WO2010067595A1 - 燃焼器 - Google Patents

燃焼器 Download PDF

Info

Publication number
WO2010067595A1
WO2010067595A1 PCT/JP2009/006722 JP2009006722W WO2010067595A1 WO 2010067595 A1 WO2010067595 A1 WO 2010067595A1 JP 2009006722 W JP2009006722 W JP 2009006722W WO 2010067595 A1 WO2010067595 A1 WO 2010067595A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
combustion gas
region
heat
combustor
Prior art date
Application number
PCT/JP2009/006722
Other languages
English (en)
French (fr)
Inventor
加藤壮一郎
水谷琢
高橋克昌
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008314690A external-priority patent/JP5359237B2/ja
Priority claimed from JP2008318537A external-priority patent/JP5272698B2/ja
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN200980149165.2A priority Critical patent/CN102245970B/zh
Priority to EP09831702.7A priority patent/EP2357408A4/en
Priority to CA2745614A priority patent/CA2745614C/en
Priority to BRPI0922853A priority patent/BRPI0922853A2/pt
Priority to KR1020117012705A priority patent/KR101265297B1/ko
Priority to US13/130,111 priority patent/US9039408B2/en
Priority to RU2011122979/06A priority patent/RU2477425C2/ru
Publication of WO2010067595A1 publication Critical patent/WO2010067595A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C15/00Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/126Radiant burners cooperating with refractory wall surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2200/00Combustion techniques for fluent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/002Radiant burner mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/904Radiation

Definitions

  • the present invention burns the combustion gas ejected from the first pipe through the opening of the flame extinguishing distance or less in the combustion region inside the second pipe, and further generates the heat of the combustion gas generated by the combustion of the combustion gas.
  • the present invention relates to a combustor that heats the combustion gas by transferring heat to the combustion gas through the first pipe.
  • a combustion gas (a mixture of fuel and oxidant mixed) ejected from the first pipe through an opening that is equal to or less than the flame extinguishing distance is disposed inside the second pipe.
  • Combustors that burn in the combustion zone are known. According to such a combustor, the flame is prevented from propagating to the first pipe by the opening that is set to the flame extinguishing distance or less. Furthermore, by supplying an appropriate amount of combustion gas, the combustion gas can be stably burned in an extremely narrow combustion region inside the second pipe.
  • the above-mentioned combustor when the combustion gas is burned in the combustion region, the flame in the combustion region is maintained by continuously supplying the combustion gas to the combustion region. However, at the time of starting, it is necessary to ignite the combustion gas with an ignition device. For this reason, the above-mentioned combustor arrange
  • Patent Document 1 when an igniter plug is disposed on the downstream side of the combustion region, the flame propagates against the flow of the combustion gas so that a flame is formed in the combustion region. It is necessary to let Depending on the situation, the flame may not propagate well against the flow of the combustion gas, and the combustion gas may not be ignited, and a plurality of ignition operations may be required.
  • the igniter plug In the case where the igniter plug is disposed on the downstream side of the combustion region, the igniter plug is exposed to the high-temperature and high-speed combustion gas generated by the combustion of the combustion gas in the combustion region after the start of the combustor. For this reason, the problem that the lifetime of an igniter plug will become short arises.
  • the first pipe serving as the flow path of the combustion gas is formed of a material having a high thermal conductivity.
  • many materials with high thermal conductivity have low heat resistance.
  • the first pipe is formed of a material having high thermal conductivity, the area of the first pipe exposed to a high temperature environment near the combustion area is deteriorated due to oxidation fragility, and the life of the combustor is shortened. End up.
  • the first pipe it is conceivable to form the first pipe with a material having high heat resistance.
  • a material having high heat resistance since such a material has low thermal conductivity, the heat of the combustion gas cannot be efficiently transferred to the combustion gas. Therefore, there is a possibility that the combustion gas is not sufficiently heated.
  • the present invention has been made in view of the above-described problems, and improves the ignitability of the combustion gas in a combustor that transfers the heat of the combustion gas to the combustion gas and heats it, and the flame nucleation part of the ignition device
  • the purpose is to extend the service life.
  • an object of the present invention is to make it possible to sufficiently heat the combustion gas and improve durability in the combustor.
  • the present invention adopts the following configuration in order to solve the above problems.
  • 1st piping which the combustion gas flows into the inside and which injects the said combustion gas through the opening part below a flame extinction distance, and the said combustion gas which was injected from the said opening part of 1st piping Is supplied, and the combustion gas supplied from the upstream side burns the combustion gas and the combustion gas is supplied to the second piping.
  • a igniter that ignites using flame nuclei formed in a flame nucleation unit.
  • a low flow velocity region that is disposed on the upstream side of the combustion region inside the second pipe and has a relatively slow flow velocity of the combustion gas inside the second pipe, wherein the flame nucleus forming portion It is arranged in the flow velocity region.
  • the first pipe is an inner pipe to which the combustion gas is supplied from one end side and the other end is a closed end
  • the second pipe is An outer pipe disposed on the outer periphery of the first pipe with the combustion region therebetween, exhausting the combustion gas from one end side, and having the other end as a closed end disposed on the other end side of the first pipe.
  • a region between the closed end of the first pipe and the closed end of the second pipe is the low flow velocity region.
  • the first pipe and the second pipe are arranged concentrically, and only one flame nucleus forming portion is provided in a central region of the closed end of the second pipe. Is arranged.
  • the flame nucleus forming portion is fixed to the second pipe and is displaced from the extending direction of the first pipe.
  • the heat of the combustion gas generated by the combustion of the combustion gas is transferred to the combustion gas through the first pipe.
  • It is a combustor for heating combustion gas.
  • the first pipe is exposed to an environment below the oxidative corrosion temperature of the forming material and has a relatively high thermal conductivity and a relatively low heat resistance. It is exposed to an environment at an oxidation corrosion temperature or higher and has a heat resistant region having relatively high heat resistance as compared with the heat transfer region.
  • the first pipe is an inner pipe to which the combustion gas is supplied from one end side and the other end is a closed end
  • the second pipe is The outer pipe is arranged on the outer periphery of the first pipe with the combustion region therebetween, and discharges the combustion gas from one end side, and the other end is a closed end arranged on the other end side of the first pipe.
  • the heat-resistant region has a relatively high heat resistance due to the coating applied to the surface of the first pipe.
  • the heat resistant region is formed of a material having higher heat resistance than the forming material of the heat transfer region.
  • the first member having the heat transfer region and the second member having the heat resistant region are formed separately, and the first member and The first pipe is configured by joining the second member.
  • a low flow velocity region that is disposed upstream of the combustion region and has a relatively low flow velocity of the combustion gas in the second pipe is provided, and the flame nucleus forming portion of the ignition device is disposed in the low flow velocity region. Is done. For this reason, after the flame nuclei formed in the flame nucleation part ignite the combustion gas in the low flow velocity region, the flame propagates downstream in the second pipe and reaches the combustion region. Therefore, it is not necessary to propagate the flame against the flow of the combustion gas, and the ignitability is improved.
  • the low flow velocity region is disposed upstream of the combustion region. For this reason, a flame nucleus formation part is not exposed to the high-temperature and high-speed combustion gas which arises when combustion gas burns in a combustion area
  • the speed of the combustion gas in the low flow rate region is slower than in other regions inside the second pipe, so that the heat load on the flame nucleus forming portion can be reduced. Therefore, the life of the flame nucleus forming part of the ignition device is extended.
  • the combustion gas can be heated by transferring the heat of the combustion gas to the combustion gas in the heat transfer region of the inner tube 101. Further, in the heat resistant region of the inner tube 101, it is possible to prevent the inner tube 101 from being fragile by oxidation due to the heat of the combustion gas. Therefore, according to the present invention, in the combustor in which the heat of the combustion gas is transferred to the combustion gas and heated, the combustion gas can be sufficiently heated and the durability can be improved.
  • FIG. 1 is a perspective view schematically showing a schematic configuration of a combustor in a first embodiment of the present invention. It is sectional drawing which shows typically schematic structure of the combustor in 1st Embodiment of this invention. It is sectional drawing which shows the modification of the combustor in 1st Embodiment of this invention. It is sectional drawing which shows typically the outline of the combustor in 2nd Embodiment of this invention. It is sectional drawing which shows the modification of the combustor in 2nd Embodiment of this invention. It is a schematic block diagram of the Swiss roll type combustor which is a modification of this invention. It is sectional drawing which showed typically schematic structure of the combustor in 3rd Embodiment of this invention. It is an exploded sectional view of an inner pipe with which a combustor in a 4th embodiment of the present invention is provided.
  • FIG. 1 and 2 are diagrams schematically showing a schematic configuration of a combustor according to the present embodiment, in which FIG. 1 is a perspective view and FIG. 2 is a cross-sectional view.
  • the combustor 100 of the present embodiment includes an inner pipe 1 (first pipe), an outer pipe 2 (second pipe), and an ignition device 3.
  • the inner tube 1 has a cylindrical shape in which the combustion gas G1 is supplied to the inside thereof from one end side and the other end is a closed end 1a, and is formed of a heat-resistant metal material. .
  • a plurality of openings 1b for injecting the combustion gas G1 supplied to the inside of the inner pipe 1 to the outside of the inner pipe 1 are formed in the peripheral surface portion in the vicinity of the closed end 1a side of the inner pipe 1.
  • the diameters of the openings 1b are set to be equal to or less than the flame extinguishing distance.
  • the outer tube 2 is disposed on the outer periphery of the inner tube 1 and has a cylindrical shape in which the combustion gas G2 is discharged from one end side and the other end is a closed end 2a. It is made of a metallic material having properties. Note that the combustion gas G2 is a high-temperature gas generated by burning the combustion gas G1.
  • the closed end 1a of the inner tube 1 and the closed end 2a of the outer tube 2 are arranged opposite to each other in parallel. And since the combustion gas G1 is jetted into the inside of the outer tube 2 from the opening 1b formed in the peripheral surface portion of the inner tube 1, the closed end 1a of the inner tube 1 and the closed end 2a of the outer tube 2 The interval is a dead water region R2 (low flow velocity region), which is a region where the flow velocity of the combustion gas G1 is relatively slow inside the outer pipe 2. As can be seen from FIGS. 1 and 2, the dead water region R2 is disposed on the upstream side of the combustion region R1 with respect to the flow direction of the combustion gas G1 and the combustion gas G2.
  • the ignition device 3 includes an igniter plug 3a (flame nucleus forming portion) capable of forming a flame nucleus, an energizer 3b that forms the flame nucleus by energizing the igniter plug 3a, and the like.
  • an igniter plug 3a flame nucleus forming portion
  • an energizer 3b that forms the flame nucleus by energizing the igniter plug 3a
  • a spark plug or a glow plug can be used as the igniter plug 3a.
  • the igniter plug 3a of the ignition device 3 is arrange
  • the energization device 3b is arranged outside the outer tube 2 and in the extending direction of the outer tube 2, and is connected to the igniter plug 3a.
  • the distance from the closed end 1a of the inner tube 1 to the igniter plug 3a is the distance from the closed end 1a of the inner tube 1 to the igniter plug 3a even when the inner tube 1 extends in the extending direction due to thermal expansion.
  • the distance is set not to be less than the extinguishing distance.
  • the combustion gas G1 enters the inner pipe 1 from one end side.
  • flame nuclei are formed in the igniter plug 3a of the ignition device 3.
  • the combustion gas G1 staying in the dead water region R2 is ignited.
  • the flame formed by this ignition propagates downstream in the outer tube 2 and reaches the combustion region to hold the flame.
  • the igniter plug 3a is arranged on the upstream side of the combustion region. For this reason, after the flame nuclei formed by the igniter plug 3a ignite the combustion gas G1 in the dead water region R2, the flame is directed to the inside of the outer tube 2 (the inner tube 1 and the outer tube 1 in the flow direction of the combustion gas G1). The region sandwiched between the pipes 2) propagates downstream and reaches the combustion region. Therefore, in the combustor 100 of this embodiment, it is not necessary to propagate the flame against the flow of the combustion gas G1, and the ignitability is improved.
  • the igniter plug 3a is disposed on the upstream side of the combustion region R1, the high-temperature and high-speed combustion gas generated by the combustion gas G1 burning in the combustion region R1.
  • the igniter plug 3a is not exposed during G2. Even if the combustion gas G1 becomes a high temperature due to heat exchange via the combustion gas G2 and the inner pipe 1, the velocity of the combustion gas G1 in the dead water region R2 is the other region inside the outer tube 2. Therefore, the heat load on the igniter plug 3a can be reduced. Therefore, the life of the igniter plug 3a of the ignition device 3 is extended.
  • the combustor 100 of the present embodiment it is possible to improve the ignitability of the combustion gas G1 and extend the life of the igniter plug 3a of the ignition device 3.
  • the inner tube 1 and the outer tube 2 are arranged concentrically, and the igniter plug 3a is arranged in the central region of the closed end 2a of the outer tube 2. For this reason, the distance from the igniter plug 3a to the combustion region R1 is equal over the entire circumference of the combustor 100, and the propagation of the flame from the igniter plug 3a to the combustion region R1 is uniform over the entire circumference of the combustor 100. And spreads to a stable flame.
  • the configuration in which the closed end 2a of the outer tube 2 to which the igniter plug 3a is fixed is flat and parallel to the closed end 1a of the inner tube 1 has been described.
  • the outer tube 2 may be configured to be inclined toward the closed end 2a igniter plug 3a.
  • FIG. 4 is a cross-sectional view schematically showing a schematic configuration of the combustor 200 of the present embodiment.
  • the closed end 2a of the outer tube 2 is arranged such that the igniter plug 3a of the ignition device 3 is displaced with respect to the extending direction of the inner tube 1. It is fixed against.
  • the combustor 200 of this embodiment includes a plurality of igniter plugs 3a.
  • the combustor 200 of the present embodiment having the above-described configuration, even when the inner tube 1 extends in the extending direction due to thermal expansion, interference and approach between the closed end 2a of the inner tube 1 and the igniter plug 3a. Overheating can be prevented.
  • the closed end 2a of the outer tube 2 may be inclined toward the igniter plug 3a.
  • FIG. 7 is a cross-sectional view schematically showing a schematic configuration of the combustor 300 of the present embodiment.
  • the structure and positional relationship between the inner tube 101, the outer tube 102, the closed ends 101a and 102a, and the opening 101b are the same as those of the inner tube 1 and the outer tube 2 of the first embodiment. Since the closed end 1a, the open / close end 2a, and the opening 1b are the same, the description thereof is omitted.
  • the combustion gas G1 ejected from the opening 101b collides with the inner wall surface of the outer tube 102, and the flow velocity decreases.
  • the combustion region R1 is stably formed in the region where the flow velocity decreases, that is, in the vicinity of the inner wall surface of the outer tube 102.
  • the combustion gas G2 generated by burning the combustion amount gas G1 in the combustion region R1 flows to one end side of the outer tube 2 and collides with the outer tube 2 of the combustion gas G1 as shown by an arrow in FIG. Toward the outer wall surface of the inner tube 1 due to the repulsive force.
  • the region A1 that is downstream of the combustion region R1 and close to the combustion region R1 is relatively located in the inner pipe 101. It becomes an area exposed to high temperature environment. And the inner pipe
  • the temperature distribution to which the inner pipe 101 is exposed is acquired in advance by actual measurement or simulation.
  • the inner tube 101 is divided into a heat transfer region 110 having a relatively high thermal conductivity and a relatively low heat resistance, and a heat resistant region 120 having a relatively high heat resistance compared to the heat transfer region 110.
  • the heat transfer region 110 is a region exposed to a temperature environment equal to or lower than the oxidation corrosion temperature of the material forming the heat transfer region 110.
  • the heat resistant region 120 is a region exposed to a temperature environment equal to or higher than the oxidation corrosion temperature of the material forming the heat transfer region 110.
  • the inner pipe 101 is exposed to an environment below the oxidation corrosion temperature of the forming material and has a relatively high heat conductivity and a relatively low heat resistance, and a heat transfer region 110.
  • the heat-resistant region 120 is exposed to an environment higher than the oxidation corrosion temperature of the material forming the heat region 110 and has a heat-resistant region 120 having a relatively high heat resistance compared to the heat-transfer region 110.
  • the heat-resistant region 120 necessarily includes the region A1 of the inner tube 101 that is exposed to the above-described relatively high temperature environment.
  • the region upstream of the region A1 of the inner pipe 101 in the discharge direction of the combustion gas G2 is formed of the same material as the heat transfer region 110. That is, in the combustor 300 of the present embodiment, only the region exposed to the environment above the oxidation corrosion temperature of the material forming the heat transfer region 110 of the inner tube 101 is the heat resistant region 120.
  • region 120 has relatively high heat resistance with the coating 103 given to the surface of the inner pipe
  • Carbon steel or stainless steel (for example, SUS321, SUS304) can be used as a material for forming the inner tube 101.
  • ceramics can be used as a material for forming the coating 103.
  • the heat transfer region 110 is formed of only stainless steel
  • the heat-resistant region 120 is formed of two layers of stainless steel and a ceramic layer. It becomes a structure.
  • the combustion gas G1 when the combustion gas G1 is supplied to the inner pipe 101, the combustion gas G1 is burned flowing outside the inner pipe 101 in the process of flowing through the inner pipe 101.
  • the heat of the gas G2 is heated by transferring heat through the inner tube 101.
  • the heated combustion gas G1 is ejected from the opening 101b of the inner tube 101 into the space between the inner tube 101 and the outer tube 102 and burned in the combustion region R1.
  • Combustion gas G1 is combusted in combustion region R1 to generate combustion gas G2, and this combustion gas G2 passes through the inside of outer tube 102 and is discharged to the outside.
  • the inner tube 101 is exposed to an environment below the oxidation corrosion temperature of the forming material and has a relatively high heat conductivity and a relatively low heat resistance.
  • a heat-resistant region 120 that is exposed to an environment at or above the oxidation corrosion temperature of the material forming the heat-transfer region 110 and has relatively high heat resistance as compared to the heat-transfer region 110. For this reason, oxidation weakness of the inner tube 101 is prevented in the heat resistant region 120, and the heat of the combustion gas G2 can be transferred to the combustion gas G1 in the heat transfer region 110.
  • the combustion gas G1 is heated by transferring the heat of the combustion gas G2 to the combustion gas G1 in the heat transfer region 110 of the inner tube 101. Further, in the heat resistant region 120 of the inner tube 1, it is possible to prevent the inner tube 101 from being fragile by oxidation due to the heat of the combustion gas. Therefore, according to the combustor 300 of the present embodiment, in the combustor that transfers the heat of the combustion gas to the combustion gas and heats it, the combustion gas can be sufficiently heated and the durability can be improved. It becomes.
  • the heat resistant region 120 only the region exposed to the environment above the oxidation corrosion temperature of the material forming the heat transfer region 110 of the inner tube 101 is the heat resistant region 120, and only the heat resistant region 120 is coated 103. Is given. That is, the area where the coating 103 is applied is minimized. For this reason, it can suppress that the coating 103 peels due to the difference in thermal elongation of the forming material (ceramic material) of the coating 103 and the forming material (metal material) of the heat transfer region 110 of the inner tube 101.
  • FIG. 8 is an exploded cross-sectional view of the inner tube 101 provided in the combustor of the present embodiment.
  • a first member 104 provided with a heat transfer region 110 and a second member 105 provided with a heat resistant region 120 are screwed together by a screw structure. Are joined together.
  • the first member 104 has a female screw 104a
  • the second member 5 has a male screw 105a
  • a male screw may be formed on the first member 104 and a female screw may be formed on the second member 105.
  • the 1st member 104 is formed with the material with comparatively high heat conductivity and comparatively low heat resistance. With this configuration, the heat transfer region 110 has high heat transfer properties.
  • the second member 105 is formed of a material having higher heat resistance than the material for forming the heat transfer region 110. With this configuration, the heat resistant region 120 has high heat resistance.
  • carbon steel and stainless steel for example, SUS321, SUS304, SUS316, SUS310
  • ceramics can be used as a material for forming the second member 105.
  • the heat of the combustion gas G2 is transferred to the combustion gas G1 in the heat transfer region 110 of the inner tube 1, thereby causing the combustion gas G1. Is heated. Further, in the heat-resistant region 120 of the inner pipe 101, it is possible to prevent the inner pipe 101 from being weakened by oxidation due to the heat of the combustion gas. Therefore, according to the combustor of the present embodiment, in the combustor that transfers the heat of the combustion gas to the combustion gas and heats it, the combustion gas can be sufficiently heated and the durability can be improved. Become.
  • the inner pipe 1 is provided as the first pipe in the present invention
  • the outer pipe 2 is provided as the second pipe in the present invention
  • the inner pipe 1 and the outer pipe 2 are arranged concentrically.
  • a combustor with a heavy pipe structure has been described.
  • the present invention is not limited to this.
  • the first pipe and the second pipe are wound around a combustion chamber serving as a combustion region, so-called. It can also be applied to a Swiss roll type combustor.
  • the present invention is applied to such a Swiss roll type combustor, for example, as shown in FIG. 5, the second pipe 10 communicates with the combustion chamber, and the flow velocity of the combustion gas on the inside is relatively low.
  • pipe 2 demonstrated the structure which is the dead water area
  • the present invention is not limited to this, and a separate chamber connected to a region between the closed end 1a of the inner tube 1 and the closed end 2a of the outer tube 2 is formed. It can also be an area.
  • a flow velocity reducing member for reducing the flow velocity of the combustion gas may be disposed in the dead water region R2.
  • the structure which uses the igniter plug 3a as a flame nucleus formation part of this invention was demonstrated.
  • the present invention is not limited to this, and any apparatus capable of forming flame nuclei (sparks) can be used as the flame nucleation part of the present invention.
  • the inner pipe 101 is provided as the first pipe in the present invention
  • the outer pipe 102 is provided as the second pipe in the present invention.
  • the inner pipe 101 and the outer pipe 102 are arranged concentrically.
  • a double-tube combustor was described.
  • the present invention is not limited to this, for example, a so-called Swiss roll type combustor in which the first pipe and the second pipe are wound around a combustion chamber serving as a combustion region. Is also applicable.
  • the present invention can also be applied to a so-called disc-type combustor described in Japanese Patent Application Laid-Open No. 2007-212082.
  • the structure which uses ceramics as the forming material of the coating 103 and the 2nd member 105 was demonstrated.
  • the present invention is not limited to this, and the coating 103 and the second member 105 may be formed of another heat resistant material having higher heat resistance than the material forming the heat resistant region 120.
  • the present invention it becomes possible to improve the ignitability of the combustion gas in the combustor and to extend the life of the flame nucleus forming portion of the ignition device. Further, in the combustor that transfers the heat of the combustion gas to the combustion gas and heats it, the combustion gas can be sufficiently heated and the durability can be improved.

Abstract

第2配管(2)の内部の燃焼領域(R1)の上流側に配置されると共に第2配管内部における燃焼用ガス(G1)の流速が相対的に遅い低流速領域(R2)を備え、火炎核形成部(3a)が底流速領域に配置されている。

Description

燃焼器
 本発明は、第1配管から消炎距離以下の開口部を介して噴出された燃焼用ガスを第2配管内部の燃焼領域にて燃焼させ、さらに、燃焼用ガスの燃焼により発生した燃焼ガスの熱を上記第1配管を介して上記燃焼用ガスに伝熱することによって燃焼用ガスの加熱を行う燃焼器に関する。本願は、2008年12月10日に、日本に出願された特願2008-314690号及び2008年12月15日に、日本に出願された特願2008-318537号に基づき優先権を主張し、その内容をここに援用する。
 従来から、小型化が可能な燃焼器として、第1配管から消炎距離以下の開口部を介して噴出された燃焼用ガス(燃料と酸化剤とが混合された混合気)を第2配管内部の燃焼領域にて燃焼する燃焼器が知られている。
 このような燃焼器によれば、消炎距離以下とされた開口部によって第1配管に火炎が伝播することが防止される。さらに、適度な燃焼用ガスの供給を行うことによって第2配管内部の極めて狭い燃焼領域にて燃焼用ガスを安定して燃焼することができる。
 ところで、上述の燃焼器においては、燃焼領域にて燃焼用ガスが燃焼されている場合には、燃焼領域に燃焼用ガスが連続的に供給されることによって燃焼領域における火炎が維持される。しかし、始動時には、着火装置にて燃焼用ガスに着火する必要がある。
 このため、上述の燃焼器は、燃焼領域の下流側に着火装置のイグナイタプラグ(火炎核形成部)を配置している。そして、イグナイタプラグによって形成される火炎核を用いて始動時における燃焼用ガスへの着火が行われる(例えば、特許文献1参照)。
 さらに、このような燃焼器としては、燃焼用ガスのより安定した燃焼、燃焼器のさらなる小型化、及び、エネルギ効率の向上を目的として、燃焼用ガスの燃焼によって生じた燃焼ガスの熱を第1配管を介して燃焼用ガスに伝熱して燃焼用ガスを燃焼前に加熱する燃焼器が提案されている(例えば、特許文献2参照)。
特開平1-312306号公報 特開2004-156862号公報
 しかしながら、始動時においては第2配管内部を燃焼用ガスが高速で流れている。そのため、特許文献1に示されているように、燃焼領域の下流側にイグナイタプラグを配置した場合には、燃焼領域において火炎が形成されるように、燃焼用ガスの流れに逆らって火炎を伝播させる必要がある。そして、状況によっては、燃焼用ガスの流れに逆らって火炎が良好に伝播されずに燃焼用ガスへの着火ができない場合が生じ、複数回の着火動作が必要となる場合がある。
 また、燃焼領域の下流側にイグナイタプラグを配置した場合には、燃焼器の始動後において、イグナイタプラグは、燃焼領域における燃焼用ガスの燃焼によって生じた高温かつ高速の燃焼ガス中に晒される。このため、イグナイタプラグの寿命が短くなってしまうという問題が生じる。
 一方、燃焼ガスの熱を効率的に燃焼用ガスに供給するために、燃焼用ガスの流路となる第1配管は熱伝導率の高い材料によって形成されていることが好ましい。 しかしながら、熱伝導率の高い材料は、耐熱性が低いものが多い。このため、第1配管を熱伝導率の高い材料によって形成した場合には、燃焼領域近傍の高温環境に晒される第1配管の領域が、酸化脆弱により劣化し、燃焼器の寿命が短くなってしまう。
 ここで、第1配管を耐熱性が高い材料によって形成することが考えられる。しかし、このような材料は熱伝導率が低いため、燃焼ガスの熱を効率的に燃焼用ガスに伝熱することができなくなる。そのため、燃焼用ガスの加熱が不十分となるおそれがある。
本発明は、上述する問題点に鑑みてなされたもので、燃焼ガスの熱を燃焼用ガスに伝熱して加熱する燃焼器における燃焼用ガスへの着火性の向上及び着火装置の火炎核形成部の長寿命化を図ることを目的とする。さらに、本発明は上記燃焼器において、燃焼用ガスを十分に加熱可能とすると共に耐久性を向上させることを目的とする。
 本発明は、上記課題を解決するために、以下の構成を採用する。
 第1の発明は、内部に燃焼用ガスが流れると共に消炎距離以下の開口部を介して前記燃焼用ガスを噴出する第1配管と、第1配管の前記開口部から噴出された前記燃焼用ガスが供給されると共に上流側から供給される前記燃焼用ガスを燃焼して燃焼ガスを下流側に流す燃焼領域が内部に形成される第2配管と、前記第2配管に供給された燃焼用ガスに火炎核形成部にて形成した火炎核を用いて着火する着火装置とを備える燃焼器である。そして、前記第2配管内部の前記燃焼領域の上流側に配置されると共に前記第2配管内部における前記燃焼用ガスの流速が相対的に遅い低流速領域を備え、前記火炎核形成部が前記低流速領域に配置されている。
 第2の発明では、上記第1の発明において、前記第1配管が、一端側から前記燃焼用ガスを供給されると共に他端が閉塞端とされた内管であり、前記第2配管が、前記第1配管の外周に前記燃焼領域を隔てて配置され、一端側から前記燃焼ガスを排出すると共に他端が前記第1配管の他端側に配置される閉塞端とされた外管である。
 第3の発明では、上記第2の発明において、前記第1配管の閉塞端と前記第2配管の閉塞端との間の領域が前記低流速領域とされている。
 第4の発明では、上記第3の発明において、前記第1配管と前記第2配管との同心円状に配置され、前記火炎核形成部が前記第2配管の閉塞端の中央領域に一つのみ配置されている。
 第5の発明では、上記第3の発明において、前記火炎核形成部が、前記第2配管に固定され、前記第1配管の延在方向に対してずれて配置されている。
 第6の発明は、上記第1~5のいずれかの発明において、上記燃焼用ガスの燃焼により発生した燃焼ガスの熱を上記第1配管を介して上記燃焼用ガスに伝熱することによって上記燃焼用ガスの加熱を行う燃焼器である。そして、上記第1配管が、形成材料の酸化腐食温度以下の環境に晒されると共に相対的に熱伝導率が高くかつ相対的に耐熱性が低い伝熱領域と、伝熱領域の上記形成材料の酸化腐食温度以上の環境に晒されると共に上記伝熱領域と比較して相対的に耐熱性が高い耐熱領域とを備える。
 第7の発明では、上記第6の発明において、上記第1配管が、一端側から上記燃焼用ガスを供給されると共に他端が閉塞端とされた内管であり、上記第2配管が、上記第1配管の外周に上記燃焼領域を隔てて配置され、一端側から上記燃焼ガスを排出すると共に他端が上記第1配管の他端側に配置される閉塞端とされた外管である。
 第8の発明では、上記第6第7の発明において、上記耐熱領域が、第1配管の表面に施されるコーティングによって相対的に高い耐熱性を有する。
 第9の発明では、上記第6または第7の発明において、上記耐熱領域が、上記伝熱領域の上記形成材料よりも耐熱性が高い材料によって形成されている。
 第10の発明では、上記第6~第9いずれかの発明において、上記伝熱領域を備える第1部材と、上記耐熱領域を有する第2部材とが別体で形成され、上記第1部材と上記第2部材とが接合されて上記第1配管が構成されている。
 本発明によれば、燃焼領域の上流側に配置されると共に第2配管内部における燃焼用ガスの流速が相対的に遅い低流速領域を備え、低流速領域に着火装置の火炎核形成部が配置される。 このため、火炎核形成部にて形成された火炎核が低流速領域の燃焼用ガスに着火した後、火炎は、第2配管内部を下流に向けて伝播されて燃焼領域に到達する。そのため、燃焼用ガスの流れに逆らって火炎を伝播させる必要がなく、着火性が向上する。
 さらに、本発明によれば、低流速領域は、燃焼領域の上流側に配置されている。このため、燃焼領域において燃焼用ガスが燃焼することによって生じる高温かつ高速の燃焼ガス中に火炎核形成部が晒されない。また、燃焼用ガスが高温である場合でも、低流速領域における燃焼用ガスの速度が第2配管内部の他の領域よりも遅いため、火炎核形成部への熱負荷を低減ができる。よって、着火装置の火炎核形成部が長寿命化される。
 このように本発明によれば、燃焼器における燃焼用ガスへの着火性の向上及び着火装置の火炎核形成部の長寿命化を図ることが可能となる。
 また、本発明によれば、内管101の伝熱領域において燃焼ガスの熱が燃焼用ガスに伝熱されることによって燃焼用ガスを加熱できる。
また、内管101の耐熱領域においては、燃焼ガスの熱によって内管101が酸化脆弱することを防止できる。
 したがって、本発明によれば、燃焼ガスの熱を燃焼用ガスに伝熱して加熱する燃焼器において、燃焼用ガスを十分に加熱可能とすると共に耐久性を向上させることが可能となる。
本発明の第1実施形態における燃焼器の概略構成を模式的に示す斜視図である。 本発明の第1実施形態における燃焼器の概略構成を模式的に示す断面図である。 本発明の第1実施形態における燃焼器の変形例を示す断面図である。 本発明の第2実施形態における燃焼器の概略を模式的に示す断面図である。 本発明の第2実施形態における燃焼器の変形例を示す断面図である。 本発明の変形例であるスイスロール型の燃焼器の概略構成図である。 本発明の第3実施形態における燃焼器の概略構成を模式的に示した断面図である。 本発明の第4実施形態における燃焼器が備える内管の分解断面図である。
 以下、図面を参照して、本発明に係る燃焼器の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
(第1実施形態)
 図1及び図2は、本実施形態の燃焼器の概略構成を模式的に示した図であり、図1が斜視図、図2が断面図である。
 これらの図に示すように、本実施形態の燃焼器100は、内管1(第1配管)と、外管2(第2配管)と、着火装置3とを備えている。
 内管1は、一端側から燃焼用ガスG1が自らの内部に供給されると共に、他端が閉塞端1aとされた円筒形状を有しており、耐熱性を有する金属材料によって形成されている。
 この内管1の閉塞端1a側近傍の周面部には、内管1の内部に供給された燃焼用ガスG1を内管1の外部に噴出するための開口部1bが複数形成されている。そして、これら開口部1bの直径は、消炎距離以下に設定されている。
外管2は、内管1の外周に配置され、一端側から燃焼ガスG2が排出されると共に、他端が閉塞端2aとされた円筒形状を有しており、内管1と同様に耐熱性を有する金属材料で形成されている。
 なお、燃焼ガスG2は、燃焼用ガスG1が燃焼されることによって生じる高温のガスである。
 そして、図2に示すように、内管1と外管2との間(すなわち外管2の内部)であって、燃焼用ガスG1の流れ方向において内管1の開口部1bの下流側の領域が燃焼領域R1とされている。
 この燃焼領域R1に火炎が形成されている場合には、上流側から燃焼領域R1に供給される燃焼用ガスG1が燃焼領域R1にて燃焼する。その結果生じた燃焼ガスG2が燃焼領域R1の下流側に流れる。
 また、内管1の閉塞端1aと、外管2の閉塞端2aとは、平行に離間して対向配置されている。そして、内管1の周面部に形成された開口部1bから外管2の内部に燃焼用ガスG1が噴出されるため、内管1の閉塞端1aと、外管2の閉塞端2aとの間は、外管2の内部において相対的に燃焼用ガスG1の流速が遅い領域である死水領域R2(低流速領域)となる。この死水領域R2は、図1及び図2から分かるように、燃焼用ガスG1及び燃焼ガスG2の流れ方向に対して燃焼領域R1の上流側に配置されている。
 着火装置3は、火炎核を形成可能なイグナイタプラグ3a(火炎核形成部)と、イグナイタプラグ3aに通電することによって上記火炎核を形成する通電装置3b等を備えている。
 なお、イグナイタプラグ3aとしては、例えばスパークプラグやグロープラグを用いることができる。
 そして、本実施形態の燃焼器100においては、着火装置3のイグナイタプラグ3aが死水領域R2に配置されている。
 より詳細には、本実施形態の燃焼器100においては、内管1と外管2とが同心円状に配置されており、イグナイタプラグ3aが外管2の閉塞端2aの中央領域に一つのみ設置されている。
 そして、通電装置3bは、外管2の外部であって外管2の延在方向に配置されてイグナイタプラグ3aと接続されている。
 なお、内管1の閉塞端1aからイグナイタプラグ3aまでの距離は、内管1が熱膨張によって延在方向に伸張した場合であっても、内管1の閉塞端1aからイグナイタプラグ3aまでの距離が消炎距離以下とならないように設定されている。
 このような構成を有する本実施形態の燃焼器100において、消炎された状態から燃焼領域R1に火炎を形成する場合(すなわち始動時)には、一端側から内管1の内部に燃焼用ガスG1が供給される状態において、着火装置3のイグナイタプラグ3aにて火炎核が形成される。
 このようにイグナイタプラグ3aにて火炎核が形成されると、死水領域R2に滞留する燃焼用ガスG1に着火する。そして、この着火によって形成された火炎が外管2内部を下流側に伝播して燃焼領域に到達して保炎される。
 ここで、本実施形態の燃焼器100においては、イグナイタプラグ3aが燃焼領域の上流側に配置されている。
 このため、イグナイタプラグ3aにて形成された火炎核が死水領域R2の燃焼用ガスG1に着火した後、火炎は、燃焼用ガスG1の流れ方向に対して外管2内部(内管1と外管2とによって挟まれた領域)を下流に向けて伝播して燃焼領域に到達する。よって、本実施形態の燃焼器100においては、燃焼用ガスG1の流れに逆らって火炎を伝播させる必要がなく、着火性が向上する。
 また、本実施形態の燃焼器100によれば、イグナイタプラグ3aが燃焼領域R1の上流側に配置されているため、燃焼領域R1において燃焼用ガスG1が燃焼することによって生じる高温かつ高速の燃焼ガスG2中にイグナイタプラグ3aが晒されることがない。
 また、燃焼用ガスG1が燃焼ガスG2と内管1を介しての熱交換によって高温となった場合であっても、死水領域R2における燃焼用ガスG1の速度が外管2内部の他の領域よりも遅いため、イグナイタプラグ3aへの熱負荷を低減することができる。よって、着火装置3のイグナイタプラグ3aが長寿命化される。
 このように本実施形態の燃焼器100によれば、燃焼用ガスG1への着火性の向上及び着火装置3のイグナイタプラグ3aの長寿命化を図ることが可能となる。
 また、本実施形態の燃焼器100においては、内管1と外管2とが同心円状に配置され、イグナイタプラグ3aが外管2の閉塞端2aの中央領域に配置されている。
 このため、イグナイタプラグ3aから燃焼領域R1までの距離が、燃焼器100の全周に亘って等しくなり、イグナイタプラグ3aから燃焼領域R1までの火炎の伝播が燃焼器100の全周に亘って均等に広がり、安定した火炎の伝播を実現できる。
 なお、本実施形態においては、イグナイタプラグ3aが固定される外管2の閉塞端2aが平らで、内管1の閉塞端1aと平行とされた構成について説明した。
 しかしながら、例えば、外管2の閉塞端2aイグナイタプラグ3aに向けて傾斜するように構成しても良い。
 上記構成を採用することによって、イグナイタプラグ3aから燃焼領域R1までの火炎の伝播経路が滑らかとなり、より安定した火炎の伝播を実現することができる。
(第2実施形態)
 次に、本発明の第2実施形態について説明する。なお、本第2実施形態の説明において、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
 図4は、本実施形態の燃焼器200の概略構成を模式的に示す断面図である。
 この図に示すように、本実施形態の燃焼器200においては、着火装置3のイグナイタプラグ3aが、内管1の延在方向に対してずれて配置されるように外管2の閉塞端2aに対して固定されている。さらに、本実施形態の燃焼器200は、複数のイグナイタプラグ3aを備えている。
 上記構成を有する本実施形態の燃焼器200によれば、熱膨張により内管1が延在方向に伸張した場合であっても、内管1の閉塞端2aとイグナイタプラグ3aとの干渉及び接近のしすぎを防止することができる。
 なお、本実施形態の燃焼器200においても、図5に示すように、外管2の閉塞端2aをイグナイタプラグ3aに向けて傾斜するように構成しても良い。
 このような構成を採用することによって、イグナイタプラグ3aから燃焼領域R1までの火炎の伝播経路が滑らかになり、より安定した火炎の伝播を実現することができる。
(第3実施形態)
 図7は、本実施形態の燃焼器300の概略構成を模式的に示した断面図である。なお、本実施形態において、内管101と、外管102と、閉塞端101a及び102aと、開口部101bと、の構造及び位置関係は、上記第1実施形態の内管1と、外管2と、閉塞端1aと、開閉端2aと、開口部1bとそれぞれ同様であるため、説明を省略する。
 この実施形態において、開口部101bから噴出された燃焼用ガスG1は、外管102の内壁面と衝突し、流速が低下する。
この結果、流速が低下する領域、すなわち外管102の内壁面近傍にて安定して燃焼領域R1が形成される。
 また燃焼領域R1において燃焼量ガスG1が燃焼されて生成された燃焼ガスG2は、図7の矢印で示すように、外管2の一端側に流れると共に燃焼用ガスG1の外管2への衝突の反発力によって内管1の外壁面に向かう。
 このような燃焼用ガスG1及び燃焼ガスG2の流れの結果、図7に示すように、内管101のうち、燃焼領域R1の下流側であってこの燃焼領域R1に近い領域A1が相対的に高温の環境に晒される領域となる。
そして、内管101は、領域A1よりも燃焼ガスG2の排出方向の下流に向かうに連れて相対的に低温の環境に晒される。
なお、内管101の領域A1よりも燃焼ガスG2の排出方向の上流側の領域は、内管101の開口部101bから噴出される燃焼用ガスG1によって冷却される。そのため、領域A1に対して低温の環境に晒される。
 そして、本実施形態の燃焼器300においては、内管101が晒される温度分布を予め実測あるいはシミュレーションによって取得する。そして、内管101が、相対的に熱伝導率が高くかつ相対的に耐熱性が低い伝熱領域110と、伝熱領域110と比較して相対的に耐熱性が高い耐熱領域120とに領域分けされる。
 具体的には、本実施形態においては、伝熱領域110は、伝熱領域110の形成材料の酸化腐食温度以下の温度環境に晒される領域とされる。
また、耐熱領域120は、上記伝熱領域110の形成材料の酸化腐食温度以上の温度環境に晒される領域とされる。
 すなわち、本実施形態の燃焼器300において内管101は、形成材料の酸化腐食温度以下の環境に晒されると共に相対的に熱伝導率が高く相対的に耐熱性が低い伝熱領域110と、伝熱領域110の形成材料の酸化腐食温度以上の環境に晒されると共に伝熱領域110と比較して相対的に耐熱性が高い耐熱領域120とを備えている。
この耐熱領域120は、上述の相対的に高い温度環境に晒される内管101の領域A1を必ず含んでいる。
 なお、本実施形態の燃焼器300において、内管101の領域A1よりも燃焼ガスG2の排出方向の上流側の領域は、上記伝熱領域110と同様の材料によって形成されている。
つまり、本実施形態の燃焼器300においては、内管101の伝熱領域110の形成材料の酸化腐食温度以上の環境に晒される領域のみが耐熱領域120とされている。
 そして、本実施形態の燃焼器300において耐熱領域120は、図7に示すように、内管101の表面に施されるコーティング103によって相対的に高い耐熱性を有している。
 なお、内管101の形成材料としては、炭素鋼やステンレス鋼(例えばSUS321,SUS304)を用いることができる。また、コーティング103の形成材料としてはセラミックスを用いることができる。
 例えば、内管101の形成材料としてステンレス鋼、コーティング103の形成材料としてセラミックスを用いる場合には、伝熱領域110がステンレス鋼のみから形成され、耐熱領域120がステンレス鋼とセラミックス層との2層構造となる。
 上記構成を有する本実施形態の燃焼器300においては、内管101に燃焼用ガスG1が供給されると、燃焼用ガスG1は、内管101を流れる過程において、内管101の外側を流れる燃焼ガスG2の熱が内管101を介して伝熱することで加熱される。
そして、加熱された燃焼用ガスG1は、内管101の開口部101bから内管101と外管102との間の空間に噴出され、燃焼領域R1にて燃焼される。
 燃焼領域R1にて燃焼用ガスG1が燃焼されることによって燃焼ガスG2が生成され、この燃焼ガスG2は、外管102の内部を通過して外部に排出される。
ここで、本実施形態の燃焼器300においては、内管101が、形成材料の酸化腐食温度以下の環境に晒されると共に相対的に熱伝導率が高く相対的に耐熱性が低い伝熱領域110と、伝熱領域110の形成材料の酸化腐食温度以上の環境に晒されると共に伝熱領域110と比較して相対的に耐熱性が高い耐熱領域120とを備えている。
このため、耐熱領域120において内管101の酸化脆弱が防止されると共に伝熱領域110において燃焼ガスG2の熱を燃焼用ガスG1に伝熱することができる。
 このように本実施形態の燃焼器300によれば、内管101の伝熱領域110において燃焼ガスG2の熱が燃焼用ガスG1に伝熱することによって燃焼用ガスG1が加熱される。
また、内管1の耐熱領域120においては、燃焼ガスの熱によって内管101が酸化脆弱することを防止できる。
 したがって、本実施形態の燃焼器300によれば、燃焼ガスの熱を燃焼用ガスに伝熱して加熱する燃焼器において、燃焼用ガスを十分に加熱可能とすると共に耐久性を向上させることが可能となる。
 また、本実施形態の燃焼器300によれば、内管101の伝熱領域110の形成材料の酸化腐食温度以上の環境に晒される領域のみが耐熱領域120とされ、耐熱領域120のみにコーティング103が施されている。
 つまり、コーティング103が施される領域が最小限に抑えられている。
このため、コーティング103の形成材料(セラミックス材料)と内管101の伝熱領域110の形成材料(金属材料)との熱伸び差に起因してコーティング103が剥離することを抑制できる。
(第4実施形態)
 次に、本発明の第4実施形態について説明する。
なお、本第4実施形態の説明において、上記第3実施形態と同様の部分については、その説明を省略あるいは簡略化する。
 図8は、本実施形態の燃焼器が備える内管101の分解断面図である。
この図に示すように、本実施形態の燃焼器が備える内管101は、伝熱領域110を備える第1部材104と、耐熱領域120を備える第2部材105とがネジ構造によって螺嵌されることによって接合されている。
 なお、本実施形態の燃焼器においては、第1部材104に雌ネジ104aが形成され、第2部材5に雄ネジ105aが形成されている。
 ただし、第1部材104に雄ネジを形成し、第2部材105に雌ネジを形成しても良い。
 そして、本実施形態の燃焼器においては、第1部材104が、相対的に伝熱性が高くかつ相対的に耐熱性が低い材料によって形成されている。この構成によって伝熱領域110が高い伝熱性を有している。
 一方、第2部材105は、上記伝熱領域110の形成材料よりも耐熱性の高い材料によって形成されている。
この構成によって、耐熱領域120が高い耐熱性を有している。
 なお、第1部材104の形成材料としては、炭素鋼やステンレス鋼(例えばSUS321,SUS304、SUS316、SUS310)を用いることができる。また、第2部材105の形成材料としてはセラミックスを用いることができる。
 以上のような本実施形態の燃焼器においても上記第3実施形態と同様に、内管1の伝熱領域110において燃焼ガスG2の熱が燃焼用ガスG1に伝熱することによって燃焼用ガスG1が加熱される。
また、内管101の耐熱領域120においては、燃焼ガスの熱によって内管101が酸化脆弱することを防止できる。
 したがって、本実施形態の燃焼器によれば、燃焼ガスの熱を燃焼用ガスに伝熱して加熱する燃焼器において、燃焼用ガスを十分に加熱可能とすると共に耐久性を向上させることが可能となる。
 以上、添付図面を参照しながら本発明に係る燃焼器の好適な実施形態について説明したが、本発明は、上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上記実施形態においては、本発明における第1配管として内管1を備え、本発明における第2配管として外管2を備え、内管1と外管2とが同心円状に配置された二重管構造の燃焼器について説明した。
 しかしながら、本発明は、これに限定されるものではなく、例えば、図6に示すような、第1配管と第2配管とが燃焼領域となる燃焼室を中心として巻回して配置される、いわゆるスイスロール型の燃焼器に適用することもできる。このようなスイスロール型の燃焼器に本発明を適用する場合には、例えば図5に示すように、第2配管10の内部に、燃焼室に連通すると共に内側における燃焼用ガスの流速が相対的に遅くなる別室20を形成し、この別室20の内側を死水領域R2としてイグナイタプラグ3aを配置すれば良い。
 また、本発明は、例えば特開2007-212082号公報に記載された、いわゆるディスク型の燃焼器にも適用できる。
 また、上記実施形態においては、内管1の閉塞端1aと外管2の閉塞端2aとの間の領域が死水領域R2である構成について説明した。
 しかしながら、本発明は、これに限定されるものではなく、内管1の閉塞端1aと外管2の閉塞端2aとの間の領域に接続される別室を形成し、この別室の内側を死水領域とすることもできる。
 また、例えば、死水領域R2における燃焼用ガスの流速が十分に遅くない場合には、死水領域R2に燃焼用ガスの流速を低下させる流速低減部材を配置しても良い。
 また、上記実施形態においては、本発明の火炎核形成部としてイグナイタプラグ3aを用いる構成について説明した。
 しかしながら、本発明はこれに限定されるものではなく、火炎核(スパーク)が形成可能な装置であれば本発明の火炎核形成部として用いることができる。 
 また、上記実施形態においては、本発明における第1配管として内管101を備え、本発明における第2配管として外管102を備え、これらの内管101と外管102とが同心円状に配置された二重管構造の燃焼器について説明した。
 しかしながら、本発明は、これに限定されるものではなく、例えば、第1配管と第2配管とが燃焼領域となる燃焼室を中心として巻回して配置される、いわゆるスイスロール型の燃焼器にも適用できる。
 また、本発明は、特開2007-212082号公報に記載された、いわゆるディスク型の燃焼器にも適用できる。
 また、上記実施形態においては、コーティング103及び第2部材105の形成材料をセラミックスとする構成について説明した。
 しかしながら、本発明はこれに限定されるものではなく、耐熱領域120の形成材料と比較して耐熱性の高い他の耐熱材料によってコーティング103及び第2部材105を形成しても良い。
 本発明によれば、燃焼器における燃焼用ガスへの着火性の向上及び着火装置の火炎核形成部の長寿命化が可能になる。また、燃焼ガスの熱を燃焼用ガスに伝熱して加熱する燃焼器において、燃焼用ガスを十分に加熱可能とすると共に耐久性を向上させることができる。
100、200、300……燃焼器
1、101……内管(第1配管)
1a、101a……閉塞端
1b、101b……開口部
2、102……外管(第2配管)
2a、102a……開閉端
3……着火装置
3a……イグナイタプラグ(火炎形成部)
G1……燃焼用ガス
G2……燃焼ガス
R1……燃焼領域
R2……死水領域(低流速領域)
103……コーティング
104……第1部材
105……第2部材
110……伝熱領域
120……耐熱領域

Claims (7)

  1.  内部に燃焼用ガスが流れると共に消炎距離以下の開口部を介して前記燃焼用ガスを噴出する第1配管と、前記第1配管の前記開口部から噴出された前記燃焼用ガスが供給されると共に上流側から供給される前記燃焼用ガスを燃焼して燃焼ガスを下流側に流す燃焼領域が内部に形成される第2配管と、前記第2配管に供給された燃焼用ガスに火炎核形成部にて形成した火炎核を用いて着火する着火装置とを備える燃焼器であって、
     前記第1配管が、一端側から前記燃焼用ガスを供給されると共に他端が閉塞端とされた内管であり、
     前記第2配管が、前記第1配管の外周に前記燃焼領域を隔てて配置され、一端側から前記燃焼ガスを排出すると共に他端が前記第1配管の他端側に配置される閉塞端とされた外管であり、
     前記第2配管内部の前記燃焼領域の上流側であって、前記第1配管の閉塞端と前記第2配管の閉塞端との間に前記火炎核形成部が配置されている燃焼器。 
  2.  前記第1配管と前記第2配管との同心円状に配置され、前記火炎核形成部が前記第2配管の閉塞端の中央領域に一つのみ配置されている請求項1記載の燃焼器。
  3.  前記火炎核形成部が、前記第2配管に固定され、前記第1配管の延在方向に対してずれて配置されている請求項1記載の燃焼器。
  4.  前記燃焼用ガスの燃焼により発生した燃焼ガスの熱を前記第1配管を介して前記燃焼用ガスに伝熱することによって前記燃焼用ガスの加熱を行う請求項1~3のいずれかに記載の燃焼器であって、前記第1配管は、伝熱領域と耐熱領域とを有し、前記伝熱領域は、形成材料の酸化腐食温度以下の環境に晒されると共に前記耐熱領域より熱伝導率が高くかつ耐熱性が低く、
     前記耐熱領域は、前記伝熱領域の前記形成材料の酸化腐食温度以上の環境に晒されると共に前記伝熱領域より耐熱性が高い燃焼器。
  5.  前記耐熱領域が、第1配管の表面に施されるコーティングによって前記伝熱領域より高い耐熱性を有する請求項4記載の燃焼器。
  6.  前記耐熱領域が、前記伝熱領域の前記形成材料よりも耐熱性が高い材料によって形成されている請求項4記載の燃焼器。
  7.  前記伝熱領域を備える第1部材と、前記耐熱領域を有する第2部材とが別体で形成され、
     前記第1部材と前記第2部材とが接合されて前記第1配管が構成されている請求項4~6のいずれかに記載の燃焼器。
PCT/JP2009/006722 2008-12-10 2009-12-09 燃焼器 WO2010067595A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN200980149165.2A CN102245970B (zh) 2008-12-10 2009-12-09 燃烧器
EP09831702.7A EP2357408A4 (en) 2008-12-10 2009-12-09 INCINERATOR
CA2745614A CA2745614C (en) 2008-12-10 2009-12-09 Combustor
BRPI0922853A BRPI0922853A2 (pt) 2008-12-10 2009-12-09 combustor
KR1020117012705A KR101265297B1 (ko) 2008-12-10 2009-12-09 연소기
US13/130,111 US9039408B2 (en) 2008-12-10 2009-12-09 Combustor with a combustion region between an inner pipe and outer pipe with an ignition device upstream of the combustion region
RU2011122979/06A RU2477425C2 (ru) 2008-12-10 2009-12-09 Камера сгорания

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-314690 2008-12-10
JP2008314690A JP5359237B2 (ja) 2008-12-10 2008-12-10 燃焼器
JP2008-318537 2008-12-15
JP2008318537A JP5272698B2 (ja) 2008-12-15 2008-12-15 燃焼器

Publications (1)

Publication Number Publication Date
WO2010067595A1 true WO2010067595A1 (ja) 2010-06-17

Family

ID=42242588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006722 WO2010067595A1 (ja) 2008-12-10 2009-12-09 燃焼器

Country Status (9)

Country Link
US (1) US9039408B2 (ja)
EP (1) EP2357408A4 (ja)
KR (1) KR101265297B1 (ja)
CN (1) CN102245970B (ja)
BR (1) BRPI0922853A2 (ja)
CA (1) CA2745614C (ja)
RU (1) RU2477425C2 (ja)
TW (1) TWI412710B (ja)
WO (1) WO2010067595A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103712211B (zh) * 2013-12-18 2016-04-06 江苏大学 一种低热损失预混合的微催化燃烧室
US10031049B1 (en) * 2016-10-17 2018-07-24 Florida Turbine Technologies, Inc. High temperature high pressure non-vitiated heater
CN108826291A (zh) * 2018-05-14 2018-11-16 上海应用技术大学 一种平焰烧嘴

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312306A (ja) 1988-06-09 1989-12-18 Toho Gas Co Ltd 伝播燃焼装置
JPH06229522A (ja) * 1993-02-02 1994-08-16 Toho Gas Co Ltd ラジアントチューブバーナ
JP2002022109A (ja) * 2000-07-12 2002-01-23 Tounetsu Co Ltd 燃焼式金属溶湯加熱用チューブヒータ
JP2003279001A (ja) * 2002-03-25 2003-10-02 Osaka Gas Co Ltd シングルエンド型ラジアントチューブ燃焼装置
JP2004156862A (ja) 2002-11-07 2004-06-03 Kaoru Maruta 火炎の制御方法、小型パルス燃焼器、並びにヒータ
JP2007212082A (ja) 2006-02-10 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd 燃焼加熱器
JP2008107032A (ja) * 2006-10-26 2008-05-08 Jfe Steel Kk 長火炎バーナおよびラジアントチューブ式加熱装置

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB779669A (en) 1954-11-24 1957-07-24 Nassheuer Jean Improvements in or relating to radiant heating tubes for industrial furnaces
US3220401A (en) * 1962-05-21 1965-11-30 Hazen Engineering Company Radiant heating units
US3203462A (en) * 1962-09-18 1965-08-31 Drake Block Co Inc Air-cooled burner ring
US3187740A (en) * 1963-04-10 1965-06-08 Hazen Engineering Company Radiant tube heaters
BE650222A (ja) * 1963-07-10 1964-11-03
US3174474A (en) * 1963-10-04 1965-03-23 Hazen Engineering Company Radiant heating units
US3334820A (en) * 1964-01-23 1967-08-08 John H Flynn Gas burner of selective flame distribution type
GB1099232A (en) 1964-03-06 1968-01-17 Gas Council Improvements relating to radiant tubular heating elements
US3771945A (en) * 1970-08-20 1973-11-13 Southern California Gas Co Gas burner having a diffuser for mixing combustion air and gas
US3688760A (en) * 1970-12-09 1972-09-05 Bloom Eng Co Inc Radiant tube assembly
US4197831A (en) * 1973-06-11 1980-04-15 Black Robert B Energy conversion system
AT325185B (de) * 1973-03-17 1975-10-10 Ipsen Ind Internat Gmbh Strahlrohrbrenner
US3946719A (en) * 1974-07-31 1976-03-30 Semen Efimovich Bark Radiant gas heater
US4217088A (en) * 1977-03-28 1980-08-12 John Zink Company Burner for very low pressure gases
DE2742070C2 (de) * 1977-09-19 1982-10-07 Fa. J. Aichelin, 7015 Korntal Industriebrenner zur Beheizung von Ofenräumen in Industrieöfen
US4401099A (en) * 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
JPS61105008A (ja) 1984-10-26 1986-05-23 Tokyo Gas Co Ltd パルス燃焼装置
US4705022A (en) * 1986-09-25 1987-11-10 Eclipse, Inc. Recuperative radiant tube heating system
US4809672A (en) * 1987-10-13 1989-03-07 Alzeta Corporation Gas-fired bayonet-type heater
SU1550278A1 (ru) 1987-10-19 1990-03-15 Одесский Политехнический Институт Форсунка
US4854127A (en) 1988-01-14 1989-08-08 General Electric Company Bimodal swirler injector for a gas turbine combustor
US5224542A (en) * 1990-01-24 1993-07-06 Indugas, Inc. Gas fired radiant tube heater
US5165887A (en) * 1991-09-23 1992-11-24 Solaronics Burner element of woven ceramic fiber, and infrared heater for fluid immersion apparatus including the same
US5209893A (en) * 1991-11-18 1993-05-11 Southwire Company Adjustable burner insert and method of adjusting same
US5240411A (en) * 1992-02-10 1993-08-31 Mor-Flo Industries, Inc. Atmospheric gas burner assembly
US5241949A (en) * 1993-02-17 1993-09-07 Eclipse, Inc. Recuperative radiant tube heating system especially adapted for use with butane
JP3335713B2 (ja) * 1993-06-28 2002-10-21 株式会社東芝 ガスタービン燃焼器
DE19536604A1 (de) * 1994-10-04 1996-04-11 Simmonds Precision Engine Syst Zündvorrichtung und Zündverfahren unter Verwendung elektrostatischer Düse und katalytischen Zünders
US5944508A (en) * 1997-04-01 1999-08-31 The Schawbel Corporation Portable heated appliance with catalytic heater with improved ignition system
RU2157954C2 (ru) 1995-09-05 2000-10-20 Открытое акционерное общество "Самарский научно-технический комплекс им. Н.Д.Кузнецова" Топливовоздушная горелка
CN2295913Y (zh) 1996-10-16 1998-10-28 杜维栋 节能型无焰式燃烧器
US5975887A (en) * 1997-01-24 1999-11-02 Gordon-Piatt Energy Group, Inc. Compact hi-spin gas burner assembly
JP3718168B2 (ja) 2000-03-13 2005-11-16 ジョン ジンク カンパニー,リミティド ライアビリティ カンパニー 低nox放射壁バーナ
US6321743B1 (en) * 2000-06-29 2001-11-27 Institute Of Gas Technology Single-ended self-recuperated radiant tube annulus system
US6872070B2 (en) * 2001-05-10 2005-03-29 Hauck Manufacturing Company U-tube diffusion flame burner assembly having unique flame stabilization
JP2002349807A (ja) 2001-05-30 2002-12-04 Tokyo Gas Co Ltd シングルエンド型ラジアントチューブ装置
FR2826710B1 (fr) * 2001-06-29 2003-10-03 Gaz De France Dispositif radiant a bruleur de gaz et recirculation, adapte en vue d'une production reduite d'oxydes d'azote
JP3883885B2 (ja) 2002-03-04 2007-02-21 中外炉工業株式会社 シングルエンド型蓄熱式ラジアントチューブバーナ装置およびその燃焼方法
EP1528316B1 (en) 2002-08-09 2017-10-04 JFE Steel Corporation Combustion controller for tubular flame burner and method for controlling combustion
TW200502482A (en) 2003-07-01 2005-01-16 Chrysalis Tech Inc Recuperator and combustor for use in external combustion engines and system for generating power employing same
JP2008532747A (ja) 2005-03-10 2008-08-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 燃料の燃焼とプロセス流体の加熱のための伝熱システム及びその使用方法
MX2007010986A (es) 2005-03-10 2007-09-25 Shell Int Research Sistema de transferencia de calor de tubos multiples para la combustion de un combustible, y calentamiento de un fluido de proceso y el uso del mismo.
US20060244173A1 (en) * 2005-05-02 2006-11-02 Saint-Gobain Ceramics & Plastics, Inc. Method for making a ceramic article and ceramic extrudate
US20060246389A1 (en) * 2005-05-02 2006-11-02 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article, ceramic extrudate and related articles
JP2007032886A (ja) 2005-07-25 2007-02-08 Toho Gas Co Ltd シングルエンドラジアントチューブバーナ
WO2009096562A1 (ja) * 2008-02-01 2009-08-06 Ihi Corporation 燃焼加熱器
US8784096B2 (en) * 2009-09-29 2014-07-22 Honeywell International Inc. Low NOx indirect fire burner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312306A (ja) 1988-06-09 1989-12-18 Toho Gas Co Ltd 伝播燃焼装置
JPH06229522A (ja) * 1993-02-02 1994-08-16 Toho Gas Co Ltd ラジアントチューブバーナ
JP2002022109A (ja) * 2000-07-12 2002-01-23 Tounetsu Co Ltd 燃焼式金属溶湯加熱用チューブヒータ
JP2003279001A (ja) * 2002-03-25 2003-10-02 Osaka Gas Co Ltd シングルエンド型ラジアントチューブ燃焼装置
JP2004156862A (ja) 2002-11-07 2004-06-03 Kaoru Maruta 火炎の制御方法、小型パルス燃焼器、並びにヒータ
JP2007212082A (ja) 2006-02-10 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd 燃焼加熱器
JP2008107032A (ja) * 2006-10-26 2008-05-08 Jfe Steel Kk 長火炎バーナおよびラジアントチューブ式加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2357408A4

Also Published As

Publication number Publication date
CN102245970B (zh) 2014-10-29
TW201033547A (en) 2010-09-16
CA2745614A1 (en) 2010-06-17
TWI412710B (zh) 2013-10-21
RU2477425C2 (ru) 2013-03-10
EP2357408A4 (en) 2015-01-21
US20110250552A1 (en) 2011-10-13
CA2745614C (en) 2014-01-07
EP2357408A1 (en) 2011-08-17
US9039408B2 (en) 2015-05-26
CN102245970A (zh) 2011-11-16
KR101265297B1 (ko) 2013-05-16
BRPI0922853A2 (pt) 2017-06-06
RU2011122979A (ru) 2013-01-20
KR20110092293A (ko) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5575221B2 (ja) 燃焼バーナ及び加圧型ガス化炉
JP4794595B2 (ja) ディーゼルエンジンの排気装置
JP4910632B2 (ja) 管状火炎バーナおよびラジアントチューブ式加熱装置
CN104024734A (zh) 排气净化装置用燃烧器
WO2010067595A1 (ja) 燃焼器
US20160003482A1 (en) Combustion heater
WO2012153751A1 (ja) 管状火炎バーナ及びラジアントチューブ式加熱装置
WO2009110509A1 (ja) 加熱装置
RU2482394C2 (ru) Камера сгорания
JP2009222291A (ja) 輝炎バーナ
JP6152417B2 (ja) 液体燃料の触媒燃焼を行うための触媒加熱器と反応器とに使用される燃料噴射システム
JP5359237B2 (ja) 燃焼器
JP5272698B2 (ja) 燃焼器
TWI649517B (zh) Burner structure
JP6782440B2 (ja) 小型渦流燃焼器
JP2009008315A (ja) 煙道一体型バーナー
KR200159253Y1 (ko) 튜브 히터의 연소실 과열방지 장치
JP6430339B2 (ja) フレームレス燃焼装置
JP2008249280A (ja) ガスバーナ
JP2010139137A (ja) 燃焼器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149165.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13130111

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3913/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117012705

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2745614

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2009831702

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009831702

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011122979

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0922853

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110608