WO2010067575A1 - 光情報処理方法及び光情報処理装置 - Google Patents

光情報処理方法及び光情報処理装置 Download PDF

Info

Publication number
WO2010067575A1
WO2010067575A1 PCT/JP2009/006670 JP2009006670W WO2010067575A1 WO 2010067575 A1 WO2010067575 A1 WO 2010067575A1 JP 2009006670 W JP2009006670 W JP 2009006670W WO 2010067575 A1 WO2010067575 A1 WO 2010067575A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
coordinate
performance evaluation
evaluation value
value
Prior art date
Application number
PCT/JP2009/006670
Other languages
English (en)
French (fr)
Inventor
金武佑介
岸上智
清瀬泰広
竹下伸夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN200980149719.9A priority Critical patent/CN102246232B/zh
Priority to JP2010542009A priority patent/JP5323092B2/ja
Priority to US13/128,031 priority patent/US8638646B2/en
Priority to EP09831682.1A priority patent/EP2357650B1/en
Publication of WO2010067575A1 publication Critical patent/WO2010067575A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0948Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for detection and avoidance or compensation of imperfections on the carrier, e.g. dust, scratches, dropouts

Definitions

  • the present invention relates to an optical information processing method for adjusting spherical aberration and focus offset in an apparatus for recording and / or reproducing data on an information recording surface of an optical disc, and an optical information processing apparatus for implementing this method. Is.
  • BD Blu-ray Disc
  • NA numerical aperture
  • the spherical aberration is proportional to the fourth power of the NA of the objective lens and inversely proportional to the wavelength of the light beam.
  • the spherical aberration that occurs during BD (wavelength: 405 nm, NA: 0.85) playback is approximately 6.5 times the spherical aberration that occurs during DVD (wavelength: 650 nm, NA: 0.6) playback. ( ⁇ (0.85 / 0.6) 4 ⁇ (650/405)).
  • the spherical aberration is increased, the shape of the light spot of the laser beam irradiated on the information recording surface of the optical disc is changed, and the reproduction performance is deteriorated.
  • the value of the spherical aberration varies depending on the layer thickness error on the information recording surface of the optical disc. Therefore, in order to keep the reproduction performance high, it is important to make an adjustment for making the spherical aberration as small as possible.
  • the shape of the light spot of the laser beam irradiated on the information recording surface of the optical disk also changes depending on the performance of the focus servo that causes the objective lens to follow the optimum position in the direction perpendicular to the information recording surface of the optical disk.
  • the offset value (focus offset) of the focus servo By appropriately adjusting the offset value (focus offset) of the focus servo, the performance of the focus servo is improved, and the light spot on the information recording surface of the optical disk can be made into an appropriate shape.
  • the value of the focus offset changes depending on the layer thickness error on the information recording surface of the optical disc. Therefore, it is also important to adjust the focus offset in order to improve the focus servo performance and maintain high reproduction performance.
  • each characteristic of the amplitude value and the jitter value of the reproduction signal is centered on the optimum value of the amplitude value of the reproduction signal in a two-dimensional map in which the spherical aberration and the focus offset are the horizontal axis and the vertical axis, respectively.
  • Patent Document 2 discloses a method for adjusting the spherical aberration and the focus offset so that the amplitude value of the tracking error signal is maximized.
  • the spherical aberration correcting means is set in a setting state in which the focus loop gain value is maximized in the first process, and the offset value in which the amplitude value of the tracking error signal is maximized in the focus actuator in the second process. A method for performing the first step again is given.
  • Patent Document 4 discloses at least two or more focus offset dependencies of the first evaluation index indicating the quality of the information track crossing signal and the second evaluation index indicating the quality of the information reproduction signal. And the correlation between the spherical aberration correction values of the first and second evaluation indices and the optimum point of the focus offset are respectively expressed as a first polynomial approximation curve and a second polynomial approximation curve. A method is also disclosed in which the intersection of the first polynomial approximation curve and the second polynomial approximation curve is obtained and set as a desired spherical aberration correction value and focus offset value.
  • JP 2004-145987 A (paragraphs 0046 to 0048, 0055 to 0060, FIG. 3 and FIG. 6) JP 2004-095106 A (paragraphs 0053, 0060, 0075, 0083, FIG. 4 and FIG. 8) JP 2007-141377 (paragraphs 0045 and 0046 and FIG. 3) JP 2007-122815 (Claim 1, paragraphs 0090 to 0097, FIG. 8 and FIG. 9)
  • the amplitude of the tracking error signal must be sufficient.
  • the amplitude value of the tracking error signal does not exhibit a characteristic that becomes a concentric region in the two-dimensional map of spherical aberration and focus offset.
  • the method of adjusting the spherical aberration and the focus offset independently of the tracking error signal cannot secure a sufficient amplitude of the tracking error signal, resulting in a servo-control disabled state (servo loss), and the adjustment operation is stabilized. There is a problem that it may not go forward.
  • the present invention has been made to solve the above-described problems of the prior art, and its purpose is to make adjustments for optimization of spherical aberration and focus offset in a short time and without causing servo deviation. Furthermore, the present invention is to provide an optical information processing method and an optical information processing apparatus that can be performed without deteriorating the quality of a reproduced signal.
  • An optical information processing method includes: Irradiation light receiving step of irradiating the information recording surface of the optical disc with a laser beam as a focused spot and detecting the reflected light from the information recording surface of the optical disc; The amount of movement of the first control device that controls the amount of spherical aberration of the focused spot and the deviation of the focused spot from the just focus are shown from the detection signal of the reflected light output in the irradiation / light receiving step.
  • four different xy coordinates on the xy coordinate system one of the movement amount of the first control device and the movement amount of the second control device is an x coordinate and the other is a y coordinate ( The performance evaluation value at x, y) is detected.
  • An optical information processing apparatus Irradiation light receiving means for irradiating the information recording surface of the optical disc with a laser beam as a focused spot and detecting reflected light from the information recording surface of the optical disc;
  • the amount of movement of the first control device for controlling the amount of spherical aberration of the focused spot and the deviation of the focused spot from the just focus are shown from the detection signal of the reflected light output from the irradiation light receiving means.
  • Signal processing means for detecting the amount of movement of the second control device for controlling the focus offset amount, generating a reproduction signal, and detecting a performance evaluation value indicating the characteristics of the reproduction signal; Adjustment means for adjusting the spherical aberration and the focus offset based on the movement amount of the first control device, the movement amount of the second control device, and the performance evaluation value;
  • the signal processing means has four different xy coordinates on the xy coordinate system (one of the movement amount of the first control device and the movement amount of the second control device as the x coordinate and the other as the y coordinate ( The performance evaluation value at x, y) is detected.
  • the adjustment for optimizing the spherical aberration and the focus offset in the apparatus for recording and / or reproducing the optical disc is performed for a short time and the servo signal is not deteriorated, and the reproduction signal quality is not deteriorated. There is an effect that it can be performed.
  • FIG. 1 shows schematically the structure of the optical information processing apparatus (namely, apparatus which can implement the optical information processing method which concerns on Embodiment 1) which concerns on Embodiment 1 of this invention. It is a figure which shows an example of distribution of the amplitude value of the reproduction signal with respect to spherical aberration and a focus offset in an xy coordinate system (two-dimensional plane). It is a figure which shows an example of distribution of the amplitude value of the tracking error signal with respect to spherical aberration and a focus offset in an xy coordinate system (two-dimensional plane). It is a graph which shows an example of the amplitude value of the reproduction signal with respect to spherical aberration when the focus offset is made constant.
  • or (f) is a figure for demonstrating the operation
  • or (e) are the figures for demonstrating operation
  • or (d) are the figures for demonstrating operation
  • 4 is a flowchart illustrating an example of processing from optical disc insertion to data recording or reproduction in the optical information processing apparatus according to the first embodiment.
  • 4 is a flowchart illustrating an example of processing from the start of data recording to the completion of data recording in the optical information processing apparatus according to the first embodiment.
  • 6 is a flowchart illustrating an example of processing from the start of data reproduction to the completion of data reproduction in the optical information processing apparatus according to the first embodiment.
  • 5 is a flowchart illustrating an example of a spherical aberration and focus offset adjustment routine in the optical information processing apparatus according to the first embodiment.
  • 12 is a flowchart illustrating another example of a spherical aberration and focus offset adjustment routine in the optical information processing apparatus according to the first embodiment.
  • FIG. 12 is a flowchart illustrating yet another example of a spherical aberration and focus offset adjustment routine in the optical information processing apparatus according to the first embodiment.
  • FIG. 13 is a flowchart showing an example of a setting routine for the second point B and the third point C in step S53 of FIG. 6B and FIG. It is a figure which shows the result of having adjusted spherical aberration and focus offset by the optical information processing apparatus and optical information processing method which concern on Embodiment 1.
  • or (f) is a figure for demonstrating the operation
  • FIG. 14 is a flowchart illustrating an example of a spherical aberration and focus offset adjustment routine in the optical information processing apparatus according to the third embodiment. It is a flowchart which shows an example of the setting routine of 2nd point B3 and 3rd point C3 in process S85 of FIG.19 (b) and FIG. FIG. 10 is a diagram illustrating a result of adjusting spherical aberration and focus offset by the optical information processing apparatus and the optical information processing method according to the third embodiment.
  • FIG. 1 is a diagram schematically showing a configuration of an optical information processing apparatus 10 according to Embodiment 1 of the present invention (that is, an apparatus capable of performing the optical information processing method according to Embodiment 1).
  • the optical information processing apparatus 10 according to Embodiment 1 is included in a recording / reproducing apparatus that records and / or reproduces data with respect to an information recording surface of an optical disc 40.
  • the optical information processing apparatus 10 has, for example, a spherical aberration and a focus that change due to a thickness error of the cover layer on the information recording surface of the optical disc during the recording operation and during the reproducing operation when the optical disc is mounted. Adjust the offset.
  • the adjustment is performed by reading a mark formed on the information recording surface of the optical disc with the optical pickup and adjusting the spherical aberration and the focus offset based on the detection signal at that time.
  • the “mark” means a recording mark when the optical disc is a rewritable type or a write-once type, and means an information pit when the optical disc is a read-only type.
  • the optical information processing apparatus 10 includes an irradiation light receiving unit 1 including an optical pickup 11 and a laser driving unit 22, and a detection signal from or based on a detection signal.
  • the signal processing unit 2 performs processing, and the adjustment unit 3 causes the optical pickup 11 to adjust the spherical aberration and the focus offset based on the signal generated and detected (measured) by the signal processing unit 2.
  • the optical pickup 11 of the irradiation light receiving means 1 irradiates the information recording surface with a laser beam as a focused spot through a cover layer (not shown) on the information recording surface (not shown) of the optical disc 40, and information on this optical disc 40 is recorded. The reflected light from the recording surface is detected.
  • the signal processing means 2 is a movement amount of a first control device (hereinafter referred to as “SA amount control device”) that controls the amount of spherical aberration (SA) from the detection signal of the reflected light from the optical pickup 11 of the irradiation light receiving means 1.
  • SA amount control device controls the amount of spherical aberration (SA) from the detection signal of the reflected light from the optical pickup 11 of the irradiation light receiving means 1.
  • the performance of detecting the amount of movement of a second control device hereinafter referred to as “FO amount control device” for controlling the focus offset (FO) amount, generating a reproduction signal, and indicating the characteristics (quality) of the reproduction signal An evaluation value is detected.
  • the adjusting means 3 applies to the optical pickup 11 of the irradiation light receiving means 1 based on the performance evaluation value indicating the movement amount of the SA amount control device, the movement amount of the FO amount control device and the reproduction signal from the signal processing means 2.
  • the “movement amount of the SA amount control device” corresponds to, for example, the movement amount of the spherical aberration adjustment element 15 by a mechanism (not shown) that movably supports the spherical aberration adjustment element 15.
  • the “apparatus” includes, for example, a mechanism (not shown) that movably supports the spherical aberration adjusting element 15.
  • the SA amount control device is not limited to such a configuration.
  • the movement amount of the SA amount control device is a movement amount for compensating the detected spherical aberration, and is a value corresponding to the detected spherical aberration.
  • the “movement amount of the FO amount control device” is, for example, an objective lens or other FO adjustment lens (not shown) by a mechanism that supports the objective lens or other FO adjustment lens (not shown) movably.
  • the “FO amount control device” includes, for example, a mechanism that movably supports an objective lens or another FO adjustment lens (not shown).
  • the FO amount control device is not limited to such a configuration.
  • the movement amount of the FO amount control device is a movement amount for compensating the detected focus offset, and is a value corresponding to the detected focus offset.
  • the optical pickup 11 includes a semiconductor laser 12 that is driven and controlled by a laser driving unit 22, a collimating lens 13, a splitter 14, a spherical aberration adjusting element 15, a total reflection mirror 16, an objective, and the like.
  • a lens 17, an objective lens actuator 18, a detection lens 19, a light receiving unit 20, and a head amplifier 21 are included.
  • a laser beam emitted from the semiconductor laser 12 and having an output value (reproduction power) necessary for data reproduction is collimated lens 13, splitter 14, spherical aberration adjusting element 15, total reflection mirror 16, and objective lens.
  • the information recording surface of the optical disc 40 is condensed and irradiated through 17.
  • Reflected light from the information recording surface of the optical disk 40 passes through the objective lens 17, the total reflection mirror 16, and the spherical aberration adjusting element 15, is bent by the splitter 14, and is received by the light receiving unit 20 through the detection lens 19.
  • the light receiving unit 20 has a plurality of light receiving surfaces, and each light receiving surface converts a received optical signal into an electrical signal and outputs the electrical signal.
  • the signal processing means 2 includes a reproduction signal generation unit 23, a servo signal generation unit 24, a reproduction signal amplitude detection unit 25, an equalizer 26, a reproduction jitter detection unit 27, and a tracking.
  • An error signal amplitude detection unit 28, a central control unit 29, and a storage unit 30 are included.
  • the servo signal generation unit 24 includes a focus error signal generation unit 24a and a tracking error signal generation unit 24b.
  • the storage unit 30 is provided in the central control unit 29, but may be configured outside the central control unit 29.
  • the electrical signal converted by the light receiving unit 20 is input to the reproduction signal generation unit 23 and the servo signal generation unit 24 via the head amplifier 21.
  • the reproduction signal generation unit 23 generates a reproduction signal based on the signal from the head amplifier 21 and outputs the generated reproduction signal to the reproduction signal amplitude detection unit 26 and the equalizer 26.
  • the equalizer 26 shapes the input reproduction signal and outputs it to the reproduction jitter detector 27.
  • the reproduction jitter detection unit 27 detects a jitter value that is an index obtained from the reproduction signal and an absolute value of a phase error between generated clocks by a PLL (Phase Locked Loop) (not shown).
  • the focus error signal generation unit 24a and the tracking error signal generation unit 24b of the servo signal generation unit 24 generate a focus error signal and a tracking error signal, respectively.
  • the tracking error signal generated by the tracking error signal generator 24 b is input to the tracking error signal amplitude detector 28.
  • the amplitude information detected by the reproduction signal amplitude detection unit 25 and the tracking error signal amplitude detection unit 28 is supplied to the central control unit 29. Based on the received amplitude information, the central control unit 29 determines the spherical aberration and the focus offset to be set next, and the determined spherical aberration and the focus offset value respectively for the spherical aberration adjustment unit 31 and the focus offset adjustment unit. 32.
  • a method for generating a focus error signal by the focus error signal generation unit 24a a known method such as an astigmatism method, a knife edge method, a spot size detection method, or the like can be used.
  • a method for generating a tracking error signal by the tracking error signal generating unit 24b a known method such as a push-pull method, a DPP (Differential Push-Pull) method, a DPD (Differential Phase Detection) method, or the like can be used. .
  • the adjusting unit 3 includes a spherical aberration adjusting unit 31 and a focus offset adjusting unit 32.
  • the spherical aberration adjusting unit 31 adjusts the spherical aberration by driving the spherical aberration adjusting element 15 of the optical pickup 11.
  • the focus offset adjustment unit 32 adjusts the focus offset by driving the objective lens actuator 18 for displacing the objective lens 17 in the focus direction and the tracking direction when performing servo control.
  • the optical information processing apparatus 10 has, for example, a spherical aberration and a focus that change due to a thickness error of the cover layer on the information recording surface of the optical disc during the recording operation and during the reproducing operation when the optical disc is mounted. Although the offset is adjusted, there is no limit to the timing for making this adjustment.
  • FIG. 2 is a diagram showing an example of the distribution of the reproduction signal amplitude value RF with respect to the spherical aberration and the focus offset in an xy coordinate system (two-dimensional plane) in which the spherical aberration is the x coordinate and the focus offset is the y coordinate.
  • one horizontal scale or one vertical scale indicates an amount of deviation from the optimum spherical aberration SA or focus offset FO.
  • regions where the amplitude values of the reproduction signals are substantially equal that is, regions within a certain range
  • regions where the amplitude values of the reproduction signals are substantially equal that is, regions within a certain range
  • regions where the amplitude values of the reproduction signals are substantially equal that is, regions within a certain range
  • the region where the amplitude value of the reproduction signal is substantially equal is shown as a plurality of concentric and elliptical regions, and the optimum amplitude value of the reproduction signal is the largest. It can be seen that the value is near the center point of the ellipse.
  • FIG. 3 is a diagram showing an example of the distribution of the tracking error signal amplitude value TE with respect to the spherical aberration and the focus offset in an xy coordinate system (two-dimensional plane) having the spherical aberration as the x coordinate and the focus offset as the y coordinate.
  • one horizontal scale or one vertical scale indicates the amount of deviation from the optimum spherical aberration SA or focus offset FO.
  • a region where the amplitude value of the tracking error signal is substantially equal that is, a region within a certain range
  • FIG. 4 is a graph showing an example of the amplitude value RF of the reproduction signal with respect to the spherical aberration SA when the focus offset FO is constant. From FIG. 4, when the reproduction signal amplitude value RF [V] is the z-coordinate and the spherical aberration SA is the x-coordinate, the reproduction signal amplitude value RF has a curve distribution close to a quadratic curve in the xz coordinate system. I know that there is. As described above, the amplitude value RF of the reproduction signal can be approximately represented by the quadratic curve of the spherical aberration SA in the xz coordinate system.
  • the reproduction signal amplitude value RF which is an example of the performance evaluation value of the reproduction signal
  • the spherical aberration SA is x
  • a 1 , b 1 , and c 1 are constants
  • the jitter value or error rate of the reproduction signal can be used as the performance evaluation value of the reproduction signal instead of the amplitude value of the reproduction signal
  • the jitter value or error rate of the reproduction signal is second-order approximation of the spherical aberration SA. It can also be represented approximately by a curve.
  • FIG. 5 is a graph showing an example of the amplitude value RF of the reproduction signal with respect to the focus offset FO when the spherical aberration SA is constant. From FIG. 5, when the reproduction signal amplitude value RF [V] is the z coordinate and the focus offset FO is the x coordinate, the reproduction signal amplitude value RF is a distribution of curves close to a quadratic curve in the xz coordinate system. I know that there is. As described above, the amplitude value RF of the reproduction signal can be approximately expressed by the quadratic curve of the focus offset FO in the xz coordinate system.
  • the reproduction signal amplitude value RF which is an example of the performance evaluation value of the reproduction signal
  • the focus offset FO is x
  • a 2 , b 2 , and c 2 are constants
  • the jitter value or error rate of the reproduction signal can be used instead of the amplitude value of the reproduction signal as the performance evaluation value of the reproduction signal
  • the jitter value or error rate of the reproduction signal is second-order approximation of the focus offset FO. It can also be represented approximately by a curve.
  • FIGS. 6 (a) to (f), FIGS. 7 (a) to (e), and FIGS. 8 (a) to (d) illustrate the operation of the optical information processing apparatus 10 according to the first embodiment, that is, the implementation. It is a figure for demonstrating the optical information processing method which concerns on form 1, and the movement amount of SA amount control apparatus is made into x coordinate (horizontal axis), and the movement amount of the FO amount control apparatus corresponding to a focus offset is made into y coordinate (vertical axis). ).
  • the case where the movement amount of the FO amount control device is the x coordinate (horizontal axis) and the movement amount of the SA amount control device is the y coordinate (vertical axis) will be described in the third embodiment.
  • the optical information processing method includes a step in which the irradiation / light receiving means 1 irradiates the information recording surface of the optical disc 40 with a laser beam as a focused spot, and detects reflected light from the information recording surface of the optical disc 40;
  • the signal processing means 2 detects the movement amount of the SA amount control device and the movement amount of the FO amount control device from the detection signal of the reflected light output from the irradiation light receiving means 1, and generates a reproduction signal, and this reproduction
  • the step of detecting the performance evaluation value indicating the characteristics of the signal, and the adjusting means 3 adjust the irradiation light receiving means 1 based on the movement amount of the SA amount control device, the movement amount of the FO amount control device, and the performance evaluation value.
  • the performance evaluation value indicating the characteristics of the reproduction signal is, for example, one of the amplitude value of the reproduction signal, the reproduction jitter value of the reproduction signal, and the error rate of the reproduction signal.
  • the irradiation light receiving means 1 detects the reflected light from the information recording surface of the optical disc 40, if there is a mark as information recorded on the information recording surface of the optical disc 40, the laser beam for reading information on this mark It is executed by irradiating. Further, the step of detecting the reflected light from the information recording surface of the optical disc 40 by the irradiation light receiving means 1 is performed when the information recording surface of the optical disc 40 has no mark as information recorded. This is carried out by irradiating information recording laser light for recording a mark at a predetermined position and irradiating the recorded mark with information reading laser light. Further, as a mark at this time, a mark recorded in the data area or the test area of the information recording surface of the optical disc can be used.
  • the signal processing means 2 of the optical information processing apparatus 10 uses Ax, which is the movement amount of the spherical aberration (initial spherical aberration) amount control device, based on the detection signal from the optical pickup 11 as the x coordinate, and the FO amount.
  • Ax is the movement amount of the spherical aberration (initial spherical aberration) amount control device, based on the detection signal from the optical pickup 11 as the x coordinate, and the FO amount.
  • a first performance evaluation value Az indicating the characteristics of the reproduction signal at the first point A on the xy coordinate system (that is, the point of the coordinates (Ax, Ay)) where Ay, which is the movement amount of the control device, is the y coordinate.
  • the performance evaluation value is, for example, one of the amplitude value of the reproduction signal, the reproduction jitter value of the reproduction signal, and the error rate of the reproduction signal.
  • the signal processing means 2 uses the second point B on the xy coordinate system (ie, Bx different from Ax as the x coordinate and the By coordinate equal to Ay as the y coordinate (ie, the second point B). , Coordinates (Bx, By)) are set, and a second performance evaluation value Bz indicating the characteristics of the reproduction signal at the second point B is detected. Further, as shown in FIG. 6B, the signal processing means 2 uses the third point on the xy coordinate system in which Cx different from both Ax and Bx is the x coordinate and Cy equal to Ay is the y coordinate.
  • the third point C may be any distance from the first point A.
  • each of the second point B and the third point C is preferably a point where the amplitude value of the tracking error signal is equal to or larger than the reference value stored in the storage unit 30 in advance.
  • the signal processing means 2 calculates a quadratic approximate curve that approximately represents the performance evaluation value z of the reproduction signal as a quadratic function of the spherical aberration x.
  • the secondary approximate curve of this performance evaluation value is a curve similar to the curve shown in FIG. 4, and approximately represents the curve shown by the data shown in FIG.
  • the signal processing means 2 uses the first evaluation point on the xz coordinate system (coordinates in the xz coordinate system) where Ax is the x coordinate and the first performance evaluation value Az is the z coordinate.
  • the signal processing means 2 sets Dx as the x coordinate on the first straight line L having a preset inclination in the xy coordinate system and passing through the first point A.
  • a fourth point D (that is, a point of coordinates (Dx, Dy)) having Dy as a y coordinate is set, and a fourth performance evaluation value Dz indicating the characteristics of the reproduction signal at the fourth point D is detected.
  • the fourth point D is different from the first point A.
  • the first straight line L is preferably a locus with the same amplitude value of the tracking error signal in the xy intersection coordinate system.
  • the locus having the same amplitude value of the tracking error signal is an area in which the amplitude value of the tracking error signal is within a predetermined range and can be regarded as being substantially equal (for example, a band-like and linear area in the lower right in FIG. 3). ).
  • the amplitude value of the tracking error signal at the first point A is equal to the amplitude value of the tracking error signal at the fourth point D.
  • the point D may be a part away from the point A to some extent.
  • the fourth point D is set at a position where the quadratic approximate curve of the performance evaluation value has two real solutions indicating the x coordinate in the fourth performance evaluation value Dz.
  • the fourth point D is set so as to have a performance evaluation value Dz smaller than the maximum value of the quadratic curve indicated by the quadratic approximate curve of the performance evaluation value.
  • the fourth point is such that the performance evaluation value Dz is larger than the minimum value of the quadratic curve indicated by the quadratic approximate curve of the performance evaluation value.
  • the signal processing means 2 is calculated from the fifth performance evaluation value Ez equal to the fourth performance evaluation value Dz using a quadratic approximate curve of the performance evaluation value.
  • a fifth point E on the xy coordinate system (that is, a point of coordinates (Ex, Ey)) is set with Ex as the x coordinate and Ey equal to Ay as the y coordinate.
  • the signal processing means 2 uses the sixth approximation value Fz equal to the fourth performance evaluation value Dz to calculate Ex using a quadratic approximate curve.
  • a sixth point F on the xy coordinate system that is, a point of coordinates (Fx, Fy)
  • Fx a point of coordinates (Fx, Fy)
  • the signal processing means 2 uses a ninth point J (ie, Jx equal to Dx as the x coordinate and Jy equal to Ay as the y coordinate, ie, the ninth point J (ie, , The coordinates (Jx, Jy)) are set, and the ninth performance evaluation value Jz indicating the characteristics of the reproduction signal at the ninth point J is set to the coordinates (Ax, Az), (Bx, Bz) and a quadratic curve calculated based on (Cx, Cz).
  • the signal processing means 2 uses the seventh point G on the xy coordinate system (that is, the coordinate (G) equal to Dx, where Gx is the x coordinate and Gy is the y coordinate.
  • the signal processing means 2 calculates an ellipse 50 passing through the fourth point D, the fifth point E, the sixth point F, and the seventh point G. Then, an eighth point H on the xy coordinate system that is the center point of the ellipse 50 (that is, a point of coordinates (Hx, Hy)) is calculated.
  • the adjusting unit 3 determines that the point on the xy coordinate system determined by the movement amount of the SA amount control device and the movement amount of the FO amount control device is the first point A. Then, the optical pickup 11 is adjusted so as to move to the eighth point H.
  • the spherical aberration and focus offset adjustment routines shown in FIGS. 6A to 6F are completed.
  • FIGS. 7 (a) to (e) correspond to FIGS. 6 (a) to (d), which have already been described, and a description thereof will be omitted. That is, the points A0, B0, C0, D0, E0, F0 and the straight line L0 in FIGS. 7 (a) to (d) are the first point A and the second point in FIGS. 6 (a) to (d). The same as B, the third point C, the fourth point D, the fifth point E, the sixth point F, and the straight line L.
  • the signal processing means 2 calculates a circle 51 that passes through the fourth point D0, the fifth point E0, and the sixth point F0, and x is the center point of the circle 51.
  • the eighth point H0 on the 'y coordinate system (that is, the point of coordinates (H0x', H0y)) is calculated.
  • the adjusting means 3 has a point on the x′y coordinate system determined by the movement amount of the SA amount control device and the movement amount of the FO amount control device.
  • the optical pickup 11 is adjusted so as to move from the point A0 to the eighth point H0.
  • FIGS. 6A to 6F calculate the ellipse 50 that passes through the fourth point D, the fifth point E, the sixth point F, and the seventh point G, and is the center point of the ellipse 50.
  • FIG. The eighth point H on the xy coordinate system that is, the optimum point of spherical aberration and focus offset is obtained
  • FIGS. 7A to 7E show the fourth point D0, the fifth point E0, the sixth point.
  • the circle 51 passing through the point F0 is calculated, and the eighth point H0 on the x′y coordinate system, which is the center point of the circle 51, that is, the optimum point of spherical aberration and focus offset is obtained.
  • FIGS. 8A to 8D in FIGS.
  • the amplitude value RF of the reproduction signal is approximated by a quadratic curve with respect to the spherical aberration SA and the focus offset FO.
  • the optimum point of spherical aberration and focus offset may be obtained independently by using what is expressed.
  • FIGS. 8A and 8B correspond to FIGS. 6A and 6B described above, and thus description thereof is omitted. That is, the points A1, B1, C1, the point D1, and the straight line L1 in FIGS. 8A to 8B are the first point A, the second point B, the second point B in FIGS. This is the same as the third point C, the fourth point D, and the straight line L.
  • the signal processing means 2 uses the first evaluation point on the xz coordinate system (in the xz coordinate system) where A1x is the x coordinate and the first performance evaluation value A1z is the z coordinate. Coordinate (A1x, A1z)), a second evaluation point on the xz coordinate system (coordinates (B1x, B1z) in the xz coordinate system) having B1x as the x coordinate and the second performance evaluation value B1z as the z coordinate, , Based on the third evaluation point on the xz coordinate system (coordinates (C1x, C1z) not shown) in the xz coordinate system, where C1x is the x coordinate and the third performance evaluation value C1z is the z coordinate.
  • x is an extreme value in the quadratic approximate curve for x, that is, the maximum is obtained when the performance evaluation value is the amplitude value of the reproduction signal. x is calculated. Let x at this time be H1x.
  • the signal processing means 2 sets D1x as the x coordinate on a first straight line L1 having a preset inclination in the xy coordinate system and passing through the first point A. And a fourth point D1 (that is, a point of coordinates (D1x, D1y)) having D1y as the y coordinate is set, and a fourth performance evaluation value D1z indicating the characteristics of the reproduction signal at the fourth point D1 is calculated. To do.
  • the signal processing means 2 uses a ninth point J1 on the xy coordinate system (ie, J1x equal to D1x as the x coordinate and J1y equal to A1y as the y coordinate (ie, , Coordinates (J1x, J1y)) are set, and the ninth performance evaluation value J1z indicating the characteristics of the reproduction signal at the ninth point J1 is set as coordinates (A1x, A1z), (B1x, B1z) and a quadratic curve calculated based on (C1x, C1z).
  • the constants a 2 , b 2 , c in the above formula (2) 2 is calculated, and y that takes an extreme value in the quadratic approximate curve with respect to y, that is, y that is the maximum when the performance evaluation value is the amplitude value of the reproduction signal is calculated. Let y at this time be H1y.
  • the adjusting unit 3 determines that the point on the xy coordinate system determined by the movement amount of the SA amount control device and the movement amount of the FO amount control device is the first point A1. Then, the optical pickup 11 is adjusted so as to move to the eighth point H1 (a point on the xy coordinate system in which H1x is the x coordinate and H1y is the y coordinate). Thus, the spherical aberration and focus offset adjustment routine shown in FIGS. 8A to 8D is completed.
  • FIG. 9 is a flowchart showing an example of processing from optical disc insertion to data recording or reproduction in the optical information processing apparatus 10 according to the first embodiment.
  • the signal processing means 2 performs focus servo and tracking servo (servo signal generator 24 and objective).
  • the lens actuator 18 and the like are turned on (step S2).
  • a means (not shown) included in the irradiation light receiving means 2 determines the type of the optical disk (step S3).
  • Discrimination of the type of optical disc includes, for example, a step of discriminating whether the optical disc is a BD, a DVD, or a CD, and a step of discriminating whether the optical disc is a rewritable type, a write-once type, or a read-only type. .
  • a method for discriminating the type of the inserted optical disk is known, and any method may be used.
  • the central control unit 29 of the signal processing means 2 recorded on the information recording surface of the optical disc 40 based on a signal from the irradiation light receiving means 2 (for example, the optical pickup 11 or a mark detection sensor not shown). It is determined whether or not there is data (step S4).
  • the central control unit 29 of the signal processing unit 2 determines that there is no recording data (unrecorded)
  • the central processing unit 29 sends an instruction to the irradiation light receiving unit 1 via a unit (interface) (not shown) to record the data on the optical disc 40.
  • step S6 The operation, that is, trial writing on the information recording surface of the optical disc 40 is executed (step S6), and then the irradiation / light receiving means 1 is played back in the area where the trial writing has been performed (step S6). Further, when there is recording data on the information recording surface of the optical disc 40 in step S4, the central control unit 29 of the signal processing unit 2 moves the data reading position of the optical disc 40 to the data recording area by the irradiation light receiving unit 1 and reproduces it. It is executed (step S7). At this time, it is desirable to move the data reading position from the data reading position of the optical disc 40 immediately before the determination of whether or not there is a recording on the optical disc 40 (step S4) to the nearest data recording area. This is to minimize the movement time of the data reading position (that is, the movement time to the data recording area) before performing step S4.
  • the central control unit 29 of the signal processing means 2 initializes the variable i to 0 (step S8).
  • i indicates the number of times the spherical aberration and the focus offset are adjusted in a spherical aberration and focus offset adjustment routine (step S ⁇ b> 9) described later, and is stored in the storage unit 30.
  • the adjusting unit 3 causes the spherical aberration adjusting element 15 and the objective lens actuator 18 of the optical pickup 11 to adjust the spherical aberration and the focus offset (Step S9).
  • the spherical aberration and focus offset adjustment routine includes an optical pickup 11, a reproduction signal generation unit 23, a reproduction signal amplitude detection unit 25, an equalizer 26, a reproduction jitter detection unit 27, a tracking error signal amplitude detection unit 28, and a central control. Details of the adjustment method will be described later with reference to the flowcharts of FIGS. 12 to 15.
  • the signal processing means 2 measures the performance evaluation value of the reproduction signal (step S10) and stores it in the storage unit 30.
  • the performance evaluation value of the reproduction signal is, for example, the amplitude value of the reproduction signal, the reproduction jitter value of the reproduction signal, the error rate of the reproduction signal, etc. Also good.
  • the central control unit 29 of the signal processing means 2 determines whether or not the performance evaluation value of the reproduction signal is within an allowable range, and whether or not i is equal to or greater than a predetermined value (step S11). If the performance evaluation value of the reproduction signal is within the allowable range, or if i is greater than or equal to a predetermined value, the irradiation / light receiving means 2 starts data recording / reproduction on the optical disc 40 (step S12). The central control unit 29 of the signal processing means 2 increments i by 1 when the performance evaluation value of the reproduction signal is outside the allowable range and i is smaller than the predetermined value in step S11 (step S13). The process from step S9 is executed again.
  • the central control unit 29 of the signal processing unit 2 adjusts the spherical aberration and the focus offset when the value of i is not less than the predetermined value and the performance evaluation value of the reproduction signal is not within the allowable range in step S11.
  • the performance evaluation value for the minute (maximum value for the amplitude value of the playback signal, minimum value for the jitter value of the playback signal, minimum value for the error rate of the playback signal) ) May be adopted.
  • FIG. 10 is a flowchart showing an example of processing from the start of data recording to the completion of data recording in the optical information processing apparatus 10 according to the first embodiment.
  • the process in FIG. 10 is an example of the recording process in step S12 in FIG.
  • step S21 when the optical information processing apparatus 10 starts recording data on the optical disc 40 (step S21), the central control unit 29 of the signal processing means 2 instructs recording termination (means (interface) not shown). The presence / absence of the input instruction from (step S22). When it is determined in step S22 that there is an instruction to end recording, the central control unit 29 of the signal processing unit 2 ends the data recording operation (step S31).
  • step S22 When the central control unit 29 of the signal processing unit 2 determines in step S22 that there is no instruction to end recording, the irradiation light receiving unit 1 records data on the optical disc 40 in the irradiation light receiving unit 2 via a unit not shown. The operation is executed (step S23), and the recorded data is reproduced (step S24).
  • the central control unit 29 of the signal processing means 2 initializes the variable i to 0 (step S25), measures the performance evaluation value of the reproduction signal (step S26), and stores it in the storage unit 30.
  • the central control unit 29 of the signal processing means 2 determines whether or not the performance evaluation value of the reproduction signal is within an allowable range, and whether or not i is a predetermined value or more (step S27).
  • the recording area is moved to the irradiation light receiving means 1 (step S30), and the irradiation light receiving means 1 is moved to the optical disc 40. Is started (step S22 and subsequent steps).
  • the central control unit 29 of the signal processing unit 2 outputs a control signal to the adjustment unit 3 when the performance evaluation value of the reproduction signal is outside the allowable range and i is smaller than a predetermined value in step S27.
  • Adjustment of the spherical aberration and the focus offset by the spherical aberration adjusting element 15 and the objective lens actuator 18 is executed (step S28), i is incremented by 1 (step S29), and the processing after step S26 is executed again.
  • the central control unit 29 of the signal processing means 2 adjusts the spherical aberration and the focus offset when i is not less than the predetermined value and i is not equal to or less than the predetermined value in step S27. You may employ
  • FIG. 11 is a flowchart illustrating an example of processing from the start of data reproduction to the completion of data reproduction in the optical information processing apparatus 10 according to the first embodiment.
  • the process in FIG. 11 is an example of the reproduction process in step S12 in FIG.
  • step S41 when the optical information processing apparatus 10 starts data reproduction on the optical disk 40 (step S41), the central control unit 29 of the signal processing means 2 instructs reproduction termination (means (interface not shown) (interface not shown)). ) Is determined (step S42). When it is determined in step S42 that there is an instruction to end reproduction, the central control unit 29 of the signal processing means 2 ends the data reproduction operation (step S49).
  • step S42 When it is determined in step S42 that there is no instruction to end reproduction, the central control unit 29 of the signal processing unit 2 causes the irradiation light receiving unit 1 to continue the data reproduction operation, and initializes the variable i to 0 (step). S43). Next, the central control unit 29 of the signal processing means 2 measures the performance evaluation value of the reproduction signal (step S44) and stores it in the storage unit 30.
  • the central control unit 29 of the signal processing means 2 determines whether or not the performance evaluation value of the reproduction signal is within an allowable range and whether or not i is a predetermined value or more (step S45).
  • the performance evaluation value of the reproduction signal is within an allowable range, or when i is greater than or equal to a predetermined value
  • the reproduction area is moved to the irradiation light receiving unit 1 (step S48), and the optical disc 40 is moved to the irradiation light reception unit 1.
  • the central control unit 29 of the signal processing unit 2 outputs a control signal to the adjustment unit 3 when the performance evaluation value of the reproduction signal is outside the allowable range and i is smaller than a predetermined value in step S45.
  • Adjustment of the spherical aberration and the focus offset by the spherical aberration adjusting element 15 and the objective lens actuator 18 is executed (step S46), i is incremented by 1 (step S47), and the processing after step S44 is executed again.
  • the central control unit 29 of the signal processing unit 2 adjusts the spherical aberration and the focus offset when i is equal to or greater than a predetermined value and the performance evaluation value of the reproduction signal is not within the allowable range in step S27. You may employ
  • the details of the adjustment method in step S46 will be described later with reference to the flowcharts of FIGS.
  • FIG. 12 is a flowchart showing an example of a spherical aberration and focus offset adjustment routine in the optical information processing apparatus 10 according to the first embodiment.
  • FIG. 12 shows details of the spherical aberration and focus offset adjustment routine in step S9 in FIG. 9, step S28 in FIG. 10, or step S46 in FIG.
  • FIG. 12 is a flowchart showing the process described in FIGS. 6A to 6F.
  • the reproduction signal amplitude detector 26 of the signal processing unit 2 measures the amplitude value RF A of the reproduction signal, which is a performance evaluation value at the first point A, and stores it in the storage unit 30 (step S52).
  • the central control unit 29 of the signal processing unit 2 sets the second point B and the third point C, which are different in spherical aberration from the first point A and have the same focus offset, and the reproduction signal amplitude detection unit 26 , the amplitude of the amplitude values RF B, and the third reproduction signal at the point C of the reproduced signal at the second point B to measure the RF C (step S53), and stored in the storage unit 30.
  • the method for setting the second point B and the third point C will be described later in detail with reference to FIG.
  • the central control unit 29 of the signal processing means 2 performs the spherical aberration at the first point A, the second point B, and the third point C, and the amplitude values RF A , RF B , RF of the reproduced signals. Based on C , a quadratic approximate curve of the above formula (1) is calculated (step S54).
  • the central control unit 29 of the signal processing means 2 sets a fourth point D different from the first point A at a point on the straight line L passing through the first point A, and the reproduction signal amplitude detection unit 26.
  • the amplitude value RF D of the reproduced signal at the fourth point D is measured and stored in the storage unit 30 (step S55).
  • the straight line L means a locus passing through the first point A in the two-dimensional orthogonal coordinate system having the spherical aberration and the focus offset in FIG. .
  • the inclination of the straight line L is determined in advance based on the data shown in FIG. 3 and stored in the storage unit 30.
  • the amplitude value of the tracking error signal is set to some extent (similar to the first point A) when the fourth point D is set. This is because it can be secured. If the fourth point D is not set on the straight line L, the amplitude value of the tracking error signal at the fourth point D may be smaller than the amplitude value of the tracking error signal at the first point A. The amplitude value of the tracking error signal cannot be made sufficiently large, and there is a possibility that the spherical aberration and the focus offset cannot be adjusted stably. When the fourth point D is set on the straight line L, the amplitude value of the tracking error signal can be obtained approximately equal to the amplitude value of the tracking error signal at the first point A.
  • the value x of spherical aberration at the fifth point E and the sixth point F is obtained from the intersection of the equations (1) and (3).
  • the focus offsets of the fifth point E and the sixth point F are equal to the focus offsets of the first point A, the second point B, and the third point C.
  • the amplitude value RF D of the reproduced signal of the fourth point D is set to be smaller than the maximum value of the quadratic curve represented by the equation (1).
  • the ratio r 1 of the a 1 and a 2 on the basis of the data shown in FIGS. 4 and 5, assuming a constant in all of the optical disc 40, keep predetermined and is stored in the memory 30.
  • the central control unit 29 of the signal processing means 2 obtains an ellipse 50 that passes through the fourth point D, the fifth point E, the sixth point F, and the seventh point G, and at the center point of the ellipse 50 A certain eighth point H is calculated (step S58). That is, in FIG. 2, in the xy coordinate system having the spherical aberration and the focus offset as coordinate axes, the ellipse (elliptical region) having the same amplitude value of the reproduction signal is shown, and the middle point of the ellipse is the optimum of the spherical aberration and the focus offset.
  • the center point H of the ellipse passing through the fourth point D, the fifth point E, the sixth point F, and the seventh point G having the same amplitude value of the reproduction signal is the spherical aberration and the focus offset. It can be considered that the point is close to the optimum point.
  • step S59 the spherical aberration and focus offset adjustment routine ends (step S59).
  • the spherical aberration and the focus offset of the second point B to the eighth point H are the spherical surface of the first point A. Relative value based on aberration and focus offset.
  • FIG. 13 is a flowchart showing another example of a spherical aberration and focus offset adjustment routine in the optical information processing apparatus 10 according to the first embodiment.
  • FIG. 13 shows details of the spherical aberration and focus offset adjustment routine in step S9 of FIG. 9, step S28 of FIG. 10, or step S46 of FIG.
  • FIG. 13 is a flowchart showing the processing described in FIGS. 7A to 7E.
  • step S65 the central control unit 29 of the signal processing means 2 obtains a circle 51 that passes through the fourth point D0, the fifth point E0, and the sixth point F, and is the center point of the circle 51. Eight point H0 is calculated (step S66).
  • the spherical aberration and focus offset adjustment routine ends (step 59).
  • FIG. 14 is a flowchart showing still another example of a spherical aberration and focus offset adjustment routine in the optical information processing apparatus 10 according to the first embodiment.
  • FIG. 14 shows the details of the spherical aberration and focus offset adjustment routine in step S9 in FIG. 9, step S28 in FIG. 10, or step S46 in FIG.
  • FIG. 14 is a flowchart showing the processing described in FIGS. 8A to 8D.
  • the central control unit 29 of the signal processing unit 2 performs the spherical aberration at the first point A1, the second point B1, and the third point C1, and the amplitude value RF A1 of each reproduction signal. Based on RF B1 and RF C1 , a quadratic approximate curve of the above formula (1) is calculated, and an optimal point of spherical aberration is calculated (step S70).
  • the central control unit 29 of the signal processing means 2 sets a fourth point D1 different from the first point A1 at a point on the straight line L1 passing through the first point A1, and the reproduction signal amplitude detection unit 26 the amplitude value RF D1 of the reproduced signal of the fourth point D1 is measured and stored in the storage unit 30 (step S71).
  • the central control unit 29 of the signal processing means 2 calculates the amplitude value RF J1 of the reproduction signal at the ninth point J1 equal to the spherical aberration at the fourth point D1 and equal to the focus offset at the first point A1. Calculation is based on the above formula (1).
  • the amplitude value RF D1 of the reproduced signal at a fourth point D1 the amplitude value RF J1 of the reproduced signal at point J1 of the ninth, the ratio of a 1 and a 2 in the formula (1) and (2)
  • the constants a 2 , b 2 , and c 2 in the above formula (1) are calculated, and the focus offset that maximizes the amplitude value of the reproduction signal, that is, the focus offset An optimum point is calculated (step S72).
  • the central control unit 29 of the signal processing means 2 sets the optimum point of spherical aberration and focus offset calculated in steps S70 and S72 as the eighth point H (step S73).
  • step S59 the spherical aberration and focus offset adjustment routine ends (step S59).
  • the fifth point E and the sixth point F corresponding to FIG. 12 are not calculated, and therefore there is no limitation on the setting of the point D1 on the straight line L1. That is, the amplitude value RF D1 of the reproduced signal of the fourth point D1 may be greater than the maximum value of the quadratic curve indicated by quadratic approximation curve of the equation (1).
  • FIG. 15 is a flowchart illustrating an example of a setting routine for the second point B and the third point C in step S53 of FIGS. 6B and 12.
  • the routine for setting point B and point C is shown, but the second point B0 and the third point C0 in step S62 of FIG. 7B and FIG. 13, and FIG. 8B and FIG.
  • the same processing applies to the setting routine for the second point B1 and the third point C1 in step S69.
  • the tracking error signal amplitude detector 28 of the signal processing means 2 performs tracking at the first point A.
  • the amplitude value TE A of the error signal is measured (step S75).
  • the central control unit 29 of the signal processing unit 2 controls the adjusting unit 3 to drive the spherical aberration adjusting element 15 of the optical pickup 11 to move the spherical aberration one step to the right from the first point A (FIG. 6). Shifting in the positive direction in (b) to a second point B (step S76).
  • the spherical aberration at the second point B is denoted as SA j +1. Note that the spherical aberration at the second point B does not need to be obtained by shifting the spherical aberration from the first point A to the right by one step, and if the amplitude value of the tracking error signal can be secured,
  • the second point B may be separated from the first point A by a distance longer than one step.
  • the tracking error signal amplitude detector 28 of the signal processing means 2 measures the amplitude value TE B of the tracking error signal at the second point B (step S77).
  • the central control unit 29 of the signal processing means 2 the amplitude value TE A tracking error signal measured in step S75, the tracking error signal measured in step S77 compares the amplitude value TE B performed (step S78) .
  • the central control unit 29 of the signal processing unit 2 controls the adjusting unit 3 to control the spherical aberration of the optical pickup 11.
  • the adjustment element 15 is driven to shift the spherical aberration from the second point B to the left by two steps (negative direction in FIG. 6B) (step S79), and this point is defined as a third point C.
  • the spherical aberration at the third point C is denoted as SA j ⁇ 1.
  • the reason for setting the third point C in this way is that if the spherical aberration at the third point C is shifted from the second point B to the right by one step (the positive direction in FIG. 6B). This is because the amplitude value of the tracking error signal at the third point C may be smaller than the amplitude value of the tracking error signal at the second point B.
  • the central control unit 29 of the signal processing means 2 removes the spherical aberration from the second point B by one step to the right (see FIG.
  • the point shifted to 6 (b) in the positive direction is defined as a third point C (step S80).
  • the spherical aberration at the third point C is denoted as SA j +2.
  • steps S79 and S80 it is not essential to shift the second point B by two steps to the left and one step to the right. If the amplitude value of the tracking error signal can be secured, the third point C is determined to be the second point B. It is also possible to shift from the distance longer than two steps to the left and longer than one step to the right.
  • the central control unit 29 of the signal processing means 2 ends the setting routine for the second point B and the third point C (step S81).
  • step S54 in FIG. 12, step S63 in FIG. 13, and step S70 in FIG. 14 are reproduced signals at three points of the first point A, the second point B, and the third point C.
  • the quadratic approximate curve of the amplitude value of the reproduction signal with respect to spherical aberration must be convex upward. Therefore, if a quadratic approximate curve that is convex downward is calculated as a quadratic approximate curve of the amplitude value of the reproduction signal, a quadratic approximate curve is calculated based on the amplitude values of the reproduction signal at four or more points. For example, a process for obtaining an upwardly convex quadratic approximate curve is required. In such a case, the spherical aberration and the focus offset can be optimally adjusted by measuring the amplitude value of the reproduction signal at four or more points (described as the second embodiment).
  • FIG. 16 is a diagram illustrating a result of adjusting the spherical aberration and the focus offset by the optical information processing apparatus and the optical information processing method according to the first embodiment.
  • FIG. 16 shows an adjustment result when a quadratic approximate curve is calculated based on three points having different spherical aberration and the same focus offset. From FIG. 16, it can be seen that the spherical aberration and the focus offset are adjusted to the optimum point (white star).
  • the optical information processing apparatus 10 and the optical information processing method according to the first embodiment for optimizing the spherical aberration and the focus offset in the apparatus for recording and / or reproducing the optical disc 40.
  • the adjustment can be performed so that the servo signal does not fall for a short time and the reproduction signal quality is not deteriorated.
  • the spherical aberration and the focus offset are adjusted based on the amplitude value of the reproduction signal.
  • the adjustment may be performed based on an index of the reproduction signal quality of the optical disk such as a reproduction jitter value and an error rate.
  • an index of the reproduction signal quality of the optical disk such as a reproduction jitter value and an error rate.
  • the reproduction jitter value and error rate can be represented by a plurality of concentric elliptical areas in a two-dimensional orthogonal coordinate system with spherical aberration and focus offset as coordinate axes, and the center point of the ellipse This is because the reproduction signal quality is the smallest.
  • the secondary approximation curve of the reproduction jitter value or error rate must be convex downward, unlike the secondary approximation curve of the amplitude value of the reproduction signal. Therefore, if a quadratic approximate curve that is convex upward is calculated as a secondary approximate curve of the reproduction jitter value or error rate, a quadratic approximate curve is calculated based on the amplitude values of the reproduced signal at four or more points. For example, a process for obtaining a downwardly approximated quadratic approximate curve is required. In such a case, the spherical aberration and the focus offset can be optimally adjusted by measuring the amplitude value of the reproduction signal at four or more points (described as Embodiment 2).
  • the apparatus including the optical information processing apparatus 10 is an apparatus that does not have a function of recording data on the optical disc 40, there is no data recording on the optical disc in step S4 of FIG.
  • the process of ejecting the optical disk 40 may be performed so that the spherical aberration and the focus offset are not adjusted.
  • FIG. FIGS. 17A to 17F are diagrams for explaining the operation of the optical information processing apparatus according to the second embodiment of the present invention, that is, the optical information processing method according to the second embodiment. 17A to 17F, the first point A2, the second point B2, the third point C2, the fourth point D2, the fifth point E2, the sixth point F2, the seventh point The point G2, the eighth point H2, the ninth point J2, and the straight line L2 are respectively the first point A, the second point B, and the third point C in FIGS. Similar to the fourth point D, the fifth point E, the sixth point F, the seventh point G, the eighth point H, the ninth point J, and the straight line L.
  • the signal processing means 2 uses K2x different from any of A2x, B2x, and C2x.
  • the quadratic approximate curve is calculated based on the first evaluation point A2z, the second evaluation point B2z, the third evaluation point C2z, and the tenth evaluation point K2z. This is different from the case of Form 1.
  • the processing of the second embodiment may be executed when a desired quadratic approximate curve is not obtained in the first embodiment (such as when the convex direction is reversed).
  • the second embodiment is the same as the first embodiment.
  • the same method as the method for setting the points B and C in FIG. 15 is used, except that the tenth point K2 is set. This is the same as the adjustment method of FIGS. 6A to 6F, FIGS. 7A to 7E, and FIGS. 8A to 8D.
  • FIG. FIG. 18 is a diagram schematically showing a configuration of an optical information processing apparatus 10a according to Embodiment 3 of the present invention (that is, an apparatus capable of performing the optical information processing method according to Embodiment 3).
  • an optical information processing apparatus 10a according to Embodiment 3 of the present invention that is, an apparatus capable of performing the optical information processing method according to Embodiment 3.
  • the same or corresponding components as those shown in FIG. In the optical information processing apparatus 10a according to the third embodiment, the contents of signal processing by the signal processing means 2a are different from those in the first or second embodiment.
  • 19A to 19F are diagrams for explaining the operation of the optical information processing apparatus 10a according to the third embodiment, that is, the optical information processing method according to the third embodiment.
  • 19A to 19F the first point A3 (A3x, A3y), the second point B3 (B3x, B3y), the third point C3 (C3x, C3y), and the fourth point D3 ( D3x, D3y), fifth point E3 (E3x, E3y), sixth point F3 (F3x, F3y), seventh point G3 (G3x, G3y), eighth point H3 (H3x, H3y), eighth point
  • Nine points J3 (J3x, J3y), straight line L3, and ellipse 53 are the first point A (Ax, Ay) and the second point B (Bx, By) in FIGS.
  • FIG. 20 is a flowchart showing an example of a spherical aberration and focus offset adjustment routine in the optical information processing apparatus 10a according to the third embodiment.
  • FIG. 20 shows an example of the spherical aberration and focus offset adjustment routine in step S9 of FIG. 9, step S28 of FIG. 10, or step S46 of FIG.
  • FIG. 20 is a flowchart showing the processing described in FIGS. 19A to 19F. Steps S82 to S89 in FIG. 20 correspond to steps S51 to S58 in FIG. 12 already described.
  • step S50 when the spherical aberration and focus offset adjustment start routine is started (step S50), the signal processing means 2a reads the initial spherical aberration and the focus offset, and this point is set as a first point A3 ( In step S82), the amplitude value RF A3 of the reproduction signal, which is a performance evaluation value at the first point A3, is measured (step S83), and the second point B3 having the same spherical aberration as that of the first point A3 but different in focus offset A third point C3 is set, and the amplitude value RF B3 of the reproduction signal at the second point B3 and the amplitude value RFC3 of the reproduction signal at the third point C3 are measured (step S84).
  • the method for setting the second point B3 and the third point C3 will be described in detail later with reference to FIG.
  • the central control unit 29a of the signal processing means 2a includes the focus offsets at the first point A3, the second point B3, and the third point C3, and the amplitude values RF A3 , RF B3 , RF of the reproduction signals.
  • a quadratic approximate curve of the above formula (2) is calculated (step S85), and a fourth point D3 different from the first point A3 is obtained at a point on the straight line L3 passing through the first point A3.
  • the reproduction signal amplitude value RF D3 at the fourth point D3 is measured (step S86).
  • the inclination of the straight line L3 is predetermined based on the data shown in FIG.
  • the central control unit 29a of the signal processing means 2a is an amplitude value of the reproduction signal at the fourth point D3 at a point on a straight line passing through the first point A3, the second point B3, and the third point C3.
  • the central control unit 29a of the signal processing means 2a sets the amplitude value RF J3 of the reproduction signal at the ninth point J3 equal to the spherical aberration at the fourth point D3 and equal to the focus offset at the first point A3.
  • Calculation is based on the above formula (2).
  • the ratio r 2 between a 1 and a 2 is determined in advance based on the data shown in FIGS. 4 and 5, assuming that it is constant for all optical discs 40, and stored in the storage unit 30.
  • the central control unit 29a of the signal processing means 2a obtains an ellipse 53 that passes through the fourth point D3, the fifth point E3, the sixth point F3, and the seventh point G3.
  • a certain eighth point H3 is calculated (step S89). That is, in FIG. 2, in the xy coordinate system having the spherical aberration and the focus offset as coordinate axes, the ellipse (elliptical region) having the same amplitude value of the reproduction signal is shown, and the middle point of the ellipse is the optimum of the spherical aberration and the focus offset.
  • the center point H3 of the ellipse passing through the fourth point D3, the fifth point E3, the sixth point F3, and the seventh point G3 having the same amplitude value of the reproduction signal is the spherical aberration and the focus offset. It can be considered that the point is close to the optimum point.
  • step S59 the spherical aberration and focus offset adjustment routine ends (step S59).
  • FIG. 21 is a flowchart showing an example of a setting routine for the second point B3 and the third point C3 in step S84 of FIGS. 19B and 20. Steps S90 to S97 in FIG. 21 correspond to steps S74 to S81 in FIG. 15 already described.
  • the tracking error signal amplitude detector 28 of the signal processing means 2a performs tracking at the first point A3.
  • the amplitude value TE A3 of the error signal is measured (step S91).
  • the central control unit 29a of the signal processing unit 2a controls the adjusting unit 3 to drive the spherical aberration adjusting element 15 of the optical pickup 11 so that the spherical aberration is one step right from the first point A3 (FIG. 15). Shifting in the positive direction in (b) to a second point B3 (step S92).
  • the focus offset of the second point B3 is denoted as FO j +1. Note that the focus offset of the second point B3 does not have to be a shift of the focus offset from the first point A3 to the right by one step, and if the amplitude value of the tracking error signal can be secured,
  • the second point B3 may be separated from the first point A3 by a distance longer than one step.
  • the tracking error signal amplitude detector 28 of the signal processing means 2a measures the amplitude value TE B3 of the tracking error signal at the second point B3 (step S93).
  • the central control unit 29a of the signal processing means 2a compares the tracking error signal amplitude value TE A3 measured in step S91 with the tracking error signal amplitude value TE B3 measured in step S93 (step S94). .
  • the central control unit 29a of the signal processing unit 2a controls the adjusting unit 3 to control the spherical aberration of the optical pickup 11.
  • the adjustment element 15 is driven to shift the focus offset from the second point B3 by two steps to the left (negative direction in FIG. 19B) (step S95), and this point is defined as a third point C3.
  • the focus offset of the third point C3 is denoted as FO j -1.
  • the reason for setting the third point C3 in this way is that the focus offset of the third point C3 is shifted from the second point B3 to the right by one step (the positive direction in FIG. 19B). This is because the amplitude value of the tracking error signal at the third point C3 may be smaller than the amplitude value of the tracking error signal at the second point B3. If the amplitude value TE A3 of the tracking error signal is smaller than the amplitude value TE B3 of the tracking error signal in step S94, the central control unit 29a of the signal processing means 2a moves the focus offset from the second point B3 one step to the right (see FIG.
  • the point shifted in the positive direction in 19 (b) is set as a third point C3 (step S96).
  • the focus offset of the third point C3 is denoted as FO j +2.
  • FO j the focus offset of the third point C3
  • the central control unit 29a of the signal processing means 2a ends the setting routine for the second point B3 and the third point C3 (step S97).
  • FIG. 22 is a diagram illustrating a result of adjusting the spherical aberration and the focus offset by the optical information processing apparatus 10a and the optical information processing method according to the third embodiment.
  • FIG. 22 shows an adjustment result when the quadratic approximate curve is calculated based on three points with different focus offsets and the same spherical aberration.
  • FIG. 22 shows that the spherical aberration and the focus offset are adjusted to the vicinity of the optimum point.
  • the optical information processing apparatus 10a and the optical information processing method according to the third embodiment for optimizing the spherical aberration and the focus offset in the apparatus for recording and / or reproducing the optical disc 40.
  • the adjustment can be performed so that the servo signal does not fall for a short time and the reproduction signal quality is not deteriorated.
  • the third embodiment is the same as the first or second embodiment.
  • the tenth point K2 may be set as in the second embodiment, and the method for setting the tenth point K2 is the same as the method for setting the points B and C in FIG. The following method is used.
  • the adjustment method is the same as that of FIGS. 6 (a) to (f), FIGS. 7 (a) to (e), and FIGS. 8 (a) to (d).

Abstract

 SA量制御装置の移動量及びFO量制御装置の移動量の初期値を点Aとし、点Aとx座標が異なる点B,Cを設定し、点A~Cにおける各性能評価値と各x座標から、性能評価値の2次近似曲線を算出し、予め設定された傾斜を持ち点Aを通る直線L上に点Dを設定し、2次近似曲線と点Dの性能評価値を用いて点E,Fを設定し、点Dのx座標と等しく点Aのy座標と等しい点Jにおける性能評価値を、上記2次近似曲線を基に算出し、点Dのx座標と等しく点Dにおける性能評価値と等しい点Gを、予め設定された比r1、及び点Jにおける性能評価値を基に算出し、点D~Gを通る楕円50を算出し、その中心点Hを算出し、SA量制御装置の移動量とFO量制御装置の移動量とによって決まる点が、点Aから点Hに移動するように、SAとFOの調整を行う。

Description

光情報処理方法及び光情報処理装置
 本発明は、光ディスクの情報記録面に対してデータの記録及び/又は再生を行う装置において、球面収差及びフォーカスオフセットの調整を行なうための光情報処理方法及びこの方法を実施する光情報処理装置に関するものである。
 大容量光ディスク、例えば、Blu-ray Disc(BD)、への高密度記録を実現するためには、光ディスクの情報記録面に照射されるレーザー光の光スポット径を小さくすることが必要である。光スポット径を小さくするためには、レーザー光の波長を短くすること及び対物レンズの開口数(NA)を大きくすることが必要であるが、これにより、球面収差が大きくなる。球面収差は、対物レンズのNAの4乗に比例し、光束の波長に反比例する。このため、BD(波長:405nm、NA:0.85)再生時に発生する球面収差は、DVD(波長:650nm、NA:0.6)再生時に発生する球面収差に比べて、約6.5倍(≒(0.85/0.6)×(650/405))になる。球面収差が大きくなると、光ディスクの情報記録面に照射されるレーザー光の光スポットの形状変化が生じ、再生性能が低下する。また、球面収差は、光ディスクの情報記録面上の層の厚み誤差によって値が変わる。したがって、再生性能を高く維持するためには、球面収差をできるだけ小さくするための調整を行なうことが重要になる。
 また、光ディスクの情報記録面に照射されるレーザー光の光スポットの形状は、光ディスクの情報記録面に垂直な方向における最適位置に対物レンズを追従させるフォーカスサーボの性能によっても変化する。フォーカスサーボのオフセット値(フォーカスオフセット)を適切に調整することによってフォーカスサーボの性能は向上し、光ディスクの情報記録面上の光スポットを適切な形状にすることができる。また、フォーカスオフセットは、光ディスクの情報記録面上の層の厚み誤差によって値が変わる。したがって、フォーカスサーボの性能を向上させて再生性能を高く維持するためには、フォーカスオフセットを調整することも重要である。
 例えば、特許文献1は、再生信号の振幅値及びジッター値の各特性が、球面収差及びフォーカスオフセットをそれぞれ横軸及び縦軸とする2次元マップにおいて、再生信号の振幅値の最適値を中心とする同心円状の領域及びジッター値の最適値を中心とする同心円状の領域として示されること、並びに、球面収差及びフォーカスオフセットを調整する方法を開示している。
 また、特許文献2は、トラッキング誤差信号の振幅値が最大となるように球面収差及びフォーカスオフセットを調整するための方法を開示している。
 さらに、特許文献3は、第1の過程で球面収差補正手段をフォーカスループゲイン値が最大となる設定状態とし、第2の過程でフォーカスアクチェータにトラッキングエラー信号の振幅値が最大となるオフセット値を与え、その後、再び第1の過程を実行する方法を開示している。
 さらにまた、特許文献4は、情報トラック横断信号の品位を示す第1の評価指標と、情報再生信号品位を示す第2の評価指標との各々のフォーカスオフセット依存性を、少なくとも2点以上の複数の球面収差補正値に対して測定し、第1及び第2の評価指標の球面収差補正値とフォーカスオフセットの最適点との相関を、第1の多項式近似曲線、第2の多項式近似曲線として各々求め、これら第1の多項式近似曲線と第2の多項式近似曲線との交点を所望の球面収差補正値及びフォーカスオフセット値として設定する方法を開示している。
特開2004-145987号公報(段落0046~0048、0055~0060、図3、及び図6) 特開2004-095106号公報(段落0053、0060、0075、0083、図4、及び図8) 特開2007-141377号公報(段落0045、0046、及び図3) 特開2007-122815号公報(請求項1、段落0090~0097、図8、及び図9)
 球面収差及びフォーカスオフセットの調整の際には、トラッキング誤差信号の振幅を十分に確保しなければならない。しかし、特許文献1に記載の方法においては、トラッキング誤差信号の振幅値は、球面収差及びフォーカスオフセットの2次元マップにおいて同心円状の領域となる特性を示さない。このため、球面収差及びフォーカスオフセットをトラッキング誤差信号と独立に調整する方法では、トラッキング誤差信号の振幅を十分に確保できず、サーボ制御不能の状態(サーボ外れ)が発生し、調整動作が安定して進まないことがあるという問題がある。
 また、特許文献2及び3に記載の方法においては、トラッキング誤差信号の振幅値が最大のときに、再生信号の振幅値及びジッター値が最適になるとは限らないので、トラッキング誤差信号の振幅値を基に調整した場合に光ディスクの再生信号品質が良好にならない場合があるという問題がある。
 また、特許文献4に記載の方法においては、トラッキング誤差信号の振幅値と再生信号の振幅値の各々に対するフォーカスオフセット最適点は、多項式近似曲線により求めており、この処理を複数の球面収差について実施しなければならないので、球面収差及びフォーカスオフセットの調整に時間がかかるという問題がある。
 そこで、本発明は、上記従来技術の課題を解決するためになされたものであり、その目的は、球面収差及びフォーカスオフセットの最適化のための調整を、短時間及びサーボ外れが生じないように、さらに、再生信号品質を低下させないように行なうことができる光情報処理方法及び光情報処理装置を提供することである。
 本発明に係る光情報処理方法は、
 光ディスクの情報記録面にレーザー光を集光スポットとして照射し、該光ディスクの情報記録面からの反射光を検出する照射受光工程と、
 前記照射受光工程にて出力される前記反射光の検出信号から、前記集光スポットの球面収差量を制御する第1の制御装置の移動量、及び前記集光スポットのジャストフォーカスからのずれを示すフォーカスオフセット量を制御する第2の制御装置の移動量を検出し、再生信号を生成し、該再生信号の特性を示す性能評価値を検出する信号処理工程と、
 前記第1の制御装置の移動量と前記第2の制御装置の移動量と前記性能評価値に基づいて、前記球面収差とフォーカスオフセットの調整を行う調整工程とを有し、
 前記信号処理工程が、前記第1の制御装置の移動量及び前記第2の制御装置の移動量の一方をx座標とし、他方をy座標とするxy座標系上の異なる4点のxy座標(x,y)における前記性能評価値を検出することを特徴としている。
 また、本発明に係る光情報処理装置は、
 光ディスクの情報記録面にレーザー光を集光スポットとして照射し、該光ディスクの情報記録面からの反射光を検出する照射受光手段と、
 前記照射受光手段にて出力される前記反射光の検出信号から、前記集光スポットの球面収差量を制御する第1の制御装置の移動量、及び前記集光スポットのジャストフォーカスからのずれを示すフォーカスオフセット量を制御する第2の制御装置の移動量を検出し、再生信号を生成し、該再生信号の特性を示す性能評価値を検出する信号処理手段と、
 前記第1の制御装置の移動量と前記第2の制御装置の移動量と前記性能評価値とに基づいて、前記球面収差とフォーカスオフセットの調整を行う調整手段とを有し、
 前記信号処理手段が、前記第1の制御装置の移動量及び前記第2の制御装置の移動量の一方をx座標とし、他方をy座標とするxy座標系上の異なる4点のxy座標(x,y)における前記性能評価値を検出することを特徴としている。
 本発明によれば、光ディスクを記録及び/又は再生する装置における、球面収差及びフォーカスオフセットの最適化のための調整を、短時間及びサーボ外れが生じないように、さらに、再生信号品質を低下させないように行なうことができるという効果がある。
本発明の実施の形態1に係る光情報処理装置(すなわち、実施の形態1に係る光情報処理方法を実施することができる装置)の構成を概略的に示す図である。 球面収差とフォーカスオフセットに対する再生信号の振幅値の分布の一例をxy座標系(2次元平面)に示す図である。 球面収差とフォーカスオフセットに対するトラッキング誤差信号の振幅値の分布の一例をxy座標系(2次元平面)に示す図である。 フォーカスオフセットを一定にしたときに、球面収差に対する再生信号の振幅値の一例を示すグラフである。 球面収差を一定にしたときに、フォーカスオフセットに対する再生信号の振幅値の一例を示すグラフである。 (a)乃至(f)は、実施の形態1に係る光情報処理装置の動作、すなわち、実施の形態1に係る光情報処理方法を説明するための図である。 (a)乃至(e)は、実施の形態1に係る光情報処理装置の動作、すなわち、実施の形態1に係る光情報処理方法を説明するための図である。 (a)乃至(d)は、実施の形態1に係る光情報処理装置の動作、すなわち、実施の形態1に係る光情報処理方法を説明するための図である。 実施の形態1に係る光情報処理装置における光ディスク挿入からデータ記録又は再生までの処理の一例を示すフローチャートである。 実施の形態1に係る光情報処理装置におけるデータ記録開始からデータ記録完了までの処理の一例を示すフローチャートである。 実施の形態1に係る光情報処理装置におけるデータ再生開始からデータ再生完了までの処理の一例を示すフローチャートである。 実施の形態1に係る光情報処理装置における球面収差とフォーカスオフセットの調整ルーチンの一例を示すフローチャートである。 実施の形態1に係る光情報処理装置における球面収差とフォーカスオフセットの調整ルーチンの他の例を示すフローチャートである。 実施の形態1に係る光情報処理装置における球面収差とフォーカスオフセットの調整ルーチンの更に他の例を示すフローチャートである。 図6(b)及び図12の工程S53における第2の点B及び第3の点Cの設定ルーチンの一例を示すフローチャートである。 実施の形態1に係る光情報処理装置及び光情報処理方法によって球面収差とフォーカスオフセットを調整した結果を示す図である。 (a)乃至(f)は、本発明の実施の形態2に係る光情報処理装置の動作、すなわち、実施の形態2に係る光情報処理方法を説明するための図である。 本発明の実施の形態3に係る光情報処理装置(すなわち、実施の形態3に係る光情報処理方法を実施することができる装置)の構成を概略的に示す図である。 (a)乃至(f)は、実施の形態3に係る光情報処理装置の動作、すなわち、実施の形態3に係る光情報処理方法を説明するための図である。 実施の形態3に係る光情報処理装置における球面収差とフォーカスオフセットの調整ルーチンの一例を示すフローチャートである。 図19(b)及び図20の工程S85における第2の点B3及び第3の点C3の設定ルーチンの一例を示すフローチャートである。 実施の形態3に係る光情報処理装置及び光情報処理方法によって球面収差とフォーカスオフセットを調整した結果を示す図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る光情報処理装置(すなわち、実施の形態1に係る光情報処理方法を実施することができる装置)10の構成を概略的に示す図である。実施の形態1に係る光情報処理装置10は、光ディスク40の情報記録面に対してデータの記録及び/又は再生を行う記録再生装置に含まれる構成である。光情報処理装置10は、例えば、光ディスクが装着されたとき、記録動作の途中で、及び、再生動作の途中で、光ディスクの情報記録面上のカバー層の厚み誤差などによって変化する球面収差及びフォーカスオフセットの調整を行なう。調整は、光ピックアップで光ディスクの情報記録面に形成されたマークを読み取り、そのときの検出信号に基づいて光ピックアップが球面収差とフォーカスオフセットを調整することによって行なわれる。なお、「マーク」とは、光ディスクが書換え型又は追記型である場合は記録マークを意味し、光ディスクが再生専用型である場合は情報ピットを意味する。
 図1に示されるように、実施の形態1に係る光情報処理装置10は、光ピックアップ11とレーザー駆動部22を含む照射受光手段1と、光ピックアップ11からの検出信号に対する又は検出信号に基づく処理を行なう信号処理手段2と、信号処理手段2で生成及び検出(測定)された信号に基づいて光ピックアップ11に球面収差及びフォーカスオフセットの調整を行なわせる調整手段3とを有する。照射受光手段1の光ピックアップ11は、光ディスク40の情報記録面(図示せず)上のカバー層(図示せず)を通して情報記録面にレーザー光を集光スポットとして照射し、この光ディスク40の情報記録面からの反射光を検出する。信号処理手段2は、照射受光手段1の光ピックアップ11による反射光の検出信号から、球面収差(SA)量を制御する第1の制御装置(以下「SA量制御装置」と称す)の移動量、フォーカスオフセット(FO)量を制御する第2の制御装置(以下「FO量制御装置」と称す)の移動量を検出し、再生信号を生成し、この再生信号の特性(品質)を示す性能評価値を検出する。調整手段3は、信号処理手段2からのSA量制御装置の移動量、FO量制御装置の移動量、及び再生信号の特性を示す性能評価値に基づいて、照射受光手段1の光ピックアップ11に球面収差及びフォーカスオフセットの調整信号を送る。
 ここで、「SA量制御装置の移動量」は、例えば、球面収差調整素子15を移動可能に支持する機構(図示せず)による球面収差調整素子15の移動量に相当し、「SA量制御装置」は、例えば、球面収差調整素子15を移動可能に支持する機構(図示せず)などから構成される。ただし、SA量制御装置は、このような構成に限定されない。また、SA量制御装置の移動量は、検出された球面収差を補償するための移動量であり、検出された球面収差に対応する値である。
 また、「FO量制御装置の移動量」は、例えば、対物レンズ又は他のFO調整用レンズ(図示せず)を移動可能に支持する機構による対物レンズ又は他のFO調整用レンズ(図示せず)の移動量に相当し、「FO量制御装置」は、例えば、対物レンズ又は他のFO調整用レンズ(図示せず)を移動可能に支持する機構などから構成される。ただし、FO量制御装置は、このような構成に限定されない。また、FO量制御装置の移動量は、検出されたフォーカスオフセットを補償するための移動量であり、検出されたフォーカスオフセットに対応する値である。
 図1に示されるように、光ピックアップ11は、レーザー駆動部22により駆動制御される半導体レーザー12と、コリメートレンズ13と、スプリッタ14と、球面収差調整素子15と、全反射ミラー16と、対物レンズ17と、対物レンズアクチュエータ18と、検出レンズ19と、受光部20と、ヘッドアンプ21とを有する。データ再生時には、半導体レーザー12から出射された、データ再生に必要な出力値(再生パワー)を有するレーザー光が、コリメートレンズ13、スプリッタ14、球面収差調整素子15、全反射ミラー16、及び対物レンズ17を介して光ディスク40の情報記録面に集光照射される。光ディスク40の情報記録面からの反射光は、対物レンズ17、全反射ミラー16、及び球面収差調整素子15を通った後に、スプリッタ14により折り曲げられ、検出レンズ19を介して受光部20で受光される。例えば、受光部20は、複数の受光面を有し、各受光面は受光した光信号を電気信号に変換して出力する。
 また、図1に示されるように、信号処理手段2は、再生信号生成部23と、サーボ信号生成部24と、再生信号振幅検出部25と、イコライザ26と、再生ジッター検出部27と、トラッキング誤差信号振幅検出部28と、中央制御部29と、記憶部30とを有する。サーボ信号生成部24は、フォーカス誤差信号生成部24aと、トラッキング誤差信号生成部24bとを有する。なお、図1において、記憶部30は、中央制御部29内に備えられているが、中央制御部29の外部の構成であってもよい。受光部20によって変換された電気信号は、ヘッドアンプ21を介して再生信号生成部23とサーボ信号生成部24とに入力される。再生信号生成部23は、ヘッドアンプ21からの信号に基づいて再生信号を生成し、生成された再生信号を再生信号振幅検出部26とイコライザ26に出力する。イコライザ26は、入力された再生信号を整形し、再生ジッター検出部27に出力する。再生ジッター検出部27は、再生信号と図示しないPLL(Phase Locked Loop)によって生成クロック間の位相誤差の絶対値とから求められる指標であるジッター値を検出する。サーボ信号生成部24のフォーカス誤差信号生成部24a及びトラッキング誤差信号生成部24bは、それぞれフォーカス誤差信号及びトラッキング誤差信号を生成する。トラッキング誤差信号生成部24bにより生成されたトラッキング誤差信号は、トラッキング誤差信号振幅検出部28に入力される。再生信号振幅検出部25及びトラッキング誤差信号振幅検出部28で検出された振幅情報は、中央制御部29に供給される。中央制御部29は、受け取った振幅情報を基に、次に設定すべき球面収差及びフォーカスオフセットを決定し、決定された球面収差及びフォーカスオフセットの値をそれぞれ球面収差調整部31及びフォーカスオフセット調整部32に送る。なお、フォーカス誤差信号生成部24aによるフォーカス誤差信号の生成方法としては、公知の方法、例えば、非点収差法、ナイフエッジ法、スポットサイズ検出法などを用いることができる。また、トラッキング誤差信号生成部24bによるトラッキング誤差信号の生成方法としては、公知の方法、例えば、プッシュプル法やDPP(Differential Push-Pull)法、DPD(Differential Phase Detection)法などを用いることができる。
 また、図1に示されるように、調整手段3は、球面収差調整部31と、フォーカスオフセット調整部32とを有する。球面収差調整部31は、光ピックアップ11の球面収差調整素子15を駆動させることによって球面収差を調整する。フォーカスオフセット調整部32は、サーボ制御を行う際に、対物レンズ17をフォーカス方向及びトラッキング方向に変位させるための対物レンズアクチュエータ18を駆動させることにより、フォーカスオフセットを調整する。光情報処理装置10は、例えば、光ディスクが装着されたとき、記録動作の途中で、及び、再生動作の途中で、光ディスクの情報記録面上のカバー層の厚み誤差などによって変化する球面収差及びフォーカスオフセットの調整を行なうが、この調整を行なうタイミングに制限はない。
 図2は、球面収差とフォーカスオフセットに対する再生信号の振幅値RFの分布の一例を、球面収差をx座標としフォーカスオフセットをy座標とするxy座標系(2次元平面)に示す図である。図2において、横又は縦の1目盛(1ステップ)は、最適な球面収差SA又はフォーカスオフセットFOからのズレ量を示す。図2に示されるように、球面収差及びフォーカスオフセットを座標軸とするxy座標系において、再生信号の振幅値が略等しい領域(すなわち、ある範囲内になる領域)は、同心円状且つ楕円状の複数の領域として示される。図2から、再生信号の振幅値が略等しい領域(すなわち、ある範囲内になる領域)は、同心円状且つ楕円状の複数の領域として示されること、及び、再生信号の振幅値が最も大きい最適値は、楕円の中心点付近であることが分かる。
 図3は、球面収差とフォーカスオフセットに対するトラッキング誤差信号の振幅値TEの分布の一例を、球面収差をx座標としフォーカスオフセットをy座標とするxy座標系(2次元平面)に示す図である。図3において、横又は縦の1目盛(1ステップ)は、最適な球面収差SA又はフォーカスオフセットFOからのズレ量を示す。図3に示されるように、球面収差及びフォーカスオフセットを座標軸とするxy座標系において、トラッキング誤差信号の振幅値が略等しい領域(すなわち、ある範囲内になる領域)は、左上から右下に向けて延びる帯状(直線状)の領域となる。図3から、トラッキング誤差信号の振幅値が等しい軌跡は、xy座標系において概ね左上から右下に向かう(右下がりの)直線で近似できることが分かる。
 図4は、フォーカスオフセットFOを一定にしたときに、球面収差SAに対する再生信号の振幅値RFの一例を示すグラフである。図4から、再生信号の振幅値RF[V]をz座標とし、球面収差SAをx座標としたときに、再生信号の振幅値RFは、xz座標系において2次曲線に近い曲線の分布であることがわかる。このように、再生信号の振幅値RFは、xz座標系において球面収差SAの2次曲線で近似的に表すことができる。すなわち、再生信号の性能評価値の一例である再生信号の振幅値RFをzとし、球面収差SAをxとし、a、b、cを定数としたときに、再生信号の振幅値RFは、以下の2次関数式(2次近似曲線)
 z=a・x+b・x+c           式(1)
で近似的に表すことができる。なお、再生信号の性能評価値として、再生信号の振幅値に代えて、再生信号のジッター値又はエラーレートを用いることもでき、再生信号のジッター値又はエラーレートを、球面収差SAの2次近似曲線で近似的に表すこともできる。
 図5は、球面収差SAを一定にしたときに、フォーカスオフセットFOに対する再生信号の振幅値RFの一例を示すグラフである。図5から、再生信号の振幅値RF[V]をz座標とし、フォーカスオフセットFOをx座標としたときに、再生信号の振幅値RFは、xz座標系において2次曲線に近い曲線の分布であることがわかる。このように、再生信号の振幅値RFは、xz座標系においてフォーカスオフセットFOの2次曲線で近似的に表すことができる。すなわち、再生信号の性能評価値の一例である再生信号の振幅値RFをzとし、フォーカスオフセットFOをxとし、a、b、cを定数としたときに、再生信号の振幅値RFは、以下の2次関数式(2次近似曲線)
 z=a・x+b・x+c           式(2)
で近似的に表すことができる。なお、再生信号の性能評価値として、再生信号の振幅値に代えて、再生信号のジッター値又はエラーレートを用いることもでき、再生信号のジッター値又はエラーレートを、フォーカスオフセットFOの2次近似曲線で近似的に表すこともできる。
 ここで、光情報処理装置10の動作、すなわち、光情報処理方法において、上記式(1)及び(2)におけるaとaの比r(=a/a)、及びr(=a/a)は予め決定しておくものとする。
 図6(a)~(f)、図7(a)~(e)、及び図8(a)~(d)は、実施の形態1に係る光情報処理装置10の動作、すなわち、実施の形態1に係る光情報処理方法を説明するための図であり、SA量制御装置の移動量をx座標(横軸)、フォーカスオフセットに対応するFO量制御装置の移動量をy座標(縦軸)としている。なお、FO量制御装置の移動量をx座標(横軸)にし、SA量制御装置の移動量をy座標(縦軸)とする場合は、実施の形態3で説明する。
 実施の形態1に係る光情報処理方法は、照射受光手段1が、光ディスク40の情報記録面にレーザー光を集光スポットとして照射し、光ディスク40の情報記録面からの反射光を検出する工程と、信号処理手段2が、照射受光手段1から出力される反射光の検出信号から、SA量制御装置の移動量、及びFO量制御装置の移動量を検出し、再生信号を生成し、この再生信号の特性を示す性能評価値を検出する工程と、調整手段3が、SA量制御装置の移動量、FO量制御装置の移動量、及び性能評価値に基づいて、照射受光手段1に調整を行わせる工程とを有している。再生信号の特性を示す性能評価値は、例えば、再生信号の振幅値、再生信号の再生ジッター値、及び再生信号のエラーレートのいずれかである。
 照射受光手段1が光ディスク40の情報記録面からの反射光を検出する工程は、光ディスク40の情報記録面に記録された情報としてのマークがある場合には、このマークに情報読取用のレーザー光を照射することによって実行される。また、照射受光手段1が光ディスク40の情報記録面からの反射光を検出する工程は、光ディスク40の情報記録面に記録された情報としてのマークが無い場合には、光ディスク40の情報記録面の所定位置にマークを記録するための情報記録用のレーザー光を照射し、この記録されたマークに情報読取用のレーザー光を照射することによって実行する。また、このときのマークとしては、光ディスクの情報記録面のデータエリア内又はテストエリア内に記録されるマークを用いることができる。
 以下に、図6(a)~(f)を参照して、光情報処理装置10の信号処理手段2による処理工程を概略的に説明する。先ず、光ピックアップ11によって光ディスク40の情報記録面に記録された情報としてのマークに情報読取用のレーザー光を照射したときの反射光を検出する。図6(a)に示されるように、信号処理手段2は、光ピックアップ11からの検出信号に基づいて球面収差(初期球面収差)量制御装置の移動量であるAxをx座標とし、FO量制御装置の移動量であるAyをy座標とするxy座標系上の第1の点A(すなわち、座標(Ax,Ay)の点)における再生信号の特性を示す第1の性能評価値Azを検出する。性能評価値は、既に説明したように、例えば、再生信号の振幅値、再生信号の再生ジッター値、及び再生信号のエラーレートのいずれかである。
 次に、図6(b)に示されるように、信号処理手段2は、Axと異なるBxをx座標とし、Ayに等しいByをy座標とするxy座標系上の第2の点B(すなわち、座標(Bx,By)の点)を設定し、第2の点Bにおける再生信号の特性を示す第2の性能評価値Bzを検出する。また、図6(b)に示されるように、信号処理手段2は、Ax及びBxの両方と異なるCxをx座標とし、Ayに等しいCyをy座標とするxy座標系上の第3の点C(すなわち、座標(Cx,Cy)の点)を設定し、第3の点Cにおける再生信号の特性を示す第3の性能評価値Czを検出する。調整手段3は、第2の点B、及び第3の点Cにおけるトラッキング誤差信号の振幅値が予め記憶部30に記憶された基準値以上になる点であれば、第2の点B、及び第3の点Cは、第1の点Aからの距離がいくらであっても良い。このように、第2の点B及び第3の点Cのそれぞれは、トラッキング誤差信号の振幅値が予め記憶部30に記憶された基準値以上になる点とすることが望ましい。
 次に、信号処理手段2は、再生信号の性能評価値zを球面収差xの2次関数として近似的に表す2次近似曲線を算出する。この性能評価値の2次近似曲線は、図4に示される曲線に類似する曲線であり、図4に示されるデータが示す曲線を近似的に表している。2次近似曲線を算出するために、信号処理手段2は、Axをx座標とし、第1の性能評価値Azをz座標とするxz座標系上の第1の評価点(xz座標系における座標(Ax,Az))と、Bxをx座標とし、第2の性能評価値Bzをz座標とするxz座標系上の第2の評価点(xz座標系における座標(Bx,Bz))と、Cxをx座標とし、第3の性能評価値Czをz座標とするxz座標系上の第3の評価点(xz座標系における座標(Cx,Cz)図示せず)とに基づいて、上記式(1)における定数a,b,cを算出して、性能評価値zを球面収差xの2次関数で近似的に表す2次近似曲線を決定する。
 次に、図6(c)に示されるように、信号処理手段2は、xy座標系において予め設定された傾斜を持ち第1の点Aを通る第1の直線L上に、Dxをx座標とし、Dyをy座標とする第4の点D(すなわち、座標(Dx,Dy)の点)を設定し、第4の点Dにおける再生信号の特性を示す第4の性能評価値Dzを検出する。但し第4の点Dは第1の点Aとは異なる点である。第1の直線Lは、xy交座標系においてトラッキング誤差信号の振幅値が等しい軌跡とすることが望ましい。ここで、トラッキング誤差信号の振幅値が等しい軌跡とは、トラッキング誤差信号の振幅値が所定の範囲内にあり略等しいみなすことができる領域(例えば、図3における右下がりの帯状且つ直線状の領域)を意味する。第4の点Dを第1の直線L上に設定した場合、第1の点Aにおけるトラッキング誤差信号の振幅値と第4の点Dにおけるトラッキング誤差信号の振幅値とは等しくなるので、第1の直線L上であれば、点Dは点Aからある程度離れた箇所であってもよい。ただし、第4の点Dは、性能評価値の2次近似曲線が、第4の性能評価値Dzにおいてx座標を示す2つの実数解を持つ位置に設定される。すなわち、性能評価値が再生信号の振幅値である場合に、性能評価値の2次近似曲線が示す2次曲線の最大値よりも小さい性能評価値Dzを持つように第4の点Dを設定する。また、性能評価値が再生信号のジッター値又はエラーレートである場合に、性能評価値の2次近似曲線が示す2次曲線の最小値よりも大きい性能評価値Dzを持つように第4の点Dを設定する。
 次に、図6(d)に示されるように、信号処理手段2は、第4の性能評価値Dzに等しい第5の性能評価値Ezから性能評価値の2次近似曲線を用いて算出されたExをx座標とし、Ayに等しいEyをy座標とするxy座標系上の第5の点E(すなわち、座標(Ex,Ey)の点)を設定する。また、図6(d)に示されるように、信号処理手段2は、第4の性能評価値Dzに等しい第6の性能評価値Fzから、2次近似曲線を用いて算出された、Exと異なるFxをx座標とし、Ayに等しいFyをy座標とするxy座標系上の第6の点F(すなわち、座標(Fx,Fy)の点)を設定する。
 次に、図6(e)に示されるように、信号処理手段2は、Dxと等しいJxをx座標とし、Ayと等しいJyをy座標とするxy座標系上の第9の点J(すなわち、座標(Jx,Jy)の点)を設定し、第9の点Jにおける再生信号の特性を示す第9の性能評価値Jzを、上記xz座標系における座標(Ax,Az)、(Bx,Bz)、及び(Cx,Cz)を基に算出した2次曲線を基に、算出する。
 次に、図6(e)に示されるように、信号処理手段2は、Dxに等しいGxをx座標とし、Gyをy座標とするxy座標系上の第7の点G(すなわち、座標(Gx,Gy)の点)を、上記式(1)及び(2)におけるaとaの比r(=a/a)、及び第9の点Jにおける再生信号の特性を示す第9の性能評価値Jzを基に、第4の性能評価値Dzと等しくなるよう、設定する。
 次に、図6(f)に示されるように、信号処理手段2は、第4の点D、第5の点E、第6の点F、及び第7の点Gを通る楕円50を算出し、楕円50の中心点であるxy座標系上の第8の点H(すなわち、座標(Hx,Hy)の点)を算出する。次に、図6(f)に示されるように、調整手段3は、SA量制御装置の移動量とFO量制御装置の移動量とによって決まるxy座標系上の点が、第1の点Aから第8の点Hに移動するように、光ピックアップ11に調整を行わせる。以上で、図6(a)乃至(f)に示される、球面収差とフォーカスオフセットの調整ルーチンが終了する。
 図6(a)~(f)は、図2に示すように球面収差及びフォーカスオフセットを座標軸とするxy座標系において、性能評価値が等しい領域が、同心円状かつ楕円状の複数の領域として示されることを利用した調整ルーチンの一例であり、楕円の中心点Hに調整すれば良いとしている。そのようにする代わりに、図7(a)~(e)に示すように、上記式(1)及び(2)におけるaとaの比r(=a/a)を用いて、球面収差xにr 1/2を掛けたものを新たに球面収差x′としても良い。このようにすることで、球面収差及びフォーカスオフセットを座標軸とするx′y座標系において、性能評価値が等しい領域が、同心円状の複数の領域として示されることになる。
 以下に、図7(a)~(e)を参照して、光情報処理装置10の信号処理手段2による処理工程を概略的に説明する。図7(a)~(d)は、既に説明した図6(a)~(d)に対応するため、説明を省く。すなわち、図7(a)~(d)における点A0、B0、C0、D0、E0、F0、及び直線L0は、図6(a)~(d)における第1の点A、第2の点B、第3の点C,第4の点D、第5の点E、第6の点F、及び直線Lと同様である。
 図7(e)に示されるように、信号処理手段2は、第4の点D0、第5の点E0、第6の点F0を通る円51を算出し、円51の中心点であるx′y座標系上の第8の点H0(すなわち、座標(H0x′,H0y)の点)を算出する。次に、図7(e)に示されるように、調整手段3は、SA量制御装置の移動量とFO量制御装置の移動量とによって決まるx′y座標系上の点が、第1の点A0から第8の点H0に移動するように、光ピックアップ11に調整を行わせる。以上で、図7(a)乃至(e)に示される、球面収差とフォーカスオフセットの調整ルーチンが終了する。
 図6(a)~(f)は、第4の点D、第5の点E、第6の点F、及び第7の点Gを通る楕円50を算出し、楕円50の中心点であるxy座標系上の第8の点H、すなわち球面収差とフォーカスオフセットの最適点を求めており、図7(a)~(e)は、第4の点D0、第5の点E0、第6の点F0を通る円51を算出し、円51の中心点であるx′y座標系上の第8の点H0、すなわち球面収差とフォーカスオフセットの最適点を求めている。このようにする代わりに、図8(a)~(d)に示すように、図4及び図5において、再生信号の振幅値RFが、球面収差SA及びフォーカスオフセットFOに対し2次曲線で近似的に表されるのを用い、球面収差とフォーカスオフセットの最適点を独自に求めるようにしても良い。
 以下に、図8(a)~(d)を参照して、光情報処理装置10の信号処理手段2による処理工程を概略的に説明する。図8(a)~(b)は、既に説明した図6(a)~(b)に対応するため、説明を省く。すなわち、図8(a)~(b)における点A1、B1、C1、点D1、及び直線L1は、図6(a)~(b)における第1の点A、第2の点B、第3の点C、第4の点D、及び直線Lと同様である。
 図8(c)に示されるように、信号処理手段2は、A1xをx座標とし、第1の性能評価値A1zをz座標とするxz座標系上の第1の評価点(xz座標系における座標(A1x,A1z))と、B1xをx座標とし、第2の性能評価値B1zをz座標とするxz座標系上の第2の評価点(xz座標系における座標(B1x,B1z))と、C1xをx座標とし、第3の性能評価値C1zをz座標とするxz座標系上の第3の評価点(xz座標系における座標(C1x,C1z)図示せず)とに基づいて、上記式(1)における定数a,b,cを算出して、xに対する2次近似曲線において極値を取るx、すなわち、性能評価値が再生信号の振幅値である場合に最大となるxを算出する。この時のxをH1xとする。
 次に、図8(c)に示されるように、信号処理手段2は、xy座標系において予め設定された傾斜を持ち第1の点Aを通る第1の直線L1上に、D1xをx座標とし、D1yをy座標とする第4の点D1(すなわち、座標(D1x,D1y)の点)を設定し、第4の点D1における再生信号の特性を示す第4の性能評価値D1zを算出する。
 次に、図8(d)に示されるように、信号処理手段2は、D1xと等しいJ1xをx座標とし、A1yと等しいJ1yをy座標とするxy座標系上の第9の点J1(すなわち、座標(J1x,J1y)の点)を設定し、第9の点J1における再生信号の特性を示す第9の性能評価値J1zを、上記xz座標系における座標(A1x,A1z)、(B1x,B1z)、及び(C1x,C1z)を基に算出した2次曲線を基に、算出する。
 次に、図8(d)に示されるように、信号処理手段2は、上記xz座標系における座標(A1x,A1z)、(B1x,B1z)、及び(C1x,C1z)を基に算出した、上記式(1)におけるaと、予め求めた上記式(1)及び(2)におけるaとaの比r(=a/a)と、第4の点D1における再生信号の特性を示す第4の性能評価値D1zと、第9の点J1における再生信号の特性を示す第9の性能評価値J1zを基に、上記式(2)における定数a,b,cを算出して、yに対する2次近似曲線において極値を取るy、すなわち、性能評価値が再生信号の振幅値である場合に最大となるyを算出する。この時のyをH1yとする。
 次に、図8(d)に示されるように、調整手段3は、SA量制御装置の移動量とFO量制御装置の移動量とによって決まるxy座標系上の点が、第1の点A1から第8の点H1(H1xをx座標とし、H1yをy座標とするxy座標系上の点)に移動するように、光ピックアップ11に調整を行わせる。以上で、図8(a)乃至(d)に示される、球面収差とフォーカスオフセットの調整ルーチンが終了する。
 次に、図9乃至図16を参照して、実施の形態1に係る光情報処理装置10の動作(光情報処理方法)をさらに詳細に説明する。
 図9は、実施の形態1に係る光情報処理装置10における光ディスク挿入からデータ記録又は再生までの処理の一例を示すフローチャートである。図9に示されるように、記録再生に用いられる光ディスク40が光情報処理装置10に挿入されると(工程S1)、信号処理手段2は、フォーカスサーボ及びトラッキングサーボ(サーボ信号生成部24及び対物レンズアクチュエータ18など)をONにする(工程S2)。次に、照射受光手段2に含まれる図示しない手段は、光ディスクの種類を判別する(工程S3)。光ディスクの種類の判別は、例えば、光ディスクがBD、DVD、CDのいずれであるかを判別する工程と、光ディスクが書換え型、追記型、再生専用型のいずれであるかを判別する工程とを含む。挿入された光ディスクの種類の判別方法は、公知であり、どのような方法で行ってもよい。
 次に、信号処理手段2の中央制御部29は、照射受光手段2(例えば、光ピックアップ11又は図示しないマークの検出センサなど)からの信号に基づいて、光ディスク40の情報記録面に記録されたデータが有るか否かの判別を行う(工程S4)。信号処理手段2の中央制御部29は、記録データが無い(未記録)と判定した場合に、図示しない手段(インターフェース)を介して照射受光手段1に指示を送り、光ディスク40にデータを記録する動作、すなわち、光ディスク40の情報記録面への試し書きを実行させ(工程S6)、その後、照射受光手段1に試し書きを行った領域にて再生を行わせる(工程S6)。また、信号処理手段2の中央制御部29は、工程S4において光ディスク40の情報記録面に記録データがある場合、照射受光手段1に光ディスク40のデータ読取位置をデータ記録エリアに移動させ、再生を実行させる(工程S7)。このとき、光ディスク40に記録があるか否かの判別(工程S4)を行う直前の光ディスク40のデータ読取位置から、最も近いデータ記録エリアにデータ読取位置を移動させることが望ましい。これは、工程S4を実施する前における、データ読取位置の移動時間(すなわち、データ記録エリアへの移動時間)を最短にするためである。
 次に、信号処理手段2の中央制御部29は、変数iを初期化して0にする(工程S8)。iは、後述の球面収差、フォーカスオフセット調整ルーチン(工程S9)において、球面収差とフォーカスオフセットを調整する回数を示し、記憶部30に格納される。次に、調整手段3は、光ピックアップ11の球面収差調整素子15及び対物レンズアクチュエータ18に球面収差及びフォーカスオフセットの調整を実行させる(工程S9)。球面収差、フォーカスオフセット調整ルーチン(工程S9)は、光ピックアップ11、再生信号生成部23、再生信号振幅検出部25、イコライザ26、再生ジッター検出部27、トラッキング誤差信号振幅検出部28、及び中央制御部29などによって行われる工程であり、調整方法の詳細は、図12乃至15のフローチャートを用いて後に説明する。
 次に、信号処理手段2(例えば、再生ジッター検出部28と中央制御部29など)は、再生信号の性能評価値を測定し(工程S10)、記憶部30に格納する。再生信号の性能評価値は、例えば、再生信号の振幅値、再生信号の再生ジッター値、再生信号のエラーレートなどであるが、再生信号品質の指標となり得るものであれば他の値であってもよい。
 次に、信号処理手段2の中央制御部29は、再生信号の性能評価値が許容範囲内であるか否か、及び、iが所定値以上であるか否かを判断し(工程S11)、再生信号の性能評価値が許容範囲内である場合、又は、iが所定値以上である場合には、照射受光手段2に光ディスク40へのデータ記録再生を開始させる(工程S12)。信号処理手段2の中央制御部29は、工程S11において、再生信号の性能評価値が許容範囲外であり、且つ、iが所定値より小さい場合には、iを1インクリメントし(工程S13)、工程S9からの処理を再度実行する。なお、信号処理手段2の中央制御部29は、工程S11において、iが所定値以上になり、且つ、再生信号の性能評価値が許容範囲内にならない場合は、球面収差とフォーカスオフセットの調整回数分の性能評価値の内の最適のもの(再生信号の振幅値の場合には最大のもの、再生信号のジッター値の場合には最小のもの、再生信号のエラーレートの場合には最小のもの)を採用してもよい。
 図10は、実施の形態1に係る光情報処理装置10におけるデータ記録開始からデータ記録完了までの処理の一例を示すフローチャートである。図10の処理は、図9の工程S12の記録処理の一例である。
 図10に示されるように、光情報処理装置10が光ディスク40へのデータ記録を開始すると(工程S21)、信号処理手段2の中央制御部29は、記録終了の指示(図示しない手段(インターフェース)からの入力指示)の有無を判定する(工程S22)。信号処理手段2の中央制御部29は、工程S22において、記録終了の指示があると判定されたときには、データ記録動作を終了させる(工程S31)。
 信号処理手段2の中央制御部29は、工程S22において、記録終了の指示が無いと判定されたときには、照射受光手段1は、図示しない手段を介して照射受光手段2に光ディスク40へのデータ記録動作を実行させ(工程S23)、記録されたデータを再生させる(工程S24)。
 次に、信号処理手段2の中央制御部29は、変数iを初期化して0にし(工程S25)、再生信号の性能評価値を測定し(工程S26)、記憶部30に格納する。
 次に、信号処理手段2の中央制御部29は、再生信号の性能評価値が許容範囲内であるか否か、及び、iが所定値以上であるか否かを判断し(工程S27)、再生信号の性能評価値が許容範囲内である場合、又は、iが所定値以上である場合には、照射受光手段1に記録領域を移動させ(工程S30)、照射受光手段1に光ディスク40へのデータ記録を開始させる(工程S22以降)。信号処理手段2の中央制御部29は、工程S27において、再生信号の性能評価値が許容範囲外であり、且つ、iが所定値より小さい場合には、調整手段3に制御信号を出力し、球面収差調整素子15及び対物レンズアクチュエータ18による球面収差とフォーカスオフセットの調整を実行させ(工程S28)、iを1インクリメントし(工程S29)、工程S26以降の処理を再度実行する。なお、信号処理手段2の中央制御部29は、工程S27において、iが所定値以上になり、且つ、再生信号の性能評価値が所定の値以下にならない場合は、球面収差とフォーカスオフセットの調整回数分の性能評価値の内の最適のものを採用してもよい。なお、工程S28の調整方法の詳細については、図12乃至15のフローチャートを用いて後に説明する。
 図11は、実施の形態1に係る光情報処理装置10におけるデータ再生開始からデータ再生完了までの処理の一例を示すフローチャートである。図11の処理は、図9の工程S12の再生処理の一例である。
 図11に示されるように、光情報処理装置10が光ディスク40へのデータ再生を開始する(工程S41)と、信号処理手段2の中央制御部29は、再生終了の指示(図示しない手段(インターフェース)からの入力指示)の有無を判定する(工程S42)。信号処理手段2の中央制御部29は、工程S42において、再生終了の指示があると判定されたときには、データ再生動作を終了させる(工程S49)。
 信号処理手段2の中央制御部29は、工程S42において、再生終了の指示が無いと判定されたときには、照射受光手段1にデータ再生動作を継続させ、変数iを初期化して0にする(工程S43)。次に、信号処理手段2の中央制御部29は、再生信号の性能評価値を測定し(工程S44)、記憶部30に格納する。
 次に、信号処理手段2の中央制御部29は、再生信号の性能評価値が許容範囲内であるか否か、及び、iが所定値以上であるか否かを判断し(工程S45)、再生信号の性能評価値が許容範囲内である場合、又は、iが所定値以上である場合には、照射受光手段1に再生領域を移動させて(工程S48)、照射受光手段1に光ディスク40からのデータ再生を継続させる。信号処理手段2の中央制御部29は、工程S45において、再生信号の性能評価値が許容範囲外であり、且つ、iが所定値より小さい場合には、調整手段3に制御信号を出力し、球面収差調整素子15及び対物レンズアクチュエータ18による球面収差とフォーカスオフセットの調整を実行させ(工程S46)、iを1インクリメントし(工程S47)、工程S44以降の処理を再度実行する。なお、信号処理手段2の中央制御部29は、工程S27において、iが所定値以上になり、且つ、再生信号の性能評価値が許容範囲内にならない場合は、球面収差とフォーカスオフセットの調整回数分の性能評価値の内の最適のものを採用してもよい。なお、工程S46の調整方法の詳細については、図12乃至15のフローチャートを用いて後に説明する。
 図12は、実施の形態1に係る光情報処理装置10における球面収差とフォーカスオフセットの調整ルーチンの一例を示すフローチャートである。図12は、図9の工程S9、図10の工程S28、又は図11の工程S46における球面収差及びフォーカスオフセット調整ルーチンの詳細を示している。また、図12は、図6(a)乃至(f)で説明した処理を、フローチャートとして示したものである。
 図12に示されるように、信号処理手段2は、球面収差、フォーカスオフセット調整開始のルーチンが開始すると(工程S50)、光ピックアップ11からの検出信号に基づいて初期SA量制御装置の移動量及びFO量制御装置の移動量を検出し、この点をxy座標系における第1の点Aとする(工程S51)。なお、xy座標系における第1の点Aの座標を(SA,FO)とする。また、工程S51における読取りを行なわずに、第1の点Aにおける球面収差SAとフォーカスオフセットFOを、SA=0、FO=0としてもよい。
 次に、信号処理手段2の再生信号振幅検出部26は、第1の点Aにおける性能評価値である再生信号の振幅値RFを測定し、記憶部30に格納する(工程S52)。
 次に、信号処理手段2の中央制御部29は、第1の点Aと球面収差が異なりフォーカスオフセットの等しい第2の点B及び第3の点Cを設定し、再生信号振幅検出部26は、第2の点Bにおける再生信号の振幅値RF及び第3の点Cにおける再生信号の振幅値RFを測定し(工程S53)、記憶部30に格納する。なお、第2の点B及び第3の点Cの設定方法は、後に図15を参照して詳細に説明する。
 次に、信号処理手段2の中央制御部29は、第1の点A、第2の点B、第3の点Cにおける各球面収差と、各再生信号の振幅値RF、RF、RFを基に、上記式(1)の2次近似曲線を算出する(工程S54)。
 次に、信号処理手段2の中央制御部29は、第1の点Aを通る直線L上の点で、第1の点Aと異なる第4の点Dを設定し、再生信号振幅検出部26は、第4の点Dにおける再生信号の振幅値RFを測定し、記憶部30に記憶させる(工程S55)。ここで、直線Lは、図3における球面収差及びフォーカスオフセットを座標軸とする2次元直交座標系において、トラッキング誤差信号の振幅値が略等しい軌跡を意味し、第1の点Aを通る直線である。直線Lの傾きは、図3に示されるデータに基づいて予め決めておき、記憶部30に格納される。ここで、第4の点Dを図3のデータに基づいて設定した理由は、第4の点Dの設定の際にトラッキング誤差信号の振幅値をある程度(第1の点Aと同程度に)確保できるからである。仮に、第4の点Dを直線L上に設定しない場合、第4の点Dにおけるトラッキング誤差信号の振幅値が、第1の点Aにおけるトラッキング誤差信号の振幅値よりも小さくなる可能性があり、トラッキング誤差信号の振幅値を十分に大きくすることができず、球面収差とフォーカスオフセットの調整を安定に行うことができなくなるおそれがある。第4の点Dを直線L上に設定した場合、第1の点Aにおけるトラッキング誤差信号の振幅値と略等しくトラッキング誤差信号の振幅値を得ることができるので、第4の点Dは、直線L上であれば、第1の点Aからある程度離れた箇所であってもよい。ただし、第4の点Dにおける再生信号の振幅値RFが、式(1)の2次近似曲線(xz座標系に図示した場合には2次曲線)の最大値よりも小さくなるように、第4の点Dを設定しなければならない。
 次に、信号処理手段2の中央制御部29は、第1の点A、第2の点B、第3の点Cを通る直線上の点で、第4の点Dにおける再生信号の振幅値RFと等しい再生信号の振幅値を持つ第5の点Eと第6の点Fを、式(1)の2次近似曲線から算出する(工程S56)。すなわち、
z=a・x+b・x+c            式(1)
z=RF                     式(3)
から、第5の点Eと第6の点Fにおける球面収差xの値を求める。すなわち、xz座標系において、式(1)と式(3)の交点から、第5の点Eと第6の点Fにおける球面収差の値xを求める。また、実施の形態1においては、第5の点E及び第6の点Fのフォーカスオフセットは、第1の点A、第2の点B、第3の点Cのフォーカスオフセットと等しい。
ここで、もしも第4の点Dにおける再生信号の振幅値RFが、2次近似曲線の最大値よりも大きい場合には、式(1)と式(3)の交点を算出することができない。よって、第4の点Dにおける再生信号の振幅値RFは、式(1)によって示される2次曲線の最大値よりも小さくなるように設定する。
 次に、信号処理手段2の中央制御部29は、第4の点Dの球面収差と等しく、第1の点Aのフォーカスオフセットと等しい第9の点Jにおける再生信号の振幅値RFを、上記式(1)を基に算出する。そして、第4の点Dの球面収差と等しく、第4の点Dでの再生信号の振幅値RFと等しい第7の点Gを、第9の点Jにおける再生信号の振幅値RF、及び上記式(1)及び(2)におけるaとaの比r(=a/a)を基に算出する(工程S57)。なお、aとaの比rは、図4及び5に示されるデータに基づき、全ての光ディスク40において一定であると仮定して、予め決めておき、記憶部30に格納される。
 次に、信号処理手段2の中央制御部29は、第4の点D、第5の点E、第6の点F、第7の点Gを通る楕円50を求め、楕円50の中心点である第8の点Hを算出する(工程S58)。すなわち、図2において、球面収差及びフォーカスオフセットを座標軸とするxy座標系において、再生信号の振幅値が等しい楕円(楕円状の領域)であり、この楕円の中点が球面収差とフォーカスオフセットの最適点であることから、再生信号の振幅値が等しい第4の点D、第5の点E、第6の点F、第7の点Gを通る楕円の中心点Hが球面収差とフォーカスオフセットの最適点に近い点であると考えることができる。
 次に、球面収差及びフォーカスオフセットの調整ルーチンが終了する(工程S59)。
 なお、工程S51の処理を行なわずに、SA=0、FO=0とした場合、第2の点B乃至第8の点Hの球面収差とフォーカスオフセットは、第1の点Aの球面収差とフォーカスオフセットを基準とした相対値になる。
 図13は、実施の形態1に係る光情報処理装置10における球面収差とフォーカスオフセットの調整ルーチンの他の例を示すフローチャートである。図13は、図9の工程S9、図10の工程S28、又は図11の工程S46における球面収差及びフォーカスオフセット調整ルーチンの詳細を示している。また、図13は、図7(a)乃至(e)で説明した処理を、フローチャートとして示したものである。但し、上記式(1)及び(2)におけるaとaの比r(=a/a)を用い、球面収差にr 1/2倍している。
 図13における工程S60乃至S65の処理は、それぞれ図12における工程S51乃至S56の処理に対応するため、説明を省く。すなわち、図13における第1の点A0、第2の点B0、第3の点C0、第4の点D0、第5の点E0、第6の点F0、及び直線L0は、それぞれ図12における第1の点A、第2の点B、第3の点C、第4の点D、第5の点E、第6の点F、及び直線Lと同様である。
 工程S65の処理の後、信号処理手段2の中央制御部29は、第4の点D0、第5の点E0、第6の点Fを通る円51を求め、円51の中心点である第8の点H0を算出する(工程S66)。
 次に、球面収差及びフォーカスオフセットの調整ルーチンが終了する(工程59)。
 図14は、実施の形態1に係る光情報処理装置10における球面収差とフォーカスオフセットの調整ルーチンの更に他の例を示すフローチャートである。図14は、図9の工程S9、図10の工程S28、又は図11の工程S46における球面収差及びフォーカスオフセット調整ルーチンの詳細を示している。また、図14は、図8(a)乃至(d)で説明した処理を、フローチャートとして示したものである。
 図14における工程S67乃至S69、及びS71の処理は、図12における工程S51乃至S53、及びS55の処理に対応するため、説明を省く。すなわち、図14における第1の点A1、第2の点B1、第3の点C1、第4の点D1、及び直線L1は、図12における第1の点A、第2の点B、第3の点C、第4の点D、及び直線Lと同様である。
 工程S69の処理の後、信号処理手段2の中央制御部29は、第1の点A1、第2の点B1、第3の点C1における各球面収差と、各再生信号の振幅値RFA1、RFB1、RFC1を基に、上記式(1)の2次近似曲線を算出し、球面収差の最適点を算出する(工程S70)。
 次に、信号処理手段2の中央制御部29は、第1の点A1を通る直線L1上の点で、第1の点A1と異なる第4の点D1を設定し、再生信号振幅検出部26は、第4の点D1における再生信号の振幅値RFD1を測定し、記憶部30に記憶させる(工程S71)。
 次に、信号処理手段2の中央制御部29は、第4の点D1の球面収差と等しく、第1の点A1のフォーカスオフセットと等しい第9の点J1における再生信号の振幅値RFJ1を、上記式(1)を基に算出する。そして、第4の点D1での再生信号の振幅値RFD1と、第9の点J1における再生信号の振幅値RFJ1と、上記式(1)及び(2)におけるaとaの比r(=a/a)を基に、上記式(1)における定数a,b,cを算出して、再生信号の振幅値が最大となるフォーカスオフセット、すなわちフォーカスオフセットの最適点を算出する(工程S72)。
 次に、信号処理手段2の中央制御部29は、工程S70及びS72において算出した球面収差及びフォーカスオフセットの最適点を第8の点Hとする(工程S73)。
 次に、球面収差及びフォーカスオフセットの調整ルーチンが終了する(工程S59)。
 図14における球面収差、フォーカスオフセット調整ルーチンでは、図12に相当する第5の点E及び第6の点Fを算出していないため、直線L1上の点D1の設定に制限はない。すなわち、第4の点D1における再生信号の振幅値RFD1は、上記式(1)の2次近似曲線が示す2次曲線の最大値より大きくても良い。
 図15は、図6(b)及び図12の工程S53における第2の点B及び第3の点Cの設定ルーチンの一例を示すフローチャートである。この場合は点B及び点Cの設定ルーチンを示しているが、図7(b)及び図13の工程S62における第2の点B0及び第3の点C0、図8(b)及び図14の工程S69における第2の点B1及び第3の点C1の設定ルーチンについても同様の処理である。図15において、第2の点B及び第3の点Cの設定開始の指示が与えられると(工程S74)、信号処理手段2のトラッキング誤差信号振幅検出部28は、第1の点Aにおけるトラッキング誤差信号の振幅値TEを測定する(工程S75)。
 次に、信号処理手段2の中央制御部29は、調整手段3を制御して、光ピックアップ11の球面収差調整素子15を駆動させて球面収差を第1の点Aから1ステップ右(図6(b)における正方向)へシフトさせ、第2の点Bとする(工程S76)。第2の点Bの球面収差を、SA+1と記す。なお、第2の点Bの球面収差は、第1の点Aから球面収差を1ステップ右へシフトさせたものである必要はなく、トラッキング誤差信号の振幅値を確保できる点であれば、第2の点Bは第1の点Aから1ステップよりも長い距離だけ離れたものであってもよい。
 次に、信号処理手段2のトラッキング誤差信号振幅検出部28は、第2の点Bにおけるトラッキング誤差信号の振幅値TEを測定する(工程S77)。
 次に、信号処理手段2の中央制御部29は、工程S75で測定したトラッキング誤差信号の振幅値TEと、工程S77で測定したトラッキング誤差信号の振幅値TEの比較を行う(工程S78)。信号処理手段2の中央制御部29は、工程S78において、トラッキング誤差信号の振幅値TEがトラッキング誤差信号の振幅値TE以上の場合、調整手段3を制御して、光ピックアップ11の球面収差調整素子15を駆動させて第2の点Bから球面収差を2ステップ左(図6(b)における負方向)へシフトさせ(工程S79)、この点を第3の点Cとする。この場合、第3の点Cの球面収差はSA-1と記す。第3の点Cをこのように設定する理由は、もしも第3の点Cの球面収差として、第2の点Bから球面収差を1ステップ右(図6(b)における正方向)へシフトさせたものを採用した場合には、第3の点Cにおけるトラッキング誤差信号の振幅値が第2の点Bにおけるトラッキング誤差信号の振幅値よりも小さくなる可能性があるからである。信号処理手段2の中央制御部29は、工程S78において、トラッキング誤差信号の振幅値TEがトラッキング誤差信号の振幅値TEより小さい場合、第2の点Bから球面収差を1ステップ右(図6(b)における正方向)へシフトさせた点を第3の点Cとする(工程S80)。この場合、第3の点Cの球面収差はSA+2と記す。工程S79及びS80において、第2の点Bから左へ2ステップ及び右へ1ステップシフトさせることは必須ではなく、トラッキング誤差信号の振幅値を確保できれば、第3の点Cは第2の点Bから左へ2ステップより長い距離及び右へ1ステップより長い距離シフトさせてもよい。
 次に、信号処理手段2の中央制御部29は、第2の点B及び第3の点Cの設定ルーチンを終了する(工程S81)。
 なお、図12の工程S54、図13の工程S63、及び図14の工程S70における2次近似曲線を、第1の点A、第2の点B、第3の点Cの3点における再生信号の振幅値を基に算出しているが、球面収差に対する再生信号の振幅値の2次近似曲線は、上に凸でなければならない。したがって、仮に再生信号の振幅値の2次近似曲線として下に凸である2次近似曲線が算出された場合には、4点以上における再生信号の振幅値を基に2次近似曲線を算出するなど、上に凸の2次近似曲線を取得するための処理が必要になる。このような場合には、4点以上の点での再生信号の振幅値を測定することで、球面収差とフォーカスオフセットを最適に調整することができる(実施の形態2として説明)。
 図16は、実施の形態1に係る光情報処理装置及び光情報処理方法によって球面収差とフォーカスオフセットを調整した結果を示す図である。図16は、2次近似曲線を、球面収差が異なりフォーカスオフセットが同じ3点を基に算出した場合の調整結果である。図16より、球面収差とフォーカスオフセットは、最適点(白色の星印)まで調整されていることが分かる。
 以上に説明したように、実施の形態1に係る光情報処理装置10及び光情報処理方法によれば、光ディスク40を記録及び/又は再生する装置における、球面収差及びフォーカスオフセットの最適化のための調整を、短時間及びサーボ外れが生じないように、さらに、再生信号品質を低下させないように行なうことができる。
 なお、上記説明においては、再生信号の振幅値を基に球面収差とフォーカスオフセットの調整を行っているが、再生ジッター値やエラーレートといった光ディスクの再生信号品質の指標を基に調整を行ってもよい。再生信号の振幅値と同様に、再生ジッター値やエラーレートも、球面収差及びフォーカスオフセットを座標軸とする2次元直交座標系において、同心円状の複数の楕円領域によって表すことができ、楕円の中心点で再生信号品質は最も小さくなるからである。ただし、再生ジッター値又はエラーレートの2次近似曲線は、再生信号の振幅値の2次近似曲線とは異なり、下に凸でなければならない。したがって、仮に再生ジッター値又はエラーレートの2次近似曲線として上に凸である2次近似曲線が算出された場合には、4点以上における再生信号の振幅値を基に2次近似曲線を算出するなど、下に凸の2次近似曲線を取得するための処理が必要になる。このような場合には、4点以上での再生信号の振幅値を測定することで、球面収差とフォーカスオフセットを最適に調整することができる(実施の形態2として説明)。
 また、上記説明において、光情報処理装置10を含む装置が、光ディスク40に対してデータの記録を行う機能を有さない装置である場合には、図9の工程S4において光ディスクにデータ記録が無い(未記録)と判定された場合は、工程S5,S6の処理に代えて、光ディスク40を排出する処理を行い、球面収差とフォーカスオフセットの調整を行わないようにしてもよい。
実施の形態2.
 図17(a)乃至(f)は、本発明の実施の形態2に係る光情報処理装置の動作、すなわち、実施の形態2に係る光情報処理方法を説明するための図である。図17(a)乃至(f)における、第1の点A2、第2の点B2、第3の点C2、第4の点D2、第5の点E2、第6の点F2、第7の点G2、第8の点H2、第9の点J2、及び直線L2はそれぞれ、図6(a)乃至(f)における、第1の点A、第2の点B、第3の点C、第4の点D、第5の点E、第6の点F、第7の点G、第8の点H、第9の点J、及び直線Lと同様である。
 実施の形態2においては、図17(b)に示されるように、性能評価値の2次近似曲線を算出する工程において、信号処理手段2が、A2x、B2x、及びC2xのいずれとも異なるK2xをx座標とし、A2yに等しいK2yをy座標するxy座標系上の第10の点K2)を設定し、第10の点K2における再生信号の特性を示す第10の性能評価値K2zを算出する工程を有し、2次近似曲線は、第1の評価点A2z、第2の評価点B2z、第3の評価点C2z、及び第10の評価点K2zとに基づいて算出される点が、実施の形態1の場合と相違する。実施の形態2の処理は、実施の形態1において、所望の2次近似曲線が得られなかった場合(凸の方向が逆の場合など)に、実行するようにしてもよい。
 なお、上記以外の点において、実施の形態2は、上記実施の形態1の場合と同じである。例えば、実施の形態2は、上記第10の点K2を設定する方法として、図15における点B、Cの設定方法と同様の方法を用いるものとし、第10の点K2を設定する以外は、図6(a)~(f)、図7(a)~(e)、及び図8(a)~(d)の調整方法と同じである。
実施の形態3.
 図18は、本発明の実施の形態3に係る光情報処理装置10a(すなわち、実施の形態3に係る光情報処理方法を実施することができる装置)の構成を概略的に示す図である。図18において、図1に示される構成と同一又は対応する構成には、同じ符号を付す。実施の形態3に光情報処理装置10aは、信号処理手段2aによる信号処理の内容が、上記実施の形態1又は2の場合と相違する。
 図19(a)乃至(f)は、実施の形態3に係る光情報処理装置10aの動作、すなわち、実施の形態3に係る光情報処理方法を説明するための図である。図19(a)乃至(f)における、第1の点A3(A3x,A3y)、第2の点B3(B3x,B3y)、第3の点C3(C3x,C3y)、第4の点D3(D3x,D3y)、第5の点E3(E3x,E3y)、第6の点F3(F3x,F3y)、第7の点G3(G3x,G3y)、第8の点H3(H3x,H3y)、第9の点J3(J3x,J3y)、直線L3、楕円53はそれぞれ、図6(a)乃至(f)における、第1の点A(Ax,Ay)、第2の点B(Bx,By)、第3の点C(Cx,Cy)、第4の点D(Dx,Dy)、第5の点E(Ex,Ey)、第6の点F(Fx,Fy)、第7の点G(Gx,Gy)、第8の点H(Hx,Hy)、第9の点J(Jx,Jy)、直線L,楕円50に対応する。
 図20は、実施の形態3に係る光情報処理装置10aにおける球面収差とフォーカスオフセットの調整ルーチンの一例を示すフローチャートである。図20は、図9の工程S9、図10の工程S28、又は図11の工程S46における球面収差及びフォーカスオフセット調整ルーチンの一例を示している。また、図20は、図19(a)乃至(f)で説明した処理を、フローチャートとして示したものである。また、図20における工程S82~S89は、既に説明した図12における工程S51~S58に対応する。
 図20に示されるように、信号処理手段2aは、球面収差、フォーカスオフセット調整開始のルーチンが開始すると(工程S50)、初期球面収差及びフォーカスオフセットを読み取り、この点を第1の点A3とし(工程S82)、第1の点A3における性能評価値である再生信号の振幅値RFA3を測定し(工程S83)、第1の点A3とフォーカスオフセットが異なり球面収差の等しい第2の点B3及び第3の点C3を設定し、第2の点B3における再生信号の振幅値RFB3及び第3の点C3における再生信号の振幅値RFC3を測定する(工程S84)。なお、第2の点B3及び第3の点C3の設定方法は、後に図21を参照して詳細に説明する。
 次に、信号処理手段2aの中央制御部29aは、第1の点A3、第2の点B3、第3の点C3における各フォーカスオフセットと、各再生信号の振幅値RFA3、RFB3、RFC3を基に、上記式(2)の2次近似曲線を算出し(工程S85)、第1の点A3を通る直線L3上の点で、第1の点A3と異なる第4の点D3を設定し、第4の点D3における再生信号の振幅値RFD3を測定する(工程S86)。ここで、直線L3は、実施の形態1における直線Lと同様に、その傾きは、図3に示されるデータに基づいて予め決められている。
 次に、信号処理手段2aの中央制御部29aは、第1の点A3、第2の点B3、第3の点C3を通る直線上の点で、第4の点D3における再生信号の振幅値RFD3と等しい再生信号の振幅値を持つ第5の点E3と第6の点F3を、式(2)の2次近似曲線から算出する(工程S87)。すなわち、
z=a・x+b・x+c          式(2)
z=RFD3                  式(4)
から、第5の点E3と第6の点F3におけるフォーカスオフセットxの値を求める。すなわち、xz座標系において、式(2)と式(4)の交点から、第5の点E3と第6の点F3におけるフォーカスオフセットの値を求める。
 次に、信号処理手段2aの中央制御部29aは、第4の点D3の球面収差と等しく、第1の点A3のフォーカスオフセットと等しい第9の点J3における再生信号の振幅値RFJ3を、上記式(2)を基に算出する。そして、第4の点D3の球面収差と等しく、第4の点D3での再生信号の振幅値RFD3と等しい第7の点G3を、第9の点J3における再生信号の振幅値RFJ3、及び上記式(1)及び(2)におけるaとaの比r(=a/a)を基に算出する(工程S88)。なお、aとaの比rは、図4及び5に示されるデータに基づき、全ての光ディスク40において一定であると仮定して、予め決めておき、記憶部30に格納される。
 次に、信号処理手段2aの中央制御部29aは、第4の点D3、第5の点E3、第6の点F3、第7の点G3を通る楕円53を求め、楕円53の中心点である第8の点H3を算出する(工程S89)。すなわち、図2において、球面収差及びフォーカスオフセットを座標軸とするxy座標系において、再生信号の振幅値が等しい楕円(楕円状の領域)であり、この楕円の中点が球面収差とフォーカスオフセットの最適点であることから、再生信号の振幅値が等しい第4の点D3、第5の点E3、第6の点F3、第7の点G3を通る楕円の中心点H3が球面収差とフォーカスオフセットの最適点に近い点であると考えることができる。
 次に、球面収差及びフォーカスオフセットの調整ルーチンが終了する(工程S59)。
 図21は、図19(b)及び図20の工程S84における第2の点B3及び第3の点C3の設定ルーチンの一例を示すフローチャートである。図21における工程S90~S97は、既に説明した図15における工程S74~S81に対応する。図21において、第2の点B3、第3の点C3の設定開始の指示が与えられると(工程S90)、信号処理手段2aのトラッキング誤差信号振幅検出部28は、第1の点A3におけるトラッキング誤差信号の振幅値TEA3を測定する(工程S91)。
 次に、信号処理手段2aの中央制御部29aは、調整手段3を制御して、光ピックアップ11の球面収差調整素子15を駆動させて球面収差を第1の点A3から1ステップ右(図15(b)における正方向)へシフトさせ、第2の点B3とする(工程S92)。第2の点B3のフォーカスオフセットを、FO+1と記す。なお、第2の点B3のフォーカスオフセットは、第1の点A3からフォーカスオフセットを1ステップ右へシフトさせたものである必要はなく、トラッキング誤差信号の振幅値を確保できる点であれば、第2の点B3は第1の点A3から1ステップよりも長い距離だけ離れたものであってもよい。
 次に、信号処理手段2aのトラッキング誤差信号振幅検出部28は、第2の点B3におけるトラッキング誤差信号の振幅値TEB3を測定する(工程S93)。
 次に、信号処理手段2aの中央制御部29aは、工程S91で測定したトラッキング誤差信号の振幅値TEA3と、工程S93で測定したトラッキング誤差信号の振幅値TEB3の比較を行う(工程S94)。信号処理手段2aの中央制御部29aは、工程S94において、トラッキング誤差信号の振幅値TEA3がトラッキング誤差信号の振幅値TEB3以上の場合、調整手段3を制御して、光ピックアップ11の球面収差調整素子15を駆動させて第2の点B3からフォーカスオフセットを2ステップ左(図19(b)における負方向)へシフトさせ(工程S95)、この点を第3の点C3とする。この場合、第3の点C3のフォーカスオフセットはFO-1と記す。第3の点C3をこのように設定する理由は、もしも第3の点C3のフォーカスオフセットとして、第2の点B3からフォーカスオフセットを1ステップ右(図19(b)における正方向)へシフトさせたものを採用した場合には、第3の点C3におけるトラッキング誤差信号の振幅値が第2の点B3におけるトラッキング誤差信号の振幅値よりも小さくなる可能性があるからである。信号処理手段2aの中央制御部29aは、工程S94において、トラッキング誤差信号の振幅値TEA3がトラッキング誤差信号の振幅値TEB3より小さい場合、第2の点B3からフォーカスオフセットを1ステップ右(図19(b)における正方向)へシフトさせた点を第3の点C3とする(工程S96)。この場合、第3の点C3のフォーカスオフセットはFO+2と記す。工程S95及びS96において、第2の点B3から左へ2ステップ及び右へ1ステップシフトさせることは必須ではなく、トラッキング誤差信号の振幅値を確保できれば、第3の点C3は第2の点B3から左へ2ステップより長い距離及び右へ1ステップより長い距離シフトさせてもよい。
 次に、信号処理手段2aの中央制御部29aは、第2の点B3及び第3の点C3の設定ルーチンを終了する(工程S97)。
 図22は、実施の形態3に係る光情報処理装置10a及び光情報処理方法によって球面収差とフォーカスオフセットを調整した結果を示す図である。図22は、2次近似曲線を、フォーカスオフセットが異なり球面収差が同じ3点を基に算出した場合の調整結果である。図22より、球面収差とフォーカスオフセットは、最適点近傍まで調整されていることが分かる。
 以上に説明したように、実施の形態3に係る光情報処理装置10a及び光情報処理方法によれば、光ディスク40を記録及び/又は再生する装置における、球面収差及びフォーカスオフセットの最適化のための調整を、短時間及びサーボ外れが生じないように、さらに、再生信号品質を低下させないように行なうことができる。
 なお、上記以外の点において、実施の形態3は、上記実施の形態1又は2の場合と同じである。例えば、実施の形態3は、実施の形態2と同様、第10の点K2を設定する場合もあり、第10の点K2を設定する方法として、図15における点B、Cの設定方法と同様の方法を用いるものとする。第10の点K2を設定する以外は、図6(a)~(f)、図7(a)~(e)、及び図8(a)~(d)の調整方法と同じである。但し、図7(a)~(e)の調整方法を用いる場合、実施の形態3においては、フォーカスオフセットにr 1/2倍する必要がある。
 1 照射受光手段、 2,2a 信号処理手段、 3 調整手段、 10,10a 光情報処理装置、 11 光ピックアップ、 12 半導体レーザー、 13 コリメートレンズ、 14 スプリッタ、 15 球面収差調整素子、 16 全反射ミラー、 17 対物レンズ、 18 対物レンズアクチュエータ、 19 検出レンズ、 20 受光部、 21 ヘッドアンプ、 22 レーザー駆動部、 23 再生信号生成部、 24 サーボ信号生成部、 25 再生信号振幅検出部、 26 イコライザ、 27 再生ジッター検出部、 28 トラッキング誤差信号振幅検出部、 29,29a 中央制御部、 30 記憶部、 31 球面収差調整部、 32 フォーカスオフセット調整部、 40 光ディスク、 50,52,53 楕円、 51 円、 A,A0,A1,A2,A3 第1の点、 B,B0,B1,B2,B3 第2の点、 C,C0,C1,C2,C3 第3の点、 D,D0,D1,D2,D3 第4の点、 E,E0,E2,E3 第5の点、 F,F0,F2,F3 第6の点、 G,G2,G3 第7の点、 H,H0,H1,H2,H3 中心点、 J,J1,J2,J3 第9の点、 K2 第10の点、 L,L0,L1,L2,L3 第1の点を通る直線。
 

Claims (24)

  1.  光ディスクの情報記録面にレーザー光を集光スポットとして照射し、該光ディスクの情報記録面からの反射光を検出する照射受光工程と、
     前記照射受光工程にて出力される前記反射光の検出信号から、前記集光スポットの球面収差量を制御する第1の制御装置の移動量、及び前記集光スポットのジャストフォーカスからのずれを示すフォーカスオフセット量を制御する第2の制御装置の移動量を検出し、再生信号を生成し、該再生信号の特性を示す性能評価値を検出する信号処理工程と、
     前記第1の制御装置の移動量と前記第2の制御装置の移動量と前記性能評価値に基づいて、前記球面収差とフォーカスオフセットの調整を行う調整工程と
     を有し、
     前記信号処理工程が、
     前記第1の制御装置の移動量及び前記第2の制御装置の移動量の一方をx座標とし、他方をy座標とするxy座標系上の異なる4点のxy座標(x,y)における前記性能評価値を検出することを特徴とする光情報処理方法。
  2.  前記信号処理工程が、
     前記xy座標の第1の点(x1,y1)での前記性能評価値であるz1を検出する工程と、
     前記x1と異なるx座標であるx2と、前記y1と等しいy座標であるy2を用い、前記xy座標の第2の点(x2,y2)を設定し、前記第2の点での前記性能評価値であるz2を検出する工程と、
     前記x1及び前記x2の両方と異なるx座標であるx3と、前記y1と等しいy座標であるy3を用い、前記xy座標の第3の点(x3,y3)を設定し、前記第3の点における前記性能評価値であるz3を検出する工程と、
     前記性能評価値をz座標とするxz座標系において、第1の評価点(x1,z1)と第2の評価点(x2,z2)と第3の評価点(x3,z3)とに基づいて、前記性能評価値を前記x座標の値の2次関数で近似的に表す2次近似曲線を算出する工程と、
     前記xy座標系において予め設定された傾斜を持ち前記第1の点を通る第1の直線上に、前記x1と異なるx座標であるx4と、前記y1と異なるy座標であるy4を用い、前記xy座標の第4の点(x4,y4)を設定し、前記第4の点における前記性能評価値であるz4を検出する工程と、
     前記z4と等しい性能評価値であるz5から、前記2次近似曲線を用いて算出されたx座標であるx5と、前記y1と等しいy座標であるy5を用い、前記xy座標の第5の点(x5,y5)を設定する工程と、
     前記z4と等しい性能評価値であるz6から、前記2次近似曲線を用いて算出されたx座標であるx6と、前記y1と等しいy座標であるy6を用い、前記xy座標の第6の点(x6,y6)を設定する工程と、
     前記x4と等しいx座標であるx9と、前記y1と等しいy座標であるy9を用い、前記xy座標の第9の点(x9,y9)における性能評価値であるz9を、前記2次近似曲線を基に算出する工程と、
     前記z4と等しい性能評価値であるz7から、予め設定された比率r、及び前記z9を基に、前記x4と等しいx座標であるx7と、y座標であるy7を用い、前記xy座標の第7の点(x7,y7)を設定する工程と、
     前記第4の点、前記第5の点、前記第6の点、及び前記第7の点を通る楕円を算出し、前記楕円の中心点である前記xy座標系上の第8の点を算出する工程と
     を有し、
     前記調整工程が、前記集光スポットが前記第1の点から前記第8の点に移動するように、前記球面収差とフォーカスオフセットの調整を行う工程を有する
     ことを特徴とする請求項1に記載の光情報処理方法。
  3.  前記信号処理工程が、
     前記xy座標系において、予め設定された比率rを用いて、前記x座標に係数r1/2を掛けて新たにx′座標とする工程と、
     前記x′y座標の第1の点(x′1,y1)での前記性能評価値であるz1を検出する工程と、
     前記x′1と異なるx′座標であるx′2と、前記y1と等しいy座標であるy2を用い、前記x′y座標の第2の点(x′2,y2)を設定し、前記第2の点での前記性能評価値であるz2を検出する工程と、
     前記x′1とx′2の両方と異なるx′座標であるx′3と、前記y1と等しいy座標であるy3を用い、前記x′y座標の第3の点(x′3,y3)を設定し、前記第3の点における前記性能評価値であるz3を検出する工程と、
     前記性能評価値をz座標とするx′z座標系において、第1の評価点(x′1,z1)と第2の評価点(x′2,z2)と第3の評価点(x′3,z3)とに基づいて、前記性能評価値を前記x′座標の値の2次関数で近似的に表す2次近似曲線を算出する工程と、
     前記x′y座標系において予め設定された傾斜を持ち前記第1の点を通る第1の直線上に、前記x′1と異なるx′座標であるx′4と、前記y1と異なるy座標であるy4を用い、前記x′y座標の第4の点(x′4,y4)を設定し、前記第4の点における前記性能評価値であるz4を検出する工程と、
     前記z4と等しい前記性能評価値であるz5から、前記2次近似曲線を用いて算出されたx′座標であるx′5と、前記y1と等しいy座標であるy5を用い、前記x′y座標の第5の点(x′5,y5)を設定する工程と、
     前記z4と等しい前記性能評価値であるz6から、前記2次近似曲線を用いて算出されたx′座標であるx′6と、前記y1と等しいy座標であるy6を用い、前記x′y座標の第6の点(x′6,y6)を設定する工程と、
     前記第4の点、前記第5の点、及び前記第6の点を通る円を算出し、前記円の中心点である前記x′y座標系上の第8の点を算出する工程
     を有し、
     前記調整工程が、前記集光スポットが前記第1の点から前記第8の点に移動するように、前記球面収差とフォーカスオフセットの調整を行う工程を有する
     ことを特徴とする請求項1に記載の光情報処理方法。
  4.  前記信号処理工程が、
     前記xy座標の第1の点(x1,y1)での前記性能評価値であるz1を検出する工程と、
     前記x1と異なるx座標であるx2と、前記y1と等しいy座標であるy2を用い、前記xy座標の第2の点(x2,y2)を設定し、前記第2の点での前記性能評価値であるz2を検出する工程と、
     前記x1と前記x2の両方と異なるx座標であるx3と、前記y1と等しいy座標であるy3を用い、前記xy座標の第3の点(x3,y3)を設定し、前記第3の点における前記性能評価値であるz3を検出する工程と、
     前記性能評価値をz座標とするxz座標系において、第1の評価点(x1,z1)と第2の評価点(x2,z2)と第3の評価点(x3,z3)とに基づいて、前記性能評価値を前記x座標の値の2次関数で近似的に表す2次近似曲線を算出し、前記xに対する2次近似曲線において極値を取るx座標であるxoを算出する工程と、
     前記xy座標系において予め設定された傾斜を持ち前記第1の点を通る第1の直線上に、前記x1と異なるx座標であるx4と、前記y1と異なるy座標であるy4を用い、前記xy座標の第4の点(x4,y4)を設定し、前記第4の点における前記性能評価値であるz4を検出する工程と、
     前記x4と等しいx9と、前記y1と等しいy9を用い、前記xy座標の第9の点(x9,y9)における性能評価値であるz9を、前記2次近似曲線を基に算出する工程と、
     yz座標系において、(y4,z4)、(y9,z9)、及び予め設定された比率rを基に、性能評価値を前記y座標の値の2次関数で近似的に表す2次近似曲線を算出し、前記yに対する2次近似曲線において極値を取るy座標であるyoを算出する工程と
     を有し、
     前記調整工程が、前記xy座標系において、前記集光スポットが前記第1の点から(xo,yo)の点に移動するように、前記球面収差とフォーカスオフセットの調整を行う工程を有する
     ことを特徴とする請求項1に記載の光情報処理方法。
  5.  前記性能評価値zが前記xに対し、2次近似曲線の式z=a・x+b・x+c、前記yに対し、2次近似曲線の式z=a・y+b・y+cと表される場合に、前記比率rはa/aであることを特徴とする請求項2乃至4のいずれか1項に記載の光情報処理方法。
  6.  前記再生信号の特性は、前記再生信号の振幅値、前記再生信号の再生ジッター値、及び前記再生信号のエラーレートのいずれかであることを特徴とする請求項5に記載の光情報処理方法。
  7.  前記第4の点は、前記2次近似曲線が、z座標を示す前記第4の性能評価値z4においてx座標を示す2つの実数解を持つ位置に設定されたことを特徴とする請求項2又は3に記載の光情報処理方法。
  8.  前記信号処理工程は、記憶部にて予め保持されているトラッキング誤差信号の振幅値を検出させる工程を有し、
     前記第2の点及び前記第3の点のそれぞれは、トラッキング誤差信号の振幅値が前記基準値以上になる点である
     ことを特徴とする請求項6に記載の光情報処理方法。
  9.  前記第1の直線は、前記xy交座標系において前記トラッキング誤差信号の振幅値が等しい軌跡であることを特徴とする請求項8に記載の光情報処理方法。
  10.  前記信号処理工程が、前記x1、前記x2、及び前記x3のいずれとも異なるx座標であるx10と、前記y2と等しいy座標であるy10を用い、前記xy座標の第10の点(x10,y10)を設定し、前記第10の点における前記性能評価値であるz10を検出する工程を有し、
     前記2次近似曲線は、前記第1の評価点、前記第2の評価点、前記第3の評価点、及び前記xz座標の前記第10の評価点(x10,z10)とに基づいて算出される
     ことを特徴とする請求項9に記載の光情報処理方法。
  11.  前記照射受光工程は、
     前記光ディスクの情報記録面上に記録された情報としてのマークがある場合には、前記マークに情報読取用のレーザー光を照射する工程を含み、
     前記光ディスクの情報記録面上に記録された情報としてのマークが無い場合には、前記光ディスクの情報記録面の所定位置にマークを記録するための情報記録用のレーザー光を照射する工程と、該記録されたマークに情報読取用のレーザー光を照射する工程とを含む
     ことを特徴とする請求項10に記載の光情報処理方法。
  12.  前記マークは、前記光ディスクの情報記録面のデータエリア内又はテストエリア内に記録されることを特徴とする請求項11に記載の光情報処理方法。
  13.  光ディスクの情報記録面にレーザー光を集光スポットとして照射し、該光ディスクの情報記録面からの反射光を検出する照射受光手段と、
     前記照射受光手段にて出力される前記反射光の検出信号から、前記集光スポットの球面収差量を制御する第1の制御装置の移動量、及び前記集光スポットのジャストフォーカスからのずれを示すフォーカスオフセット量を制御する第2の制御装置の移動量を検出し、再生信号を生成し、該再生信号の特性を示す性能評価値を検出する信号処理手段と、
     前記第1の制御装置の移動量と前記第2の制御装置の移動量と前記性能評価値とに基づいて、前記球面収差とフォーカスオフセットの調整を行う調整手段と
     を有し、
     前記信号処理手段が、前記第1の制御装置の移動量及び前記第2の制御装置の移動量の一方をx座標とし、他方をy座標とするxy座標系上の異なる4点のxy座標(x,y)における前記性能評価値を検出する
     ことを特徴とする光情報処理装置。
  14.  前記信号処理手段が、
    前記xy座標の第1の点(x1,y1)での前記性能評価値であるz1を検出する手段と、
     前記x1と異なるx座標であるx2と、前記y1と等しいy座標であるy2を用い、前記xy座標の第2の点(x2,y2)を設定し、前記第2の点での前記性能評価値であるz2を検出する手段と、
     前記x1と前記x2の両方と異なるx座標であるx3と、前記y1と等しいy座標であるy3を用い、前記xy座標の第3の点(x3,y3)を設定し、前記第3の点における前記性能評価値であるz3を検出する手段と、
     前記性能評価値をz座標とするxz座標系において、第1の評価点(x1,z1)と第2の評価点(x2,z2)と第3の評価点(x3,z3)とに基づいて、前記性能評価値を前記x座標の値の2次関数で近似的に表す2次近似曲線を算出する手段と、
     前記xy座標系において予め設定された傾斜を持ち前記第1の点を通る第1の直線上に、前記x1と異なるx座標であるx4と、前記y1と異なるy座標であるy4を用い、前記xy座標の第4の点(x4,y4)を設定し、前記第4の点における前記性能評価値であるz4を検出する手段と、
     前記z4と等しい前記性能評価値であるz5から、前記2次近似曲線を用いて算出されたx5と、前記y1と等しいy座標であるy5を用い、前記xy座標の第5の点(x5,y5)を設定する手段と、
     前記z4と等しい前記性能評価値であるz6から、前記2次近似曲線を用いて算出されたx座標であるx6と、前記y1と等しいy座標であるy6を用い、前記xy座標の第6の点(x6,y6)を設定する手段と、
     前記x4と等しいx座標であるx9と、前記y1と等しいy座標であるy9を用い、前記xy座標の第9の点(x9,y9)における性能評価値であるz9を、前記2次近似曲線を基に算出する手段と、
     前記z4と等しい前記性能評価値であるz7から、予め設定された比率r、及び前記z9を基に、前記x4と等しいx座標であるx7と、y座標であるy7を用い、前記xy座標の第7の点(x7,y7)を設定する手段と、
     前記第4の点、前記第5の点、前記第6の点、及び前記第7の点を通る楕円を算出し、前記楕円の中心点である前記xy座標系上の第8の点を算出する手段
     を有し、
     前記調整手段が、前記集光スポットが前記第1の点から前記第8の点に移動するように、前記球面収差とフォーカスオフセットの調整を行う手段を有する
     ことを特徴とする請求項13に記載の光情報処理装置。
  15.  前記信号処理手段が、
     前記xy座標系において、予め設定された比率rを用いて、前記x座標に係数r1/2を掛けて新たにx′座標とする手段と、
     前記x′y座標の第1の点(x′1,y1)での前記性能評価値であるz1を検出する手段と、
     前記x′1と異なるx′座標であるx′2と、前記y1と等しいy座標であるy2を用い、前記x′y座標の第2の点(x′2,y2)を設定し、前記第2の点での前記性能評価値であるz2を検出する手段と、
     前記x′1とx′2の両方と異なるx′座標であるx′3と、前記y1と等しいy座標であるy3を用い、前記x′y座標の第3の点(x′3,y3)を設定し、前記第3の点における前記性能評価値であるz3を検出する手段と、
     前記性能評価値をz座標とするx′z座標系において、第1の評価点(x′1,z1)と第2の評価点(x′2,z2)と第3の評価点(x′3,z3)とに基づいて、前記性能評価値を前記x′座標の値の2次関数で近似的に表す2次近似曲線を算出する手段と、
     前記x′y座標系において予め設定された傾斜を持ち前記第1の点を通る第1の直線上に、前記x′1と異なるx′座標であるx′4と、前記y1と異なるy座標であるy4を用い、前記x′y座標の第4の点(x′4,y4)を設定し、前記第4の点における前記性能評価値であるz4を検出する手段と、
     前記z4と等しい前記性能評価値であるz5から、前記2次近似曲線を用いて算出されたx′座標であるx′5と、前記y1と等しいy座標であるy5を用い、前記x′y座標の第5の点(x′5,y5)を設定する手段と、
     前記z4と等しい前記性能評価値であるz6から、前記2次近似曲線を用いて算出されたx′座標であるx′6と、前記y1と等しいy座標であるy6を用い、前記x′y座標の第6の点(x′6,y6)を設定する手段と、
     前記第4の点、前記第5の点、及び前記第6の点を通る円を算出し、前記円の中心点である前記x′y座標系上の第8の点を算出する手段
     を有し、
     前記調整手段が、前記集光スポットが前記第1の点から前記第8の点に移動するように、前記球面収差とフォーカスオフセットの調整を行う手段を有する
     ことを特徴とする請求項13に記載の光情報処理装置。
  16.  前記信号処理手段が、
     前記xy座標の第1の点(x1,y1)での前記性能評価値であるz1を検出する手段と、
     前記x1と異なるx座標であるx2と、前記y1と等しいy座標であるy2を用い、前記xy座標の第2の点(x2,y2)を設定し、前記第2の点での前記性能評価値であるz2を検出する手段と、
     前記x1と前記x2の両方と異なるx座標であるx3と、前記y1と等しいy座標であるy3を用い、前記xy座標の第3の点(x3,y3)を設定し、前記第3の点における前記性能評価値であるz3を検出する手段と、
     前記性能評価値をz座標とするxz座標系において、第1の評価点(x1,z1)と第2の評価点(x2,z2)と第3の評価点(x3,z3)とに基づいて、前記性能評価値を前記x座標の値の2次関数で近似的に表す2次近似曲線を算出し、前記xに対する2次近似曲線において極値を取るx座標であるxoを算出する手段と、
     前記xy座標系において予め設定された傾斜を持ち前記第1の点を通る第1の直線上に、前記x1と異なるx座標であるx4と、前記y1と異なるy座標であるy4を用い、前記xy座標の第4の点(x4,y4)を設定し、前記第4の点における前記性能評価値であるz4を検出する手段と、
     前記x4と等しいx座標であるx9と、前記y1と等しいy座標であるy9を用い、前記xy座標の第9の点(x9,y9)における性能評価値であるz9を、前記2次近似曲線を基に算出する手段と、
     yz座標系において、(y4,z4)、(y9,z9)、及び予め設定された比率rを基に、性能評価値を前記y座標の値の2次関数で近似的に表す2次近似曲線を算出し、前記yに対する2次近似曲線において極値を取るyoを算出する手段と
     を有し、
     前記調整手段が、前記xy座標系において、前記集光スポットが前記第1の点から(xo,yo)の点に移動するように、前記球面収差とフォーカスオフセットの調整を行う手段を有する
     ことを特徴とする請求項13に記載の光情報処理装置。
  17.  前記性能評価値zが前記xに対し、2次近似曲線の式z=a・x+b・x+c、前記yに対し、2次近似曲線の式z=a・y+b・y+cと表される場合に、前記比率rはa/aであることを特徴とする請求項14乃至16のいずれか1項に記載の光情報処理装置。
  18.  前記再生信号の特性は、前記再生信号の振幅値、前記再生信号の再生ジッター値、及び前記再生信号のエラーレートのいずれかであることを特徴とする請求項17に記載の光情報処理装置。
  19.  前記第4の点は、前記2次近似曲線が、z座標を示す前記第4の性能評価値であるz4においてx座標を示す2つの実数解を持つ位置に設定されたことを特徴とする請求項14又は15に記載の光情報処理装置。
  20.  前記信号処理手段は、記憶部にて予め保持されているトラッキング誤差信号の振幅値を検出させる手段を有し、
     前記第2の点及び前記第3の点のそれぞれは、トラッキング誤差信号の振幅値が前記基準値以上になる点である
     ことを特徴とする請求項18に記載の光情報処理装置。
  21.  前記第1の直線は、前記xy交座標系において前記トラッキング誤差信号の振幅値が等しい軌跡であることを特徴とする請求項20に記載の光情報処理装置。
  22.  前記信号処理手段が、前記x1、前記x2、及び前記x3のいずれとも異なるx座標であるx10と、前記y2と等しいy座標であるy10を用い、前記xy座標の第10の点(x10,y10)を設定し、前記第10の点における前記性能評価値であるz10を検出する手段を有し、
     前記2次近似曲線は、前記第1の評価点、前記第2の評価点、前記第3の評価点、及び前記xz座標の前記第10の評価点(x10,z10)とに基づいて算出される
     ことを特徴とする請求項21に記載の光情報処理装置。
  23.  前記照射受光手段は、
     前記光ディスクの情報記録面上に記録された情報としてのマークがある場合には、前記マークに情報読取用のレーザー光を照射する手段を含み、
     前記光ディスクの情報記録面上に記録された情報としてのマークが無い場合には、前記光ディスクの情報記録面の所定位置にマークを記録するための情報記録用のレーザー光を照射する手段と、該記録されたマークに情報読取用のレーザー光を照射する手段とを含む
     ことを特徴とする請求項22に記載の光情報処理装置。
  24.  前記マークは、前記光ディスクの情報記録面のデータエリア内又はテストエリア内に記録されることを特徴とする請求項23に記載の光情報処理装置。
PCT/JP2009/006670 2008-12-10 2009-12-07 光情報処理方法及び光情報処理装置 WO2010067575A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980149719.9A CN102246232B (zh) 2008-12-10 2009-12-07 光信息处理方法及光信息处理装置
JP2010542009A JP5323092B2 (ja) 2008-12-10 2009-12-07 光情報処理方法及び光情報処理装置
US13/128,031 US8638646B2 (en) 2008-12-10 2009-12-07 Optical information processing method and optical information processing apparatus
EP09831682.1A EP2357650B1 (en) 2008-12-10 2009-12-07 Method for processing optical information and device for processing optical information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008314348 2008-12-10
JP2008-314348 2008-12-10
JP2009230314 2009-10-02
JP2009-230314 2009-10-02

Publications (1)

Publication Number Publication Date
WO2010067575A1 true WO2010067575A1 (ja) 2010-06-17

Family

ID=42242569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006670 WO2010067575A1 (ja) 2008-12-10 2009-12-07 光情報処理方法及び光情報処理装置

Country Status (5)

Country Link
US (1) US8638646B2 (ja)
EP (1) EP2357650B1 (ja)
JP (1) JP5323092B2 (ja)
CN (1) CN102246232B (ja)
WO (1) WO2010067575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140933A1 (ja) * 2012-03-22 2013-09-26 三菱電機株式会社 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406275B (zh) * 2010-08-20 2013-08-21 Sunplus Technology Co Ltd 光碟機中尋找最佳聚焦偏壓及球差補償值的方法與裝置
JP5928154B2 (ja) * 2012-05-22 2016-06-01 船井電機株式会社 光ディスク装置
KR20160115223A (ko) * 2015-03-26 2016-10-06 삼성전자주식회사 광학디스크 장치 및 그 제어방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324328A (ja) * 2001-04-25 2002-11-08 Pioneer Electronic Corp 情報再生装置および光学式記録媒体
JP2004095106A (ja) 2002-09-03 2004-03-25 Sony Corp ディスクドライブ装置、フォーカスバイアス及び球面収差調整方法
JP2004145987A (ja) 2002-10-25 2004-05-20 Sharp Corp 光ピックアップの球面収差合焦ずれ補償方法および光ピックアップ装置
JP2005196947A (ja) * 2003-12-08 2005-07-21 Matsushita Electric Ind Co Ltd 光ディスク装置、光ディスク方法および半導体集積回路
JP2006139841A (ja) * 2004-11-11 2006-06-01 Hitachi Ltd 光ディスク記録/再生装置
JP2007080423A (ja) * 2005-09-15 2007-03-29 Hitachi Ltd 光ピックアップ及びその調整方法
JP2007087483A (ja) * 2005-09-21 2007-04-05 Hitachi Ltd 情報記録再生方法及び情報記録再生装置
JP2007122815A (ja) 2005-10-28 2007-05-17 Canon Inc 光ディスク装置の球面収差及びフォーカスオフセット調整方法、それを用いた光ディスク装置
JP2007141377A (ja) 2005-11-18 2007-06-07 Victor Co Of Japan Ltd 光記録再生装置における球面収差補正方法及び光記録再生装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335408B1 (ko) * 1998-03-03 2002-08-21 삼성전자 주식회사 포커스옵셋조정가능한광픽업장치
JP3549047B2 (ja) * 2000-06-08 2004-08-04 シャープ株式会社 光ピックアップ装置及びその収差補正方法並びに収差検出装置
JP3765235B2 (ja) * 2001-02-16 2006-04-12 日本電気株式会社 光ディスク装置
US6934226B2 (en) * 2001-04-12 2005-08-23 Matsushita Electric Industrial Co., Ltd. Optical disk apparatus
US7715286B2 (en) * 2002-06-21 2010-05-11 Sharp Kabushiki Kaisha Optical pickup spherical aberration compensating method, optical pickup spherical aberration focus offset compensating method, and optical pickup device
US7406007B2 (en) * 2003-09-02 2008-07-29 Matsushita Electric Industrial Co., Ltd. Optical disc apparatus and spherical aberration correction controlling apparatus
JP4171378B2 (ja) * 2003-09-04 2008-10-22 株式会社日立製作所 記録用光ディスクの球面収差補正方法,光ディスク記録再生方法及び光ディスク装置
US7379398B2 (en) 2003-12-08 2008-05-27 Matsushita Electric Industrial Co., Ltd. Optical disc apparatus, an optical disc method, and a semiconductor integrated circuit capable of adjusting a focus position of a light beam and a spherical aberration
JP4300484B2 (ja) * 2005-01-12 2009-07-22 ソニー株式会社 光ピックアップの制御装置及び制御方法、並びに光ディスク装置
JP4407623B2 (ja) * 2005-11-18 2010-02-03 ソニー株式会社 再生装置、球面収差補正値及びフォーカスバイアス調整方法
JP4591329B2 (ja) * 2005-11-22 2010-12-01 ソニー株式会社 光ピックアップ装置
JP2008059686A (ja) * 2006-08-31 2008-03-13 Canon Inc 球面収差及びフォーカスオフセット調整方法、それを用いた情報記録再生装置
JP4231072B2 (ja) * 2006-09-26 2009-02-25 ソニーNecオプティアーク株式会社 光記録媒体駆動装置、球面収差調整方法
US7859967B2 (en) * 2007-08-30 2010-12-28 Lite-On It Corporation Optical disk drive with spherical aberration measurement and method of measuring spherical aberration in an optical disk drive
US8300513B2 (en) * 2007-09-26 2012-10-30 Panasonic Corporation Optical head, optical head manufacturing method and optical disc device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324328A (ja) * 2001-04-25 2002-11-08 Pioneer Electronic Corp 情報再生装置および光学式記録媒体
JP2004095106A (ja) 2002-09-03 2004-03-25 Sony Corp ディスクドライブ装置、フォーカスバイアス及び球面収差調整方法
JP2004145987A (ja) 2002-10-25 2004-05-20 Sharp Corp 光ピックアップの球面収差合焦ずれ補償方法および光ピックアップ装置
JP2005196947A (ja) * 2003-12-08 2005-07-21 Matsushita Electric Ind Co Ltd 光ディスク装置、光ディスク方法および半導体集積回路
JP2006139841A (ja) * 2004-11-11 2006-06-01 Hitachi Ltd 光ディスク記録/再生装置
JP2007080423A (ja) * 2005-09-15 2007-03-29 Hitachi Ltd 光ピックアップ及びその調整方法
JP2007087483A (ja) * 2005-09-21 2007-04-05 Hitachi Ltd 情報記録再生方法及び情報記録再生装置
JP2007122815A (ja) 2005-10-28 2007-05-17 Canon Inc 光ディスク装置の球面収差及びフォーカスオフセット調整方法、それを用いた光ディスク装置
JP2007141377A (ja) 2005-11-18 2007-06-07 Victor Co Of Japan Ltd 光記録再生装置における球面収差補正方法及び光記録再生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140933A1 (ja) * 2012-03-22 2013-09-26 三菱電機株式会社 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム
JPWO2013140933A1 (ja) * 2012-03-22 2015-08-03 三菱電機株式会社 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム
US9454987B2 (en) 2012-03-22 2016-09-27 Mitsubishi Electric Corporation Optical information processing apparatus and optical information processing method, and adjustment device, adjustment method, and adjustment program for optical information processing apparatus

Also Published As

Publication number Publication date
JPWO2010067575A1 (ja) 2012-05-17
EP2357650A1 (en) 2011-08-17
CN102246232B (zh) 2014-09-10
CN102246232A (zh) 2011-11-16
JP5323092B2 (ja) 2013-10-23
EP2357650A4 (en) 2014-06-18
US20110235482A1 (en) 2011-09-29
US8638646B2 (en) 2014-01-28
EP2357650B1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP4527591B2 (ja) 情報記録再生方法及び情報記録再生装置
WO2004006232A1 (ja) 光記録再生装置、焦点制御方法
JP5323092B2 (ja) 光情報処理方法及び光情報処理装置
US20080056077A1 (en) Method of adjusting spherical aberration and focus offset and information recording/reproduction apparatus using the same
JP3574747B2 (ja) 光ピックアップ、情報再生装置及び情報記録装置
JP4662186B2 (ja) 光ディスク装置及び補正サーボ制御信号生成方法
JPH0492225A (ja) 光ディスク装置のf/tクロストーク補正方法
US7920449B2 (en) Method of controlling focus of optical information storage media recording and/or reproduction apparatus and apparatus therefor
JP2009532819A (ja) データ記録/再生方法及び装置
JP4139751B2 (ja) 光ディスク装置
JP4445913B2 (ja) 光ピックアップ及びその調整方法
US7755993B2 (en) Optical information recording reproduction device
JP2008084417A (ja) 光ディスク装置
JP3692072B2 (ja) 光ディスク装置の調整方法及び光ディスク装置
US7859965B2 (en) Recording device and method, reproducing device and method, recording/reproducing device and method, and computer program
US20080089193A1 (en) Apparatus and method for controlling focus jump between recording layers in high-density multi-layer disk
JP4531012B2 (ja) 光情報記録再生装置
JP5921670B2 (ja) 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム
JP2009140573A (ja) 光ディスク装置及びフォーカスジャンプ方法
JP3811633B2 (ja) 光ヘッドおよびその駆動方法
JP2010044828A (ja) 光ディスク装置及びフォーカス調整方法
JP4695585B2 (ja) 光ディスク記録方法及び光ディスク記録装置
KR20050107586A (ko) 광디스크 기록/재생 장치
JP2005071604A (ja) 光ディスク装置の調整方法及び光ディスク装置
JPH09231589A (ja) 記録媒体記録再生装置および記録媒体記録再生方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149719.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542009

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13128031

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009831682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE