気の流量および湿度を検知する。
<実施形態の制御フロー>
次に、本実施形態に係る燃料電池システム1の運転制御について説明する。図2は、燃料電池システム1の制御フロー図である。以下、図2に示す制御フロー図を参照しながら、燃料電池システム1の運転制御について説明する。
(ステップS101:状態推定シミュレーション)燃料電池自動車に乗車した運転者によって燃料電池システム1が起動されると、制御装置5(制御部5D)は、水素入口弁6および水素出口弁7を開いて燃料電池スタック2に燃料ガスである水素を供給すると共に、空気出口弁9を開いて空気圧縮機4を起動することで燃料電池スタック2に酸化剤ガスである酸素を含む空気を供給する。制御装置5は、燃料電池スタック2への水素と酸素の供給を開始したら、燃料電池スタック2に電気的負荷(燃料電池自動車を走行させるモータや補機類)を接続する。これにより、燃料電池スタック2内の膜電極接合体で水素と酸素の電気化学反応による発電が開始される。
そして、制御装置5(状態推定部5A)は、発電の開始と同時に膜電極接合体の表面の状態推定シミュレーションを開始する。図3において、状態推定シミュレーションのモデルを示す。本実施形態に係る制御装置5は、膜電極接合体の表面の状態推定シミュレーションを行うに当たり、膜電極接合体の表面をガスの流路に沿って複数個の区域に分割した図3に示すモデルに基づいて状態推定シミュレーションを行う。すなわち、一つの区域内の状態(例えば、湿度や電流密度等)は均一とみなし、各区域で発生する生成水の量や水の収支量を計算することで、膜電極接合体の表面の水分布の推定を行う。本実施形態に係る制御装置5は、図3において示すように、膜電極接合体の表面を30の区域(これらの各区域を、以下、ガスの流れ方向に沿って上流側から順に区域1、区域2、・・・区域30と呼ぶ)に分割したモデル(以下、分割モデルという)で状態推定シミュレーションを行うことを前提としている。なお、本発明は30の区域に分割されたモデルに限定されるものでなく、如何なる数の区域に分割されたモデルであっても状態推定可能であることは言うまでもない。
制御装置5は、膜電極接合体の表面の状態をシミュレーションするにあたり、区域内で電気化学反応により生成される生成水の量、上流側の区域で生成され、ガスの流れによっ
て流入してくる生成水の量、および区域内に残留している生成水の量を区域毎にそれぞれ合算する。制御装置5は、区域毎の生成水量を算出することにより、膜電極接合体の表面の水分布をシミュレートする。また、制御装置5は、水分布から電流密度や抵抗値をシミュレートする。
以下、状態推定シミュレーションについて、詳細に説明する。なお、説明の便宜上、膜電極接合体のカソード側の表面の状態推定シミュレーションのみ説明するが、アノード側の表面の状態推定シミュレーションも同様の方法で行う。
制御装置5は、状態推定シミュレーションを行うにあたり、まず、燃料電池スタック2に供給している空気の湿度と流量を湿度センサ12および空気流量センサ11で取得する。ここで、区域1は空気圧縮機4によって送られる空気が最初に流れる区域であるから、制御装置5は、湿度センサ12で検出した湿度を区域1の湿度として取得する。
次に、制御装置5は、区域2の湿度をシミュレーションする。制御装置5は、区域2の湿度をシミュレーションするにあたり、まず、電流密度マップを参照して区域1の電流密度を取得する。図4において、電流密度マップの一例を示す。図4において示すように、電流密度マップは、湿度と酸素濃度に応じた単位区域あたりの電流密度を示している。制御装置5は、上述した処理により取得した区域1の湿度と電流密度マップとから区域1の電流密度を取得する。例えば、湿度センサ12で湿度40%を検出していれば、区域1の電流密度1.485769を取得する。なお、区域1は空気圧縮機4によって送られる空気が最初に流れる区域であるから、酸素濃度は21%である。
次に、制御装置5は、取得した電流密度と空気の流量とを以下の式(1)に代入し、区域1で消費される酸素の量を演算する。なお、ここで、演算しようとしている区域は区域1であるからn=1である。区域2〜30を演算する場合は、n=2,3,・・・30と順次繰り上げる。また、I(n)は電流密度、F(t)は空気の流量である。ここでは1回目の演算であるため、t=1である。
2_off(n,t)=I(n)/4/F(t)*22.4*60/0.208・・
・式(1)
次に、制御装置5は、取得した電流密度と空気の流量とを以下の式(2)に代入し、区域1で生成される生成水の量を演算する。
2O(n,t)=I(n)/2/F(t)*22.4*60・・・式(2)
次に、制御装置5は、区域1の酸素濃度から、上記の式(1)から算出した区域1で消費される酸素の量を減算し、区域2の酸素濃度を算出する。すなわち、制御装置5は、以下の式(3)に基づいて区域2の酸素濃度を算出する。なお、算出する酸素濃度は区域2であるから、n=2である。以下の式(3)は、ある区域内の酸素濃度を、上流側の区域の酸素濃度から上流側の区域で消費された酸素の量を減算することで算出している。
2(n,t)=O2(n−1,t−1)−O2_off(n−1,t−1)・・・式(
3)
次に、制御装置5は、区域内に残留していた生成水の量に上流側から流入する生成水の量を加算し、区域内の水の量を算出する。なお、これら残留していた生成水の量や流入してくる生成水の量は水の状態に応じた移動速度係数が加味される。すなわち、制御装置5は、以下の式(4)に基づいて区域2の湿度を算出する。
2O_Ca(n,t)={1−k(n,t−1)}*H2O_Ca(n,t−1)+k(n−1,t)*{H2O_Ca(n−1,t)+H2O(n−1,t)−H2O_m(n
−1)}・・・式(4)
但し、k(n,t)は水滴の大きさに応じた移動速度係数である。ここでは、1回目の計算(t=1)なのでRH%<100と仮定し、k(n,1)=1として演算する。
なお、ここで、区域1が上流側から取得した水の量は、空気圧縮機4から送られる空気に含まれる水の量であるから、H2O_Ca(1,1)は湿度センサ12で測定された値
となる。また、区域1に残留する水の量、すなわち、H2O_m(1)は、ROMに記憶
された水移動量マップから決定される。図5において、水移動量マップの一例を示す。図5において示すように、水移動量マップは、湿度と酸素濃度に応じた単位区域あたりの水の吸収量(残留量)を示している。制御装置5は、この水移動量マップからH2O_m(
n−1)を取得する。すなわち、例えば区域1の湿度が40%で酸素濃度21%であれば、区域1に残留する水の量H2O_m(1)=−0.00761が取得される。
なお、上記式(1)〜(4)は、カソード側の状態をシミュレーションする際の式であり、アノード側の状態をシミュレーションする際は、上記の式(3)および式(4)を以下の式に置き換える。
2(n,t)=H2(n−1,t−1)+H2_off(n−1,t−1)・・・式(
3’)
2O_An(n)={1−k(n,t−1)}*H2O_An(n,t−1)+k(n+1,t)*{H2O_An(n+1,t)−H2O_m(n+1)}・・・式(4’)
制御装置5(水分布推定部5C)は、上記の式(1)〜(4)を用いた演算処理をn=1からn=30まで繰り返すことで区域1から区域30までの各区域の湿度を取得し、膜電極接合体の表面の状態をシミュレーションする。図6において、状態推定シミュレーションの結果の一例を示す。図6において示すように、カソード側の水分布は、上流側(n=1)から下流側(n=30)になるに従って徐々に湿度が高くなる。なお、図6において示す抵抗値のグラフは、ROMに記憶された抵抗値マップに基づいてプロットされたものである。図7において、抵抗値マップの一例を示す。図7において示すように、抵抗値マップは、湿度と酸素濃度に応じた単位区域あたりの抵抗値を示している。制御装置5は、各区域の湿度(H2O_Ca(n,t))と酸素濃度(O2(n,t))とから各区域の抵抗値を取得し、膜電極接合体の表面の抵抗値の分布をシミュレーションする。
(ステップS102:セル面内状態推定結果)次に、制御装置5は、膜電極接合体の表面の状態推定シミュレーション結果に基づいて空気圧縮機4、加湿器8、空気出口弁9、水素入口弁6、及び水素出口弁7を制御する。
(パターン1)
すなわち、制御装置5は、状態推定シミュレーションの結果、膜電極接合体のカソード側およびアノード側の何れにも制御目標値を超える量の水が分布している場合(図8参照)、空気出口弁9の開度を上げる。これにより、膜電極接合体のカソード側の空気の流量が増加または圧力が低下し、カソード側の湿度が低下する。カソード側の水の量が低下することによりアノード側の水がカソード側にクロスリークし、膜電極接合体の両極の水分布が全体的に低下する。これにより、カソード側とアノード側の両方の水が減少し、燃料電池スタック2の運転状態が良好になる。
(パターン2)
また、制御装置5は、状態推定シミュレーションの結果、膜電極接合体のカソード側の水の量が制御目標値よりも高く、アノード側の水の量が制御目標値よりも低い場合(図9参照)、水素入口弁6あるいは水素出口弁7の開度を上げる。これにより、膜電極接合体のアノード側の水素の流量が増加するのでカソード側からアノード側にクロスリークする水の移動速度が速くなり、アノード側の水の量が増加する。これにより、燃料電池スタック2の運転状態が良好になる。
なお、制御装置5は、膜電極接合体のカソード側の水の量が制御目標値よりも高く、アノード側の水の量が制御目標値よりも低い場合に、水素の流量を増やしてカソード側の水をアノード側にクロスリークさせたのち、水素入口弁6あるいは水素出口弁7の開度を更に上げてアノードの出口側に水を移動させてもよい。あるいは、水素入口弁6の開度を上げ且つ水素出口弁7の開度を下げることでアノード側の出口に水が留まるようにしてもよい。このように、弁の開度を調整して水が溜まる位置を移動させることで、膜電極接合体の表面の水分布を所望の状態(例えば、水分布が均一な状態)にすることが可能になる。
また、制御装置5は、膜電極接合体のカソード側の湿度が制御目標値よりも高く、アノード側の湿度が制御目標値よりも低い場合であって、任意に抽出される2つの区域の水の量の差が所定の値を超えている場合に、空気出口弁9の開度を上げてカソード側の空気の流量を増加させてカソード側の水の分布を略均一にしたのち(例えば、流路がターンしている部分に溜まっている水を流路が直線になっている部分に移動させたのち)、水素入口弁6あるいは水素出口弁7の開度を上げることでアノード側の水素の流量を増やし、カソード側の水をアノード側にクロスリークさせてもよい。これによれば、カソード側に局部的に溜まっている水をアノード側に素早く移動させることが可能になる。
以上、制御装置5は、上記のパターン1やパターン2の処理を行うことにより、燃料電池スタック2の運転状態を良好にする。
(ステップS103:条件分岐)次に、制御装置5は、状態推定シミュレーション結果において湿度が100%RHを超えている区域があるか否かを判別する。制御装置5は、状態推定シミュレーション結果において100%RHを超えている区域が無ければ、tに1を加算し、再びステップS101の処理を実行する。一方、制御装置5は、状態推定シミュレーション結果において湿度が100%RHを超えている区域があれば、ステップS104の処理を実行する。
(ステップS104:移動速度係数算出ロジック)制御装置5は、100%RHを超えている区域を索出したら、この区域に発生している水滴の大きさを求める。すなわち、制御装置5は、100%RHを超えている区域に発生する水滴の大きさを、ROMに記憶されている水滴マップから取得する。図10において、水滴マップの一例を示す。図10において示すように、水滴マップは、湿度と水滴(液滴)の大きさとの関係を示している。制御装置5は、この水滴マップを参照することにより、100%RHを超えている全ての区域について、区域毎に水滴の大きさを取得する。
(ステップS105:移動速度係数推定)制御装置5(移動速度推定部5B)は、ステップS104の処理によって水滴の大きさを取得したら、次に、この水滴の移動速度係数kを推定する。すなわち、制御装置5は、100%RHを超えている区域の水滴の移動速度係数kを、ROMに記憶されている移動速度マップから取得する。図11において、移動速度マップの一例を示す。図11において示すように、移動速度マップは、ガスの流量F(t)と移動速度係数kとの関係を、水滴の大きさ毎に示している。制御装置5は、こ
の移動速度マップを参照することにより、100%RHを越えている区域の移動速度係数kを取得する。
制御装置5は、本ステップS105の処理の終了後、tに1を加算し、再びステップS101の処理を実行する。本ステップS105において水滴の大きさに応じた移動速度係数k(n,t)が取得されることにより、再びステップS101に戻ってシミュレーション式による状態推定を行う際、水滴の移動速度を加味した状態推定結果が得られる。
<実施形態の効果>
以上、本実施形態に係る燃料電池システムによれば、膜電極接合体の表面の状態推定シミュレーションを行うにあたって水滴の移動速度を考慮しているので、水滴の移動速度を考慮しない場合に比べて精度の高い状態推定シミュレーションを行うことが可能となる。これにより、膜電極接合体の表面の水分布等の状態に応じた燃料電池スタックの運転制御を行うことが可能となる。すなわち、本実施形態に係る燃料電池システムによれば、膜電極接合体の表面の状態推定の精度が高いので、従来技術に比べてより最小量のガスで発電等を行うことが可能となる。
<変形例1>
なお、上記実施形態において、制御装置5は、水滴の大きさを水滴マップから取得しているが、本発明はこれに限定されるものではない。すなわち、制御装置5は、基準となる水滴の大きさから過飽和度に応じて水滴の大きさを算出するようにしてもよい。以下、上記実施形態の変形例について説明する。
制御装置5は、例えば、120%RHの時の水滴の大きさの初期値rをROM等に予め記憶しておき、過飽和度に応じた水滴の半径の増加割合から所望の湿度における水滴の大きさを取得する。すなわち、以下の式(5)に基づいて積分を行い、経過時間と過飽和度とから任意の湿度における水滴の大きさを取得する。なお、Kは定数であり、湿度に応じた水滴の半径の増加割合を示す。
dr/dt=K*(%RH−100)/r・・・式(5)
制御装置5は、上記の式(5)を時間積分することにより、任意の湿度における水滴の大きさを取得する。本変形例によれば、水滴マップが無い場合であっても水滴の大きさを取得することが可能になる。
<変形例2>
なお、上記実施形態では、水素と酸素とが互いに逆方向に流れる流路(カウンター流路)の場合のモデルをシミュレーションしていた。しかし、本発明はこれに限定されるものでなく、水素と酸素とが互いに同じ方向に流れる流路(コフロー流路)の場合のモデルをシミュレーションしてもよい。この場合、上記の式(3’)、および式(4’)を以下の式に置き換える。
2(n,t)=H2(n−1,t−1)−H2_off(n−1,t−1)・・・式(
3”)
2O_An(n)={1−k(n,t−1)}*H2O_An(n,t−1)+k(n−1,t)*{H2O_An(n−1,t)+H2O_m(n−1)}・・・式(4”)
本変形例によれば、水素と酸素とが互いに同じ方向を流れるタイプの燃料電池スタックについても状態推定シミュレーションを行うことができる。
<変形例3>
上記実施形態および各変形例に係る燃料電池システムは、ガス流路が曲がっている部分(例えば、図3に示すU字状のターン部分)についても、ガス流路の直線部分と同じ移動速度係数kを用いてシミュレーションしていた。しかし、直線部分と曲線部分のガスの流速が同じであっても、水滴の移動速度は、直線部分より曲線部分の方が遅くなる。水滴の進行方向を変更するために運動エネルギーが消費されるためである。そこで、本変形例に係る燃料電池システムは、燃料電池セルの状態推定シミュレーションに際し、ガス流路の形状に応じた移動速度係数kを適用する。以下、本変形例に係る燃料電池システムについて詳述する。なお、説明の便宜上、上述した実施形態との相違点についてのみ説明する。
<変形例3の制御フロー>
本変形例に係る燃料電池システム1は、流路マップがROMに記憶されており、移動速度係数推定(ステップS105)を実行する際に流路マップを参照して流路の進行方向における曲率を含む形状特性に応じた移動速度係数kを取得し、これに基づいて状態推定シミュレーションを行う点が上記実施形態と異なる。図12において、本変形例に係る燃料電池システム1の制御フローを示す。以下、図12の制御フロー図を参照しつつ、本変形例に係る燃料電池システム1の制御フローを説明する。
(ステップS201:条件分岐)制御装置5は、ステップS104までの処理を実行し、100%RHを超えている全ての区域について、区域毎に水滴の大きさを取得したら、ROMに記憶されている流路マップを参照する。図13において、ROMに記憶されている流路マップの一例を示す。図13において示すように、流路マップには、膜電極接合体の表面の分割モデルのうち流路がターンしている部分について、1よりも低い、流路の進行方向に対する曲率に応じた補正係数がマッピングされている。制御装置5は、100%RHを超えている区域が流路マップの補正係数1の区域にのみ該当しているのであれば、移動速度係数kを補正する必要なしと判断し、ステップS203の処理を実行する。一方、制御装置5は、100%RHを越えている区域が流路マップの補正係数1以外の区域に含まれていれば、移動速度係数kを補正する必要ありと判断し、流路曲がり考慮ロジック(ステップS202)の処理を実行する。
(ステップS202:流路曲がり考慮ロジック)制御装置5は、100%RHを超えている区域が流路マップの補正係数1以外の区域に含まれていれば、その区域の補正係数をROMの流路マップから取得する。
(ステップS203:移動速度係数推定)制御装置5は、上述した実施形態のステップS105と同様、ステップS104の処理によって取得された水滴の大きさからこの水滴の移動速度係数kを推定する。すなわち、制御装置5は、100%RHを超えている区域に発生する水滴の移動速度係数kを、ROMに記憶されている移動速度マップから取得する。ここで、制御装置5は、本ステップS203の処理を実行する前にステップS202を実行していた場合、ROMの流路マップから取得した補正係数を対応する区域の移動速度係数kに乗算する。その他の処理は、上述した実施形態のステップS105と同様である。本ステップS203が実行されることにより、100%RHを超えている全ての区域について、流路曲がりによる水滴の移動速度の低下を加味した水滴の移動速度係数kが区域毎に取得される。
以上、本変形例によれば、流路がターンしていることにより、水滴の移動速度が場所によって変化するような膜電極接合体の状態をシミュレーションする場合であっても、精度の高いシミュレーション結果を取得することが可能になる。よって、より適切な運転制御を行うことが可能になる。
実施形態に係る燃料電池システムの構成図。 実施形態に係る燃料電池システムの制御装置の機能ブロック図。 実施形態に係る燃料電池システムの制御フロー図。 状態推定シミュレーションのモデルを示す図。 電流密度マップの一例を示す図。 水移動量マップの一例を示す図。 状態推定シミュレーションの結果の一例を示す図。 抵抗値マップの一例を示す図。 状態推定シミュレーションの結果の一例を示す図。 状態推定シミュレーションの結果の一例を示す図。 水滴マップの一例を示す図。 移動速度マップの一例を示す図。 変形例に係る燃料電池システムの制御フロー図。 流路マップの一例を示す図。
符号の説明
1・・・・・・・・・・・・燃料電池システム
2・・・・・・・・・・・・燃料電池スタック
3・・・・・・・・・・・・水素貯蔵タンク
4・・・・・・・・・・・・空気圧縮機
5・・・・・・・・・・・・制御装置
5A・・・・・・・・・・・状態推定部
5B・・・・・・・・・・・移動速度推定部
5C・・・・・・・・・・・水分布推定部
5D・・・・・・・・・・・制御部
6・・・・・・・・・・・・水素入口弁
7・・・・・・・・・・・・水素出口弁
8・・・・・・・・・・・・加湿器
9・・・・・・・・・・・・空気出口弁
10・・・・・・・・・・・水素流量センサ
11・・・・・・・・・・・空気流量センサ
12・・・・・・・・・・・湿度センサ

Claims (6)

  1. 燃料電池の膜電極接合体の表面を流れるガスの湿度から、該膜電極接合体の表面の水滴の大きさを推定する水滴状態推定手段と、
    前記膜電極接合体の表面を流れる前記ガスの流速と前記水滴状態推定手段が推定した前記水滴の大きさとに基づいて該水滴の移動速度を推定する移動速度推定手段と、
    前記移動速度推定手段が推定した前記水滴の移動速度から、前記膜電極接合体の表面の水分布を推定する水分布推定手段と、
    前記水分布推定手段が推定した前記水分布に基づいて前記膜電極接合体の発電を制御する制御手段と、を備える
    燃料電池システム。
  2. 前記水分布推定手段は、
    前記膜電極接合体が単位区域当たりに発電する電気量を示すマップと、
    一の区域で生成される生成水の量を前記マップが示す電気量に基づいて算出し、該一の区域よりもガスの流れ方向で上流側の区域から該一の区域に流入する水滴の量を前記移動速度に基づいて算出し、算出した該生成水の量と該水滴の量とを各区域毎に合算することにより、該膜電極接合体の水分布を推定する演算手段と、を有する
    請求項1に記載の燃料電池システム。
  3. 前記移動速度推定手段は、前記水滴が移動する流路の進行方向における曲率を含む形状特性に応じた移動速度を推定する、
    請求項1または2に記載の燃料電池システム。
  4. 前記制御手段は、前記膜電極接合体のカソード側の表面とアノード側の表面との何れにも制御目標値を超える量の水が分布している場合に、該カソード側を流れるガスの流量を上げる又は圧力を下げる、
    請求項1から3の何れか1項に記載の燃料電池システム。
  5. 前記制御手段は、前記膜電極接合体のカソード側の表面に分布している水の量が制御目標値を超え且つ該膜電極接合体のアノード側の表面に分布している水の量が制御目標値よりも下回っている場合に、該アノード側の表面を流れるガスの流量を上げる、
    請求項1から4の何れか1項に記載の燃料電池システム。
  6. 前記制御手段は、前記膜電極接合体のカソード側の表面に分布している水の量が制御目標値を超え且つ該膜電極接合体のアノード側の表面に分布している水の量が制御目標値よりも下回っており、更にカソード側の膜電極接合体表面のうち少なくとも2点間の水の量の差が所定の値を超えている場合に、該カソード側の表面を流れるガスの流量を上げ又は圧力を下げた後、該アノード側の表面を流れるガスの流量を上げる、
    請求項1から5の何れか1項に記載の燃料電池システム。
JP2007162250A 2007-06-20 2007-06-20 燃料電池システム Expired - Fee Related JP5332139B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162250A JP5332139B2 (ja) 2007-06-20 2007-06-20 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162250A JP5332139B2 (ja) 2007-06-20 2007-06-20 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2009004151A true JP2009004151A (ja) 2009-01-08
JP5332139B2 JP5332139B2 (ja) 2013-11-06

Family

ID=40320324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162250A Expired - Fee Related JP5332139B2 (ja) 2007-06-20 2007-06-20 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5332139B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073385A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池システム
WO2010073386A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池システム
WO2010073380A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池の水分量推定装置及び燃料電池システム
WO2010073383A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池システム
WO2010073381A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池システム
WO2011024581A1 (ja) * 2009-08-26 2011-03-03 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの運転方法
JP4849195B2 (ja) * 2009-08-26 2012-01-11 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの運転方法
KR20140055363A (ko) * 2012-10-31 2014-05-09 현대모비스 주식회사 차량용 조명 시스템의 그 제어방법
KR20140081379A (ko) * 2012-12-21 2014-07-01 현대모비스 주식회사 자동차 및 이에 적용되는 헤드램프 제어방법
JP2016072081A (ja) * 2014-09-30 2016-05-09 本田技研工業株式会社 燃料電池システムの制御方法
US9343762B2 (en) 2010-12-09 2016-05-17 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US10090544B2 (en) 2010-08-20 2018-10-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205763A (ja) * 1989-08-30 1991-09-09 Canada 燃料電池
JPH06223859A (ja) * 1993-01-28 1994-08-12 Mazda Motor Corp 燃料電池自動車
JP2004146236A (ja) * 2002-10-25 2004-05-20 Denso Corp 燃料電池システム
JP2004335444A (ja) * 2003-04-16 2004-11-25 Toyota Motor Corp 燃料電池の制御方法
JP2007115460A (ja) * 2005-10-19 2007-05-10 Nissan Motor Co Ltd 燃料電池システム
JP2007128758A (ja) * 2005-11-04 2007-05-24 Toyota Motor Corp 燃料電池システム及び燃料電池内のガス成分状態検出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205763A (ja) * 1989-08-30 1991-09-09 Canada 燃料電池
JPH06223859A (ja) * 1993-01-28 1994-08-12 Mazda Motor Corp 燃料電池自動車
JP2004146236A (ja) * 2002-10-25 2004-05-20 Denso Corp 燃料電池システム
JP2004335444A (ja) * 2003-04-16 2004-11-25 Toyota Motor Corp 燃料電池の制御方法
JP2007115460A (ja) * 2005-10-19 2007-05-10 Nissan Motor Co Ltd 燃料電池システム
JP2007128758A (ja) * 2005-11-04 2007-05-24 Toyota Motor Corp 燃料電池システム及び燃料電池内のガス成分状態検出方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8252474B2 (en) 2008-12-26 2012-08-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2010073380A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池の水分量推定装置及び燃料電池システム
WO2010073383A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池システム
WO2010073381A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池システム
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2010073386A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池システム
WO2010073385A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池システム
JP5397387B2 (ja) * 2008-12-26 2014-01-22 トヨタ自動車株式会社 燃料電池システム
US8293421B2 (en) 2008-12-26 2012-10-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP5459223B2 (ja) * 2008-12-26 2014-04-02 トヨタ自動車株式会社 燃料電池システム
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
JP5310740B2 (ja) * 2008-12-26 2013-10-09 トヨタ自動車株式会社 燃料電池システム
JP5310739B2 (ja) * 2008-12-26 2013-10-09 トヨタ自動車株式会社 燃料電池システム
JP5310738B2 (ja) * 2008-12-26 2013-10-09 トヨタ自動車株式会社 燃料電池の水分量推定装置及び燃料電池システム
DE112010003392T5 (de) 2009-08-26 2012-06-06 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
US8338040B2 (en) 2009-08-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of operating fuel cell system
JP4849195B2 (ja) * 2009-08-26 2012-01-11 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの運転方法
DE112010003392B4 (de) 2009-08-26 2024-08-14 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
WO2011024581A1 (ja) * 2009-08-26 2011-03-03 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの運転方法
US10680264B2 (en) 2010-08-20 2020-06-09 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for fuel cell system
US10090544B2 (en) 2010-08-20 2018-10-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for fuel cell system
US9343762B2 (en) 2010-12-09 2016-05-17 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US10424798B2 (en) 2010-12-09 2019-09-24 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US11245126B2 (en) 2010-12-09 2022-02-08 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US11251451B2 (en) 2010-12-09 2022-02-15 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
US11264628B2 (en) 2010-12-09 2022-03-01 Hyundai Motor Company Controller for estimating relative humidity and condensed water, and method for controlling condensed water drain using the same
KR20140055363A (ko) * 2012-10-31 2014-05-09 현대모비스 주식회사 차량용 조명 시스템의 그 제어방법
KR20140081379A (ko) * 2012-12-21 2014-07-01 현대모비스 주식회사 자동차 및 이에 적용되는 헤드램프 제어방법
JP2016072081A (ja) * 2014-09-30 2016-05-09 本田技研工業株式会社 燃料電池システムの制御方法

Also Published As

Publication number Publication date
JP5332139B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5332139B2 (ja) 燃料電池システム
US11283089B2 (en) Fuel cell system and control method thereof
US8470479B2 (en) Sensorless relative humidity control in a fuel cell application
CN101243570B (zh) 燃料电池系统和发电控制装置
US8227123B2 (en) Fuel cell system and current control method with PI compensation based on minimum cell voltage
US10199668B2 (en) Fuel cell system and performance improvement method of fuel cell system
JP5446023B2 (ja) 燃料電池システム
WO2008108451A1 (ja) 燃料電池システム、電極触媒の劣化判定方法、および移動体
CN103098279A (zh) 燃料电池系统和用于燃料电池系统的控制方法
JP7003756B2 (ja) 燃料電池システム及びその制御方法
US10115987B2 (en) State detection device and method for fuel cell
US20090110981A1 (en) Fuel Cell System and Operating Method of Fuel Cell System
CN102893436A (zh) 可计算液态水体积的燃料电池系统
CN104040771A (zh) 燃料电池系统
JP6777006B2 (ja) 燃料電池システム
JP2006216367A (ja) 燃料電池および燃料電池システム
JP5225702B2 (ja) 燃料電池システム及びその制御方法
JP5376390B2 (ja) 燃料電池システム
JP2007311304A (ja) 燃料電池システム
CN107017425B (zh) 燃料电池系统和燃料电池系统的性能改进方法
JP2008071539A (ja) 燃料電池システム及び燃料電池スタックの流体配分方法
JP6304366B2 (ja) 燃料電池システム
JP4863052B2 (ja) 燃料電池システム及び移動体
JP5109280B2 (ja) 燃料電池システム
JP4655486B2 (ja) 固体高分子型燃料電池の湿潤状態判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

LAPS Cancellation because of no payment of annual fees