WO2010068025A2 - 사판식 압축기 - Google Patents

사판식 압축기 Download PDF

Info

Publication number
WO2010068025A2
WO2010068025A2 PCT/KR2009/007335 KR2009007335W WO2010068025A2 WO 2010068025 A2 WO2010068025 A2 WO 2010068025A2 KR 2009007335 W KR2009007335 W KR 2009007335W WO 2010068025 A2 WO2010068025 A2 WO 2010068025A2
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
swash plate
drive shaft
cylinder block
coolant
Prior art date
Application number
PCT/KR2009/007335
Other languages
English (en)
French (fr)
Other versions
WO2010068025A3 (ko
Inventor
박성균
이권희
김기범
이건호
Original Assignee
두원공과대학교
주식회사 두원전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두원공과대학교, 주식회사 두원전자 filed Critical 두원공과대학교
Priority to CN200980154486.1A priority Critical patent/CN102272451B/zh
Publication of WO2010068025A2 publication Critical patent/WO2010068025A2/ko
Publication of WO2010068025A3 publication Critical patent/WO2010068025A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1018Cylindrical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a swash plate compressor, and more particularly, to a swash plate compressor capable of efficiently sucking refrigerant flowing into the swash plate chamber through a cylinder block.
  • a vehicle air conditioner is a device that maintains a temperature inside a car lower than an external temperature by using a refrigerant, and includes a compressor, a condenser, and an evaporator to configure a circulation cycle of the refrigerant.
  • the compressor is a device that compresses and pumps refrigerant, and is driven by engine power or a motor.
  • swash plate type compressor which is a kind of reciprocating compressor
  • a disc shaped swash plate is installed on a drive shaft to which engine power is transmitted in a state in which the inclination angle is variable or fixed to the rotation of the drive shaft, and the circumference of the swash plate is caused by the rotation of the swash plate.
  • a plurality of pistons installed via a shoe along the structure is configured to suck, compress and discharge the refrigerant gas by linearly reciprocating the inside of the plurality of cylinder bores formed in the cylinder block.
  • a valve plate is disposed between the housing and the cylinder block to control the suction and discharge of the refrigerant gas.
  • the front housing (A10) is built in the front cylinder block (A20)
  • the rear housing (A10a) is coupled to the front housing (A10) and built in the rear cylinder block (A20a)
  • the front and rear A plurality of pistons A50 reciprocating in the plurality of cylinder bores A21 formed in the cylinder blocks A20 and A20a, respectively, and a shoe A45 inclinedly coupled to the drive shaft A30 and installed on an outer circumference thereof.
  • Valve plate (A60) installed between the swash plate (A40) and the front and rear housings (A10) (A10a) and the front and rear cylinder blocks (A20) (A20a) to be coupled to the piston (A50) via a).
  • a coolant discharge chamber A12 and a coolant suction chamber A11 are formed inside and outside the partition A13 in the front and rear housings A10 and A10a, respectively.
  • the coolant discharge chamber A12 is formed in the first discharge chamber A12a formed inside the partition A13 and outside the partition A13 and is partitioned from the coolant suction chamber A11 to form the first discharge chamber. It consists of the 2nd discharge chamber A12b which communicates with A12a and the discharge hole A12c. Accordingly, the refrigerant in the first discharge chamber A12a passes through the small diameter discharge hole A12c and moves to the second discharge chamber A12b. As a result, the pulsation pressure due to the periodic suction of the refrigerant is attenuated. This can reduce vibration and noise.
  • the front and rear cylinder block (A20) so that the refrigerant supplied to the swash plate chamber (A24) provided between the front and rear cylinder blocks (A20, A20a) can flow to each of the refrigerant suction chamber (A11).
  • a plurality of suction passages A22 are formed in A20a, and the second discharge chamber A12b of the front and rear housings A10 and A10a passes through the front and rear cylinder blocks A20 and A20a. It communicates with each other by the formed connection path A23. Therefore, the suction and compression of the refrigerant may be simultaneously performed in the bore A21 of the front and rear cylinder blocks A20 and A20a according to the reciprocating motion of the piston A50.
  • the conventional swash plate compressor configured as described above compresses the refrigerant through the following process.
  • the refrigerant supplied from the evaporator is sucked into the suction part of the muffler A70 and then supplied to the swash plate chamber A24 between the front and rear cylinder blocks A20 and A20a through the refrigerant suction port A71, and the swash plate chamber
  • the refrigerant supplied to A24 flows into the refrigerant suction chamber A11 of the front and rear housings A10 and A10a along the suction passage A22 formed in the front and rear cylinder blocks A20 and A20a. do.
  • the suction lead valve is opened during the suction stroke of the piston A50, so that the refrigerant in the refrigerant suction chamber A11 is sucked into the cylinder bore A21 through the refrigerant suction hole of the valve plate A60.
  • the piston A50 is compressed, the refrigerant inside the cylinder bore A21 is compressed, and the discharge lead valve is opened, and the refrigerant flows through the refrigerant discharge hole of the valve plate A60.
  • A10a flows to the first discharge chamber A12a.
  • the refrigerant flowing into the first discharge chamber A12a is discharged to the discharge portion of the muffler A70 through the refrigerant discharge port A72 of the muffler A70 via the second discharge chamber A12b and then flows to the condenser. .
  • the refrigerant compressed in the cylinder bore A21 of the front cylinder block A20 is discharged to the first discharge chamber A12a of the front housing A10 and then flows to the second discharge chamber A12b.
  • the second discharge chamber A12b of the rear housing A10a flows to the refrigerant discharge port A72 together with the refrigerant therein.
  • the discharge portion of the muffler A70 is discharged.
  • the suction of the refrigerant is caused by a loss due to a suction resistance caused by a complicated internal refrigerant flow path and a loss due to elastic resistance of the suction lead valve during opening and closing of the valve plate A60.
  • the volumetric efficiency is reduced.
  • Korean Patent Publication No. 2007-19564 discloses a technique for reducing the loss caused by the elastic resistance of the suction lead valve.
  • the prior art relates to a compressor to which a suction shaft integrated suction drive valve without a suction lead valve is applied.
  • the refrigerant allows the refrigerant to directly enter the cylinder bore through the inside of the drive shaft in order to reduce the loss caused by the suction resistance. will be.
  • the swash plate B160 is inclinedly coupled and a flow path B151 through which a refrigerant flows is formed, and the swash plate B160 is coupled to the flow plate B151 on the side of the swash plate hub.
  • One or more suction ports B152 are formed to communicate with each other, and a drive shaft B150 having an outlet B153 formed at a position spaced apart from the suction ports B152, and the drive shaft B150 is rotatably installed, and the swash plate chamber B136.
  • a plurality of cylinder bores B131 and B141 are provided at both sides, and the refrigerant sucked into the flow path B151 of the drive shaft B150 sequentially moves to each cylinder bore B131 and B141 when the drive shaft B150 rotates.
  • the cylinder bore (B131) (B141) mounted on the outer circumference of the (B160) via a shoe and linked to the rotational motion of the swash plate (B160)
  • Compressor comprising a plurality of pistons (B170) for reciprocating inside and the front and rear housings (B110) (B120) coupled to both sides of the cylinder block (B130) (B140) and the discharge chamber is formed therein, respectively Is disclosed.
  • the refrigerant introduced through the suction port flows into the drive shaft B150 through the suction port B152 formed on the hub side of the swash plate B160, and then the drive shaft B150. It is configured to flow into the cylinder bores B131 and B141 via the flow path B151 formed in the interior thereof.
  • the suction port of the drive shaft is formed on the swash plate hub side to suck the refrigerant in the swash plate chamber while the drive shaft rotates, the suction shaft has a sufficient suction flow rate due to the flow resistance caused by the centrifugal force. There was a problem that can not be.
  • an object of the present invention is to allow the refrigerant in the swash plate chamber to be sucked through the cylinder block, and at the same time the swash plate that can be stably supplied in a sufficiently secured refrigerant intake To provide a compressor.
  • another object of the present invention is to provide a swash plate type compressor equipped with a rotary valve which can further improve the volumetric efficiency of the compressor by reducing the flow path resistance and suction loss of the refrigerant by the rotary valve.
  • the swash plate compressor of the present invention for achieving the above object, a housing, a cylinder block having a plurality of cylinder bores are formed and coupled to the housing, and a piston that is reciprocally received in the cylinder bore, respectively, A drive shaft rotatably installed relative to the housing and the cylinder block, a swash plate rotated by the drive shaft and interlocked with the piston, a valve plate interposed between the housing and the cylinder block, and rotated together with the drive shaft.
  • a swash plate type compressor including a rotary valve rotatably installed on an inner surface of a coupling hole formed in the cylinder block, the swash plate type compressor comprising: a refrigerant suction hole formed in the cylinder block so as to communicate with the refrigerant storage chamber of the swash plate chamber and the housing; Coolant inlet formed in the drive shaft, the rotary valve And a communication hole connected to the plurality of cylinder bores on an inner circumferential surface of the coupling hole formed to be in communication with the coolant inlet and facing the coolant outlet.
  • the coolant inlet is formed at one end in the longitudinal direction of the drive shaft or the outer circumferential surface of the drive shaft, and a coolant delivery hole communicating the coolant inlet and the coolant discharge port is preferably formed along the longitudinal direction of the drive shaft.
  • the coolant inlet may be formed at one end and the outer circumferential surface of the drive shaft, and a coolant delivery hole communicating the coolant inlet and the coolant outlet may be formed along the longitudinal direction of the drive shaft.
  • the rotary valve is formed with a first discharge groove
  • the inner peripheral surface of the coupling hole is preferably formed with a second discharge groove corresponding to the first discharge groove.
  • two first discharge grooves are formed between the refrigerant discharge ports.
  • the refrigerant suction hole for sucking the refrigerant in the swash plate chamber is formed in the coupling hole of the cylinder block, the refrigerant suction can be stably sucked regardless of the rotational force of the driving shaft rotating at high speed. There is an effect that can greatly reduce the loss by.
  • the rotary valve is formed with first and second discharge grooves for bypassing the refrigerant remaining in the communication hole of the cylinder bore during the compression stroke of the piston, so that the refrigerant re-supplied into the cylinder bore after the compression stroke has been eliminated without a suction obstacle. You can move smoothly inside.
  • the second discharge groove is formed in the cylinder block.
  • the second discharge groove is preferably formed in a circular shape continuous to the cylinder block.
  • the cross-sectional area of each of the first discharge grooves is formed differently.
  • FIG. 1 is a front sectional view and a side sectional view showing the configuration of a conventional swash plate type compressor.
  • FIG. 2 is a cross-sectional view showing a swash plate compressor equipped with a rotary valve according to the prior art.
  • FIG 3 is a cross-sectional view showing a swash plate compressor according to the present invention.
  • FIG. 4 is a perspective view showing a cylinder block of the swash plate compressor according to the present invention.
  • FIG. 5 is a perspective view showing a state in which the drive shaft and the swash plate according to the present invention is coupled.
  • FIG. 6 is a cross-sectional view showing a residual gas discharge structure of the swash plate compressor according to the present invention.
  • the swash plate compressor 1000 has been applied to the embodiment of the double-headed piston compressor, but is not necessarily limited to the double-headed piston compressor can also be applied to a conventional double-headed piston compressor.
  • the swash plate compressor 1000 includes a cylinder block 100 having a plurality of cylinder bores 110, and a cylinder bore 110 of the cylinder block 100.
  • Piston 200 which is accommodated in the reciprocating motion respectively, the front and rear housings 310 and 320 to be hermetically coupled to the front and rear of the cylinder block 100, respectively, the front housing 310 and the cylinder block ( Of the drive shaft 400 rotatably installed with respect to 100, the swash plate 500 interlocked with the drive shaft 400 and the piston 200, the cylinder block 100, and the front and rear housings 310 and 320. It is composed of a valve plate 600 interposed therebetween.
  • the cylinder block 100 is interposed between the front and rear housings 310 and 320, and a plurality of cylinder bores 110 reciprocating inside the piston 200 are formed therein. do.
  • the cylinder block 100 is provided with a coupling hole 120, the rotary valve (R) is provided in the coupling hole 120 is free to slide rotation.
  • the rotary valve R is formed in the drive shaft 400 itself.
  • a communication hole 130 for supplying refrigerant to each of the plurality of cylinder bores 110 is provided on the inner circumferential surface of the coupling hole 120 facing the outer circumferential surface of the rotary valve R.
  • a refrigerant suction hole 140 communicating from the swash plate chamber 101 to the housings 310 and 320 is formed.
  • the refrigerant suction hole 140 is disposed between the adjacent cylinder bores (110, 110) is effective for the refrigerant suction. Strictly, the refrigerant suction hole 140 may be disposed one by one between the neighboring communication holes (130, 130).
  • a coolant delivery hole 420 is formed in the drive shaft 400 in the longitudinal direction, and a coolant inlet 410 is formed to communicate with the coolant delivery hole 420, and the coolant inlet 410 is the coolant. Passing through the suction hole 140 serves to deliver the refrigerant contained in the refrigerant storage chamber (P1) to be described later to the rotary valve (R).
  • coolant inlet 410 may be formed from one end portion in the longitudinal direction of the drive shaft 400 or may be formed on an outer circumferential surface of the drive shaft 400.
  • the suction refrigerant is the swash plate chamber 101, the refrigerant suction hole 140, the refrigerant storage chamber (P1), the refrigerant inlet 410, the refrigerant transfer hole 420, the rotary valve (R), the communication hole 130 and the cylinder It is compressed after passing through the bore 110 sequentially.
  • the rotary valve (R) is preferably formed integrally with the drive shaft 400 by processing the outer diameter of the drive shaft (400).
  • the configuration of the rotary valve (R) adopted in the embodiment of the present invention is as follows.
  • the rotary valve (R) is formed on the drive shaft 400, the one side of the outer circumferential surface of the cylinder suction hole 140 and the refrigerant flowed into the refrigerant storage chamber (P1) of the cylinder block 100 directly cylinder bore (110) And a refrigerant discharge port R1 for discharging while being in communication with each other.
  • the first discharge grooves R2 and R3 are formed with the refrigerant discharge holes R1 formed in the drive shaft 400 interposed therebetween.
  • one side of the first discharge groove (R2) serves to suck the refrigerant in the communication hole 130
  • the second discharge groove 190 is formed in a continuous circular shape recessed to a predetermined depth along the circumference of the inner peripheral surface of the coupling hole (120).
  • the second discharge groove 190 serves as an intermediate passage for supplying the high-pressure residual gas moved from the one side first discharge groove R2 to the other side first discharge groove R3.
  • the refrigerant remaining in the communication hole 130 may be configured to allow the first discharge groove R2, the second discharge groove 190, and the first discharge groove R3 on the other side of the driving shaft 400 to rotate. After passing sequentially, it is discharged to the expanded cylinder bore 110 through the communication hole 130 on the opposite side.
  • the first discharge groove R2 and the second discharge groove 190 are trapped in the communication hole 130 to suck the refrigerant again after the piston 200 that sucks and compresses the refrigerant reaches a top dead center.
  • By preventing the suction loss caused by the residual pressure of the high pressure serves to smoothly suck the refrigerant into the cylinder bore (110).
  • the refrigerant introduced through the refrigerant suction hole 140 of the cylinder block 100 is moved to the refrigerant storage chamber P1 of the front and rear housings 310 and 320, and then the refrigerant in the refrigerant storage chamber P1. Reflows through the refrigerant inlet 410 of the drive shaft 200 and the introduced refrigerant is discharged to the cylinder bore 110 through the refrigerant transfer hole 420, the refrigerant discharge port (R1) and the communication hole 130.
  • the cross-sectional area of the first discharge groove (R2) may be formed differently.
  • the refrigerant introduced into the swash plate chamber 101 from an evaporator may be formed by a cylinder block (d) by the suction stroke of the piston 200. It is introduced into the refrigerant suction hole 140 of 100. The refrigerant moved in the axial direction through the refrigerant suction hole 140 moves to the refrigerant storage chamber P1 of the front and rear housings 310 and 320.
  • the refrigerant stored in the refrigerant storage chamber P1 is sucked into the cylinder bore 110 through the refrigerant discharge port R1 of the rotary valve R through the refrigerant inlet 410 and the refrigerant transfer hole 420.
  • the coolant inlet 410 is formed near both ends of the drive shaft 400, and the coolant is continuously sucked into the cylinder bore 110 through the coolant inlet 410.
  • the compression stroke of the piston 200 reaches the top dead center.
  • the communication holes 130 of the cylinder bore 110 communicate with each other to discharge the refrigerant remaining in the cylinder bore 110 through the communication hole 130 on the opposite side so that the suction of the refrigerant can proceed smoothly. do.
  • the refrigerant compressed in the cylinder bore 110 is discharged into the refrigerant discharge chamber P2 of the front and rear housings 310 and 320.
  • the coolant inlet 410 may be formed only at one end or the outer circumferential surface of the drive shaft 400.
  • the coolant inlet 410 is formed on the outer circumferential surface and the end of the drive shaft 400, but both may be formed on the outer circumferential surface or the end.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

본 발명의 사판식 압축기는, 하우징과, 다수개의 실린더보어가 형성되며 상기 하우징에 결합되는 실린더블록과, 상기 실린더보어에 각각 왕복운동 가능하게 수용되는 피스톤과, 상기 하우징과 실린더블록에 대하여 회전가능하게 설치되는 구동축과, 상기 구동축에 의해 회전하며 피스톤에 연동되게 설치되는 사판과, 상기 하우징과 실린더블록 사이에 개재되는 밸브플레이트와, 상기 구동축과 함께 회전하도록 형성되며 상기 실린더블록에 형성된 결합공의 내면에 회전 가능하게 설치된 로터리밸브를 포함하는 사판식 압축기에 있어서, 사판실과 하우징의 냉매저장실에 연통하도록 상기 실린더 블록에 형성되는 냉매흡입공과, 상기 냉매저장실과 연통되도록 상기 구동축에 형성되는 냉매유입구, 상기 로터리밸브에 형성되며 상기 냉매유입구와 연통되는 냉매토출구 및 상기 냉매토출구와 면하는 상기 결합공의 내주면에 상기 다수의 실린더보어와 각각 연결되는 연통홀을 포함하는 것을 특징으로 한다. 본 발명은 사판실의 냉매를 흡입하는 냉매흡입공이 실린더블록의 결합공 내에 동반 형성됨에 따라 고속회전하는 구동축의 회전력에 관계없이 냉매를 안정적으로 흡입할 수 있어 냉매 흡입저항에 의한 손실을 크게 감소시킬 수 있는 효과가 있다.

Description

사판식 압축기
본 발명은 사판식 압축기에 관한 것으로, 특히 사판실로 유입되는 냉매를 실린더블록을 통해 효율적으로 흡입할 수 있는 사판식 압축기에 관한 것이다.
일반적으로 차량의 공조장치는 냉매를 이용하여 차 실내의 온도를 외부의 온도보다 낮게 유지하는 장치로서, 냉매의 순환 사이클을 구성하기 위하여 압축기, 응축기 및 증발기를 구비하고 있다.
이러한 상기 압축기는 냉매를 압축 및 압송하는 장치로서 엔진의 동력이나 모터에 의해 구동된다.
왕복동식 압축기의 일종인 사판식 압축기는, 엔진의 동력을 전달받는 구동축에 디스크 형상의 사판이 구동축의 회전에 대응되어 경사각이 가변 또는 고정된 상태로 설치되고, 상기 사판의 회전에 의하여 사판의 둘레를 따라 슈(shoe)를 개재하여 설치된 다수의 피스톤이 실린더블록에 형성된 다수의 실린더 보어 내부에서 직선 왕복 운동함으로써 냉매가스를 흡입하고 압축하여 배출하도록 구성된다.
또한, 일반적으로 상기 냉매가스를 흡입하고 압축하여 배출시키는 과정에 있어, 하우징과 실린더블록 사이에는 냉매가스의 흡입 및 토출을 단속하는 밸브플레이트가 설치된다.
구체적으로, 도 1을 참조하여 통상의 사판식 압축기의 구성을 보다 상세히 설명한다.
도시한 바와 같이, 전방 실린더블록(A20)이 내장된 전방 하우징(A10)과, 상기 전방 하우징(A10)과 결합되며 후방 실린더블록(A20a)이 내장된 후방 하우징(A10a)과, 상기 전,후방 실린더블록(A20)(A20a)의 내부에 형성된 다수의 실린더보어(A21) 내부에서 각각 왕복 운동하는 복수의 피스톤(A50)들과, 상기 구동축(A30)에 경사지게 결합되고 외주에 설치되는 슈(A45)를 개재하여 상기 피스톤(A50)들에 결합되는 사판(A40)과, 상기 전,후방 하우징(A10)(A10a)과 전,후방 실린더블록(A20)(A20a) 사이에 설치되는 밸브플레이트(A60)와, 상기 후방 하우징(A10a)의 외측면 상부에 설치되어 피스톤(A50)의 흡입행정시 증발기로부터 이송된 냉매를 압축기(A1) 내부로 공급하고 피스톤(A50)의 압축행정시에는 압축기(A1) 내부에서 압축된 냉매를 응축기 쪽으로 토출하도록 머플러(A70)로 구성되어 있다.
그리고, 상기 전,후방 하우징(A10)(A10a)의 내부에는 격벽(A13)의 내,외측에 각각 냉매토출실(A12) 및 냉매흡입실(A11)이 형성되어 있다. 여기서, 상기 냉매토출실(A12)은 격벽(A13)의 내측에 형성된 제 1 토출실(A12a)과, 상기 격벽(A13)의 외측에 형성되어 냉매흡입실(A11)과 구획되며 제 1 토출실(A12a)과 토출홀(A12c)을 통해 연통하는 제 2 토출실(A12b)로 구성된다. 이에 따라 상기 제 1 토출실(A12a)의 냉매가 상기 작은 직경의 토출홀(A12c)을 통과하여 제 2 토출실(A12b)로 이동하게 되고, 그 결과 주기적인 냉매의 흡입에 따르는 맥동압이 감쇄되어 진동과 소음을 감소할 수 있게 된다.
한편, 상기 전,후방 실린더블록(A20)(A20a) 사이에 구비된 사판실(A24)로 공급되는 냉매가 상기 각 냉매흡입실(A11)로 유동할 수 있도록 상기 전,후방 실린더블록(A20)(A20a)에는 다수의 흡입통로(A22)가 형성되며, 상기 전,후방 하우징(A10)(A10a)의 제 2 토출실(A12b)은 상기 전,후방 실린더블록(A20)(A20a)을 관통하여 형성된 연결통로(A23)에 의해 상호 연통된다. 따라서, 상기 피스톤(A50)의 왕복운동에 따라 상기 전,후방 실린더블록(A20)(A20a)의 보어(A21) 내에서 동시에 냉매의 흡입 및 압축이 수행될 수 있는 것이다.
상기와 같이 구성된 종래의 사판식 압축기는 다음의 과정을 통해 냉매를 압축하고 있다.
증발기로부터 공급되는 냉매는 상기 머플러(A70)의 흡입부로 흡입된 후 냉매흡입구(A71)를 통해 상기 전,후방 실린더블록(A20)(A20a) 사이의 사판실(A24)로 공급되고, 상기 사판실(A24)로 공급된 냉매는 상기 전,후방 실린더블록(A20)(A20a)에 형성된 흡입통로(A22)를 따라 상기 전,후방 하우징(A10)(A10a)의 냉매흡입실(A11)로 유동하게 된다.
이후, 상기 피스톤(A50)의 흡입행정시 상기 흡입리드밸브가 열리게 되므로, 상기 냉매흡입실(A11)의 냉매가 밸브플레이트(A60)의 냉매흡입공을 통해 상기 실린더보어(A21) 내부로 흡입된다. 그리고, 피스톤(A50)의 압축행정시 상기 실린더보어(A21) 내부의 냉매가 압축되게 되고, 상기 토출리드밸브가 열리면서 냉매가 밸브플레이트(A60)의 냉매토출공을 통해 상기 전,후방 하우징(A10)(A10a)의 제 1 토출실(A12a)로 유동하게 된다. 상기 제 1 토출실(A12a)로 유동한 냉매는 제 2 토출실(A12b)을 거쳐 상기 머플러(A70)의 냉매토출구(A72)를 통해 머플러(A70)의 토출부로 토출된 후 응축기로 유동하게 된다.
한편, 상기 전방 실린더블록(A20)의 실린더보어(A21)내에서 압축된 냉매는 상기 전방 하우징(A10)의 제 1 토출실(A12a)로 토출되고 이후 제 2 토출실(A12b)로 유동한 후 상기 전,후방 실린더블록(A20)(A20a)에 형성된 연결통로(A23)를 따라 상기 후방 하우징(A10a)의 제 2 토출실(A12b)로 유동하여 이곳의 냉매와 함께 상기 냉매토출구(A72)를 통해 머플러(A70)의 토출부로 토출된다.
그러나, 상기한 종래의 압축기(A1)는 내부의 냉매 유로가 복잡하여 생기는 흡입 저항에 의한 손실과, 상기 밸브플레이트(A60)의 개폐작용시 흡입리드밸브의 탄성저항에 의한 손실 등으로 냉매의 흡입 체적효율이 감소되는 문제가 있었다.
한편, 이러한 흡입리드밸브의 탄성저항에 의한 손실을 감소시키기 위한 기술이 한국 특허공개번호 제2007-19564호(압축기, 이하 '종래기술'이라 함)가 개시되어 있다.
이러한 상기 종래기술은 흡입리드밸브가 없는 구동축 일체형 흡입 로터리 밸브(Suction Rotary Valve)를 적용한 압축기에 관한 것으로, 흡입저항에 의한 손실을 감소시키기 위하여 냉매가 구동축 내부를 통해 실린더보어를 직접 들어갈 수 있도록 한 것이다.
구체적으로, 도 2에 도시된 바와 같이, 사판(B160)이 경사지게 결합되고 내부에 냉매가 흐르는 유로(B151)가 형성되며, 상기 사판(B160)이 결합되는 사판 허브측에 상기 유로(B151)에 연통되는 하나 이상의 흡입구(B152)가 형성되고, 상기 흡입구(B152)와 이격된 위치에 출구(B153)가 형성된 구동축(B150)과, 상기 구동축(B150)이 회전가능하게 설치되고 사판실(B136) 양측으로 다수의 실린더보어(B131)(B141)가 구비되며, 상기 구동축(B150)의 유로(B151)로 흡입된 냉매가 구동축(B150)의 회전시 순차적으로 각 실린더보어(B131)(B141)로 흡입될 수 있도록 축지지공(B133)(B143)과 각 실린더보어(B131)(B141)를 연통시키는 흡입통로(B132)(B142)가 형성된 전,후방 실린더블록(B130)(B140)과, 상기 사판(B160)의 외주에 슈를 개재하여 장착되고 사판(B160)의 회전운동에 연동하여 상기 실린더보어(B131)(B141)내를 왕복운동하는 다수의 피스톤(B170)과, 상기 실린더블록(B130)(B140)의 양측에 결합되며 내부에 토출실이 각각 형성된 전,후방 하우징(B110)(B120)을 포함하여 구성된 압축기가 개시되어 있다.
이러한 종래기술의 압축기에 따르면, 흡입포트(미도시)를 통해 유입된 냉매가 사판(B160)의 허브측에 형성된 흡입구(B152)를 통해 구동축(B150)의 내부로 유입된 후, 구동축(B150)의 내부에 형성된 유로(B151)를 경유하여 실린더보어(B131)(B141)로 유입되는 구성으로 되어 있다.
그러나, 상기한 종래기술은 구동축의 흡입구가 사판 허브 측에 형성되어 구동축이 회전하면서 사판실 내의 냉매를 흡입하는 구조이므로 상기 구동축이 고속으로 회전하게 되면 원심력에 의한 유동 저항으로 인하여 충분한 흡입유량을 확보하지 못하게 되는 문제점이 있었다.
또한, 흡입통로에 잔류하는 냉매의 유로 저항에 의해 압축기의 체적효율이 저하되어 충분한 흡입유량을 확보하지 못하게 되는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 사판실의 냉매를 실린더블록을 통해 흡입할 수 있도록 함과 동시에 냉매 흡입량을 충분히 확보한 상태에서 안정적으로 공급할 수 있는 사판식 압축기를 제공하는 데 있다.
또한, 본 발명의 다른 목적은 로터리밸브에 의해 냉매의 유로저항과 흡입손실을 줄임으로써 압축기의 체적효율을 한층 향상시킬 수 있는 로터리밸브를 장착한 사판식 압축기를 제공하는 데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 사판식 압축기는, 하우징과, 다수개의 실린더보어가 형성되며 상기 하우징에 결합되는 실린더블록과, 상기 실린더보어에 각각 왕복운동 가능하게 수용되는 피스톤과, 상기 하우징과 실린더블록에 대하여 회전가능하게 설치되는 구동축과, 상기 구동축에 의해 회전하며 피스톤에 연동되게 설치되는 사판과, 상기 하우징과 실린더블록 사이에 개재되는 밸브플레이트와, 상기 구동축과 함께 회전하도록 형성되며 상기 실린더블록에 형성된 결합공의 내면에 회전 가능하게 설치된 로터리밸브를 포함하는 사판식 압축기에 있어서, 사판실과 하우징의 냉매저장실에 연통하도록 상기 실린더 블록에 형성되는 냉매흡입공과, 상기 냉매저장실과 연통되도록 상기 구동축에 형성되는 냉매유입구, 상기 로터리밸브에 형성되며 상기 냉매유입구와 연통되는 냉매토출구 및 상기 냉매토출구와 면하는 상기 결합공의 내주면에 상기 다수의 실린더보어와 각각 연결되는 연통홀을 포함하는 것을 특징으로 한다.
또한, 상기 냉매유입구는 상기 구동축의 길이방향 일단부 또는 상기 구동축의 외주면에 형성되며, 상기 냉매유입구와 냉매토출구를 연통하는 냉매전달공이 구동축의 길이방향을 따라 형성되는 것이 바람직하다.
그리고, 상기 냉매유입구는 상기 구동축의 일단부와 외주면에 각각 형성되며, 상기 냉매유입구와 냉매토출구를 연통하는 냉매전달공이 구동축의 길이방향을 따라 형성되는 것이 바람직하다.
한편, 상기 로터리밸브에는 제1배출홈이 형성되며, 상기 결합공의 내주면에는 상기 제1배출홈에 대응되는 제2배출홈이 형성되는 것이 바람직하다.
또한, 상기 제1배출홈은 냉매토출구 사이에 두고 2개가 형성되는 것이 바람직하다.
본 발명에 따른 사핀식 압축기에 따르면, 사판실의 냉매를 흡입하는 냉매흡입공이 실린더블록의 결합공 내에 동반 형성됨에 따라 고속회전하는 구동축의 회전력에 관계없이 냉매를 안정적으로 흡입할 수 있어 냉매 흡입저항에 의한 손실을 크게 감소시킬 수 있는 효과가 있다.
그리고, 상기 로터리밸브에는 피스톤의 압축행정 중 실린더보어의 연통홀 내에 잔류하는 냉매를 바이패스시키는 제1,2배출홈이 형성됨으로써, 압축행정을 마친 실린더보어 내로 재공급되는 냉매가 흡입장애 없이 그 내부로 원할하게 이동할 수 있다.
상기 제2배출홈은 실린더 블럭에 형성되는 것을 특징으로 한다.
상기 제2배출홈은 실린더블럭에 연속적인 원형상으로 형성되는 것이 바람직하다.
상기 제1배출홈의 각각 단면적은 다르게 형성되는 것이 바람직하다.
도 1은 통상의 사판식 압축기의 구성을 나타낸 정단면도 및 측단면도이다.
도 2는 종래기술에 따른 로터리밸브를 장착한 사판식 압축기를 나타낸 단면도이다.
도 3은 본 발명에 따른 사판식 압축기를 도시한 단면도이다.
도 4는 본 발명에 따른 사판식 압축기의 실린더블록을 도시한 사시도이다.
도 5는 본 발명에 따른 구동축과 사판이 결합된 상태를 도시한 사시도이다.
도 6은 본 발명에 따른 사판식 압축기의 잔류가스 배출구조를 도시한 단면도이다.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
설명에 앞서, 본 발명에 따른 사판식 압축기(1000)는 양두식 피스톤 압축기에 대하여 실시예를 적용하였으나, 반드시 양두식 피스톤 압축기에 한정하지 않고 통상의 편두식 피스톤 압축기에도 적용할 수 있다.
도 3 내지 도 6에 도시된 바와 같이, 본 발명에 따른 사판식 압축기(1000)는 다수개의 실린더보어(110)를 갖는 실린더블록(100)과, 상기 실린더블록(100)의 실린더보어(110)에 각각 왕복운동 가능하게 수용되는 피스톤(200)과, 상기 실린더블록(100)의 전,후방에 각각 밀폐가능하게 결합되는 전,후방하우징(310,320)과, 상기 전방하우징(310)과 실린더블록(100)에 대하여 회전가능하게 설치되는 구동축(400)과, 상기 구동축(400)과 피스톤(200)에 연동 설치되는 사판(500)과, 상기 실린더블록(100)과 전,후방하우징(310,320)의 사이에 각각 개재되는 밸브플레이트(600)로 구성된다.
상기 구성은 앞서 설명한 도 1a의 종래기술과 동일하므로, 중복되는 구성의 설명은 생략하고, 차이가 있는 구성에 대해서만 설명하도록 한다.
먼저, 도 3에 도시한 바와 같이, 상기 실린더블록(100)은 전,후방하우징(310,320) 사이에 개재되는 것으로, 내부에는 상기 피스톤(200)이 왕복운동하는 다수개의 실린더보어(110)가 형성된다.
특히, 상기 실린더블록(100)에는 결합공(120)이 형성되어 있으며, 상기 결합공(120) 내에는 미끄럼회전이 자유롭게 로터리밸브(R)가 설치되어 있다. 상기 로터리밸브(R)는 구동축(400)의 자체에 형성되어 있다.
또한, 도 3과 도 4에 도시된 바와 같이 상기 로터리밸브(R)의 외주면과 대면하는 결합공(120)의 내주면에는 상기 다수의 실린더보어(110) 각각으로 냉매를 공급하는 연통홀(130)이 형성되어 있는 것과 함께, 사판실(101)로부터 하우징(310)(320)까지 연통되는 냉매흡입공(140)이 형성되어 있다.
상기 냉매흡입공(140)은 이웃하는 실린더보어들(110)(110) 사이에 배치되는 것이 냉매 흡입에 효과적이다. 엄밀하게는, 상기 냉매흡입공(140)이 상기 이웃하는 연통홀들(130)(130) 사이에 하나씩 배치되도록 하는 것이 좋다.
그리고, 상기 구동축(400)에는 길이방향으로 냉매전달공(420)이 형성되어 있고, 상기 냉매전달공(420)과 연통되도록 냉매유입구(410)가 형성되며, 상기 냉매유입구(410)는 상기 냉매흡입공(140)을 통과하여 후술하는 냉매저장실(P1)에 수용된 냉매를 로터리밸브(R)로 전달하는 역할을 수행한다.
또한, 상기 냉매유입구(410)는 상기 구동축(400)의 길이방향 일단부로부터 형성되거나 상기 구동축(400)의 외주면에 형성될 수 있다.
그리고, 상기 냉매흡입공(140)과 냉매유입구(410)는 상기 전,후방하우징(310,320)에 형성된 냉매저장실(P1)에 의해 서로 연통된다.
따라서, 흡입냉매는 사판실(101), 냉매흡입공(140), 냉매저장실(P1), 냉매유입구(410), 냉매전달공(420), 로터리밸브(R), 연통홀(130) 및 실린더 보어(110)를 순차적으로 경유한 후 압축된다.
한편, 상기 로터리밸브(R)는 구동축(400)의 외경을 가공하여 구동축(400)에 일체로 형성하는 것이 바람직하다.
이는, 상기 로터리밸브(R)를 별도로 제작하여 생산하고 이를 다시 구동축(400)에 조립시키는 공정을 생략할 수 있을 뿐만 아니라 상기 로터리밸브(R)와 구동축(400) 상호간의 마찰을 줄일 수 있는 장점을 제공한다.
본 발명의 실시예에 채택된 로터리밸브(R)의 구성은 아래와 같다.
상기 로터리밸브(R)는 구동축(400)에 형성되는 것으로, 그 외주면의 일측에는 실린더블록(100)의 냉매흡입공(140)과 냉매저장실(P1) 내로 유입된 냉매를 직접 실린더보어(110)와 연통시키면서 토출시키는 냉매토출구(R1)가 형성된다.
그리고, 상기 로터리밸브(R)의 외주면과 실린더블록(100)의 결합공(120) 내주면에는 상호간에 연통되어 실린더보어(110)의 연통홀(130) 내의 고압 잔류가스를 제거하기 위한 각각의 제1배출홈(R2,R3)과 제2배출홈(190)이 형성된다.
상기 제1배출홈(R2,R3)은 구동축(400)에 형성된 냉매토출구(R1)를 사이에 두고 각각 형성된다. 이 경우, 일측의 제1배출홈(R2)은 연통홀(130) 내의 냉매를 흡입하는 역할을 수행하며, 타측에 형성된 제1배출홈(R3)은 제2배출홈(190)을 지나온 잔류가스를 맞은 편 연통홀(130)을 통해 팽창된 실린더보어(110)로 배출시키는 역할을 수행한다.
상기 제2배출홈(190)은 결합공(120)의 내주면 둘레를 따라 소정 깊이로 함몰된 연속적인 원형의 형태로 이루어진다. 여기서, 상기 제2배출홈(190)은 전술한 일측 제1 배출홈(R2)으로부터 이동되는 고압잔류가스를 타측 제1배출홈(R3)으로 공급하는 중간통로 역할을 수행한다.
따라서, 상기 연통홀(130) 내에 잔류하던 냉매는 구동축(400)이 회전하는 과정에서 일측의 제1배출홈(R2), 제2배출홈(190), 타측의 제1배출홈(R3)을 순차적으로 통과한 후 맞은 편의 연통홀(130)을 통해 팽창된 실린더보어(110)로 토출된다.
상기 제1배출홈(R2)과 제2배출홈(190)은, 냉매를 흡입 및 압축작용 하는 피스톤(200)이 최고 상사점에 도달한 이후 다시 냉매를 흡입하는데 있어 연통홀(130)에 갇힌 고압의 잔류가스에 의해 흡입손실이 발생하는 것을 방지함으로써 냉매가 원활히 실린더보어(110) 내로 흡입될 수 있도록 하는 역할을 수행한다.
이러한 구성에 따라, 상기 실린더블록(100)의 냉매흡입공(140)을 통해 유입된 냉매는 전,후방하우징(310,320)의 냉매저장실(P1)로 이동되고, 이후 상기 냉매저장실(P1) 내의 냉매는 구동축(200)의 냉매유입구(410)를 통해 재유입되며 유입된 냉매는 냉매전달공(420)과 냉매토출구(R1) 및 연통홀(130)을 거쳐 실린더보어(110)로 토출된다.
필요에 따라, 상기 제1배출홈(R2)의 단면적은 서로 다르게 형성될 수 있다.
이하, 도 3 내지 도 6을 참조하여 본 발명의 실시예에 따른 사판식 압축기의 냉매 흡입구조를 설명한다.
먼저, 압축기(1000)의 구동축(400)이 동력을 전달받아 회전하게 되면, 사판(500)이 회전하고, 상기 사판(500)의 회전운동에 연동하는 다수의 피스톤(200)은 상기 실린더블록(100)의 실린더보어(110) 내부를 왕복운동하면서 냉매를 흡입 및 압축하는 작용을 반복 수행한다.
계속해서, 상기 실린더보어(110)로 유입되는 냉매의 흡입구조를 구체적으로 살펴보면, 증발기(미도시)로부터 사판실(101) 내로 유입된 냉매는 상기 피스톤(200)의 흡입행정에 의해 실린더블록(100)의 냉매흡입공(140)으로 유입되게 된다. 상기 냉매흡입공(140)을 통해 축방향으로 이동한 냉매는 전,후방하우징(310,320)의 냉매저장실(P1)로 이동한다.
이후, 냉매저장실(P1)에 저장된 냉매는 냉매유입구(410)와 냉매전달공(420)을 거쳐 로터리밸브(R)의 냉매토출구(R1)를 통해 실린더보어(110)로 흡입된다.
상기 냉매유입구(410)는 구동축(400)의 양단 부근에 형성되어 있어 냉매가 이들을 통해 실린더보어(110)로 연속적으로 흡입된다.
한편, 결합공(120) 및 로터리밸브(R)에는 제1배출홈(R2,R3)과 제2배출홈(190)이 형성되어 있으므로 피스톤(200)의 압축행정이 최고 상사점에 도달한 이후 실린더보어(110)의 연통홀(130)을 서로 연통시켜 그 내부에 잔류하던 냉매를 맞은 편의 연통홀(130)을 통해 팽창된 실린더보어(110)로 토출하여 냉매의 흡입을 원할하게 진행할 수 있게 한다.
이후, 상기 실린더보어(110)에서 압축된 냉매는 전,후방하우징(310,320)의 냉매토출실(P2)로 토출한다.
또한, 냉매저장실(P1)이 별도로 없는 구조에 적용하여 단일 흡입구조를 형성하는 것도 가능하다.
이상, 본 발명의 바람직한 실시 예에 대하여 상세히 설명하였으나, 본 발명의 기술적 범위는 전술한 실시 예에 한정되지 않고 특허청구범위에 의하여 해석되어야 할 것이다. 이때, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 고려해야 할 것이다.
대표적으로, 상기 냉매유입구(410)는 구동축(400) 일단 또는 외주면 중 하나에만 형성될 수 있다.
그리고, 도면에서는 상기 냉매유입구(410)가 구동축(400)의 외주면과 단부에 각각 형성되어 있으나, 2개모두 외주면 또는 단부에 형성되어도 무방하다.

Claims (8)

  1. 하우징과, 다수개의 실린더보어가 형성되며 상기 하우징에 결합되는 실린더블록과, 상기 실린더보어에 각각 왕복운동 가능하게 수용되는 피스톤과, 상기 하우징과 실린더블록에 대하여 회전가능하게 설치되는 구동축과, 상기 구동축에 의해 회전하며 피스톤에 연동되게 설치되는 사판과, 상기 하우징과 실린더블록 사이에 개재되는 밸브플레이트와, 상기 구동축과 함께 회전하도록 형성되며 상기 실린더블록에 형성된 결합공의 내면에 회전 가능하게 설치된 로터리밸브를 포함하는 사판식 압축기에 있어서,
    사판실과 하우징의 냉매저장실에 연통하도록 상기 실린더 블록에 형성되는 냉매흡입공;
    상기 냉매저장실과 연통되도록 상기 구동축에 형성되는 냉매유입구;
    상기 로터리밸브에 형성되며 상기 냉매유입구와 연통되는 냉매토출구; 및
    상기 냉매토출구와 면하는 상기 결합공의 내주면에 상기 다수의 실린더보어와 각각 연결되는 연통홀을 포함하는 것을 특징으로 하는 사판식 압축기.
  2. 제 1항에 있어서,
    상기 냉매유입구는 상기 구동축의 길이방향 일단부 또는 상기 구동축의 외주면에 형성되며, 상기 냉매유입구와 냉매토출구를 연통하는 냉매전달공이 구동축의 길이방향을 따라 형성되는 것을 특징으로 하는 사판식 압축기.
  3. 제 1항에 있어서,
    상기 냉매유입구는 상기 구동축의 일단부와 외주면에 각각 형성되며, 상기 냉매유입구와 냉매토출구를 연통하는 냉매전달공이 구동축의 길이방향을 따라 형성되는 것을 특징으로 하는 사판식 압축기.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 로터리밸브에는 제1배출홈이 형성되며, 상기 결합공의 내주면에는 상기 제1배출홈에 대응되는 제2배출홈이 형성되는 것을 특징으로 하는 사판식 압축기.
  5. 제 4항에 있어서,
    상기 제1배출홈은 냉매토출구 사이에 두고 2개가 형성되는 것을 특징으로 하는 사판식 압축기.
  6. 제4항에 있어서,
    상기 제2배출홈은 실린더 블럭에 형성되는 것을 특징으로 하는 사판식 압축기.
  7. 제4항에 있어서,
    상기 제2배출홈은 실린더블럭에 연속적인 원형상으로 형성되는 것을 특징으로 하는 사판식 압축기.
  8. 제 5항에 있어서,
    상기 제1배출홈의 각각 단면적이 다르게 형성되는 것을 특징으로 하는 사판식 압축기.
PCT/KR2009/007335 2008-12-09 2009-12-09 사판식 압축기 WO2010068025A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980154486.1A CN102272451B (zh) 2008-12-09 2009-12-09 斜盘式压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0124536 2008-12-09
KR1020080124536A KR101001584B1 (ko) 2008-12-09 2008-12-09 사판식 압축기

Publications (2)

Publication Number Publication Date
WO2010068025A2 true WO2010068025A2 (ko) 2010-06-17
WO2010068025A3 WO2010068025A3 (ko) 2010-08-05

Family

ID=42243207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007335 WO2010068025A2 (ko) 2008-12-09 2009-12-09 사판식 압축기

Country Status (3)

Country Link
KR (1) KR101001584B1 (ko)
CN (1) CN102272451B (ko)
WO (1) WO2010068025A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169157A (ja) * 2014-03-10 2015-09-28 株式会社豊田自動織機 ピストン式圧縮機
KR102112217B1 (ko) * 2014-09-22 2020-05-19 한온시스템 주식회사 중실축을 구비한 사판 압축기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245197A (ja) * 2003-02-17 2004-09-02 Toyota Industries Corp ピストン式圧縮機
JP2005155592A (ja) * 2003-10-29 2005-06-16 Toyota Industries Corp ピストン式圧縮機
JP2007270790A (ja) * 2006-03-31 2007-10-18 Toyota Industries Corp 斜板式圧縮機
KR20080024607A (ko) * 2006-09-14 2008-03-19 한라공조주식회사 압축기

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571336A3 (en) * 2004-03-03 2006-01-04 Kabushiki Kaisha Toyota Jidoshokki Piston compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245197A (ja) * 2003-02-17 2004-09-02 Toyota Industries Corp ピストン式圧縮機
JP2005155592A (ja) * 2003-10-29 2005-06-16 Toyota Industries Corp ピストン式圧縮機
JP2007270790A (ja) * 2006-03-31 2007-10-18 Toyota Industries Corp 斜板式圧縮機
KR20080024607A (ko) * 2006-09-14 2008-03-19 한라공조주식회사 압축기

Also Published As

Publication number Publication date
WO2010068025A3 (ko) 2010-08-05
CN102272451B (zh) 2014-09-03
CN102272451A (zh) 2011-12-07
KR101001584B1 (ko) 2010-12-17
KR20100065935A (ko) 2010-06-17

Similar Documents

Publication Publication Date Title
WO2010018944A2 (ko) 사판식 압축기의 토출용 체크밸브
WO2009151259A1 (ko) 로터리 밸브를 구비한 왕복동 압축기
WO2010058998A2 (ko) 로터리밸브를 장착한 사판식 압축기
WO2010068025A2 (ko) 사판식 압축기
EP1302662B1 (en) Swash plate type compressor having improved refrigerant discharge structure
CN100467864C (zh) 压缩机
KR101001575B1 (ko) 로터리밸브를 장착한 사판식 압축기
KR101099119B1 (ko) 사판식 압축기
WO2009139559A1 (ko) 사판식 압축기
KR100986964B1 (ko) 사판식 압축기
WO2018221902A1 (ko) 컨트롤 밸브 및 가변 용량식 압축기
KR101001569B1 (ko) 로터리밸브 및 이를 구비하는 사판식 압축기
KR20080028172A (ko) 압축기
KR101099102B1 (ko) 사판식 압축기
WO2010151021A2 (ko) 왕복동식 압축기
WO2012005474A2 (ko) 사판식 압축기
KR101001566B1 (ko) 사판식 압축기
KR100993778B1 (ko) 양두 사판식 압축기
JP3517938B2 (ja) 往復動型圧縮機における冷媒ガス吸入構造
WO2022119048A1 (ko) 로타리 피스톤 공기압축기
KR100903095B1 (ko) 밸브 어셈블리의 구조가 개선된 자동차용 압축기
KR20080029077A (ko) 압축기
KR20080010686A (ko) 압축기
WO2010068026A2 (ko) 사판식 압축기
KR101032184B1 (ko) 압축기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154486.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832110

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09832110

Country of ref document: EP

Kind code of ref document: A2