WO2013140933A1 - 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム - Google Patents

光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム Download PDF

Info

Publication number
WO2013140933A1
WO2013140933A1 PCT/JP2013/054273 JP2013054273W WO2013140933A1 WO 2013140933 A1 WO2013140933 A1 WO 2013140933A1 JP 2013054273 W JP2013054273 W JP 2013054273W WO 2013140933 A1 WO2013140933 A1 WO 2013140933A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
spherical aberration
information processing
focus
ellipse
Prior art date
Application number
PCT/JP2013/054273
Other languages
English (en)
French (fr)
Inventor
智 岸上
伸夫 竹下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014506093A priority Critical patent/JP5921670B2/ja
Priority to CN201380015274.1A priority patent/CN104205219B/zh
Priority to DE112013001616.8T priority patent/DE112013001616T5/de
Priority to US14/374,866 priority patent/US9454987B2/en
Publication of WO2013140933A1 publication Critical patent/WO2013140933A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0925Electromechanical actuators for lens positioning
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0943Methods and circuits for performing mathematical operations on individual detector segment outputs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1398Means for shaping the cross-section of the beam, e.g. into circular or elliptical cross-section
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders

Definitions

  • the present invention relates to an optical information processing apparatus, an optical information processing method, an optical information processing apparatus adjustment apparatus, an adjustment method, and an adjustment program.
  • a large-capacity optical disk for example, Blu-ray Disk (BD)
  • the laser wavelength is shortened and the numerical aperture (NA) of the objective lens is increased in order to reduce the diameter of the light spot formed on the optical disk.
  • NA numerical aperture
  • a DVD Digital Versatile Disk
  • a BD uses a laser with a wavelength of 405 nm and an objective lens with an NA of 0.85.
  • the thickness of the protective layer that protects the information recording layer of the optical disk fluctuates, spherical aberration occurs, and the amount of spherical aberration is known to be proportional to the fourth power of NA and inversely proportional to the wavelength. . Therefore, the spherical aberration that occurs during BD playback is approximately 6.5 times ( ⁇ ⁇ (0.85 / 0.6) 4 ⁇ ⁇ (650/405)) compared to the spherical aberration that occurs during DVD playback. Become. Since it is easily affected by spherical aberration in this way, spherical aberration correction means for correcting spherical aberration is used in BD reproduction.
  • focus servo control for controlling the position of the objective lens in a direction perpendicular to the information recording surface of the optical disk is performed so that the focus position of the laser beam follows the information recording surface of the optical disk.
  • the spherical aberration correction amount by the spherical aberration correcting unit and the focus balance value (or focus position) in the focus servo control are adjusted so as to obtain good reproduction quality, but both are in the optical axis direction. It is an adjustment and is influenced by each other. Therefore, a technique for appropriately adjusting both the spherical aberration correction amount and the focus balance value (or focus position) has been proposed.
  • Patent Document 1 discloses a technique for optimally adjusting a focus balance and a spherical aberration correction amount in an optical pickup device including an objective lens that focuses a light beam on an optical disc and a spherical aberration correction mechanism.
  • a tracking error signal (TES signal) is acquired in a plurality of combinations of focus balance and spherical aberration correction amount, a plurality of combinations from which a TES signal of a predetermined level or higher is obtained, and a plurality of selected combinations are selected.
  • a light intensity signal (RF signal) is acquired, and a combination of focus balance and spherical aberration correction amount that maximizes the signal level of the RF signal is selected.
  • Patent Document 2 discloses a technique for adjusting the position and focus balance value of a movable lens for spherical aberration correction so that the amplitude level of a tracking error signal (TE signal) is maximized.
  • TE signal tracking error signal
  • one of the position of the movable lens and the focus balance value is plotted on the horizontal axis, the other is the vertical axis, and the graph is drawn as an ellipse from an isolevel line where the amplitude level of the TE signal is equal.
  • the inclination ⁇ of the long side of the level line with respect to the horizontal axis is obtained in advance, and only one of the position of the movable lens and the focus balance value is changed to search for a condition that maximizes the amplitude level of the TE signal. Then, a condition for maximizing the amplitude level of the TE signal is searched along the adjustment line of the inclination ⁇ passing through the position of the movable lens and the focus balance value.
  • Patent Document 3 discloses a technique for two-dimensionally searching for a focus position and a spherical aberration amount at which the jitter value is optimal by changing the focus position and the spherical aberration amount. Specifically, a method of alternately repeating the search for the focus position where the jitter is minimum and the search for the spherical aberration amount where the jitter is minimum, or four vertices of a rectangle in the graph with the focus position and the spherical aberration amount as axes.
  • a method is shown in which a point at which the jitter becomes is searched, and then a point at which the jitter is minimized on a straight line having a slope of ⁇ 1 / a passing through the point.
  • Patent Document 4 discloses a technique for adjusting a spherical aberration correction value and a focus bias value to optimum values.
  • an operation for measuring a jitter value at eight points on the outer periphery of a necessary margin assumption range on a plane having a spherical aberration correction value and a focus bias value as axes and obtaining a maximum value of the jitter value as a representative value is performed as a predetermined value.
  • the above process is repeated while moving the necessary margin assumption range in the direction of the slope A, and the required margin assumption range is moved in the predetermined inclination B direction starting from the center point of the necessary margin assumption range where the minimum representative value is obtained.
  • the operation for obtaining the representative value is repeated, and the center point of the necessary margin assumption range where the minimum representative value is obtained is specified.
  • the present invention provides an optical information processing apparatus, an optical information processing method, an optical information processing apparatus adjustment apparatus, an adjustment method, and an adjustment program capable of adjusting a spherical aberration correction amount and a focus adjustment value with a small number of measurement points.
  • the purpose is to do.
  • An optical information processing apparatus includes: Irradiation light receiving means for irradiating the optical disc with light, detecting reflected light from the optical disc and outputting a reproduction signal; Spherical aberration correction means for correcting the spherical aberration of light irradiated on the optical disc; Focus adjustment means for adjusting a focus position of light irradiated to the optical disc based on a focus adjustment value; For each of at least three straight lines on a plane having the spherical aberration correction amount by the spherical aberration correcting means and the focus adjustment value as a coordinate axis, the signal characteristics of the reproduction signal are measured at at least three measurement positions on the straight line.
  • Adjusting means It is characterized by having.
  • An optical information processing method includes: An irradiation light receiving step of irradiating the optical disc with light, detecting reflected light from the optical disc and outputting a reproduction signal; A spherical aberration correction step of correcting the spherical aberration of the light applied to the optical disc; A focus adjustment step of adjusting a focus position of light applied to the optical disc based on a focus adjustment value; For each of at least three straight lines on a plane having the spherical aberration correction amount and the focus adjustment value as coordinate axes in the spherical aberration correction step, the signal characteristics of the reproduction signal are measured at at least three measurement positions on the straight line.
  • Adjustment process It is characterized by having.
  • An adjustment apparatus for an optical information processing apparatus includes: Irradiation light receiving means for irradiating the optical disk with light, detecting reflected light from the optical disk and outputting a reproduction signal, spherical aberration correcting means for correcting spherical aberration of the light irradiated on the optical disk, and irradiating the optical disk
  • An optical information processing apparatus having a focus adjustment unit that adjusts a focus position of light to be adjusted based on a focus adjustment value, For each of at least three straight lines on a plane having the spherical aberration correction amount by the spherical aberration correcting means and the focus adjustment value as coordinate axes, the signal characteristics of the reproduction signal are measured at at least three measurement positions on the straight line.
  • An adjustment method of an optical information processing apparatus includes: Irradiation light receiving means for irradiating the optical disk with light, detecting reflected light from the optical disk and outputting a reproduction signal, spherical aberration correcting means for correcting spherical aberration of the light irradiated on the optical disk, and irradiating the optical disk
  • a method of adjusting an optical information processing apparatus comprising: a focus adjustment unit that adjusts a focus position of light to be adjusted based on a focus adjustment value, For each of at least three straight lines on a plane having the spherical aberration correction amount by the spherical aberration correcting means and the focus adjustment value as a coordinate axis, the signal characteristics of the reproduction signal are measured at at least three measurement positions on the straight line.
  • An adjustment program for an optical information processing apparatus includes: Irradiation light receiving means for irradiating the optical disk with light, detecting reflected light from the optical disk and outputting a reproduction signal, spherical aberration correcting means for correcting spherical aberration of the light irradiated on the optical disk, and irradiating the optical disk
  • An adjustment program for an optical information processing apparatus comprising: a focus adjustment unit that adjusts a focus position of light to be adjusted based on a focus adjustment value; For each of at least three straight lines on a plane having the spherical aberration correction amount by the spherical aberration correcting means and the focus adjustment value as a coordinate axis, the signal characteristics of the reproduction signal are measured at at least three measurement positions on the straight line.
  • the adjustment process is executed by a computer.
  • the spherical aberration correction amount and the focus adjustment value can be adjusted with a small number of measurement points.
  • FIG. 1 is a diagram illustrating a configuration example of an optical information processing apparatus according to Embodiment 1.
  • FIG. It is a figure which shows an example of the relationship of the reproduction signal amplitude with respect to a spherical aberration correction amount and a focus balance value. It is a figure which shows an example of the relationship of the reproduction signal quality with respect to spherical aberration correction amount and a focus balance value. It is a figure which shows an example of distribution of the reproduction signal amplitude with respect to spherical aberration correction amount and a focus balance value. It is a figure which shows an example of distribution of the reproduction signal quality with respect to a spherical aberration correction amount and a focus balance value.
  • FIG. 6 is a diagram illustrating a distribution of reproduction signal amplitude with respect to a spherical aberration correction amount and a focus balance value, and examples of measurement points, estimation points, ellipses, and ellipse centers in the first embodiment.
  • (A)-(c) is a figure which shows the example of a secondary approximation curve and an estimated point.
  • (A)-(f) is a figure which shows the example of arrangement
  • 6 is a flowchart illustrating an example of a procedure of a reproduction operation of the optical information processing apparatus according to the first embodiment.
  • 6 is a flowchart illustrating an example of a procedure for adjusting a spherical aberration correction amount and a focus balance value in the optical information processing apparatus according to the first embodiment.
  • 10 is a flowchart illustrating an example of a procedure for adjusting a spherical aberration correction amount and a focus balance value in the optical information processing apparatus according to the second embodiment.
  • FIG. 10 is a diagram showing an example of arrangement of measurement points in the third embodiment.
  • 14 is a flowchart illustrating an example of a procedure for adjusting a spherical aberration correction amount and a focus balance value in the optical information processing apparatus according to the third embodiment.
  • (A) is a figure which shows an example of the relationship between the focus balance value at the time of recording, and a reproduction signal amplitude
  • (b) is a figure which shows an example of the relationship between the focus balance value at the time of recording, a modulation factor, and asymmetry.
  • . 10 is a flowchart illustrating an example of a recording operation procedure of the optical information processing apparatus according to the fourth embodiment. 10 is a flowchart illustrating an example of a procedure for adjusting a focus balance value for recording in the optical information processing apparatus according to the fourth embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of an optical information processing apparatus 100 according to the first embodiment.
  • the optical information processing apparatus 100 is an apparatus that processes information on an optical disc.
  • the optical information processing apparatus 100 is an optical recording / reproducing device that performs at least one of information recording and reproduction on an optical disc.
  • the optical information processing apparatus 100 is a playback apparatus that plays back an optical disk 500, and the optical disk 500 is a BD.
  • an optical information processing apparatus 100 includes a head amplifier 110, a reproduction signal processing unit 120, a signal quality measurement unit 121, a data decoder 122, a reproduction characteristic measurement unit 123, an FE signal generation unit 130, a TE signal generation unit 140, a TE Signal characteristic measurement unit 141, thread motor control unit 150, thread motor 151, spherical aberration correction unit 160, actuator control unit 170, spindle motor control unit 180, spindle motor 181, central control unit 200, buffer memory 240, and optical head 300
  • the spindle motor control unit 180 controls the spindle motor 181 to rotate the optical disc 500 at a desired rotation speed.
  • the sled motor control unit 150 controls the sled motor 151 to move the optical head 300 to a desired position (for example, in the radial direction of the optical disc 500).
  • the optical head 300 irradiates the optical disc 500 with light, detects the reflected light from the optical disc 500 and outputs a reproduction signal, and is also called an optical pickup.
  • the optical head 300 includes a semiconductor laser 310, a laser drive circuit 320, a collimator lens 330, a beam splitter 340, an objective lens 350, a detection lens 360, a light receiving element 370, a spherical aberration correction lens 380, and an actuator 390.
  • the semiconductor laser 310, the collimator lens 330, the beam splitter 340, the objective lens 350, the detection lens 360, and the spherical aberration correction lens 380 constitute an optical system.
  • the semiconductor laser 310 is driven by a laser driving circuit 320 and emits a laser beam having an output value (reproduction power) necessary for data reproduction.
  • Laser light emitted from the semiconductor laser 310 is condensed and irradiated onto the optical disc 500 via the collimator lens 330, the beam splitter 340, the spherical aberration correction lens 380, and the objective lens 350.
  • the reflected light from the optical disk 500 passes through the objective lens 350 and the spherical aberration correction lens 380 and is then separated from the incident light by the beam splitter 340, and is received by the light receiving element 370 through the detection lens 360.
  • the spherical aberration correcting lens 380 is a movable lens for correcting the spherical aberration of the laser light irradiated on the optical disc 500, and is disposed in the optical system of the optical head 300.
  • the spherical aberration correction lens 380 is provided so as to be movable in the optical axis direction of the laser light, and is controlled by the spherical aberration correction unit 160.
  • the actuator 390 holds the objective lens 350 and drives the objective lens 350 in the focus direction and the track direction, and is controlled by the actuator control unit 170.
  • the focus direction is a direction parallel to the rotation axis direction of the optical disc 500, that is, a direction perpendicular to the information recording surface of the optical disc 500
  • the track direction is a direction parallel to the radial direction of the optical disc 500.
  • the light receiving element (or photodetector) 370 converts the received optical signal into an electrical signal as a reproduction signal.
  • the electrical signal converted in the light receiving element 370 is supplied to the central control unit 200, the reproduction signal processing unit 120, the FE signal generation unit 130, and the TE signal generation unit 140 via the head amplifier 110.
  • the central control unit 200 decodes the address information from the signal supplied from the head amplifier 110, and obtains the address information of the current position of the optical head 300. Then, the central control unit 200 controls the thread motor 151 by giving the thread motor control unit 150 the difference between the obtained address information of the current position and the address information of the position to be accessed (access target position). The optical head 300 is moved to the access target position.
  • the FE signal generation unit 130 processes a signal from the head amplifier 110 to generate a focus error signal (FE signal).
  • a method for generating the FE signal a known method such as an astigmatism method, a knife edge method, or a spot size detection method can be used.
  • the TE signal generation unit 140 processes a signal from the head amplifier 110 to generate a tracking error signal (TE signal).
  • a method for generating the TE signal a known method such as a push-pull method, a DPP (Differential Push-Pull) method, a DPD (Differential Phase Detection) method, or the like can be used.
  • the reproduction signal processing unit 120 equalizes the signal from the head amplifier 110 (waveform shaping) and supplies the signal to the signal quality measurement unit 121 and the data decoder 122. In addition, the reproduction signal processing unit 120 supplies an electric signal before equalization processing to the reproduction characteristic measurement unit 123.
  • the reproduction characteristic measurement unit 123 measures the amplitude of the reproduction signal (reproduction signal amplitude) as the signal characteristic of the reproduction signal (reproduction signal characteristic) based on the signal from the reproduction signal processing unit 120.
  • the signal quality measurement unit 121 determines the quality of the reproduction signal as a signal characteristic of the reproduction signal, such as a jitter value, an i-MLSE (integrated Maximum Likelihood Error Estimation) value, and an error rate. (Playback signal quality) is measured.
  • a signal characteristic of the reproduction signal such as a jitter value, an i-MLSE (integrated Maximum Likelihood Error Estimation) value, and an error rate. (Playback signal quality) is measured.
  • the data decoder 122 binarizes the playback signal supplied from the playback signal processing unit 120 by signal processing such as PRML (Partial Response Maximum Likelihood), and then performs processing such as demodulation and error correction on the optical disc 500.
  • PRML Partial Response Maximum Likelihood
  • the recorded data is generated (reproduced) and sent to the central control unit 200.
  • the central control unit 200 stores the data generated by the data decoder 122 in the buffer memory 240 and then sends the data to the host controller 400 connected to the optical information processing apparatus 100.
  • the TE signal characteristic measurement unit 141 measures TE signal characteristics such as the amplitude and TE signal balance of the TE signal generated by the TE signal generation unit 140.
  • the spherical aberration correction unit 160 adjusts the position of the spherical aberration correction lens 380 based on the control signal from the central control unit 200 to correct the spherical aberration.
  • the spherical aberration correction unit 160 changes the spherical aberration correction amount by the spherical aberration correction lens 380 by moving the position of the spherical aberration correction lens 380 in the optical axis direction.
  • the spherical aberration correction amount corresponds to the position of the spherical aberration correction lens 380.
  • the configuration in which spherical aberration correction is performed by the spherical aberration correction lens 380 is illustrated, but it is also possible to perform spherical aberration correction by other configurations, for example, by performing spherical aberration correction by a liquid crystal element. May be.
  • the spherical aberration correction unit 160 changes the spherical aberration correction amount by changing the voltage applied to the liquid crystal element.
  • Actuator control unit 170 controls actuator 390 based on a control signal from central control unit 200 to drive objective lens 350 in the focus direction and the track direction.
  • the central control unit 200 controls the entire apparatus when information is read from the optical disc 500 by the optical information processing apparatus 100, and the reproduction signal quality such as jitter and reproduction characteristics from the signal quality measurement unit 121 are controlled.
  • TE signal characteristics such as reproduction signal amplitude from the measurement unit 123, FE signal from the FE signal generation unit 130, TE signal from the TE signal generation unit 140, TE signal amplitude from the TE signal characteristic measurement unit 141, and TE signal balance value
  • it gives control signals to the laser drive circuit 320, the sled motor control unit 150, the spherical aberration correction unit 160, the actuator control unit 170, and the spindle motor control unit 180.
  • the central control unit 200 gives a control signal to the actuator control unit 170 based on the TE signal to control the actuator 390, so that the light spot of the laser light follows the track of the optical disc 500 so that the track direction of the objective lens 350 Tracking servo control is performed to control the position.
  • the central control unit 200 gives a control signal to the actuator control unit 170 based on the FE signal to control the actuator 390, so that the focus position of the laser beam follows the information recording surface of the optical disc 500. Focus servo control for controlling the position of the focus direction 350 is performed.
  • the central control unit 200 has a focus adjustment function for adjusting the focus position of the laser light irradiated on the optical disc 500 based on the focus adjustment value.
  • the focus adjustment value is an adjustment value for adjusting the focus position, and is a parameter corresponding to the focus position (or the position of the objective lens) or a parameter indicating the focus position (or the position of the objective lens).
  • the central control unit 200 adjusts the focus position by adjusting the position of the objective lens 350 in the focus direction based on the focus balance value as the focus adjustment value.
  • the focus balance is the balance of the S-order curve indicating the characteristics of the FE signal (focus error signal) obtained by receiving the reflected light from the optical disc 500, and the focus balance value is the S of the FE signal.
  • This focus balance value can be changed, for example, by adjusting the gain of the head amplifier 110 or adjusting the offset applied to the FE signal.
  • the central controller 200 performs focus servo control by adding an offset to the FE signal, and changes the offset added to the FE signal when changing the focus balance value. If the focus balance value is changed during execution of the focus servo control, the position of the objective lens 350 in the focus direction is changed, and the focus position of the laser light is changed. Therefore, the central control unit 200 adjusts the focus position to a position corresponding to the desired focus balance value, for example, by adding an offset corresponding to the desired focus balance value to the FE signal.
  • the central control unit 200 performs adjustment processing for adjusting (or optimizing) the spherical aberration correction amount and the focus adjustment value. This adjustment process will be described later in detail.
  • the spherical aberration correction amount and the focus adjustment value determined by the adjustment process are used when information is reproduced or recorded on the optical disc 500, for example.
  • the central control unit 200 determines an optimal combination of the spherical aberration correction amount and the focus balance value before executing reproduction or recording. Then, the central control unit 200 moves the spherical aberration correction lens 380 to a position corresponding to the determined spherical aberration correction amount, and adds an offset corresponding to the determined focus balance value to the FE signal to perform focus servo control. And reproducing or recording on the optical disc 500.
  • FIG. 1 shows a focus adjustment unit 201 that realizes the focus adjustment function and an adjustment unit 202 that performs adjustment processing of the spherical aberration correction amount and the focus adjustment value.
  • the central control unit 200 includes, for example, a CPU (Central Processing Unit) 210, a ROM (Read Only Memory) 220 that stores a program for the operation of the CPU 210, and a RAM (Random Access Memory) 230 that stores data.
  • the program stored in the ROM 220 includes an adjustment processing program for adjusting a spherical aberration correction amount and a focus balance value, which will be described later, and a part for defining measurement conditions and the like.
  • the program may be provided by being recorded on a computer-readable recording medium such as an optical disc, or may be provided via a communication line such as the Internet. Further, the function of the central control unit 200 may be realized only by a hardware circuit.
  • the relationship between the spherical aberration correction amount and the focus balance value will be described.
  • the reproduction signal amplitude and the reproduction signal quality are changed while changing the spherical aberration correction amount and the focus balance value, respectively.
  • An example of the result of actual measurement will be described.
  • FIG. 2 is a diagram showing an example of the relationship between the spherical aberration correction amount and the focus balance value and the reproduction signal amplitude.
  • the solid line in the figure shows contour lines when the reproduction signal amplitude is high, with a plurality of reproduction signal amplitude levels.
  • the reproduction signal amplitude is maximum near the center of the figure.
  • FIG. 3 is a diagram showing an example of the relationship between the spherical aberration correction amount, the focus balance value, and the reproduction signal quality (i-MLSE value).
  • the solid line in the figure is a contour line drawn at a plurality of i-MLSE levels when the i-MLSE value is the height.
  • the reproduction signal quality is the best (minimum) near the center of the figure.
  • the position of the combination is slightly shifted, it may be a position that is almost close, and a combination of the spherical aberration correction amount and the focus balance value that maximizes the reproduction signal amplitude may be obtained.
  • the time for measuring the reproduction signal amplitude is shorter than the time for measuring the reproduction signal quality, it is preferable to adjust the reproduction signal amplitude in consideration of the adjustment time.
  • FIG. 4 is a diagram showing an example of the distribution of the reproduction signal amplitude with respect to the spherical aberration correction amount and the focus balance value.
  • FIG. 4 is a diagram in which the contour lines of the reproduction signal amplitude in FIG. 2 are projected onto an xy coordinate system (two-dimensional plane) in which the spherical aberration correction amount is the x coordinate and the focus balance value is the y coordinate.
  • the contour line has a substantially elliptical shape inclined obliquely with respect to the x-axis and the y-axis.
  • the center of the ellipse is almost the same position even if the reproduction signal amplitude is different.
  • the center position of the ellipse corresponding to any one of the contour lines can be obtained, the position where the reproduction signal amplitude is maximized or near the maximum (that is, the optimum or nearly optimum combination of the spherical aberration correction amount and the focus balance value) is determined. Can be sought.
  • FIG. 5 is a diagram showing an example of the distribution of reproduction signal quality (i-MLSE) with respect to the spherical aberration correction amount and the focus balance value. Similar to FIG. 4, FIG. 5 is a diagram in which the reproduction signal quality contours of FIG. 3 are projected onto the xy coordinate system. As shown in FIG. 5, similar to FIG. 4, the contour lines have a substantially elliptical shape inclined obliquely. It can also be seen that the center of the ellipse is almost the same position even if the reproduction signal quality is different.
  • i-MLSE reproduction signal quality
  • the center position of the ellipse corresponding to one of the contour lines can be obtained, the position where the reproduction signal quality is the best or near the best (that is, the combination of the spherical aberration correction amount and the focus balance value that is optimum or close to the optimum). Can be sought.
  • FIG. 6 is a diagram showing an example of the distribution of the tracking error signal (TE signal) amplitude with respect to the spherical aberration correction amount and the focus balance value.
  • FIG. 6 is a diagram obtained by projecting contour lines drawn with a plurality of TE signal amplitude levels onto the xy coordinate system when the TE signal amplitude is high. From FIG. 6, it can be seen that the TE signal amplitude has a small change in the direction of changing the spherical aberration correction amount (x-axis direction), and has a contour distribution different from those in FIGS. If the amplitude of the TE signal becomes too small, the tracking servo is likely to come off.
  • FIG. 7 is a diagram showing an example of the distribution of the reproduction signal amplitude, the reproduction signal quality, and the TE signal amplitude with respect to the spherical aberration correction amount and the focus balance value.
  • FIG. 7 is a contour line with a reproduction signal amplitude of 1.12 V, a contour line with i-MLSE of 14.4%, and a contour line with a TE signal amplitude of 1.44 V from the contour lines shown in FIG. 4, FIG. 5 and FIG. Is drawn in the same xy coordinate system.
  • a square mark in the figure indicates an ellipse center point when the contour line of the reproduction signal amplitude is a substantially ellipse
  • a circle mark indicates an ellipse center point when the i-MLSE contour line is a substantially ellipse.
  • FIG. 8A is a diagram showing the relationship between the spherical aberration correction amount and the reproduction signal amplitude.
  • FIG. 8A shows the spherical aberration when the focus balance values are “ ⁇ 10”, “10”, and “30” in the relationship between the spherical aberration correction amount and the focus balance value and the reproduction signal amplitude in FIG. The relationship between the correction amount and the reproduction signal amplitude is shown.
  • the focus balance value “10” is a focus balance value when the reproduction signal amplitude is near the maximum
  • the focus balance values “ ⁇ 10” and “30” are ⁇ 20 steps from the focus balance value “10”. It has been changed. Circle marks, square marks, and triangle marks in the figure indicate actual measured values when the relationship of FIG.
  • FIG. 8A shows that the relationship between the spherical aberration correction amount and the reproduction signal amplitude can be approximated by a quadratic expression in any case.
  • FIG. 8B is a diagram showing the relationship between the focus balance value and the reproduction signal amplitude.
  • FIG. 8B shows a case where the spherical aberration correction amount is “ ⁇ 34”, “ ⁇ 28”, or “ ⁇ 22” in the relationship between the spherical aberration correction amount and the focus balance value and the reproduction signal amplitude in FIG. The relationship between the focus balance value and the reproduction signal amplitude is shown.
  • the spherical aberration correction amount “ ⁇ 28” is the spherical aberration correction amount when the reproduction signal amplitude is near the maximum
  • the spherical aberration correction amounts “ ⁇ 34” and “ ⁇ 22” are the spherical aberration correction amounts “ This is a change of ⁇ 6 steps from -28 ".
  • Circles, squares, and triangles in the figure indicate actual measurement values when the relationship of FIG. 2 is measured, and correspond to the cases of spherical aberration correction amounts “ ⁇ 34”, “ ⁇ 28”, and “ ⁇ 22”, respectively.
  • a solid line, a broken line, and a dotted line are approximate curves obtained by approximating measured values of a circle mark, a square mark, and a triangle mark with a quadratic expression, respectively.
  • FIG. 8B shows that the relationship between the focus balance value and the reproduction signal amplitude can be approximated by a quadratic expression in any case.
  • FIG. 9A shows the relationship between the spherical aberration correction amount and i-MLSE (reproduced signal quality).
  • FIG. 9A shows the spherical aberration when the focus balance values are “ ⁇ 15”, “5”, and “25” in the relationship between the spherical aberration correction amount and the focus balance value of FIG. 3 and i-MLSE.
  • the relationship between the correction amount and i-MLSE is shown.
  • the focus balance value “5” is a focus balance value when i-MLSE is close to the best
  • the focus balance values “ ⁇ 15” and “25” are ⁇ 20 steps from the focus balance value “5”. It has been changed.
  • Circle marks, square marks, and triangle marks in the figure indicate actual measurement values when the relationship of FIG.
  • a solid line, a broken line, and a dotted line are approximate curves obtained by approximating measured values of a circle mark, a square mark, and a triangle mark with a quadratic expression, respectively. From FIG. 9A, it can be seen that the relationship between the spherical aberration correction amount and i-MLSE can be approximated by a quadratic equation in any case.
  • FIG. 9B is a diagram showing the relationship between the focus balance value and i-MLSE (reproduction signal quality).
  • FIG. 9B shows the spherical aberration correction amounts of “ ⁇ 36”, “ ⁇ 30”, and “ ⁇ 24” among the relationship between the spherical aberration correction amount and the focus balance value of FIG. 3 and i-MLSE. In this case, the relationship between the focus balance value and i-MLSE is shown.
  • the spherical aberration correction amount “ ⁇ 30” is the spherical aberration correction amount when i-MLSE is near the best
  • the spherical aberration correction amounts “ ⁇ 36” and “ ⁇ 24” are the spherical aberration correction amounts “ This is a change of ⁇ 6 steps from “-30”.
  • Circles, squares, and triangles in the figure indicate actual measurement values when the relationship of FIG. 3 is measured, and correspond to spherical aberration correction amounts “ ⁇ 36”, “ ⁇ 30”, and “ ⁇ 24”, respectively.
  • a solid line, a broken line, and a dotted line are approximate curves obtained by approximating measured values of a circle mark, a square mark, and a triangle mark with a quadratic expression, respectively.
  • FIG. 9B shows that the relationship between the focus balance value and i-MLSE can be approximated by a quadratic expression in any case.
  • FIG. 10 additionally shows measurement points, estimated points, ellipse center points, and the like in the adjustment method of the present embodiment in the distribution of the reproduction signal amplitude with respect to the spherical aberration correction amount and the focus balance value in FIG. .
  • a measurement point PM indicated by a circle is a position where the reproduction signal amplitude is measured in the adjustment method. That is, in the adjustment method, for each of the plurality of measurement points PM, the spherical aberration correction amount and the focus balance value are set to values corresponding to the measurement point PM, the signal recorded on the optical disc 500 is reproduced, and the reproduction signal amplitude is reproduced. Is measured.
  • the measurement points PM are arranged under the condition that there are at least three measurement points PM on each of at least three straight lines on the plane having the spherical aberration correction amount and the focus balance value as coordinate axes.
  • the spherical aberration correction amount is the x axis (horizontal axis)
  • the focus balance value is the y axis (vertical axis)
  • the measurement points PM may be arranged on four or more types of straight lines. Further, in FIG. 10, three measurement points are arranged on each straight line, but at least three measurement points are required for one straight line, and four or more measurement points for one straight line. May be arranged.
  • the interval between the measurement points PM on each straight line is as wide as possible from the viewpoint of ensuring adjustment accuracy. This is because if the interval between the measurement points PM is too narrow, the difference in the measurement results between the measurement points PM becomes small, the influence of noise and variation cannot be ignored, and the accuracy of the second-order approximation described later deteriorates. . On the other hand, if the interval between the measurement points PM is too wide, the tracking servo is likely to be unstable. Therefore, for example, from the distribution of the tracking error signal (TE signal) amplitude with respect to the spherical aberration correction amount and the focus balance value shown in FIG.
  • TE signal tracking error signal
  • the interval between the measurement points PM is within a range in which the tracking servo stability can be ensured.
  • the measurement point PM is set to be wide.
  • the measurement points PM are not arranged in consideration of the above, and the intervals between the measurement points PM are not so wide.
  • the reproduction signal amplitude when the reproduction signal amplitude is measured at each measurement point PM, for example, the measurement may be performed in a state where the tracking servo is off.
  • the reproduction signal amplitude may be calculated by detecting the maximum value (peak) and minimum value (bottom) of the reproduction signal for one round of the disk.
  • the measurement point PM is set so that the total change amount and the number of changes of the spherical aberration correction amount are reduced.
  • the movement of the spherical aberration correction lens 380 takes more time than the movement of the objective lens 350, and changing the spherical aberration correction amount takes more time than changing the focus position by changing the focus balance value.
  • a stepping motor is used for the movement of the spherical aberration correction lens 380, which takes more time than the movement of the objective lens 350 using the electromagnetically driven actuator 390 using a coil and a magnet.
  • measurement at each measurement point PM is performed in the order indicated by the arrows.
  • the straight line L1 is a straight line parallel to the x-axis where only the spherical aberration correction amount changes
  • the straight line L2 is a straight line parallel to the y-axis where only the focus balance value changes
  • the straight line L3 Is a straight line substantially parallel to the major axis direction of the ellipse when the contour line is regarded as a substantially ellipse.
  • the inclination of the ellipse of the contour lines varies greatly depending on the optical specifications of the optical head 300. In the optical head 300 having the same specifications, the optical head 300 varies greatly depending on individual variations of the optical head 300, temperature, and the optical disc 500 to be reproduced. Will not change. Therefore, it is possible to set the inclination of the straight line L3 to a value close to the actual inclination of the ellipse by examining the characteristics as shown in FIG.
  • ai, bi, and ci are constants.
  • the coefficients a1, b1, and c1 of the above-mentioned quadratic approximate expression are obtained with the spherical aberration correction amount being p.
  • the coefficients a2, b2, and c2 of the above-mentioned quadratic approximation formula are obtained by setting the focus balance value to p.
  • the spherical aberration correction amount (or the focus balance value) is set as p, and the coefficients a3, b3, and c3 of the second-order approximation formula are obtained.
  • FIG. 11 is a diagram showing a second-order approximation curve obtained by the second-order approximation.
  • FIG. 11A shows a quadratic approximate curve C1 that approximates the measurement result of the measurement point PM on the straight line L1
  • FIG. 11B shows a quadratic approximation that approximates the measurement result of the measurement point PM on the straight line L2.
  • An approximate curve C2 is shown
  • FIG. 11C shows a quadratic approximate curve C3 that approximates the measurement result of the measurement point PM on the straight line L3.
  • the circles in the figure indicate the measurement points PM.
  • a total of six estimated points PE can be obtained by obtaining estimated points PE for each of the three types of straight lines L1, L2, and L3.
  • FIG. 10 shows an ellipse DE derived by ellipse approximation.
  • the ellipse DE is an approximate ellipse corresponding to a contour line having a reproduction signal amplitude of a predetermined estimation level ZE (for example, 1.07 V).
  • the elliptic formula is expressed by, for example, the following formula (3) based on the spherical aberration correction amount x and the focus balance value y.
  • a ⁇ x 2 + B ⁇ x ⁇ y + C ⁇ y 2 + D ⁇ x + E ⁇ y + 1 0 (3)
  • the equation of the ellipse DE can be derived.
  • the coefficients A, B, C, D, and E can be derived if there are at least five estimated points PE.
  • five estimated points PE of the obtained six estimated points PE are used, It can be obtained by solving the following five linear equations (4) to (8).
  • the equation of the ellipse DE is derived using only five of the six estimated points PE obtained.
  • the least square method is used using all the six estimated points PE. It may be used to derive the ellipse DE equation.
  • the “minimum value of the sum of the distances between two different points” refers to a certain estimated point PE and two estimated points PE other than the estimated point PE that are close to the estimated point PE. The sum of distances is indicated, and the “point with the smallest minimum value” indicates an estimated point with the minimum sum of distances.
  • the average value xave of the x coordinate values (spherical aberration correction amounts) and the average value yave of the y coordinate values (focus balance values) of the six estimation points PE are obtained, respectively.
  • the one having the shortest distance from the average value (xave, yave) of the estimated points PE may be omitted.
  • the center PC of the ellipse DE is calculated from the derived equation (or elliptic coefficient) of the ellipse DE.
  • the center PC of the ellipse DE is indicated by an asterisk.
  • the ellipse center PC may be obtained by a method other than the method of solving the above linear equation.
  • the obtained ellipse center PC corresponds to the position where the reproduction signal amplitude is maximized, and becomes the adjustment result of the spherical aberration correction amount and the focus balance value.
  • the coordinates of the ellipse center PC are set or used as an optimal spherical aberration correction amount and focus balance value.
  • the measurement point PM is in an xy coordinate system (two-dimensional plane) where the spherical aberration correction amount is the x coordinate and the focus balance value is the y coordinate.
  • the measurement points PM are set on the condition that there are three or more types of different straight lines, and three or more measurement points PM are arranged on each straight line.
  • FIG. 12 is a diagram showing six types of arrangement examples different from the arrangement example of the measurement points PM in FIG. Also in the arrangement example of FIG. 12, three types of straight lines L1, L2, and L3 are arranged.
  • the straight line L1 is a straight line parallel to the x-axis that changes only the spherical aberration correction amount
  • the straight line L2 is a focus balance value
  • a straight line parallel to the y-axis that changes only, a straight line L3 is a straight line that is substantially parallel to the major axis direction of the ellipse when the contour line is regarded as a substantially ellipse, and one of the measurement points PM passes through all three types of straight lines. In total, seven measurement points PM were arranged.
  • FIG. 12A In contrast, in FIG. 12A, three measurement points PM are arranged on each of the three types of straight lines L1, L2, and L3, but the number of measurement points PM is six in total. It is less than the case of 10. In this case, the number of measurements at the measurement point PM can be made smaller than in the case of FIG. 10, and the overall adjustment time can be shortened.
  • the straight line L2 is a straight line parallel to the y-axis
  • the straight line L1 and the straight line L3 are both straight lines inclined with respect to the x-axis and the y-axis. All straight lines intersect at one intersection, and one measurement point PM is arranged at the intersection, and six measurement points are symmetrical in the left and right (x-axis direction) and up and down (y-axis direction) with respect to the measurement point PM. PM is arranged.
  • the contour lines of the reproduction signal amplitude or the reproduction signal quality distribution with respect to the spherical aberration correction amount and the focus balance value are not inclined obliquely, and the major and minor axes of the ellipse corresponding to the contour lines are In the case where they are parallel to the x-axis and the y-axis, respectively, it is considered desirable to arrange the measurement points PM as shown in FIG.
  • the arrangement shown in FIG. 12B may be an arrangement in which the arrangement shown in FIG. 12B is rotated by 90 degrees around the intersection (center) measurement point PM, but in this case, the spherical aberration correction amount needs to be changed at least five times.
  • the adjustment time becomes longer than in the case of FIG.
  • all three types of straight lines L1, L2, and L3 are straight lines inclined with respect to the x-axis and the y-axis, and the straight lines L2 and L3 are substantially orthogonal to each other.
  • the straight line L3 is a straight line having an inclination parallel to the major axis of the ellipse shown in FIG. 10
  • the straight line L2 is a straight line having an inclination parallel to the minor axis of the ellipse.
  • the straight line L1 is a straight line having a different slope from the straight lines L2 and L3.
  • the straight lines L1, L2, and L3 intersect at one intersection, and one measurement point PM is arranged at the intersection.
  • the y coordinate value (focus balance value) of the measurement point PM on both sides of the intersection of the straight line L1 is a value near the middle between the measurement point PM on both sides of the intersection of the straight line L2 and the measurement point PM on both sides of the intersection of the straight line L3. It has become.
  • the estimated points PE in the directions of the major axis and the minor axis of the ellipse can be obtained, and it is considered that the accuracy of the elliptic formula obtained from the estimated point PE is improved.
  • three measurement points PM are also arranged on the straight lines L4 and L5 indicated by the broken lines, and the estimated point PE is also obtained by performing quadratic approximation on these straight lines L4 and L5.
  • the estimated points PE obtained from the straight lines L1, L2, and L3 are combined to obtain 10 estimated points PE at the maximum. If the elliptic formula is obtained from the ten estimated points PE, the accuracy of the obtained ellipse is improved.
  • FIG. 12 (e) shows an example in which four measurement points PM are arranged on all three types of straight lines L1, L2, and L3.
  • the estimated point PE can be obtained by performing quadratic approximation using, for example, the least square method or the like using the positions of the four measurement points PM and the measurement results in each straight line.
  • the accuracy of the secondary approximation can be improved, and the accuracy of the estimated point PE obtained from the secondary approximation result and the accuracy of the ellipse derived from the estimated point PE can be improved.
  • FIG. 12 (e) it is possible to add a quadratic approximation in the straight line L4 as in FIGS. 12 (c) and 12 (d).
  • four measurement points PM are not arranged on all three types of straight lines, but four measurement points PM are arranged on only one of the straight lines or two of the three types of straight lines. Also good.
  • the measurement point PM is set to a straight line that is likely to cause an error of the quadratic approximation, such as four or five measurement points PM. It is effective to increase.
  • the arrangement of the measurement points PM is the same as that in FIG.
  • a straight line L4 and a straight line L5 that pass through the measurement point PM on the straight line L1 and the measurement point PM on the straight line L2 are further set.
  • the reproduction signal amplitude at the intersection of the straight lines L4, L5 and the straight line L3 (triangle mark in the figure, hereinafter referred to as “measurement point PM2”) is derived from the second-order approximation result of the straight line L3 as a virtual measurement result.
  • the arrangement of the measurement points PM shown in FIG. 10 and FIG. 12 is an example. If at least three measurement points PM are arranged on each of at least three types of straight lines, the arrangement of the measurement points PM is Arrangements other than those described above may also be used. Further, as shown in FIG. 12 (f), when the measurement point PM2 is obtained from the second-order approximation result on a certain straight line, at least three points on each of three or more kinds of straight lines including the straight line passing through the measurement point PM2.
  • the measurement point PM or the measurement point PM2 may be arranged. That is, the measurement point PM2 may be used as the measurement point PM.
  • the arrangement of the measurement points PM may be determined according to, for example, a spherical aberration correction amount that changes depending on the specifications of the optical head 300 and the distribution of reproduction signal amplitude or reproduction signal quality with respect to the focus balance value (ellipse shape and inclination).
  • the same arrangement of the measurement points PM may be used.
  • FIG. 13 is a flowchart showing an example of the procedure of the reproduction operation of the optical information processing apparatus 100 according to the present embodiment.
  • the procedure of the reproduction operation of the optical information processing apparatus 100 will be described.
  • step S10 when the optical disc 500 is inserted into the optical information processing apparatus 100, this is detected by a sensor (not shown) (step S10) and transmitted to the central control unit 200. Then, the central control unit 200 drives the optical head 300 via the actuator control unit 170 and the like, the type of the optical disc 500 (type of CD, DVD, BD, etc.) inserted into the optical information processing apparatus 100, the optical disc It is determined how many layers the disk 500 has (step S11).
  • step S12 the central control unit 200 performs initial adjustments such as a tilt angle with the optical disc 500, gain settings of various signals, and coarse adjustments such as servo conditions, and then in step S13, spherical aberration correction is performed. Adjust the amount and focus balance value. Details of the processing in step S13 will be described later.
  • the central control unit 200 reads out the unique information of the optical disc, the control information for controlling the reproduction operation, etc. from the optical disc 500, judges whether or not to start reproduction (step S14), and in step S15 the optical disc The reproduction (original reproduction) of the original data from 500 is started.
  • FIG. 14 is a flowchart showing the process of step S13 of FIG.
  • adjustment of the spherical aberration correction amount and focus balance value (or determination of the combination) in step S13 will be described with reference to FIG.
  • step S20 the central control unit 200 controls the sled motor 151 via the sled motor control unit 150, and moves the optical head 300 to the adjustment region for adjusting the spherical aberration correction amount and the focus balance value.
  • the signal can be reproduced in the adjustment area of the optical disc 500.
  • the adjustment area is a recorded area where a signal is recorded on the optical disc 500.
  • a recording management area (generally recorded on the inner periphery of the optical disc 500) for managing addresses and the like at which data on the optical disc 500 is recorded.
  • the optical disc 500 has a plurality of information recording layers, it is necessary to adjust the spherical aberration correction amount and the focus balance value in each information recording layer, and the information recording layer to be adjusted needs to be reproduced. .
  • the central control unit 200 determines the measurement point PM.
  • the reference point may be determined, and the measurement point PM may be determined by a combination of the spherical aberration correction amount and the difference between the focus balance values from the reference point, or the spherical aberration of all the measurement points PM in advance.
  • a combination of the correction amount and the focus balance value may be determined. For example, when the measurement point PM is determined after determining the reference point, adjustment is performed from the spherical aberration correction amount and the focus balance value stored in advance for each type of the optical disk 500 and each recording layer, for example, from the ROM 220 or the RAM 230.
  • Values corresponding to the optical disc 500 and recording layer to be performed are read out and set as reference points. Further, the difference amount data from the reference point necessary for determining the measurement point PM is read from the ROM 220 or the RAM 230, and all the measurement points PM are determined. Note that when the spherical aberration correction amount and the focus balance value are roughly adjusted during the coarse adjustment of the servo conditions or the like in step S12, the adjustment result may be used as a reference point. Further, it is not necessary to determine all the measurement points PM in step S21. For example, the position of the next measurement point PM may be determined based on the measurement result in the next step S22.
  • step S22 the central controller 200 measures the reproduction signal amplitude at each measurement point PM determined in step S21. Specifically, the central control unit 200 sets the spherical aberration correction amount and the focus balance value to values corresponding to the first measurement point PM, and measures the reproduction signal amplitude. Thereafter, the spherical aberration correction amount and the focus balance value are set to values corresponding to the second and subsequent measurement points PM in the order of measurement, the reproduction signal amplitude is sequentially measured at each measurement point PM, and the measurement results at each measurement point PM are obtained. obtain. That is, according to a predetermined measurement order, for each measurement point PM, the optical disc 500 is reproduced using the spherical aberration correction amount and the focus balance value corresponding to the measurement point PM, and the reproduction signal amplitude is measured.
  • step S23 the central control unit 200 determines three or more types of straight lines (here, three types of straight lines L1 and L2) passing through at least three measurement points PM from the measurement result of each measurement point PM measured in step S22. , L3), a quadratic approximation process is performed to obtain a quadratic approximation formula (or a coefficient of the quadratic formula).
  • step S24 the central control unit 200 sets, as the estimated point PE, the position where the reproduction signal amplitude becomes the estimation level ZE from the coefficients of the quadratic expression obtained in step S23 for each of the straight lines L1, L2, and L3. calculate.
  • the estimation level ZE is not necessarily a predetermined value, and may be set based on a measurement result of the reproduction signal amplitude at the measurement point PM, for example.
  • the maximum value of the quadratic approximate curve is obtained from the coefficient of the quadratic equation obtained in step S23, and the minimum value among the obtained three maximum values is obtained.
  • the estimation level ZE is set to a smaller value.
  • the estimation level ZE may be set to a value smaller than the minimum value of the measurement result at each measurement point PM.
  • an estimation point PE at each estimation level ZE is obtained, and from the obtained estimation points PE, respectively.
  • the ellipse center PC at the estimation level ZE may be obtained.
  • step S25 the central control unit 200 calculates an elliptic formula (or an elliptic coefficient constituting the elliptic formula) from the estimated point PE obtained in step S24, and then in step S26, the ellipse obtained in step S25.
  • the ellipse center PC (xc, yc) is calculated from the equation (or elliptic coefficient).
  • step S27 the central control unit 200 sets the spherical aberration correction amount and the focus balance value to the elliptical center PC obtained in step S26. That is, the spherical aberration correction amount is set to xc and the focus balance value is set to yc, and the adjustment of the spherical aberration correction amount and the focus balance value in step S13 is completed.
  • the optical information processing apparatus for each of at least three straight lines on a plane having a spherical aberration correction amount and a focus adjustment value (for example, a focus balance value) as coordinate axes, The signal characteristics of the reproduction signal are measured at the measurement positions of the points, and at least five positions on the plane where the signal characteristics are substantially at the same level are obtained from the measurement results as estimated positions, and a spherical surface is obtained based on the at least five estimated positions. Adjust the aberration correction amount and focus adjustment value.
  • a focus adjustment value for example, a focus balance value
  • the spherical aberration correction amount and the focus adjustment value can be adjusted by measuring at least six measurement positions, and the spherical aberration correction amount and the focus position can be adjusted with a small number of measurement points. It can be carried out. Thereby, for example, the spherical aberration correction amount and the focus position can be adjusted in a short time.
  • the optical information processing apparatus obtains the center position of the ellipse obtained by elliptically approximating the at least five estimated positions, and adjusts the spherical aberration correction amount and the focus position based on the center position of the ellipse. Therefore, it is possible to obtain a position where the signal characteristic of the reproduction signal is the best or near the best on the plane having the spherical aberration correction amount and the focus adjustment value as the coordinate axes, and the adjustment can be performed accurately based on the position. .
  • the center position of the contour line (distribution) at which the signal characteristics are approximately at the same level can be obtained as the ellipse center position, and the spherical aberration correction amount and the focus adjustment value are optimal or close to optimal based on the ellipse center position.
  • the contour line of the signal characteristic with respect to the spherical aberration correction amount and the focus balance value becomes a substantially ellipse, the ellipse is estimated and the center of the ellipse is obtained, so that adjustment with a margin can be performed.
  • the optical information processing apparatus for each of the straight lines, has a signal characteristic of a predetermined level based on an approximation result obtained by approximating the relationship between the measurement position and the signal characteristic measured at the measurement position with a second or higher order polynomial.
  • the position on the plane is obtained as the estimated position, and the center position of the ellipse is obtained using at least five of the obtained estimated positions. For this reason, an estimated position can be calculated
  • the optical information processing apparatus uses the amplitude of the reproduction signal as the signal characteristic of the reproduction signal. According to this aspect, the adjustment time can be shortened compared to the case where the quality of the reproduction signal is used.
  • the optical information processing apparatus uses the quality of the reproduction signal as the signal characteristic of the reproduction signal. According to this aspect, it is possible to perform adjustment that makes the reproduction signal quality better than when the amplitude of the reproduction signal is used.
  • the arrangement of the measurement positions and the measurement order are set so that the number of changes of the spherical aberration correction amount and the total change amount are small. For this reason, it is possible to reduce the change of the spherical aberration correction amount that takes time to change, and the adjustment can be performed in a short time.
  • One of the at least three straight lines is a straight line substantially parallel to the major axis direction of the ellipse when the contour line of the signal characteristic is regarded as an ellipse.
  • the ellipse can be approximated with high accuracy. For example, when an ellipse is estimated, the error may increase in the long axis direction. However, according to this aspect, this error can be reduced by performing measurement at a position along the long axis direction.
  • the method of measuring and adjusting the reproduction signal amplitude is exemplified, but the reproduction signal quality may be measured and adjusted in the same manner.
  • the condition for obtaining the estimated point PE needs to be defined by the magnitude of the reproduction signal quality instead of the reproduction signal amplitude.
  • an index for example, i-MLSE
  • it takes time to measure the playback signal quality so the overall adjustment time is longer than when measuring the playback signal amplitude, but the playback signal amplitude is measured. It is possible to make an adjustment that makes the reproduction signal quality better than in the case of doing so. This is because there is a slight difference between the reproduction signal amplitude distribution and the reproduction signal quality distribution (see FIG. 7).
  • the reproduction signal amplitude is measured to obtain the ellipse center PC, and the measurement point PM with the ellipse center PC as a reference point is set again (or the measurement point PM is set again in the vicinity of the ellipse center PC).
  • the ellipse center PC may be obtained again by measuring the reproduction signal quality at the measurement point PM. The reason for this is that when the measurement point PM is greatly deviated from the ellipse center PC, the reproduction signal quality cannot be measured correctly or the reproduction signal quality value may be saturated. .
  • the measurement result of the reproduction signal quality is a reasonable result.
  • the ellipse center PC can be obtained correctly.
  • the position of the ellipse center PC may be corrected by previously obtaining each value and adding the above difference to the ellipse center PC of the reproduction signal amplitude obtained from the measurement result.
  • the difference it is necessary to set the difference in consideration of individual variations of the optical information processing apparatus 100 and the optical disc 500 regarding the positional relationship between the ellipse center of the reproduction signal amplitude and the ellipse center of the reproduction signal quality. is there.
  • the contour line is an ellipse inclined with respect to the x-axis and the y-axis is illustrated, but the case where the contour line is an ellipse that is not inclined due to the optical specifications of the optical head 300. Or the inclination may be small.
  • the ellipse center PC can be obtained by the same method.
  • the arrangement of the measurement points PM is preferably set to a positional relationship that allows the ellipse to be estimated appropriately.
  • the quadratic approximation is performed using the three measurement points PM.
  • An approximation may be performed. That is, four or more measurement points PM may be arranged on three types of straight lines. Also, the number of measurement points PM on the three types of straight lines need not be the same between the straight lines. For example, priority is given to the direction in which the characteristic variation of the reproduction signal amplitude is small (for example, the direction of the straight line L3 in FIG. 10). The number of measurement points PM on the straight line may be increased.
  • a third-order approximation or a fourth-order or higher polynomial approximation may be performed instead of the second-order approximation.
  • measurement points PM that are higher than the order of polynomial approximation are required.
  • the original characteristics such as when performing approximation on a straight line that crosses the major axis and minor axis of the ellipse at a position away from the center of the ellipse. Can be correctly approximated even when becomes asymmetric, and the estimated point PE for obtaining the elliptic formula can be obtained with high accuracy.
  • the obtained elliptic center PC is set as the optimum spherical aberration correction amount and focus balance value.
  • the reproduced signal amplitude and the reproduced signal quality are further set near the obtained elliptic center PC.
  • the spherical aberration correction amount and the focus balance value may be optimally adjusted to increase the adjustment accuracy.
  • the elliptic formula is obtained from at least five estimated positions and the center position of the ellipse is calculated from the elliptic formula.
  • the optical information processing apparatus is based on at least five estimated positions. Adjustment may be performed by the method described above.
  • the optical information processing apparatus stores in advance a table in which a combination of five estimated positions is associated with an optimal combination of spherical aberration correction amount and focus balance value. An optimal combination of spherical aberration correction amount and focus balance value may be determined from the combination of estimated positions.
  • the optical information processing apparatus 100 is an optical reproducing apparatus
  • the optical information processing apparatus 100 may be an apparatus (optical recording apparatus) that performs recording on the optical disc 500.
  • the optical information processing apparatus 100 is, for example, a data encoder that encodes user data from a host controller into data for recording on the optical disc 500, A control unit necessary for performing recording on the optical disc 500, such as a control unit related to write strategy control for performing laser light emission control, is included.
  • the adjustment is performed by reproducing the recorded area where the signal is recorded on the optical disc 500.
  • the optical disc 500 is, for example, a blank disc. If there is no recorded area, the recorded area is created by, for example, performing test writing in a test recording area for adjusting the laser power, and the created recorded area is used to correct spherical aberration. The amount and the focus balance value may be adjusted.
  • the adjustment method of the present embodiment may be used for coarse adjustment performed in the initial adjustment.
  • the optical information processing apparatus 100 is an optical recording apparatus and the optical disc 500 does not have a recorded area, such as a blank disc
  • spherical aberration is performed so that the amplitude of the tracking error signal is maximized as a rough adjustment.
  • the correction amount and focus balance value may be adjusted.
  • the spherical aberration correction amount and the focus balance value are adjusted so that the amplitude of the tracking error signal is maximized so that the tracking servo operates stably. There is.
  • the optical information processing apparatus 100 uses the amplitude of the tracking error signal as the signal characteristic of the reproduction signal.
  • the spherical aberration correction amount and the focus balance value may be adjusted.
  • the amplitude of the tracking error signal may be measured instead of the reproduction signal amplitude, and in steps S23 to S27, each process may be performed using the measurement result of the tracking error signal amplitude.
  • the relationship between the spherical aberration correction amount and the focus balance value and the signal characteristic of the reproduction signal is investigated in advance to obtain the inclination of the ellipse, and the inclination of the straight line L3 is set to an inclination close to the inclination of the ellipse.
  • the inclination of the ellipse may vary depending on the reflectance of the optical disc 500. For example, in a configuration in which the output gain setting of the photodetector 370 and the gain setting of the head amplifier 110 are appropriately changed according to the reflectance of the optical disc 500, the spherical aberration correction amount, the focus balance value, and the reproduction are changed according to the reflectance of the optical disc 500.
  • the optical information processing apparatus 100 stores in advance correspondence information indicating the correspondence between the reflectance of the optical disc 500 and the inclination of the ellipse, and the reflectance information indicating the reflectance of the optical disc 500 to be adjusted at the time of adjustment. May be obtained, the inclination of the ellipse corresponding to the reflectance of the optical disc 500 to be adjusted is specified based on the reflectance information and the correspondence information, and the straight line L3 may be set so as to have the inclination.
  • the optical information processing apparatus 100 stores the inclination of the ellipse for each type or reflectance of the optical disc 500 or for each gain setting of the photodetector 370 or the head amplifier 110, and adjusts it during adjustment.
  • the type or reflectance of the target optical disc 500 or the gain setting of the photodetector 370 or the like is acquired, and the inclination of the ellipse corresponding to the type or the like of the target optical disc 500 is obtained using the stored information. May be set as the slope of the straight line L3.
  • the correspondence information is obtained, for example, by examining the inclination of an ellipse for a plurality of optical disks having different reflectivities.
  • Embodiment 2 FIG.
  • the optical information processing apparatus according to the second embodiment will be described below.
  • the optical information processing apparatus according to the second embodiment is different from the optical information processing apparatus according to the first embodiment in the adjustment process, and the other parts are the same.
  • the description of the same parts as those in the first embodiment is omitted or simplified, and the same or corresponding elements as those in the first embodiment are denoted by the same reference numerals.
  • the central control unit 200 determines the validity of the measurement of the signal characteristics. If the central control unit 200 determines that the signal characteristics are not valid, the central control unit 200 measures the signal characteristics at the additional measurement position and includes the signal characteristics measured at the additional measurement position. From the measurement result, the spherical aberration correction amount and the focus adjustment value are adjusted.
  • the central control unit 200 determines whether the center position of the ellipse is appropriate from the relationship between the obtained center position of the ellipse and the measurement position used to derive the center position of the ellipse, If the center position of the ellipse is not valid, it is determined that the measurement is not valid. Specifically, the central control unit 200 determines that the center position of the ellipse is not valid when the center position of the ellipse is away from a predetermined reference with respect to the measurement position. More specifically, the central control unit 200 determines that the center position of the ellipse is not valid when the center position of the ellipse is not included in the predetermined range defined by the measurement position.
  • the central control unit 200 determines that the x coordinate value of the ellipse center is within the range of the x coordinate value of the measurement point PM (between the minimum value and the maximum value), and the y coordinate value of the ellipse center is the measurement point PM. It is determined to be valid when it is within the range of the y-coordinate value (between the minimum value and the maximum value), and is determined not to be valid otherwise. Further, for example, the central control unit 200 determines that the center of the ellipse is appropriate when it is located within a range of a figure (for example, a hexagon in FIG. 10) formed by connecting the measurement points PM with a straight line, and otherwise. Judge that it is not appropriate.
  • the predetermined reference and the predetermined range are not limited to the above example, and may be set as appropriate.
  • FIG. 15 is a flowchart showing the adjustment processing in the second embodiment.
  • the adjustment process of FIG. 15 is executed instead of the adjustment process of FIG. 14 in step S13 of FIG.
  • the adjustment of the spherical aberration correction amount and the focus balance value in the present embodiment will be described with reference to FIG.
  • step S20 to step S26 the processing until the ellipse center PC is calculated (that is, the processing from step S20 to step S26) is generally the same as in FIG. 14, and the central control unit 200 is the same as in the first embodiment in that the ellipse center PC. Is calculated (steps S20 to S26).
  • the central control unit 200 determines the validity of the calculated ellipse center PC based on the positional relationship between the ellipse center PC calculated in step S26 and the measurement point PM determined in step S21. Determine sex (good or bad). For example, the central control unit 200 determines that the ellipse center PC is OK when the ellipse center PC is located within a predetermined range defined by the measurement point PM, and NG when the ellipse center PC is not located within the predetermined range. Judged (invalid).
  • step S28 the central control unit 200 sets the spherical aberration correction amount and the focus balance value at the elliptical center PC obtained in step S26 (step S27), and the spherical aberration correction amount. And the adjustment of the focus balance value ends.
  • step S28 when it is determined as NG in the pass / fail determination in step S28, the central control unit 200 advances the process to step S29.
  • step S29 the central control unit 200 determines an additional measurement point PM3 as an additional measurement point different from the existing measurement points.
  • the additional measurement point PM3 is set at a position closer to the ellipse center PC calculated in step S26 than the existing measurement point on each of the straight lines L1, L2, and L3 when the measurement point PM is determined in step S21. .
  • FIG. 16 is generally the same as FIG. 10, and FIG. 16 shows the contour lines and straight lines L1, L2, and L3 of the reproduction signal amplitude.
  • FIG. 16 also shows the measurement point PM (circle) determined in step S21, the estimated point PE (white square mark) calculated in step S24, the ellipse DE1 approximated in step S25, and step S26.
  • the ellipse center PC1 calculated in (1) is shown.
  • the measurement point PM is set at a position where both the spherical aberration correction amount and the focus balance value are shifted to the minus side.
  • the ellipse center PC1 is determined at a position shifted from the original position. This is because the measurement point PM is away from the original ellipse center (near the point PC2 in FIG. 16) (for example, the range of the measurement point PM does not include the original ellipse center), for example, on the straight line L3.
  • the measurement point PM range does not include a point on the straight line L3 where the reproduction signal amplitude is maximum, and an error (that is, an approximation error) between the characteristics of the secondary approximate curve and the original reproduction signal amplitude tends to increase. Assumes that.
  • the ellipse center PC1 calculated in step S26 is not within the range of the measurement point PM, the ellipse center PC1 calculated in step S26 and the original ellipse center (optimum spherical aberration correction to be originally adjusted). The amount and the focus balance value) are likely to be misaligned.
  • the additional measurement point PM3 is set in step S29 so that the above-described deviation can be corrected.
  • an example of the additional measurement point PM3 is indicated by a triangle.
  • one additional measurement point PM3 is set for each of the existing straight lines L1, L2, and L3.
  • the additional measurement point PM3 is set in step S26 more than the existing measurement point PM. It is set to a position close to the calculated ellipse center PC1 (that is, a position shifted from the existing measurement point PM in a direction approaching the ellipse center PC1).
  • the central control unit 200 After determining the additional measurement point PM3, in step S30, the central control unit 200 measures the reproduction signal amplitude at each determined additional measurement point PM3. That is, for each additional measurement point PM3, the spherical aberration correction amount and the focus balance value are set to values corresponding to the additional measurement point PM, and the reproduction signal amplitude is measured.
  • the central control unit 200 returns to step S23 and performs a secondary approximation process.
  • the secondary approximation process in addition to the result of the measurement point PM that has already been measured, the secondary approximation process is performed using the result of the additional measurement point PM3 measured in step S30, and the secondary approximation result is updated. I do.
  • the central control unit 200 recalculates the estimated point PE (black square mark in FIG. 16) in step S24 based on the second-order approximation result updated in step S23, and the elliptic formula (in FIG. 16) in step S25.
  • Ellipse center PC2 is obtained by calculating the ellipse center in step S26.
  • step S28 the central control unit 200 determines the validity of the ellipse center based on the relationship between the measurement point including the additional measurement point PM3 and the result of the ellipse center PC calculated in step S26 (ellipse center PC2). If it is valid, the process proceeds to step S27, and if not valid, the process proceeds to step S29. That is, until the appropriate ellipse center is calculated, the process of setting the additional measurement point PM3 and obtaining the ellipse center is repeated, and when the valid ellipse center is calculated, the spherical aberration correction amount and the focus balance value are calculated. Set to the center of the ellipse.
  • the optical information processing apparatus determines the validity of the measurement, and when determining that the measurement is not valid, measures the signal characteristic at the additional measurement position and includes the signal characteristic measured at the additional measurement position. From the measurement result, the spherical aberration correction amount and the focus adjustment value are adjusted. According to this, adjustment can be performed based on a more appropriate measurement result.
  • the optical information processing apparatus determines the validity of the center position of the ellipse from the relationship between the measurement position and the obtained center position of the ellipse, and if it is not valid (or is likely to have a problem). Sets an additional measurement position, performs an additional measurement at the additional measurement position, and obtains the center position of the ellipse again together with the measurement result at the already measured measurement position. For this reason, the center position of an ellipse can be calculated
  • the optical information processing apparatus performs measurement (or the center position of the ellipse) when the obtained center position of the ellipse is not included in the predetermined range defined by the measurement position (within the range of the measurement position). If it is determined that it is not valid and the center position of the ellipse is included, it is determined that it is valid. According to this aspect, it is possible to appropriately determine whether or not the obtained center position of the ellipse is appropriate, and it is possible to appropriately determine the center position of the ellipse.
  • the additional measurement point PM3 is set for all the existing straight lines L1, L2, and L3. However, in the case shown in FIG. 16, the additional measurement point PM3 is set only for the straight line L3. You may do it.
  • the measurement range on the straight line L1 and the straight line L2 includes the maximum point of the reproduction signal amplitude on these straight lines, and the second order approximation result is unlikely to contain a large error. This is because the measurement range on the straight line L3 does not include the maximum point of the reproduction signal amplitude on the straight line, and a large error is likely to be included in the secondary approximation result.
  • the additional measurement point PM3 is set so that the measurement points are added on the existing straight lines L1, L2, and L3.
  • the additional measurement point PM3 may be set so that a new straight line can be set with the additional measurement point PM3.
  • the validity of the measurement is judged by judging the validity of the calculated ellipse center PC.
  • the validity of the measurement may be judged by another method.
  • the optical information processing apparatus determines that the measurement is not valid when the relationship between the measurement position and the signal characteristic measured at the measurement position is monotonously increasing or monotonically decreasing in at least one of at least three straight lines. However, if neither the monotonic increase nor the monotonic phenomenon is detected, it may be determined that the measurement is appropriate. For example, in step S28 in FIG. 15, the central control unit 200 determines whether the relationship between the measurement position and the measurement result is monotonically increasing or monotonically decreasing for each straight line, and monotonically increasing or monotonically decreasing on at least one straight line. Is determined as NG.
  • a measurement result (reproduction signal amplitude) at each measurement point PM is expressed as result 1, result 2,..., Result n in a certain straight line according to the order of the positions of the measurement points PM, 1 ⁇ result 2 ⁇ ... ⁇ Monotonic increase resulting in result n, or result 1> result 2>.
  • the maximum value of the reproduction signal amplitude is not included in the range of the measurement point PM (or the range of the result 1 to the result n), and an error may occur in the secondary approximation process.
  • the central control unit 200 may perform the above determination after step S22 of FIG. 15, and if OK, proceed to step S23, and if NG, return to step S21 to add measurement points and perform measurement again. .
  • the central control unit 200 obtains the peak position of the quadratic approximation curve (position where the reproduction signal amplitude is maximum) from the result of the secondary approximation process in step S23, and the peak position is included in the range of the measurement point PM. If not, it may be determined as NG. In this case, the central control unit 200 may make the above determination in step S28 of FIG. 15, or make the above determination after step S23. If OK, the process proceeds to step S24, and if NG, returns to step S21. It is also possible to measure again by adding measurement points.
  • the distribution of the contour lines of the reproduction signal amplitude with respect to the spherical aberration correction amount and the focus balance value is examined, and the ratio of the major axis to the minor axis of the ellipse when the contour line is regarded as a substantially ellipse is obtained in advance.
  • the control unit 200 obtains the ratio between the major axis and the minor axis from the elliptic formula calculated in step S25, compares the two ratios, and may determine that the difference is equal to or greater than NG. . This determination may be made in step S28 or after step S25.
  • Embodiment 3 FIG.
  • the optical information processing apparatus according to the third embodiment differs from the optical information processing apparatus according to the first embodiment in adjustment processing, and the other parts are the same.
  • the description of the same parts as those in the first embodiment is omitted or simplified, and the same or corresponding elements as those in the first embodiment are denoted by the same reference numerals.
  • FIG. 17 additionally shows the measurement point, the ellipse center point, and the like in the adjustment method of the present embodiment in the distribution of the reproduction signal amplitude with respect to the spherical aberration correction amount and the focus balance value in FIG.
  • the adjustment processing of the present embodiment will be described with reference to FIG. 17 as appropriate.
  • the at least three straight lines are a straight line parallel to the coordinate axis (y-axis) of the focus adjustment value (hereinafter referred to as “focus axis straight line”) and at least two straight lines different from the focus axis straight line ( (Hereinafter referred to as “residual straight line”).
  • Each remaining straight line is, for example, a straight line inclined with respect to the coordinate axis (x axis) of the spherical aberration correction amount and the coordinate axis (y axis) of the focus adjustment value.
  • FIG. 17 shows a straight line L1 as a focus axis straight line, and straight lines L2 and L3 as remaining straight lines.
  • the straight line L2 is a straight line parallel to the x axis.
  • the straight line L3 is a straight line that has an inclination with respect to the x-axis and the y-axis and is substantially parallel to the major axis of the ellipse when the signal characteristic contour on the xy plane is regarded as an ellipse.
  • the central control unit 200 after measuring the signal characteristics of the reproduction signal at at least three measurement positions on the focus axis straight line, sequentially changes the spherical aberration correction amount and each time the spherical aberration correction amount is changed, By measuring the signal characteristics of the reproduction signal at the measurement positions on each remaining straight line in the spherical aberration correction amount, the signal characteristics of the reproduction signal are measured at at least three measurement positions on the straight line for each of at least three straight lines. To do. For example, as shown in FIG. 17, after measuring signal characteristics at four measurement points PM0, PM1, PM2, and PM3 on the straight line L1, the spherical aberration correction amount is changed, and the straight line in the changed spherical aberration correction amount is obtained.
  • the central control unit 200 is configured as follows.
  • the central control unit 200 sets each remaining straight line so as to pass through any one of the measurement positions among at least three measurement positions on the focus axis straight line.
  • the central control unit 200 determines that the signal characteristic is an extreme value from an approximation result obtained by approximating the relationship between the measurement position and the signal characteristic measured at the measurement position with a second-order or higher polynomial for the focus axis line. Is obtained as an extreme value position.
  • each remaining straight line is set so as to pass through a measurement position in the vicinity of the extreme value position among at least three measurement positions on the focus axis straight line.
  • the measurement position near the extreme value position is, for example, the measurement position closest to the extreme value position. In the example of FIG.
  • the maximum point PMp1 black square mark
  • the straight lines L2 and L3 are among the measurement points on the straight line L1. It is set to pass through the measurement point PM2 closest to the maximum point PMp1.
  • the measurement position in the vicinity of the extreme value position is not limited to the measurement position closest to the extreme value position, and may be a measurement position adjacent to the extreme value position.
  • at least two remaining straight lines may be set so as to pass through the same measurement position as shown in FIG. 17 or set so as to pass through different measurement positions as shown in FIG. Also good. When at least two remaining straight lines pass through different measurement positions, the number of measurement positions can be reduced by setting the measurement position at the intersection of the remaining straight lines as shown in FIG.
  • the central control unit 200 determines, for each straight line, the position at which the signal characteristic becomes an extreme value when the relationship between the measurement position and the signal characteristic measured at the measurement position is approximated by a second-order polynomial or not.
  • the signal characteristic is measured while changing the measurement position so as to extend the range of the measurement position until it is included in the range.
  • the range of the measurement position is specifically a range between the minimum value and the maximum value of the spherical aberration correction amount or the focus adjustment value at the measurement position.
  • the central control unit 200 measures the signal characteristics at least at two measurement positions for at least one straight line, and then compares the signal characteristics at the measurement positions at both ends of the at least two measurement positions. Of the measurement positions, a position away from one measurement position with good signal characteristics in the direction opposite to the other measurement position is determined as the next measurement position.
  • good signal characteristics means, for example, that the signal characteristics are large when the signal characteristics are reproduction signal amplitude, and that the signal characteristics are small when the signal characteristics are i-MLSE values.
  • the central control unit 200 determines whether or not the result of the ellipse approximation indicates an ellipse. If it is determined that the ellipse is not shown in the above determination, the level of the signal characteristic is changed to obtain at least five estimated positions, and after performing the ellipse approximation using the at least five estimated positions, The above determination is made again.
  • the center position of the ellipse is obtained from the result of ellipse approximation showing the ellipse, and the spherical aberration correction amount and the focus adjustment value are determined based on the center position of the ellipse. .
  • the central control unit 200 obtains at least five positions as estimated positions at each of the plurality of levels of signal characteristics, approximates the at least five estimated positions to an ellipse, and obtains the result of the elliptic approximation and at least five estimated positions. And determine the center position of the ellipse from the result of the ellipse approximation with the smallest error amount among the results of the ellipse approximation corresponding to a plurality of levels, and spherical aberration based on the center position of the ellipse The correction amount and the focus adjustment value may be determined.
  • FIG. 18 is a flowchart showing the adjustment process in the third embodiment.
  • the adjustment process of FIG. 18 is executed instead of the adjustment process of FIG. 14 in step S13 of FIG.
  • a method for adjusting the spherical aberration correction amount and the focus balance value in the present embodiment will be described with reference to FIGS.
  • step S20 as in the first embodiment, the central control unit 200 moves the optical head 300 to the adjustment area for adjusting the spherical aberration correction amount and the focus balance value, and performs signal processing in the adjustment area of the optical disc 500. Can be played.
  • step S40 the central control unit 200 sets the spherical aberration correction amount and the focus balance value to values corresponding to the initial measurement point PM0 (white square mark in FIG. 17) on the predetermined straight line L1. .
  • step S41 the central controller 200 measures the reproduction signal amplitude based on the set spherical aberration correction amount and the focus balance value.
  • step S42 the central control unit 200 determines whether there are three or more measured measurement points.
  • step S42 If it is determined in step S42 that the number of measured measurement points is less than 3 (NO), the central control unit 200 proceeds to step S43 and sets the focus balance value to be measured next.
  • the spherical aberration correction amount is not changed from the initial measurement point PM0. That is, the processing in step S43 corresponds to changing the measurement point on the straight line L1 in FIG. 17 and determining the next measurement point. Thereafter, the central control unit 200 returns to step S41, measures the reproduction signal amplitude at the focus balance value changed in step S43, and proceeds to step S42.
  • step S44 If it is determined that there are three or more measurement points measured in step S42 (in the case of YES), the process proceeds to step S44. Therefore, the processes in steps S43, S41, and S42 are repeatedly performed until the determination in step S42 is YES, and when the determination in step S42 is YES, the process proceeds to step S44.
  • step S44 the central control unit 200 secondarily approximates the relationship between the measured measurement point and the reproduction signal amplitude, and based on the result, the point on the straight line L1 where the reproduction signal amplitude is maximum is set as the maximum point PMp1.
  • the maximum point PMp1 is indicated by a black square mark on the straight line L1.
  • the maximum point PMp1 may be obtained by performing third-order or higher approximation instead of second-order approximation.
  • step S45 the central control unit 200 determines whether or not the maximum point PMp1 is within the measured point range. Specifically, it is determined whether or not the focus balance value at the maximum point PMp1 is between the minimum value and the maximum value of the focus balance values at the measured measurement points.
  • step S45 When it is determined in step S45 that the maximum point PMp1 is outside the measured range (in the case of NO), the central control unit 200 returns to step S43, sets the focus balance value to be measured next, and proceeds to step S41. Return.
  • step S45 If it is determined in step S45 that the maximum point PMp1 is within the measured range (in the case of YES), the process proceeds to step S50. Therefore, the processes in steps S43, S41, S42, and S44 are repeatedly performed until the determination in step S45 becomes YES. If the determination in step S45 is YES, the process proceeds to step S50.
  • the focus balance value is not only decreased or increased in one direction, but the maximum point of the reproduction signal amplitude is included in the measurement point range with as few measurement points as possible. It is desirable to set the focus balance value efficiently using the measurement results of the measured measurement points. For example, among the measurement points that have already been measured, the reproduction signal amplitude at the measurement point with the maximum focus balance value is compared with the reproduction signal amplitude at the measurement point with the minimum focus balance value, and the measurement point with the larger reproduction signal amplitude As a reference, the focus balance value of the next measurement point is set so as to extend the range of the measurement point.
  • the next focus balance value is set by adding a predetermined step to the focus balance value at the reference measurement point, and the measurement point with the minimum focus balance value is set.
  • the next focus balance value is set by subtracting a predetermined step from the focus balance value at the measurement point of the reference.
  • the measurement point next to the initial measurement point PM0 is set as follows based on the initial measurement point PM0 and the characteristics of the reproduction signal amplitude with respect to the spherical aberration correction amount and the focus balance value in the optical information processing apparatus. May be.
  • the focus balance value that is, the optimum focus balance value
  • the focus at the initial measurement point PM0 When the balance value is larger than the reference value, a predetermined step is subtracted from the focus balance value to set the focus balance value at the next measurement point.
  • a predetermined step is added to the focus balance value to set the focus balance value at the next measurement point. This increases the possibility that the next measurement point can be set in the direction in which the reproduction signal amplitude increases.
  • an optimum focus balance value in the optical information processing apparatus is examined in advance using a plurality of discs or a plurality of optical information processing apparatuses, and for example, the average focus balance value is used as a reference value. It can be set in the optical information processing apparatus.
  • step S50 the central controller 200 sets the reference point of the straight line L2 and the reference point of the straight line L3 to the measurement point closest to the maximum point PMp1 among the measurement points on the straight line L1 (measurement point PM2 in the example of FIG. 17).
  • the reference point of the straight line L2 is a point through which the straight line L2 passes
  • the reference point of the straight line L3 is a point through which the straight line L3 passes. Therefore, in step S50, the straight line L2 and the straight line L3 are set.
  • the measurement point as the reference point only needs to be close to the maximum point PMp1, and is not necessarily closest.
  • the reference point of the straight line L2 and the reference point of the straight line L3 may be set to different measurement points.
  • the measurement point PM2 closest to the maximum point PMp1 may be the reference point of the straight line L3, and the measurement point PM3 second closest to the maximum point PMp2 may be the reference point of the straight line L2.
  • step S51 the central control unit 200 sets the next spherical aberration correction amount.
  • step S51 the spherical aberration correction amount at the next measurement point is set in step S51 after the measurement from the measurement points PM0 to PM3 is completed).
  • the central controller 200 determines the next spherical aberration correction amount based on the focus balance value of the reference point set in step S50. For example, the reproduction signal characteristic distribution is inclined to the right with respect to the y-axis as shown in FIG.
  • the focus balance value (that is, the optimum focus balance value) at the point where the reproduction signal amplitude is the best is a certain reference value (for example, in an optical information processing apparatus that is often in the vicinity of zero)
  • a predetermined step is subtracted from the spherical aberration correction amount at the reference point to obtain the next spherical aberration correction amount.
  • a predetermined step is added to the spherical aberration correction amount at the reference point to determine the next spherical aberration correction amount.
  • an optimum focus balance value in the optical information processing apparatus is examined in advance using a plurality of discs or a plurality of optical information processing apparatuses, and for example, the average focus balance value is used as a reference value. It can be set in the optical information processing apparatus. Note that in an optical information processing apparatus in which the distribution of reproduction signal characteristics is tilted to the left with respect to the y-axis, a process reverse to the above process may be performed. Further, the processing in step S51 is not limited to the above.
  • the spherical aberration correction amount is changed by a predetermined step in a predetermined direction regardless of the reference point, and the second and subsequent steps S51 are performed.
  • the spherical aberration correction amount at the next measurement point may be determined based on whether or not the reproduction signal amplitude has increased due to the previous change in the spherical aberration correction amount.
  • step S52 the central controller 200 determines the point on the remaining straight lines L2 and L3 corresponding to the spherical aberration correction amount determined in step S51 as the next measurement point on the remaining straight lines L2 and L3, respectively. To do.
  • the measurement points PM4 and PM5 are determined in the first step S52, and the measurement points PM6 and PM7 are determined in the second step S52. It is determined.
  • step S53 the central controller 200 measures the reproduction signal amplitude at each measurement point on the straight lines L2 and L3 determined in step S52.
  • step S54 the central control unit 200 determines whether there are three or more measured measurement points on each straight line.
  • step S54 If it is determined in step S54 that the number of measurement points that have been measured is less than 3 (NO), the central control unit 200 returns to step S51, determines the spherical aberration correction amount to be measured next, and then The reproduction signal amplitude is measured at the measurement point (steps S52 and S53), and the process proceeds to step S54.
  • step S54 If it is determined in step S54 that there are three or more measurement points (YES), the process proceeds to step S55. Therefore, the processes from step S51 to S54 are repeatedly performed until the determination in step S54 is YES, and when the determination in step S54 is YES, the process proceeds to step S55.
  • steps S52 and S53 the process for the straight line L2 and the process for the straight line L3 are performed in parallel.
  • the processes of steps S52 and S53 are performed on the straight line L2, and then the straight line L2 is processed.
  • the process of steps S52 and S53 for L3 may be performed, and the process may proceed to step S54.
  • the straight line L2 and the straight line L3 may have the same measurement point. In this case, instead of processing the measurement points of the straight lines L2 and L3 as separate measurement points, the processes of steps S52 and S53 may be performed as common measurement points.
  • step S55 the central control unit 200 secondarily approximates the relationship between the measured measurement point and the reproduction signal amplitude for each of the straight lines L2 and L3, and based on the result, the straight line that maximizes the reproduction signal amplitude.
  • the upper point is obtained as the maximum point.
  • the central control unit 200 obtains the maximum point PMp2 on the straight line L2 and the maximum point PMp3 on the straight line L3.
  • the maximum points PMp2 and PMp3 are indicated by black square marks on the straight lines L2 and L3, respectively.
  • the maximum point may be obtained by performing third-order or higher approximation instead of second-order approximation.
  • the score serving as the threshold in the determination in step S54 it is necessary to appropriately set the score serving as the threshold in the determination in step S54 according to the approximation order, and specifically, it is necessary to set the score more than the minimum necessary for approximation.
  • the order of approximation may be the same or different for all the straight lines. It should be noted that the accuracy of the approximation can be improved by setting the score serving as the threshold in the determination in step S54 to be larger than the minimum score necessary for approximation.
  • the number of points serving as a threshold in the determination in step S54 may be the same or different between the straight line L2 and the straight line L3.
  • step S56 the central control unit 200 determines, for each of the straight lines L2 and L3, whether or not the maximum point obtained in step S55 is within the measured measurement point range. Specifically, for the straight line L2, it is determined whether the spherical aberration correction amount at the maximum point PMp2 is between the minimum value and the maximum value of the spherical aberration correction amount at the measured measurement point. Whether the spherical aberration correction amount (or focus balance value) at the maximum point PMp3 is between the minimum value and the maximum value of the spherical aberration correction amount (or focus balance value) at the measured measurement point is determined. .
  • step S56 When it is determined in step S56 that the maximum point of any straight line is outside the measured range (in the case of NO), the central control unit 200 returns to step S51 and performs the processing of steps S51 to S56 again.
  • the process in this case only needs to be executed for the straight line determined to be outside the measured range among the straight lines L2 and L3.
  • step S56 If it is determined in step S56 that the maximum point of any straight line is within the measured range (in the case of YES), the process proceeds to step S24. Therefore, the processes in steps S51 to S56 are repeatedly performed until the determination in step S56 is YES, and when the determination in step S56 is YES, the process proceeds to step S24.
  • step S24 the central control unit 200 determines the position where the reproduction signal amplitude becomes the estimation level ZE for each of the straight lines L1, L2, and L3 based on the approximation results of steps S44 and S55, as in the first embodiment. Calculated as the estimated point PE.
  • step S25 the central control unit 200 calculates an elliptic formula (or an elliptic coefficient constituting the elliptic formula) from the estimated point PE obtained in step S24, as in the first embodiment.
  • step S60 the central control unit 200 determines whether the elliptic formula (or elliptic coefficient) calculated in step S25 is valid.
  • the elliptic formula (formula (3)) can be not only an ellipse (including a circle) but also a state other than an ellipse such as a hyperbola, a parabola, or two parallel straight lines, depending on the coefficient condition. Therefore, in step 60, it is determined whether or not the calculated elliptic formula (or elliptic coefficient) represents an ellipse.
  • a determination value T is obtained by the following equation (11) using an elliptic coefficient, and is determined to be an ellipse when T ⁇ 0, and is determined not to be an ellipse otherwise.
  • T B 2 -4 ⁇ A ⁇ C (11)
  • step S60 When it is determined in step S60 that the elliptic formula does not represent an ellipse (in the case of NO), the central control unit 200 proceeds to step S61, changes the estimation level ZE, and then changes the estimation level ZE to the changed estimation level ZE. Based on the estimation point PE (step S24), elliptical calculation (step S25), and whether or not the elliptical expression is valid (step S60).
  • step S60 If it is determined in step S60 that the elliptic formula represents an ellipse (in the case of YES), the process proceeds to step S26. Therefore, the processes in steps S61, S24, S25, and S60 are repeatedly performed until the determination in step S60 becomes YES. If the determination in step S60 is YES, the process proceeds to step S26.
  • step S60 in addition to determining whether or not the elliptic equation represents an ellipse, an error between the ellipse obtained from the elliptic equation and each estimated point PE is obtained, and the elliptic equation and the estimated point PE are determined from the error. A value indicating the degree of coincidence (for example, the sum or average value of errors) is calculated, and it is determined whether or not the value is equal to or less than a predetermined value. You may decide that it is not appropriate.
  • step S24 a plurality of estimation levels ZE are set, an estimation point PE corresponding to each estimation level ZE is calculated, and an elliptic coefficient corresponding to each estimation level ZE is obtained in step S25.
  • the elliptic coefficient having the smallest error from the estimated point PE among the elliptic coefficients corresponding to the estimation level ZE may be determined as the elliptic coefficient used for calculating the center of the ellipse, and the process may proceed to step S26.
  • step S26 the central control unit 200 calculates the ellipse center PC (xc, yc) from the elliptic formula (or elliptic coefficient) obtained in step S25, as in the first embodiment.
  • step S27 the central control unit 200 sets the spherical aberration correction amount and the focus balance value in the elliptical center PC obtained in step S26, as in the first embodiment.
  • the optical information processing apparatus sequentially changes the spherical aberration correction amount after measuring the signal characteristics at at least three measurement positions on the focus axis straight line, and each time the spherical aberration correction amount is changed, The signal characteristic is measured at the measurement position on each remaining straight line corresponding to the spherical aberration correction amount.
  • the number of changes of the spherical aberration correction amount that requires time for setting change can be reduced, and the time required for adjustment can be reduced.
  • Each remaining straight line passes through one of at least three measurement positions on the focus axis straight line.
  • the measurement result of the measurement position on the focus axis straight line can be used in the remaining straight line, and the number of measurements can be reduced.
  • Each remaining straight line passes through a measurement position in the vicinity of the extreme value position on the focus axis line among at least three measurement positions on the focus axis line.
  • the residual line can be set so as to pass near the point where the signal characteristics are the best, and the ellipse is approximated with high accuracy. be able to.
  • the optical information processing apparatus sets the next measurement position according to the measurement result at the measured measurement position. According to this aspect, measurement at an unnecessary measurement position can be avoided and measurement at an effective measurement position can be performed, and spherical aberration correction is performed more efficiently than when all measurement positions are set in advance. The amount and the focus adjustment value can be adjusted.
  • the optical information processing apparatus compares the signal characteristics at the measurement positions at both ends of at least two measurement positions that have been measured for at least one straight line, and the signal characteristics of the measurement positions at both ends are good. A position away from the measurement position in the opposite direction to the other measurement position is determined as the next measurement position. According to this aspect, the measurement position can be set efficiently.
  • the optical information processing apparatus determines whether or not the result of ellipse approximation indicates an ellipse. If it is determined that the ellipse does not indicate an ellipse, the level of signal characteristics (specifically, the estimation level ZE) And the ellipse approximation is performed again. According to this aspect, it is possible to prevent adjustment using an inappropriate approximation result that does not indicate an ellipse.
  • the optical information processing apparatus obtains an estimated position at each of a plurality of levels of signal characteristics (specifically, the estimation level ZE) and performs elliptic approximation, and an error between the result of the elliptic approximation and the estimated position The amount of the ellipse is obtained, and the center position of the ellipse is obtained from the result of the ellipse approximation with the smallest error amount. According to this aspect, it is possible to obtain a more accurate ellipse center position compared to the case of obtaining the ellipse center position from the result of one ellipse approximation corresponding to one level.
  • the central control unit 200 sets a new straight line L4 parallel to the coordinate axis of the focus balance value, and performs the same processing as steps S40 to S45 on the straight line L4. Then, the process after step S24 may be performed using the result of the straight line L4 instead of the result of the straight line L1.
  • the spherical aberration correction amount measured in steps S51 to S56 is set as the spherical aberration correction amount of the straight line L4, and the measured measurement points on the other straight lines are set as the measurement points on the straight line L4.
  • the number of additional measurement points can be reduced.
  • the reason why the new straight line L4 is set in this way is to prevent the accuracy of the ellipse approximation from deteriorating when the spherical aberration correction amount of the straight line L1 is far from the optimum value.
  • the accuracy of adjustment can be improved by using the measurement results of the measurement points instead.
  • the arrangement of the straight lines and the measurement points may be different from that shown in FIG. 17, such as the arrangement shown in FIG.
  • Embodiment 4 FIG.
  • the description of the same parts as those in the first embodiment is omitted or simplified, and the same or corresponding elements as those in the first embodiment are denoted by the same reference numerals.
  • the optical information processing apparatus 100 is an optical recording apparatus that records information on the optical disc 500, and further adjusts a recording focus adjustment value (here, a focus balance value) used during recording. .
  • a recording focus adjustment value here, a focus balance value
  • the optical information processing apparatus 100 records, for example, a data encoder that encodes user data from a host controller into data for recording on the optical disc 500 or the optical disc 500.
  • a control unit necessary for performing recording on the optical disc 500 such as a control unit related to write strategy control for performing laser emission control.
  • Such a recording control unit may be included in the central control unit 200.
  • an optical recording apparatus when recording data, changes a gain for converting an optical signal of a light receiving element of an optical head into an electric signal from a relatively high reproduction gain to a relatively low recording gain. Switch to. This is because the recording power (optical power) used at the time of recording is higher than the reproducing power (optical power) used at the time of reproduction. This is because the responsiveness of the element is deteriorated and the servo signal sampled and detected at the time of recording is also adversely affected.
  • a focus balance value which is desirable to set a focus balance value different from that used during reproduction when recording data.
  • two types of values i.e., a focus balance value for recording and a focus balance value for recording, are switched between playback and recording.
  • the optical information processing apparatus 100 uses a relatively high reproduction gain during reproduction and a relatively low recording gain during recording as the gain of the light receiving element 370 of the optical head 300.
  • the optical information processing apparatus 100 uses a reproduction focus balance value during reproduction, and uses a recording focus balance value during recording.
  • the optical information processing apparatus 100 optimally adjusts the focus balance value for recording after adjusting the spherical aberration correction amount for reproduction and the focus balance value optimally as in the first to third embodiments. Configured to adjust.
  • recording focus balance value the relationship between the focus balance value at the time of recording (hereinafter referred to as “recording focus balance value”) and the reproduction signal characteristic will be described.
  • recording focus balance value the relationship between the focus balance value at the time of recording
  • reproduction signal characteristic the reproduction signal characteristic
  • FIG. 19A is a diagram showing the relationship between the recording focus balance value and the reproduction signal amplitude.
  • FIG. 19B is a diagram showing the relationship between the recording focus balance value and the reproduction signal characteristics (modulation degree and asymmetry).
  • the optimum reproduction focus balance value (all The same value is used in the measurement.
  • a circle indicates a measurement result (actual value) of the reproduction signal amplitude, and a solid line indicates an approximate curve obtained by approximating the circle measurement value by a quadratic approximation.
  • FIG. 19A a circle indicates a measurement result (actual value) of the reproduction signal amplitude
  • a solid line indicates an approximate curve obtained by approximating the circle measurement value by a quadratic approximation.
  • the adjustment unit 202 functions as a recording adjustment unit that adjusts a focus adjustment value for recording (here, a focus balance value). Specifically, the adjustment unit 202 performs test recording on the optical disc 500 using a fixed recording power while changing the recording focus balance value, and uses the signal recorded by the test recording as a fixed focus balance value (for example, Playback focus balance value), measure the signal characteristics of the playback signal, approximate the relationship between the recorded focus balance value and the measured signal characteristics with a second or higher order polynomial, and calculate the signal characteristics from the approximation result. Obtains the best recording focus balance value, and determines the recording focus balance value as a recording focus balance value.
  • a focus balance value for example, Playback focus balance value
  • FIG. 20 is a flowchart showing an example of the procedure of the recording operation of the optical information processing apparatus 100 according to the fourth embodiment.
  • a recording operation procedure of the optical information processing apparatus 100 will be described with reference to FIG. Note that the processing in steps S10 to S14 in FIG. 20 is generally the same as that in FIG. 13, and is different from FIG. 13 in that the processing after step S14 in FIG.
  • the central control unit 200 After the unique information of the optical disc and the control information for controlling the recording / reproducing operation are read from the optical disc 500 in step S14, the central control unit 200, in step S70, determines the recording conditions (such as write strategy and recording power adjustment). Condition), and waits for a recording instruction in step S71. When the central control unit 200 detects that there is a recording instruction in step S71, the central control unit 200 adjusts the focus balance value for recording used in recording in step S72.
  • the recording conditions such as write strategy and recording power adjustment. Condition
  • step S73 the central control unit 200 adjusts the recording power to an optimum power by performing test writing in the test recording area of the optical disc 500.
  • the recording power is adjusted in step S73, the recording focus balance value adjusted in step S72 is used.
  • step S74 data recording to the optical disc 500 is started using the focus balance value and recording power for recording adjusted in steps S72 and S73.
  • FIG. 21 is a flowchart showing the process of step S72 of FIG. Hereinafter, the adjustment of the focus balance value for recording in step S72 will be described with reference to FIG.
  • step S80 the central control unit 200 controls the sled motor 151 via the sled motor control unit 150, and moves the optical head 300 to a test recording area for adjusting the focus balance value for recording.
  • test recording area is an area where test recording for optimizing the recording power and the like can be performed on the optical disc 500, and is an area prepared separately from the data area on the inner or outer circumference of the optical disc. is there.
  • the central control unit 200 sets the recording focus balance value to an initial value.
  • the initial value for example, the focus balance value for reproduction adjusted in step S13 is used.
  • the initial value is not limited to the adjusted focus balance value for reproduction, and may be a predetermined focus balance value set in advance.
  • the relationship (or difference) between the focus balance value for recording and the focus balance value for reproduction is checked in advance, and the recording and reproduction are performed with respect to the reproduction focus balance value adjusted in step S13.
  • a value obtained by offsetting the relationship (or difference) with the business may be used as the initial value.
  • the spherical aberration correction amount for example, the spherical aberration correction amount adjusted in step S13 is fixedly used.
  • step S82 the central control unit 200 performs test recording using the set recording focus balance value.
  • a fixed recording power is used. That is, all the test recordings performed during the recording focus balance value adjustment process (the process of step S72) are performed using the same recording power.
  • the fixed recording power is not limited to the optimum recording power as long as it is a level at which the reproduction signal amplitude can be detected when the signal after recording is reproduced.
  • the recording power recorded in the control information read from the optical disc 500 in step S14 may be used as the fixed recording power.
  • the recording power may be optimally adjusted once, and the adjusted optimal recording power may be used as the fixed recording power.
  • the size for performing the test recording only needs to be at least a size capable of measuring the reproduction signal amplitude, and is desirably as small as possible from the viewpoint of suppressing the usage amount of the test recording area.
  • step S83 the central control unit 200 reproduces the signal recorded in the test in step S82 and measures the reproduction signal amplitude.
  • reproduction is performed using a fixed focus balance value. That is, in the measurement of the reproduction signal amplitude performed during the recording focus balance value adjustment process (the process of step S72), the reproduction is performed using the same focus balance value.
  • the fixed focus balance value for example, the focus balance value for reproduction (the focus balance value adjusted in step S13) is used, but is not limited thereto.
  • step S84 the central control unit 200 determines whether there are three or more measured measurement points.
  • step S84 If it is determined in step S84 that the number of measurement points already measured is less than 3 (in the case of NO), the central control unit 200 proceeds to step S85 and sets the recording focus balance value to be measured next. Thereafter, the process returns to step S82, test recording is performed with the recording focus balance value set in step S85, the reproduction signal amplitude of the test recorded signal is measured (step S83), and the process proceeds to step S84.
  • the recording focus balance value not only the recording focus balance value is decreased or increased in one direction but also the maximum point of the reproduction signal amplitude is included in the range of the measurement points with as few measurement points as possible.
  • the recording focus balance value of the next measurement point is set so as to extend the range of the measurement point.
  • a predetermined step is added to the reference to set the next recording focus balance value
  • the reference The next recording focus balance value is set by subtracting a predetermined step from.
  • the recording focus balance value next to the initial recording focus balance value is based on the initial recording focus balance value and the characteristics of the reproduction signal amplitude with respect to the spherical aberration correction amount and the recording focus balance value in the optical information processing apparatus. , It may be set as follows. For example, in an optical information processing apparatus in which the recording focus balance value (that is, the optimum recording focus balance value) at which the reproduction signal amplitude is optimal is often near a certain reference value (for example, zero), the initial recording focus balance value Is larger than the reference value, a predetermined step is subtracted from the recording focus balance value to set the next recording focus balance value.
  • the recording focus balance value is smaller than the reference value. If the initial recording focus balance value is smaller than the reference value, the recording focus balance value is Then, a predetermined recording step is added to set the next recording focus balance value. This increases the possibility that the next measurement point can be set in the direction in which the reproduction signal amplitude increases.
  • the optimum recording focus balance value in the optical information processing apparatus is examined in advance using a plurality of discs or a plurality of optical information processing apparatuses, and for example, the average recording focus balance value is calculated. It can be set in the optical information processing apparatus as a reference value.
  • step S84 If it is determined in step S84 that there are three or more measurement points (YES), the process proceeds to step S86. Therefore, the processes in steps S85, S82, S83, and S84 are repeatedly performed until the determination in step S84 is YES, and when the determination in step S84 is YES, the process proceeds to step S86.
  • step S86 the central control unit 200 secondarily approximates the relationship between the measured recording focus balance value and the reproduction signal amplitude, and obtains the maximum recording focus balance value FMax that maximizes the reproduction signal amplitude based on the result. .
  • the maximum recording focus balance value FMax may be obtained by performing third-order or higher approximation instead of second-order approximation.
  • it is necessary to appropriately set the score serving as a threshold in the determination in step S84 in accordance with the approximation order and specifically, it is necessary to set the score more than the minimum necessary for approximation.
  • the precision of the said approximation can be improved by setting the score used as the threshold value in determination of step S84 larger than the minimum score required for approximation.
  • step S87 the central controller 200 determines whether or not the maximum recording focus balance value FMax is within the measured recording focus balance value. Specifically, it is determined whether or not the maximum recording focus balance value FMax is between the minimum value and the maximum value of the measured recording focus balance value.
  • step S87 When it is determined in step S87 that the maximum recording focus balance value FMax is outside the measured range (in the case of NO), the central control unit 200 returns to step S85 and sets the recording focus balance value to be measured next. Return to step S82.
  • step S87 If it is determined in step S87 that the maximum recording focus balance value FMax is within the measured range (in the case of YES), the process proceeds to step S88. Therefore, the processes of steps S85, S82, S83, S84, S86, and S87 are repeatedly performed until the determination in step S87 is YES, and when the determination in step S87 is YES, the process proceeds to step S88.
  • step S88 the central control unit 200 sets the maximum recording focus balance value FMax to the recording focus balance value, and ends the adjustment of the recording focus balance value.
  • the focus balance value for recording is further adjusted, so that the optimum or appropriate focus balance can be used for data recording.
  • a value can be used. Thereby, for example, good recording quality can be obtained and recording power required for recording can be kept low.
  • the recording focus balance value that maximizes the reproduction signal amplitude is obtained.
  • the reproduction signal characteristics such as the modulation factor and asymmetry are measured, and the reproduction signal characteristic is maximized.
  • a recording focus balance value may be obtained.
  • the reproduction signal quality jitter, i-MLSE, etc.
  • the recording focus balance value at which the reproduction signal quality is the best (or minimum) may be obtained.
  • the recording power when performing test recording is fixed recording power, but instead of test recording with fixed recording power, optimum recording power adjustment is performed for each of a plurality of recording focus balance values.
  • the optimum recording power may be obtained.
  • the recording focus balance value that maximizes the reproduction signal amplitude instead of obtaining the recording focus balance value that maximizes the reproduction signal amplitude, the recording focus balance value that minimizes the optimum recording power among the plurality of recording focus balance values may be obtained.
  • it is not always necessary to use the optimum recording power and for each of a plurality of recording focus balance values, for example, the relationship between the recording power and the reproduction signal characteristic (one of modulation degree, asymmetry, amplitude, etc.) is measured.
  • the recording power at which the same reproduction signal characteristic is obtained may be obtained, and the recording focus balance value at which the recording power is minimized may be obtained.
  • both the spherical aberration correction amount for recording and the focus balance value may be adjusted.
  • the signal characteristics of the reproduction signal are measured at each measurement point, the measurement result is approximated to an ellipse, and the center of the ellipse is obtained, whereby a spherical aberration correction amount for recording is obtained.
  • the focus balance value may be adjusted.
  • the spherical aberration correction amount and the focus balance value at the time of recording are changed, test recording is performed at each measurement point, and the test recorded signal is reproduced to reproduce the signal characteristics of the reproduced signal. Measure.
  • a common set value that is, a fixed value
  • 100 optical information processing device 110 head amplifier, 120 reproduction signal processing unit, 121 signal quality measurement unit, 122 data decoder, 123 reproduction characteristic measurement unit, 130 FE signal generation unit, 140 TE signal generation unit, 141 TE signal characteristic measurement unit , 150 thread motor control unit, 151 thread motor, 160 spherical aberration correction unit, 170 actuator control unit, 180 spindle motor control unit, 181 spindle motor, 200 central control unit, 201 focus adjustment unit, 202 adjustment unit, 210 CPU, 220 ROM, 230 RAM, 300 optical head (optical pickup), 310 semiconductor laser, 320 laser drive circuit, 330 collimating lens, 340 B Splitter, 350 objective lens, 360 the detection lens, 370 light receiving elements, 380 the spherical aberration correction lens, 390 actuator, 400 host controller, 500 optical disc.
  • 110 head amplifier 120 reproduction signal processing unit, 121 signal quality measurement unit, 122 data decoder, 123 reproduction characteristic measurement unit, 130 FE signal generation unit, 140 TE signal generation unit, 141 TE

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

 本発明は、球面収差補正量およびフォーカス調整値の調整を少ない測定点数で行う。光情報処理装置(100)は、光ディスク(500)に光を照射し、光ディスクからの反射光を検出して再生信号を出力する光ヘッド(300)と、光ディスクに照射される光の球面収差を補正する球面収差補正部(160)と、光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整部(201)と、球面収差補正部(160)による球面収差補正量およびフォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において再生信号の信号特性を測定し、当該測定結果から信号特性が略同一レベルとなる平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて球面収差補正量およびフォーカス調整値を調整する調整部(202)とを有する。

Description

光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム
 本発明は、光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラムに関する。
 大容量光ディスク、例えば、Blu-ray Disk(BD)では、光ディスク上に形成される光スポット径を小さくするために、レーザの波長を短くし、対物レンズの開口数(NA)を大きくしている。例えば、DVD(Digital Versatile Disk)では波長650nmのレーザとNA0.65の対物レンズとが用いられるのに対し、BDでは波長405nmのレーザとNA0.85の対物レンズとが用いられる。一般に、光ディスクの情報記録層を保護する保護層の厚みが変動すると球面収差が発生し、この球面収差の発生量は、NAの約4乗に比例し、波長に反比例することが知られている。このため、BD再生時に発生する球面収差は、DVD再生時に発生する球面収差に比べて、約6.5倍(≒{(0.85/0.6)}×(650/405))となる。このように球面収差の影響を受けやすいことから、BD再生では、球面収差を補正する球面収差補正手段が用いられている。
 また、光ディスクの再生においては、光ディスクの情報記録面にレーザ光のフォーカス位置を追従させるように、光ディスクの情報記録面に垂直な方向において対物レンズの位置を制御するフォーカスサーボ制御が行われている。
 上記球面収差補正手段による球面収差補正量と、上記フォーカスサーボ制御におけるフォーカスバランス値(またはフォーカス位置)とは、良好な再生品質が得られるように調整されることが望ましいが、いずれも光軸方向の調整であり、相互に影響を受け合う。そのため、球面収差補正量およびフォーカスバランス値(またはフォーカス位置)の両方を適切に調整するための技術が提案されている。
 特許文献1には、光ディスクに光ビームを集光させる対物レンズと、球面収差補正機構とを備える光ピックアップ装置において、フォーカスバランスと球面収差補正量とを最適に調整する技術が示されている。この技術では、フォーカスバランスと球面収差補正量との複数の組み合わせにおいてトラッキング誤差信号(TES信号)を取得し、所定レベル以上のTES信号が得られた組み合わせを複数選択し、選択した複数の組み合わせにおいて光強度信号(RF信号)を取得し、RF信号の信号レベルが最大になるフォーカスバランスおよび球面収差補正量の組み合わせを選択する。
 特許文献2には、トラッキングエラー信号(TE信号)の振幅レベルが最大となるように、球面収差補正用の可動レンズの位置およびフォーカスバランス値を調整する技術が示されている。この技術では、可動レンズの位置およびフォーカスバランス値のうち、一方を横軸、他方を縦軸として、TE信号の振幅レベルが等レベルとなる等レベル線を描いたグラフから、略楕円となる等レベル線の長辺の横軸に対する傾きαを予め求めておき、可動レンズの位置およびフォーカスバランス値のうちの一方のみを変化させてTE信号の振幅レベルが最大となる条件を探索し、次に、探索された可動レンズの位置およびフォーカスバランス値を通る傾きαの調整線に沿ってTE信号の振幅レベルが最大となる条件を探索する。
 特許文献3には、フォーカス位置と球面収差量とを変化させることによって、ジッターの値が最適となるフォーカス位置と球面収差量とを2次元的に探査する技術が示されている。具体的には、ジッターが最小となるフォーカス位置の探査とジッターが最小となる球面収差量の探査とを交互に繰り返す方法や、フォーカス位置および球面収差量を軸とするグラフにおける長方形の4つの頂点と中心点のうちジッターが最小となる点を探査する処理を長方形の辺を短くしながら繰り返す方法、球面収差量Y1においてジッターが最小となるフォーカス位置X1を探査し、球面収差量Y1においてジッターが最小となるフォーカス位置X2を探査し、点(X1,Y1)と点(X2,Y2)を結ぶ直線上においてジッターが最小となる点を探査する方法、所定の傾きaの直線上でジッターが最小となる点を探査し、次に、当該点を通る傾き-1/aの直線上でジッターが最小となる点を探査する方法が示されている。
 特許文献4には、球面収差補正値とフォーカスバイアス値とを最適な値に調整する技術が示されている。この技術では、球面収差補正値およびフォーカスバイアス値を軸とする平面において、必要マージン想定範囲の外周上の8点でジッター値を測定してジッター値の最大値を代表値として求める動作を、所定の傾きA方向に必要マージン想定範囲を移動させながら繰り返し行い、最小の代表値が得られた必要マージン想定範囲の中心点を起点として、必要マージン想定範囲を所定の傾きB方向に移動させながら上記代表値を求める動作を繰り返し行い、最小の代表値が得られた必要マージン想定範囲の中心点を特定する。
特開2011-134391号公報 特開2010-287276号公報 特開2007-188632号公報 特開2007-141369号公報
 上記特許文献1~4に記載の技術では、球面収差補正量およびフォーカス位置の調整値(例えばフォーカスバランス値)の調整を行う場合に、多くの測定点で振幅レベルやジッターの測定を行っているので、調整に長い時間が必要となる。
 本発明は、球面収差補正量およびフォーカス調整値の調整を少ない測定点数で行うことができる光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラムを提供することを目的とする。
 本発明に係る光情報処理装置は、
 光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光手段と、
 前記光ディスクに照射される光の球面収差を補正する球面収差補正手段と、
 前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整手段と、
 前記球面収差補正手段による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整手段と、
 を有することを特徴とする。
 本発明に係る光情報処理方法は、
 光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光工程と、
 前記光ディスクに照射される光の球面収差を補正する球面収差補正工程と、
 前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整工程と、
 前記球面収差補正工程による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整工程と、
 を有することを特徴とする。
 本発明に係る光情報処理装置の調整装置は、
 光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光手段と、前記光ディスクに照射される光の球面収差を補正する球面収差補正手段と、前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整手段とを有する光情報処理装置の調整装置であって、
 前記球面収差補正手段による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整手段を有することを特徴とする。
 本発明に係る光情報処理装置の調整方法は、
 光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光手段と、前記光ディスクに照射される光の球面収差を補正する球面収差補正手段と、前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整手段とを有する光情報処理装置の調整方法であって、
 前記球面収差補正手段による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整工程を有することを特徴とする。
 本発明に係る光情報処理装置の調整プログラムは、
 光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光手段と、前記光ディスクに照射される光の球面収差を補正する球面収差補正手段と、前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整手段とを有する光情報処理装置の調整プログラムであって、
 前記球面収差補正手段による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整工程をコンピュータに実行させることを特徴とする。
 本発明によれば、球面収差補正量およびフォーカス調整値の調整を少ない測定点数で行うことができる。
実施の形態1に係る光情報処理装置の構成例を示す図である。 球面収差補正量とフォーカスバランス値に対する再生信号振幅の関係の一例を示す図である。 球面収差補正量とフォーカスバランス値に対する再生信号品質の関係の一例を示す図である。 球面収差補正量およびフォーカスバランス値に対する再生信号振幅の分布の一例を示す図である。 球面収差補正量およびフォーカスバランス値に対する再生信号品質の分布の一例を示す図である。 球面収差補正量およびフォーカスバランス値に対するトラッキングエラー信号(TE信号)振幅の分布の一例を示す図である。 再生信号振幅、再生信号品質、TE信号振幅のそれぞれの等高線の一部を抜き出して同一のxy座標系に描いた図である。 (a)は球面収差補正量と再生信号振幅との関係の一例を示す図であり、(b)はフォーカスバランス値と再生信号振幅との関係の一例を示す図である。 (a)は球面収差補正量と再生信号品質との関係の一例を示す図であり、(b)はフォーカスバランス値と再生信号品質との関係の一例を示す図である。 球面収差補正量およびフォーカスバランス値に対する再生信号振幅の分布と、実施の形態1における測定点、推定点、楕円、および楕円中心の一例とを示す図である。 (a)~(c)は、2次近似曲線および推定点の例を示す図である。 (a)~(f)は、実施の形態1における、測定点の配置例を示す図である。 実施の形態1に係る光情報処理装置の再生動作の手順の一例を示すフローチャートである。 実施の形態1に係る光情報処理装置における、球面収差補正量およびフォーカスバランス値の調整手順の一例を示すフローチャートである。 実施の形態2に係る光情報処理装置における、球面収差補正量およびフォーカスバランス値の調整手順の一例を示すフローチャートである。 球面収差補正量およびフォーカスバランス値に対する再生信号振幅の分布と、実施の形態2における測定点、推定点、楕円、および楕円中心の一例とを示す図である。 実施の形態3における測定点の配置例を示す図である。 実施の形態3に係る光情報処理装置における、球面収差補正量およびフォーカスバランス値の調整手順の一例を示すフローチャートである。 (a)は記録時のフォーカスバランス値と再生信号振幅との関係の一例を示す図であり、(b)は記録時のフォーカスバランス値と変調度およびアシンメトリとの関係の一例を示す図である。 実施の形態4に係る光情報処理装置の記録動作の手順の一例を示すフローチャートである。 実施の形態4に係る光情報処理装置における、記録用のフォーカスバランス値の調整手順の一例を示すフローチャートである。
 以下、本発明の実施の形態を図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る光情報処理装置100の構成例を示す図である。光情報処理装置100は、光ディスクの情報の処理を行う装置であり、例えば光ディスクに対して情報の記録および再生のうち少なくとも1つを行う光記録再生装置である。図1の例では、光情報処理装置100は光ディスク500を再生する再生装置であり、光ディスク500はBDである。
 図1において、光情報処理装置100は、ヘッドアンプ110、再生信号処理部120、信号品質測定部121、データデコーダ122、再生特性測定部123、FE信号生成部130、TE信号生成部140、TE信号特性測定部141、スレッドモータ制御部150、スレッドモータ151、球面収差補正部160、アクチュエータ制御部170、スピンドルモータ制御部180、スピンドルモータ181、中央制御部200、バッファメモリ240、および光ヘッド300を有する。
 スピンドルモータ制御部180は、スピンドルモータ181を制御し、光ディスク500を所望の回転速度で回転させる。スレッドモータ制御部150は、スレッドモータ151を制御し、(例えば光ディスク500の半径方向において)光ヘッド300を所望の位置へ移動させる。
 光ヘッド300は、光ディスク500に光を照射し、光ディスク500からの反射光を検出して再生信号を出力するものであり、光ピックアップとも呼ばれる。光ヘッド300は、半導体レーザ310、レーザ駆動回路320、コリメートレンズ330、ビームスプリッタ340、対物レンズ350、検出レンズ360、受光素子370、球面収差補正用レンズ380、およびアクチュエータ390を有する。これらのうち、半導体レーザ310、コリメートレンズ330、ビームスプリッタ340、対物レンズ350、検出レンズ360、および球面収差補正用レンズ380は、光学系を構成する。
 半導体レーザ310は、レーザ駆動回路320により駆動され、データ再生に必要な出力値(再生パワー)を有するレーザ光を出射する。半導体レーザ310から出射されたレーザ光は、コリメートレンズ330、ビームスプリッタ340、球面収差補正用レンズ380、および対物レンズ350を介して光ディスク500に集光、照射される。光ディスク500からの反射光は、対物レンズ350と球面収差補正用レンズ380とを通った後にビームスプリッタ340により入射光と分離され、検出レンズ360を介して受光素子370で受光される。
 球面収差補正用レンズ380は、光ディスク500に照射されるレーザ光の球面収差を補正するための可動レンズであり、光ヘッド300の光学系中に配置されている。球面収差補正用レンズ380は、レーザ光の光軸方向に移動可能に設けられており、球面収差補正部160により制御される。
 アクチュエータ390は、対物レンズ350を保持し、対物レンズ350をフォーカス方向およびトラック方向に駆動するものであり、アクチュエータ制御部170により制御される。ここで、フォーカス方向は、光ディスク500の回転軸方向に平行な方向、すなわち光ディスク500の情報記録面に垂直な方向であり、トラック方向は、光ディスク500の半径方向と平行な方向である。
 受光素子(または光検出器)370は、受光した光信号を再生信号としての電気信号に変換する。受光素子370において変換された電気信号は、ヘッドアンプ110を介して、中央制御部200、再生信号処理部120、FE信号生成部130、およびTE信号生成部140に供給される。
 中央制御部200は、ヘッドアンプ110から供給された信号からアドレス情報の復号を行い、光ヘッド300の現在位置のアドレス情報を得る。そして、中央制御部200は、得られた現在位置のアドレス情報と、アクセスすべき位置(アクセス対象位置)のアドレス情報との差分をスレッドモータ制御部150に与えることにより、スレッドモータ151を制御し、光ヘッド300をアクセス対象位置へ移動させる。
 FE信号生成部130は、ヘッドアンプ110からの信号を処理してフォーカスエラー信号(FE信号)を生成する。FE信号の生成方法としては、公知の方法、例えば、非点収差法、ナイフエッジ法、スポットサイズ検出法などを用いることができる。
 TE信号生成部140は、ヘッドアンプ110からの信号を処理してトラッキングエラー信号(TE信号)を生成する。TE信号の生成方法としては、公知の方法、例えば、プッシュプル法やDPP(Differential Push-Pull)法、DPD(Differential Phase Detection)法などを用いることができる。
 再生信号処理部120は、ヘッドアンプ110からの信号をイコライズ処理(波形整形)し、信号品質測定部121およびデータデコーダ122に供給する。また、再生信号処理部120は、イコライズ処理する前の電気信号を再生特性測定部123に供給する。
 再生特性測定部123は、再生信号処理部120からの信号に基づき、再生信号の信号特性(再生信号特性)として再生信号の振幅(再生信号振幅)を測定する。
 信号品質測定部121は、再生信号処理部120からの信号に基づき、再生信号の信号特性として、ジッター値や、i-MLSE(integrated Maximum Likelihood Sequence error Estimation)値、エラーレート等の再生信号の品質(再生信号品質)を測定する。
 データデコーダ122は、再生信号処理部120から供給された再生信号をPRML(Partial Response Maximum Likelihood)等の信号処理により2値化した後、復調やエラー訂正などの処理を行うことにより、光ディスク500に記録されたデータを生成(再生)し、中央制御部200へ送る。中央制御部200は、データデコーダ122により生成されたデータを、バッファメモリ240に格納した後、光情報処理装置100に接続されている上位コントローラ400へ送る。
 TE信号特性測定部141は、TE信号生成部140で生成されたTE信号の振幅やTE信号バランスなどのTE信号特性を測定する。
 球面収差補正部160は、中央制御部200からの制御信号に基づき、球面収差補正用レンズ380の位置を調整して球面収差を補正する。球面収差補正部160は、球面収差補正用レンズ380の位置を光軸方向に移動させることにより、球面収差補正用レンズ380による球面収差補正量を変化させる。球面収差補正量は、球面収差補正用レンズ380の位置に対応する。
 なお、本例では、球面収差補正用レンズ380によって球面収差補正を行う構成を例示しているが、他の構成により球面収差補正を行うことも可能であり、例えば液晶素子によって球面収差補正を行っても良い。液晶素子を用いる場合、球面収差補正部160は、液晶素子への印加電圧を変更することで、球面収差補正量を変化させることになる。
 アクチュエータ制御部170は、中央制御部200からの制御信号に基づき、アクチュエータ390を制御し、対物レンズ350をフォーカス方向およびトラック方向に駆動する。
 中央制御部200は、光情報処理装置100による光ディスク500からの情報の読み出し等の際に、装置の全体を制御するものであり、信号品質測定部121からのジッター等の再生信号品質、再生特性測定部123からの再生信号振幅、FE信号生成部130からのFE信号、TE信号生成部140からのTE信号、TE信号特性測定部141からのTE信号振幅やTE信号バランス値等のTE信号特性、データデコーダ122からの再生データを受ける一方、レーザ駆動回路320、スレッドモータ制御部150、球面収差補正部160、アクチュエータ制御部170、およびスピンドルモータ制御部180に制御信号を与える。
 中央制御部200は、TE信号に基づき、アクチュエータ制御部170に制御信号を与えてアクチュエータ390を制御することにより、レーザ光の光スポットが光ディスク500のトラックを追従するように対物レンズ350のトラック方向の位置を制御するトラッキングサーボ制御を行う。また、中央制御部200は、FE信号に基づき、アクチュエータ制御部170に制御信号を与えてアクチュエータ390を制御することにより、光ディスク500の情報記録面にレーザ光のフォーカス位置が追従するように対物レンズ350のフォーカス方向の位置を制御するフォーカスサーボ制御を行う。
 また、中央制御部200は、光ディスク500に照射されるレーザ光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整機能を有する。ここで、フォーカス調整値は、フォーカス位置を調整するための調整値であり、フォーカス位置(または対物レンズの位置)に対応するパラメータ、またはフォーカス位置(または対物レンズの位置)を示すパラメータである。本例では、中央制御部200は、フォーカス調整値としてのフォーカスバランス値に基づき、フォーカス方向において対物レンズ350の位置を調整してフォーカス位置を調整する。ここで、フォーカスバランスとは、光ディスク500からの反射光を受光して得られるFE信号(フォーカスエラー信号)の特性を示すS次カーブのバランスのことであり、フォーカスバランス値は、FE信号のS字カーブのバランス値である。このフォーカスバランス値は、例えばヘッドアンプ110のゲインを調整したり、FE信号に加えられるオフセットを調整したりすることによって変化させることができる。例えば、中央制御部200は、FE信号にオフセットを加えてフォーカスサーボ制御を行い、フォーカスバランス値を変更する場合は、FE信号に加えられるオフセットを変更する。フォーカスサーボ制御実行中にフォーカスバランス値が変更されると、対物レンズ350のフォーカス方向の位置が変動し、レーザ光のフォーカス位置が変化する。したがって、中央制御部200は、例えば、所望のフォーカスバランス値に応じたオフセットをFE信号に加えることにより、所望のフォーカスバランス値に応じた位置にフォーカス位置を調整する。
 さらに、中央制御部200は、球面収差補正量およびフォーカス調整値を調整(または最適化)する調整処理を行う。この調整処理については、後に詳しく説明する。調整処理で決定された球面収差補正量およびフォーカス調整値は、例えば、光ディスク500に対して情報を再生または記録する際に用いられる。例えば、中央制御部200は、再生または記録を実行する前に、球面収差補正量とフォーカスバランス値との最適な組み合わせを決定する。そして、中央制御部200は、決定された球面収差補正量に応じた位置に球面収差補正用レンズ380を移動させ、決定されたフォーカスバランス値に応じたオフセットをFE信号に加えてフォーカスサーボ制御を行い、光ディスク500に対する再生または記録を行う。
 なお、図1には、上記フォーカス調整機能を実現するフォーカス調整部201と、上記球面収差補正量およびフォーカス調整値の調整処理を行う調整部202とが示されている。
 中央制御部200は、例えば、CPU(Central Processing Unit)210と、該CPU210の動作のためのプログラムを格納したROM(Read Only Memory)220と、データを記憶するRAM(Random Access Memory)230とを備えている。ROM220に格納されたプログラムは、後に説明される球面収差補正量およびフォーカスバランス値を調整するための調整処理プログラムや、測定条件等を定義する部分を含む。なお、上記プログラムは、光ディスク等のコンピュータ読み取り可能な記録媒体に記録されて提供されてもよいし、インターネット等の通信回線を介して提供されてもよい。また、中央制御部200の機能は、ハードウェア回路のみにより実現されてもよい。
 次に、球面収差補正量とフォーカスバランス値との関係について説明する。ここでは、BD-RE(Rewritable)の3層ディスクの第2層(L1層、3層の真ん中の層)について、球面収差補正量およびフォーカスバランス値をそれぞれ変化させながら再生信号振幅および再生信号品質を実測した結果を例にとって説明する。
 図2は、球面収差補正量およびフォーカスバランス値と再生信号振幅との関係の一例を示す図である。図中の実線は、再生信号振幅を高さとした場合の等高線を複数の再生信号振幅レベルで描いたものである。図2では、再生信号振幅は図の中央付近で最大となっている。
 図3は、球面収差補正量およびフォーカスバランス値と再生信号品質(i-MLSE値)との関係の一例を示す図である。図中の実線は、i-MLSE値を高さとした場合の等高線を複数のi-MLSEレベルで描いたものである。図3では、再生信号品質は図の中央付近で最良(最小)となっている。
 光情報処理装置100が光ディスク500から情報を高品位に再生するためには、図3の再生信号品質が最良(最小)となる球面収差補正量とフォーカスバランス値との組合せを求めれば良い。また、図3における再生信号品質が最良となる(最小となる)球面収差補正量およびフォーカスバランス値の組合せの位置と、図2における再生信号振幅が最大となる球面収差補正量およびフォーカスバランス値の組合せの位置とは、若干のズレがあるものの、ほぼ近い位置にあり、再生信号振幅が最大となる球面収差補正量およびフォーカスバランス値の組合せを求めるようにしても良い。
 一般に、再生信号品質を測定する時間よりも、再生信号振幅を測定する時間の方が短いため、調整時間を考慮すると、再生信号振幅で調整する方が望ましい。
 また、再生信号品質が最良または再生信号振幅が最大となる球面収差補正量とフォーカスバランス値との組合せ付近を求めることにより、再生品質のマージンを確保できることになる。
 図4は、球面収差補正量およびフォーカスバランス値に対する再生信号振幅の分布の一例を示す図である。図4は、図2の再生信号振幅の等高線を、球面収差補正量をx座標、フォーカスバランス値をy座標とするxy座標系(2次元平面)に、投射した図である。図4に示すように、等高線はx軸およびy軸に対して斜めに傾いた略楕円の形状を有している。また、楕円の中心は、再生信号振幅が異なってもほぼ同じ位置となっていることがわかる。したがって、いずれかの等高線に対応する楕円の中心位置を求めることができれば、再生信号振幅が最大または最大付近となる位置(すなわち最適または最適に近い球面収差補正量とフォーカスバランス値との組合せ)を求めることができる。
 図5は、球面収差補正量およびフォーカスバランス値に対する再生信号品質(i-MLSE)の分布の一例を示す図である。図4と同様に、図5は、図3の再生信号品質の等高線をxy座標系に投射した図である。図5に示すように、図4と同様に、等高線は斜めに傾いた略楕円の形状を有している。また、楕円の中心は、再生信号品質が異なってもほぼ同じ位置となっていることがわかる。したがって、いずれかの等高線に対応する楕円の中心位置を求めることができれば、再生信号品質が最良または最良付近となる位置(すなわち最適または最適に近い球面収差補正量とフォーカスバランス値との組合せ)を求めることができる。
 図6は、球面収差補正量およびフォーカスバランス値に対するトラッキングエラー信号(TE信号)振幅の分布の一例を示す図である。図6は、TE信号振幅を高さとした場合の等高線を複数のTE信号振幅レベルで描いたものをxy座標系に投射した図である。図6より、TE信号振幅は、球面収差補正量を変更する方向(x軸方向)には変化が小さく、図4や図5とは異なる等高線分布となっていることがわかる。TE信号の振幅が小さくなりすぎると、トラッキングサーボが外れやすくなり、そのような条件で調整を行うと、トラッキングサーボを動作しなおすリトライ処理等で余分な時間が必要となる場合がある。なお、図6において、TE信号振幅が図中最小の1.34Vの場合でもトラッキングサーボが外れ易い条件とはならないが、例えばフォーカスバランス値が変更されてTE信号振幅が1.34Vよりさらに小さくなった場合には、トラッキングサーボが外れ易くなる可能性が高い。したがって、トラッキングサーボを安定して動作させるためには、図6に示す分布(例えば1.34Vの等高線の内側の範囲)から、フォーカスバランス値を変更しすぎないように注意する必要がある。
 図7は、球面収差補正量およびフォーカスバランス値に対する、再生信号振幅、再生信号品質、およびTE信号振幅の分布の一例を示す図である。図7は、図4、図5、および図6で示した等高線から、再生信号振幅が1.12Vの等高線、i-MLSEが14.4%の等高線、およびTE信号振幅が1.44Vの等高線を抜き出して同一のxy座標系に描いたものである。図中の四角印は、再生信号振幅の等高線を略楕円とした時の楕円中心点を示し、丸印は、i-MLSEの等高線を略楕円とした時の楕円中心点を示している。図7より、再生信号振幅の楕円中心位置とi-MLSEの楕円中心位置とは、球面収差補正量およびフォーカスバランス値が共に数ステップ異なるだけであり、比較的近い位置関係にあることが分かる。このことからも、再生信号振幅が最大となるような球面収差補正量およびフォーカスバランス値に調整することで、高品位な再生品質を得られることが分かる。
 図8(a)は、球面収差補正量と再生信号振幅との関係を示す図である。図8(a)には、図2の球面収差補正量およびフォーカスバランス値と再生信号振幅との関係のうち、フォーカスバランス値が「-10」、「10」、「30」の場合における球面収差補正量と再生信号振幅との関係が示されている。ここで、フォーカスバランス値「10」は、再生信号振幅が最大付近となるときのフォーカスバランス値であり、フォーカスバランス値「-10」および「30」は、フォーカスバランス値「10」から±20ステップ変更したものである。図中の丸印、四角印、三角印は、図2の関係を測定した際の実測値を示し、それぞれフォーカスバランス値「-10」、「10」、「30」の場合に対応する。実線、破線、点線は、それぞれ丸印、四角印、三角印の実測値を2次式で近似したときの近似曲線である。図8(a)より、いずれの場合も球面収差補正量と再生信号振幅との関係を2次式により近似できていることが分かる。
 図8(b)は、フォーカスバランス値と再生信号振幅との関係を示す図である。図8(b)には、図2の球面収差補正量およびフォーカスバランス値と再生信号振幅との関係のうち、球面収差補正量が「-34」、「-28」、「-22」の場合におけるフォーカスバランス値と再生信号振幅との関係が示されている。ここで、球面収差補正量「-28」は、再生信号振幅が最大付近となるときの球面収差補正量であり、球面収差補正量「-34」および「-22」は、球面収差補正量「-28」から±6ステップ変更したものである。図中の丸印、四角印、三角印は、図2の関係を測定した際の実測値を示し、それぞれ球面収差補正量「-34」、「-28」、「-22」の場合に対応する。実線、破線、点線は、それぞれ丸印、四角印、三角印の実測値を2次式で近似したときの近似曲線である。図8(b)より、いずれの場合もフォーカスバランス値と再生信号振幅との関係を2次式により近似できていることが分かる。
 図9(a)は、球面収差補正量とi-MLSE(再生信号品質)との関係を示す図である。図9(a)には、図3の球面収差補正量およびフォーカスバランス値とi-MLSEとの関係のうち、フォーカスバランス値が「-15」、「5」、「25」の場合における球面収差補正量とi-MLSEとの関係が示されている。ここで、フォーカスバランス値「5」は、i-MLSEが最良付近となるときのフォーカスバランス値であり、フォーカスバランス値「-15」および「25」は、フォーカスバランス値「5」から±20ステップ変更したものである。図中の丸印、四角印、三角印は、図3の関係を測定した際の実測値を示し、それぞれフォーカスバランス値「-15」、「5」、「25」の場合に対応する。実線、破線、点線は、それぞれ丸印、四角印、三角印の実測値を2次式で近似したときの近似曲線である。図9(a)より、いずれの場合も球面収差補正量とi-MLSEとの関係を2次式により近似できていることが分かる。
 図9(b)は、フォーカスバランス値とi-MLSE(再生信号品質)との関係を示す図である。図9(b)には、図3の球面収差補正量およびフォーカスバランス値とi-MLSEとの関係のうち、球面収差補正量が「-36」、「-30」、および「-24」の場合におけるフォーカスバランス値とi-MLSEとの関係が示されている。ここで、球面収差補正量「-30」は、i-MLSEが最良付近となるときの球面収差補正量であり、球面収差補正量「-36」および「-24」は、球面収差補正量「-30」から±6ステップ変更したものである。図中の丸印、四角印、三角印は、図3の関係を測定した際の実測値を示し、それぞれ球面収差補正量「-36」、「-30」、「-24」の場合に対応する。実線、破線、点線は、それぞれ丸印、四角印、三角印の実測値を2次式で近似したときの近似曲線である。図9(b)より、いずれの場合もフォーカスバランス値とi-MLSEとの関係を2次式により近似できていることが分かる。
 なお、以上の説明では、BD-REの第2層についての実測結果を例にとって説明したが、他の層または他の種類のディスクでも、楕円の形状が異なるものの、上記と同様の結果が得られる。
 以下、図10を参照して、本実施の形態の球面収差補正量およびフォーカスバランス値の調整方法について説明する。図10は、図4の球面収差補正量およびフォーカスバランス値に対する再生信号振幅の分布に、本実施の形態の調整方法における測定点や、推定点、楕円中心点などを追加で示したものである。
 図10において、丸印で示される測定点PMは、調整方法において再生信号振幅の測定が行われる位置である。すなわち、調整方法では、複数の測定点PMのそれぞれにつき、球面収差補正量およびフォーカスバランス値が当該測定点PMに対応する値に設定され、光ディスク500に記録された信号が再生され、再生信号振幅が測定される。
 測定点PMは、球面収差補正量およびフォーカスバランス値を座標軸とする平面上の少なくとも3つの直線それぞれに少なくとも3点の測定点PMが存在する、という条件で配置される。図10の例では、球面収差補正量をx軸(横軸)としフォーカスバランス値をy軸(縦軸)とするxy座標系(xy平面、2次元平面)において、3種類の直線L1,L2,L3それぞれに3点の測定点PMが存在し、合計7点の測定点PMが配置されている。なお、図10では3種類の直線が示されているが、少なくとも3種類の直線が必要であり、4種類以上の直線に対して測定点PMが配置されても良い。また、図10では各直線上に3点の測定点が配置されているが、1つの直線に対して少なくとも3点の測定点が必要であり、1つの直線に対して4点以上の測定点が配置されても良い。
 また、測定点PMの設定においては、調整精度を確保する観点より、各直線上の各測定点PM間の間隔は、できるかぎり広い方が望ましい。これは、測定点PM間の間隔が狭すぎると、測定点PM間の測定結果の差が小さくなり、ノイズやバラツキの影響を無視できなくなり、後述の2次近似の精度が悪くなるためである。一方で、測定点PM間の間隔が広すぎると、トラッキングサーボが不安定となる設定になり易くなる。そのため、例えば、図6に示される球面収差補正量およびフォーカスバランス値に対するトラッキングエラー信号(TE信号)振幅の分布から、トラッキングサーボの安定性を確保できる範囲内において、各測定点PM間の間隔が広くなるように測定点PMを設定する。なお、図10の例では、測定点PMの配置は、上記を考慮したものではなく、各測定点PM間の間隔があまり広くない配置となっている。
 なお、各測定点PMにおいて再生信号振幅を測定する場合、例えばトラッキングサーボがオフの状態で測定を行っても良い。この場合、例えば、ディスク一周分における再生信号の最大値(ピーク)と最小値(ボトム)を検出して、再生信号振幅を計算するようにすれば良い。このようにすることで、トラッキングサーボが不安定となる領域に測定点PM(球面収差補正量およびフォーカスバランス値)が配置される場合でも、問題なく測定することが可能となる。
 また、測定点PMは、球面収差補正量のトータルの変更量および変更回数が少なくなるように設定されることが望ましい。これは、球面収差補正用レンズ380の移動の方が対物レンズ350の移動よりも時間が掛かり、球面収差補正量の変更には、フォーカスバランス値の変更によるフォーカス位置の変更よりも時間が掛かるためである。例えば、球面収差補正用レンズ380の移動には、ステッピングモータが利用されており、コイルとマグネットによる電磁駆動方式のアクチュエータ390を利用した対物レンズ350の移動に比べて時間が掛かる。図10では、例えば、矢印で示される順番に従って各測定点PMでの測定が行われる。
 ここで、図10の例では、直線L1は、球面収差補正量のみが変わるx軸に平行な直線であり、直線L2は、フォーカスバランス値のみが変わるy軸に平行な直線であり、直線L3は、等高線を略楕円とみなした場合の楕円の長軸方向とほぼ平行な直線である。等高線の楕円の傾きは、光ヘッド300の光学的な仕様によって大きく変わるが、同様の仕様の光ヘッド300においては、光ヘッド300の個体バラツキや、温度、再生する光ディスク500によって多少ばらつくものの、大きくは変わらない。そのため、予め図2のような特性を調べて楕円の傾きを求めておくことで、直線L3の傾きを実際の楕円の傾きに近い値に設定することが可能である。
 次に、直線L1,L2,L3の各々について、当該直線上の各測定点PMの測定結果に基づき、測定点PMの位置と測定点PMで測定された再生信号振幅との関係を2次近似する。具体的には、各直線について、当該直線上の位置をp、再生信号振幅をqとして、測定結果からpとqの関係を近似する2次式を求める。なお、直線Li(i=1,2,3)についての2次近似式(2次近似曲線の式)は、下記式(1)のように表される。
q=ai・p+bi・p+ci …(1)
 上記式(1)において、ai、bi、ciは定数である。例えば、直線L1の場合は、球面収差補正量をpとして、上記2次近似式の係数a1、b1、c1を求める。直線L2の場合は、フォーカスバランス値をpとして、上記2次近似式の係数a2、b2、c2を求める。直線L3の場合は、球面収差補正量(またはフォーカスバランス値)をpとして、上記2次近似式の係数a3、b3、c3を求める。
 図11は、上記2次近似により得られた2次近似曲線を示す図である。図11(a)は、直線L1上の測定点PMの測定結果を近似した2次近似曲線C1を示し、図11(b)は、直線L2上の測定点PMの測定結果を近似した2次近似曲線C2を示し、図11(c)は、直線L3上の測定点PMの測定結果を近似した2次近似曲線C3を示している。なお、図中の丸印は測定点PMを示している。
 次に、直線L1,L2,L3の各々について、上記2次近似により得られた2次近似曲線から、当該直線上において再生信号振幅の大きさが所定の推定用レベルZEになる位置を推定点PEとして求める。すなわち、各直線について、当該直線について得られた2次近似式から、q=ZEのときの位置pの値を求める。例えば、直線Li(i=1,2,3)について、再生信号振幅が推定用レベルZEとなる位置p(推定点PE)は、2次近似で得られた2次式の係数ai,bi,ciを用いて、2次式の解として下記式(2)により求めることができる。
q={-bi±√(bi-4・ai・(ci-ZE)}/(2・ai) …(2)
 3種の直線L1,L2,L3それぞれで推定点PEを求めることにより、例えば合計6個の推定点PEが求まる。図10および図11には、推定用レベルZE=1.07Vとした場合の推定点PEが四角印で示されている。
 次に、xy平面上において、求めた6個の推定点PEを楕円近似する。図10には、楕円近似により導出された楕円DEが示されている。この楕円DEは、再生信号振幅が所定の推定用レベルZE(例えば1.07V)の等高線に対応する近似楕円である。
 楕円式は、球面収差補正量xとフォーカスバランス値yとにより、例えば下記式(3)で表される。
A・x+B・x・y+C・y+D・x+E・y+1=0 …(3)
 求められた推定点PEから上記式(3)の係数A,B,C,D,Eを求めることにより、楕円DEの式を導出することができる。係数A,B,C,D,Eは、少なくとも5個の推定点PEがあれば導出可能であり、例えば、求められた6個の推定点PEのうちの5個の推定点PEを用い、以下のような5つの線形方程式(4)~(8)を解くことで求めることができる。
A・x1+B・x1・y1+C・y1+D・x1+E・y1=-1 …(4)
A・x2+B・x2・y2+C・y2+D・x2+E・y2=-1 …(5)
A・x3+B・x3・y3+C・y3+D・x3+E・y3=-1 …(6)
A・x4+B・x4・y4+C・y4+D・x4+E・y4=-1 …(7)
A・x5+B・x5・y5+C・y5+D・x5+E・y5=-1 …(8)
 ここで、上記式(4)~(8)において、xn(n=1~5)は5つの推定点PEnのそれぞれのx座標値(球面収差補正量)であり、yn(n=1~5)は5つの推定点PEnのそれぞれのy座標値(フォーカスバランス値)である。
 なお、上記の例では、求められた6個の推定点PEのうち5個のみを使って楕円DEの式を導出しているが、6点全ての推定点PEを使い、例えば最小二乗法を用いて楕円DEの式を導出しても良い。
 また、6個の推定点PEのうち5個のみを使う場合、例えば、6個の推定点PEのうち、異なる2点との距離の和の最小値が最も小さくなる点を省くようにする。ここで、「異なる2点との距離の和の最小値」は、ある推定点PEに対して、当該推定点PE以外の他の推定点PEのうち当該推定点PEに近い2点それぞれとの距離の和を示し、「最小値が最も小さくなる点」は、上記距離の和が最小となる推定点を示す。また、別の方法として、6個の推定点PEのx座標値(球面収差補正量)の平均値xaveと、y座標値(フォーカスバランス値)の平均値yaveとをそれぞれ求めて、6個の推定点PEのうち、推定点PEの平均値(xave,yave)からの距離が最も短いものを省いても良い。
 次に、導出された楕円DEの式(または楕円係数)から、楕円DEの中心PCを算出する。図10には、楕円DEの中心PCが星印で示されている。楕円中心PC(xc,yc)は、例えば、以下の線形方程式(9),(10)を解くことで、求めることができる。
2・A・xc+B・yc=-D …(9)
B・xc+2・C・yc=-E …(10)
 なお、楕円中心PCは、上記の線形方程式を解く方法以外の方法で求められても良い。
 求められた楕円中心PCが、再生信号振幅が最大となる位置に対応し、球面収差補正量およびフォーカスバランス値の調整結果となる。例えば、楕円中心PCの座標は、最適な球面収差補正量およびフォーカスバランス値として設定または利用される。
 次に、測定点PMの他の配置例を説明する。本実施の形態1における球面収差補正量およびフォーカスバランス値の調整方法において、測定点PMは、球面収差補正量をx座標、フォーカスバランス値をy座標としたxy座標系(2次元平面)において、測定点PMが異なる3種類以上の直線上にあり、各々の直線上に3点以上の測定点PMが配置される、という条件で設定される。
 図12は、図10の測定点PMの配置例とは別の6種類の配置例を示す図である。図12の配置例でも、3種類の直線L1,L2,L3が配置されている。
 図10では、3種類の直線L1,L2,L3上の各々に3点ずつ測定点PMが配置され、直線L1は球面収差補正量のみが変わるx軸に平行な直線、直線L2はフォーカスバランス値のみが変わるy軸に平行な直線、直線L3は等高線を略楕円とみなした場合の楕円の長軸方向とほぼ平行な直線であり、測定点PMのうち1点は3種類の直線全てを通り、全部で7点の測定点PMが配置されていた。
 これに対し、図12(a)では、3種類の直線L1,L2,L3上の各々に3点ずつ測定点PMが配置されているが、測定点PMの個数は全6点であり、図10の場合よりも少なくなっている。この場合、測定点PMでの測定回数を、図10の場合よりも少なくでき、全体の調整時間を短縮することができる。
 図12(b)では、直線L2は、y軸に平行な直線であり、直線L1および直線L3は共に、x軸およびy軸に対して傾いた直線となっている。全ての直線が1つの交点で交わり、当該交点に1つの測定点PMが配置され、当該測定点PMに対して左右(x軸方向)および上下(y軸方向)に対称に6個の測定点PMが配置されている。例えば、光ヘッド300の仕様等により、球面収差補正量およびフォーカスバランス値に対する再生信号振幅または再生信号品質の分布の等高線が斜めに傾いておらず、等高線に対応する楕円の長軸および短軸がそれぞれx軸およびy軸に平行となるような場合には、図12(b)で示されるような測定点PMの配置が望ましいと考えられる。なお、図12(b)の配置を交点の(中央の)測定点PM回りに90度回転させたような配置でも良いが、この場合、球面収差補正量を少なくとも5回変更する必要があるため、球面収差補正量の変更に時間がかかるような光情報処理装置100の構成のときには、図12(b)の場合よりも調整時間が長くなってしまう。
 図12(c)では、3種類の全ての直線L1,L2,L3が、x軸およびy軸に対して傾いた直線となっており、直線L2と直線L3とは互いにほぼ直交している。ここで、例えば、直線L3は、図10で示した楕円の長軸と平行な傾きを持つ直線であり、直線L2は、当該楕円の短軸と平行な傾きを持つ直線である。また、直線L1は、直線L2および直線L3とは異なる傾きを持つ直線である。直線L1,L2,L3は1つの交点で交わり、当該交点に1つの測定点PMが配置されている。3つの直線L1,L2,L3のそれぞれにつき、交点の測定点PMの両側には測定点PMが1個ずつ配置されており、当該両側の測定点PMのx座標値(球面収差補正量)は3つの直線間で同一となっている。直線L1の交点の両側の測定点PMのy座標値(フォーカスバランス値)は、直線L2の交点の両側の測定点PMと、直線L3の交点の両側の測定点PMとの中間付近の値となっている。このように測定点PMを配置することで、楕円の長軸と短軸の方向における推定点PEを求めることができ、推定点PEから求められる楕円式の精度が向上すると考えられる。
 また、図12(c)では、破線で示される直線L4,L5においても測定点PMが3点配置されることになり、これらの直線L4,L5についても2次近似を行って推定点PEを求めることで、直線L1,L2,L3から得られる推定点PEと合わせて、最大で10点の推定点PEが得られることになる。この10点の推定点PEから楕円式を求めるようにすれば、求められる楕円の精度が向上する。
 図12(d)では、3種類の全ての直線L1,L2,L3がx軸またはy軸と平行な直線となっている。図12(c)と同様に、直線L4,L5においても推定点PEを求めることが可能である。
 図12(e)は、3種類の全ての直線L1,L2,L3上に、4点の測定点PMが配置される一例を示している。この場合、各直線において、4点の測定点PMの位置と、その測定結果とを用いて、例えば最小二乗法などを利用して2次近似を行い、推定点PEを求めることができる。これにより、2次近似の精度を向上させることができ、2次近似結果から求められる推定点PEの精度、および推定点PEから導出される楕円の精度を向上させることができる。
 なお、図12(e)においては、図12(c)、(d)と同様に、直線L4における2次近似を追加することが可能である。また、3種類全ての直線で測定点PMを4点配置するのではなく、いずれかの直線のみ、または、3種中2種の直線に対して、測定点PMを4点配置するようにしても良い。例えば、楕円の長軸方向に平行な直線L3に対しては、測定点PMを4点または5点以上配置する等、2次近似の誤差が出やすいと思われる直線に対して測定点PMを増やすことが有効である。
 図12(f)では、測定点PMの配置は、図10と同一の配置となっている。ここでは、さらに、直線L1上の測定点PMと直線L2上の測定点PMとを通る直線L4および直線L5を設定する。そして、これらの直線L4,L5と直線L3との交点(図中三角印、以下「測定点PM2」と称す)における再生信号振幅を仮想的な測定結果として、直線L3の2次近似結果から導出する。これにより、直線L4上および直線L5上のそれぞれにおいて、2つの測定点PMと1つの測定点PM2とを合わせた3点の測定点が存在することになり、2次近似を行って推定点PEを追加で求めることができ、これにより、直線L1,L2,L3から求められる全6点の推定点PEよりも多い推定点PEで楕円式を求めることができる。これにより、図10の場合と比べ、測定点PMの数を増やすことなく推定点PEの数を増やすことができるので、測定に必要な時間を増加させることなく、推定点PEから導出される楕円式の精度を向上させることができる。
 なお、図10および図12に示される測定点PMの配置は例であり、少なくとも3種類の直線上の各々において、少なくとも3点の測定点PMが配置されていれば、測定点PMの配置は上記以外の配置であっても良い。また、図12(f)のように、ある直線上の2次近似結果から測定点PM2を求める場合には、測定点PM2を通る直線を含む3種類以上の直線上のそれぞれに、少なくとも3点の測定点PMまたは測定点PM2が配置されるような配置でも良い。すなわち、測定点PM2を測定点PMとみなして用いても良い。
 また、測定点PMの配置は、例えば、光ヘッド300の仕様等により変わる球面収差補正量およびフォーカスバランス値に対する再生信号振幅または再生信号品質の分布(楕円の形状や傾き)に応じて定めればよく、光ヘッド300の仕様が同一のものに対しては、同様の測定点PMの配置を用いるようにすれば良い。
 図13は、本実施の形態に係る光情報処理装置100の再生動作の手順の一例を示すフローチャートである。以下、図13を参照して、光情報処理装置100の再生動作の手順を説明する。
 最初に光ディスク500が光情報処理装置100に挿入されると、図示しないセンサによりそのことが検出されて(ステップS10)、中央制御部200に伝えられる。すると、中央制御部200は、アクチュエータ制御部170等を介して光ヘッド300を駆動して、光情報処理装置100に挿入された光ディスク500の種別(CD、DVD、BD等の種別)や、光ディスク500が何層ディスクか等を判別する(ステップS11)。
 次に、ステップS12において、中央制御部200は、光ディスク500とのチルト角度や、各種信号のゲイン設定や、サーボ条件等の粗調整等の初期調整を実施した後、ステップS13において、球面収差補正量およびフォーカスバランス値の調整を行う。このステップS13の処理の詳細については後述する。
 次に、中央制御部200は、光ディスク500から、光ディスクの固有情報や再生動作を制御するための制御情報等を読み出し、再生を開始するか否かを判断し(ステップS14)、ステップS15で光ディスク500からの本来のデータの再生(本再生)を開始する。
 図14は、図13のステップS13の処理を示すフローチャートである。以下、図14を参照して、ステップS13の球面収差補正量およびフォーカスバランス値の調整(または組合せの決定)について説明する。
 まず、ステップS20において、中央制御部200は、スレッドモータ制御部150を介してスレッドモータ151を制御し、球面収差補正量およびフォーカスバランス値を調整するための調整用領域へ光ヘッド300を移動させ、光ディスク500の調整用領域で信号を再生できるようにする。
 ここで、調整用領域は、光ディスク500へ信号が記録された記録済領域であり、例えば、再生データが記録されたデータ領域や、光ディスク500のID等の固有情報を記録しているディスク管理領域(一般に光ディスク500の内周に記録されている)や、光ディスク500のデータが記録されたアドレス等を管理する記録管理領域(一般に光ディスク500の内周に記録されている)である。
 なお、光ディスク500が複数の情報記録層を有する場合は、各々の情報記録層で、球面収差補正量およびフォーカスバランス値の調整が必要となり、調整の対象となる情報記録層の再生が必要となる。
 次に、ステップS21において、中央制御部200は、測定点PMを決定する。測定点PMの決定では、基準点を決定してそこからの球面収差補正量およびフォーカスバランス値の差分量の組合せにより測定点PMを決定しても良いし、予め全ての測定点PMの球面収差補正量とフォーカスバランス値との組合せを決定しても良い。例えば、基準点を決定してから測定点PMを決定する場合、例えばROM220またはRAM230等から、光ディスク500の種類および記録層毎に予め記憶された、球面収差補正量およびフォーカスバランス値から、調整を行う光ディスク500および記録層に対応した値を読み出し、基準点として設定する。また、ROM220またはRAM230から、測定点PMの決定に必要な、基準点からの差分量データ等を読み出し、全測定点PMを決定する。なお、ステップS12におけるサーボ条件等の粗調整時に、球面収差補正量およびフォーカスバランス値を大まかに調整している場合は、その調整結果を基準点としても良い。また、ステップS21で全ての測定点PMを決定する必要はなく、例えば、次のステップS22での測定結果に基づいて次の測定点PMの位置を決定するようにしても良い。
 次に、ステップS22において、中央制御部200は、ステップS21で決定した各測定点PMにおいて、再生信号振幅を測定する。具体的には、中央制御部200は、球面収差補正量およびフォーカスバランス値を1番目の測定点PMに対応する値に設定し、再生信号振幅を測定する。その後、球面収差補正量およびフォーカスバランス値を2番目以降の測定点PMに対応する値に測定順に設定し、各測定点PMで再生信号振幅を順次測定し、各測定点PMでの測定結果を得る。すなわち、所定の測定順に従って、各測定点PMについて、当該測定点PMに対応する球面収差補正量およびフォーカスバランス値を用いて光ディスク500を再生し、再生信号振幅を測定する。
 次に、ステップS23において、中央制御部200は、ステップS22で測定した各測定点PMの測定結果から、少なくとも3つの測定点PMを通る3種類以上の直線(ここでは3種類の直線L1,L2,L3)に沿って、2次近似処理を行い、2次近似式(または2次式の係数)を求める。
 次に、ステップS24において、中央制御部200は、各直線L1,L2,L3について、ステップS23で求めた2次式の係数から、再生信号振幅が推定用レベルZEとなる位置を推定点PEとして算出する。
 なお、推定用レベルZEは、必ずしも予め定めた所定の値である必要はなく、例えば、測定点PMにおける再生信号振幅の測定結果を元に計算して設定されても良い。この場合、例えば、各直線L1,L2,L3について、ステップS23で求めた2次式の係数から、2次近似曲線の最大値を求め、求められた3個の最大値のうちの最小の値よりも小さい値に推定用レベルZEを設定する。または、各測定点PMの測定結果の最小値よりも小さい値に推定用レベルZEを設定しても良い。
 また、ある1つの推定用レベルZEのみを使用するのではなく、異なる複数の推定用レベルZEを設定し、それぞれの推定用レベルZEにおける推定点PEを求め、求められた推定点PEから、それぞれの推定用レベルZEにおける楕円中心PCを求めても良い。
 次に、ステップS25において、中央制御部200は、ステップS24で求めた推定点PEから楕円式(または楕円式を構成する楕円係数)を算出し、その後、ステップS26において、ステップS25で求めた楕円式(または楕円係数)から、楕円中心PC(xc,yc)を算出する。
 次に、ステップS27において、中央制御部200は、ステップS26で求めた楕円中心PCに、球面収差補正量およびフォーカスバランス値を設定する。つまり、球面収差補正量をxcに、フォーカスバランス値をycに設定して、ステップS13の球面収差補正量およびフォーカスバランス値の調整を完了する。
 以上説明した本実施の形態によれば、下記(1)~(7)の効果が得られ得る。
 (1)本実施の形態では、光情報処理装置は、球面収差補正量およびフォーカス調整値(例えばフォーカスバランス値)を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において再生信号の信号特性を測定し、当該測定結果から信号特性が略同一レベルとなる上記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて球面収差補正量およびフォーカス調整値を調整する。このため、本実施の形態によれば、少なくとも6点の測定位置での測定により球面収差補正量およびフォーカス調整値を調整することができ、球面収差補正量およびフォーカス位置の調整を少ない測定点数で行うことができる。これにより、例えば、球面収差補正量およびフォーカス位置の調整を短時間で行うことができる。
 (2)光情報処理装置は、上記少なくとも5つの推定位置を楕円近似して得られる楕円の中心位置を求め、当該楕円の中心位置に基づいて、球面収差補正量およびフォーカス位置の調整を行う。このため、球面収差補正量およびフォーカス調整値を座標軸とする平面上において再生信号の信号特性が最良または最良付近となる位置を求めることができ、当該位置に基づいて精度良く調整を行うことができる。具体的には、信号特性が略同一レベルとなる等高線(分布)の中心位置を楕円中心位置として求めることができ、球面収差補正量およびフォーカス調整値を、楕円中心位置に基づく最適または最適に近い値に設定することができる。また、球面収差補正量およびフォーカスバランス値に対する信号特性の等高線が略楕円となることを利用し、その楕円を推定して楕円中心を求めているので、マージンを確保した調整を行うことができる。
 (3)光情報処理装置は、上記各直線について、上記測定位置と上記測定位置で測定された信号特性との関係を2次以上の多項式で近似した近似結果から、信号特性が所定のレベルとなる上記平面上の位置を上記推定位置として求め、得られた推定位置のうち少なくとも5つを使用して上記楕円の中心位置を求める。このため、推定位置を正確に求めることができ、精度良く楕円の中心位置を求めることができる。
 (4)光情報処理装置は、再生信号の信号特性として、再生信号の振幅を用いる。本態様によれば、再生信号の品質を用いる場合と比較して、調整時間を短くすることができる。
 (5)光情報処理装置は、再生信号の信号特性として、再生信号の品質を用いる。本態様によれば、再生信号の振幅を用いる場合と比較して、再生信号品質が良好となる調整を行うことができる。
 (6)測定位置の配置および測定順序は、球面収差補正量の変更回数およびトータルの変更量が小さくなるように設定される。このため、変更に時間の掛かる球面収差補正量の変更を少なくすることができ、調整を短時間で行うことができる。
 (7)上記少なくとも3つの直線のうち1つは、信号特性の等高線を楕円とみなした場合の楕円の長軸方向と略平行な直線である。本態様によれば、楕円を精度良く近似することができる。例えば、楕円を推定する場合、長軸方向に誤差が大きくなる場合があるが、本態様によれば、長軸方向に沿った位置で測定を行うことで、この誤差を軽減できる。
 なお、上記の説明では、再生信号振幅を測定して調整を行う方法を例示したが、同様に再生信号品質を測定して調整を行っても良い。この場合、推定点PEを求めるための条件を、再生信号振幅の代わりに再生信号品質の大きさで規定する必要がある。また、再生信号品質として再生品質が良いほど値が小さくなる指標(例えばi-MLSE)を用いる場合には、推定用レベルは、各測定点PMにおける測定結果の最大値より大きくするのが望ましい。また、再生信号品質を測定して調整を行う場合は、再生信号品質の測定に時間を要するため、全体の調整時間が、再生信号振幅を測定する場合に比べ長くなるが、再生信号振幅を測定する場合よりも、より再生信号品質が良好となる調整を行うことができる。これは、再生信号振幅の分布と、再生信号品質の分布に若干の相違があるためである(図7参照)。
 また、再生信号振幅を測定して楕円中心PCを求め、当該楕円中心PCを基準点とした測定点PMを再度設定し(または当該楕円中心PCの近傍に測定点PMを再度設定し)、当該測定点PMで再生信号品質を測定して楕円中心PCを求め直すようにしても良い。このようにする理由としては、測定点PMが楕円中心PCから大きく外れるような場合には、再生信号品質を正しく測定できない場合や、再生信号品質の値が飽和してしまう場合があるためである。再生信号振幅による楕円中心PCを一度求め、この楕円中心PCに基づいて測定点PMを再度設定し、当該測定点PMで再生信号品質を測定することにより、再生信号品質の測定結果が妥当な結果となり、楕円中心PCを正しく求めることができる。
 また、再生信号振幅を測定して楕円中心PCを求める場合には、図7に示すような、再生信号振幅の楕円中心と再生信号品質の楕円中心との差を、球面収差補正量とフォーカスバランス値とでそれぞれ予め求めておき、測定結果から求められた再生信号振幅の楕円中心PCに対して上記差を加えることで、楕円中心PCの位置を補正しても良い。ただし、上記差を設定する場合には、再生信号振幅の楕円中心と再生信号品質の楕円中心との位置関係についての光情報処理装置100や光ディスク500の個体バラツキ等を考慮して設定する必要がある。
 また、上記の説明では、等高線がx軸およびy軸に対して傾いた楕円となっている場合を例示したが、光ヘッド300の光学的な仕様により等高線が傾いていない楕円となっている場合や、傾きが小さい場合もある。その場合も同様な方法で楕円中心PCを求めることができるが、例えば、測定点PMの配置等は、楕円が適切に推定できるような位置関係に設定するのが望ましい。
 また、上記の説明では、3個の測定点PMを用いて2次近似を行う場合を主に示したが、より調整の精度を上げるために、4個以上の測定点PMを用いて2次近似を行っても良い。つまり、3種類の直線上にそれぞれ4個以上の測定点PMを配置しても良い。また、3種類の直線上の測定点PMの点数は、直線間で同じである必要はなく、例えば、再生信号振幅の特性変動が小さい方向(例えば図10の直線L3の方向)を優先して、直線上の測定点PMの点数を多くするようにしても良い。
 また、各直線上に4個以上の測定点PMを配置する場合には、2次近似ではなく、3次近似や、4次以上の多項式近似を行っても良い。ただし、多項式近似の次数以上の測定点PMが必要となる。なお、このように多項式近似を行う構成によれば、楕円中心から離れた位置で、かつ楕円の長軸および短軸に対して斜めに横切るような直線上で近似を行う場合など、本来の特性が非対称となる場合にも正しく近似でき、楕円式を求めるための推定点PEを精度良く求めることができる。
 また、上記の説明では、求まった楕円中心PCを最適な球面収差補正量およびフォーカスバランス値として設定する場合を例示したが、求まった楕円中心PC付近において、さらに、再生信号振幅や再生信号品質を測定しながら、球面収差補正量およびフォーカスバランス値を最適に調整し、より調整精度を上げるようにしても良い。
 また、上記の説明では、少なくとも5つの推定位置から楕円式を求め、当該楕円式から楕円の中心位置を算出する構成を例示したが、光情報処理装置は、少なくとも5つの推定位置に基づいて他の方法で調整を行っても良い。例えば、光情報処理装置は、5つの推定位置の組合せと、最適な球面収差補正量およびフォーカスバランス値の組合せとが対応付けられたテーブルを予め記憶しておき、当該テーブルを参照して5つの推定位置の組合せから、最適な球面収差補正量およびフォーカスバランス値の組合せを決定しても良い。
 また、上記の説明では、光情報処理装置100が光再生装置である場合を例示したが、光情報処理装置100は、光ディスク500への記録を行う装置(光記録装置)であっても良い。この場合、光情報処理装置100は、図1に示される構成に加え、例えば、上位コントローラからのユーザーデータを光ディスク500へ記録するためのデータにエンコードするデータエンコーダや、光ディスク500へ記録する際のレーザの発光制御を行うライトストラテジ制御に係わる制御部など、光ディスク500への記録を行うのに必要な制御部を含む。
 また、光記録装置で球面収差補正量とフォーカスバランス値を調整する場合にも、光ディスク500へ信号が記録された記録済領域を再生することで調整を行うが、光ディスク500が例えばブランクディスクのように、記録済領域が無い場合は、例えばレーザパワーを調整するためのテスト記録領域等に試し書き等を行うことで、記録済領域を作成し、作成した記録済領域を使用して球面収差補正量とフォーカスバランス値を調整しても良い。
 また、本実施の形態の調整方法は、初期調整で行われる粗調整に用いられてもよい。特に、光情報処理装置100が光記録装置であり、光ディスク500が例えばブランクディスクのように記録済み領域を有しない場合には、粗調整として、トラッキングエラー信号の振幅が最大となるように球面収差補正量およびフォーカスバランス値を調整する場合がある。また、光情報処理装置100が光再生装置である場合においても、トラッキングサーボが安定に動作するように、トラッキングエラー信号の振幅が最大となるように球面収差補正量およびフォーカスバランス値を調整する場合がある。トラッキングエラー信号の振幅の等高線(または分布)が再生信号の振幅の等高線(または分布)と同様になる場合には、光情報処理装置100は、再生信号の信号特性としてトラッキングエラー信号の振幅を用いて、球面収差補正量およびフォーカスバランス値の調整を行ってもよい。例えば、図14のステップS22において、再生信号振幅の代わりにトラッキングエラー信号の振幅を測定し、ステップS23~S27において、トラッキングエラー信号の振幅の測定結果を用いて各処理を行ってもよい。
 また、図10の例では、予め球面収差補正量およびフォーカスバランス値と再生信号の信号特性との関係を調べて楕円の傾きを求めておき、直線L3の傾きを楕円の傾きに近い傾きに設定するようにしているが、楕円の傾きは、光ディスク500の反射率によって変わる場合がある。例えば、光検出器370の出力ゲイン設定や、ヘッドアンプ110のゲイン設定を光ディスク500の反射率に応じて適宜変更する構成では、光ディスク500の反射率によって、球面収差補正量およびフォーカスバランス値と再生信号の信号特性との関係が変化し、楕円の傾きが変化する場合がある。そこで、光情報処理装置100は、光ディスク500の反射率と楕円の傾きとの対応関係を示す対応関係情報を予め記憶しておき、調整時に、調整対象の光ディスク500の反射率を示す反射率情報を取得し、反射率情報と対応関係情報とに基づいて調整対象の光ディスク500の反射率に対応する楕円の傾きを特定し、当該傾きを有するように直線L3を設定してもよい。具体的には、光情報処理装置100は、光ディスク500の種類もしくは反射率ごとに、または光検出器370やヘッドアンプ110のゲイン設定ごとに、楕円の傾きを記憶しておき、調整時に、調整対象の光ディスク500の種類もしくは反射率、または光検出器370等のゲイン設定を取得し、記憶されている情報を用いて調整対象の光ディスク500の種類等に対応する楕円の傾きを求め、当該傾きを直線L3の傾きとして設定してもよい。なお、上記対応関係情報は、例えば、反射率が異なる複数の光ディスクについて、楕円の傾きを調べることによって得られる。
実施の形態2.
 以下、実施の形態2に係る光情報処理装置について説明する。実施の形態2に係る光情報処理装置は、上記実施の形態1に係る光情報処理装置に対し、調整処理において異なっており、その他の部分については同様である。以下の説明では、実施の形態1と同様の部分については説明を省略または簡略化し、実施の形態1と同一または対応する要素については同一の符号を付す。
 中央制御部200は、信号特性の測定の妥当性を判断し、妥当でないと判断した場合には、追加の測定位置において信号特性を測定し、当該追加の測定位置で測定された信号特性を含む測定結果から、球面収差補正量およびフォーカス調整値の調整を行う。
 本例では、中央制御部200は、求められた楕円の中心位置と、当該楕円の中心位置の導出に用いられた測定位置との関係から、当該楕円の中心位置が妥当かどうかを判断し、楕円の中心位置が妥当でない場合に、測定が妥当でないと判断する。具体的には、中央制御部200は、楕円の中心位置が測定位置に対して所定の基準より離れている場合に、楕円の中心位置が妥当でないと判断する。より具体的には、中央制御部200は、測定位置により規定される所定範囲内に楕円の中心位置が含まれない場合に、楕円の中心位置が妥当でないと判断する。例えば、中央制御部200は、楕円中心のx座標値が測定点PMのx座標値の範囲内(最小値と最大値との間)であり、かつ楕円中心のy座標値が測定点PMのy座標値の範囲内(最小値と最大値との間)である場合に妥当と判断し、それ以外の場合には妥当でないと判断する。また例えば、中央制御部200は、楕円中心が、測定点PMを直線で結んでできる図形(例えば図10では6角形)の範囲内に位置する場合に妥当と判断し、それ以外の場合には妥当でないと判断する。なお、上記所定の基準や所定範囲は、上記の例に限られず、適宜設定されれば良い。
 図15は、本実施の形態2における調整処理を示すフローチャートである。図15の調整処理は、例えば、図13のステップS13において図14の調整処理の代わりに実行される。以下、図15を参照して、本実施の形態における球面収差補正量およびフォーカスバランス値の調整について説明する。
 図15において、楕円中心PCを算出するまでの処理(すなわちステップS20からステップS26までの処理)は概して図14と同様であり、中央制御部200は、実施の形態1と同様に、楕円中心PCを算出する(ステップS20~S26)。
 楕円中心PCの算出後、ステップS28において、中央制御部200は、ステップS26で算出した楕円中心PCと、ステップS21で決定した測定点PMとの位置関係に基づき、算出された楕円中心PCの妥当性(良否)を判断する。例えば、中央制御部200は、測定点PMで規定される所定範囲内に楕円中心PCが位置する場合にOK(妥当である)と判断し、所定範囲内に楕円中心PCが位置しない場合にNG(妥当でない)と判断する。
 ステップS28での良否判断でOKと判断された場合、中央制御部200は、ステップS26で求めた楕円中心PCに、球面収差補正量およびフォーカスバランス値を設定し(ステップS27)、球面収差補正量およびフォーカスバランス値の調整を終了する。
 一方、ステップS28での良否判断でNGと判断された場合、中央制御部200は、処理をステップS29へ進める。
 ステップS29では、中央制御部200は、既存の測定点とは異なる追加の測定点として、追加測定点PM3を決定する。例えば、ステップS21で測定点PMを決定した際の直線L1,L2,L3上のそれぞれにおいて、既存の測定点よりもステップS26で算出された楕円中心PCに近い位置に追加測定点PM3を設定する。
 以下、図16を用いて、追加測定点PM3の決定について説明する。図16は、概して図10と同様であり、図16には、再生信号振幅の等高線および直線L1,L2,L3が示されている。また、図16には、ステップS21で決定された測定点PM(丸印)と、ステップS24で算出された推定点PE(白四角印)と、ステップS25で近似された楕円DE1と、ステップS26で算出された楕円中心PC1とが示されている。図16の例では、図10の場合と比べて、球面収差補正量およびフォーカスバランス値共にマイナス側にシフトした位置に測定点PMが設定されており、ステップS23の2次近似の誤差により、楕円DE1が本来よりも大きく求められ、楕円中心PC1が本来の位置からずれた位置に求められている。これは、測定点PMが本来の楕円中心(図16の点PC2付近にある)から離れている場合(例えば測定点PMの範囲が本来の楕円中心を含んでいない場合)、例えば、直線L3上の測定点PMの範囲は、直線L3上の再生信号振幅が最大となる点を含んでおらず、2次近似曲線と本来の再生信号振幅の特性間の誤差(すなわち近似誤差)が大きくなりやすいことを想定している。
 したがって、ステップS26で算出された楕円中心PC1が、測定点PMの範囲内に無い場合は、ステップS26で算出された楕円中心PC1と、本来の楕円中心(本来調整されるべき最適な球面収差補正量およびフォーカスバランス値)とにズレが生じている可能性が高くなる。
 そこで、本実施の形態では、ステップS28で測定点PMと楕円中心PCとの関係がNGとなった場合には、ステップS29において、上記ズレを補正できるように、追加測定点PM3を設定する。
 図16には、追加測定点PM3の一例が三角印で示されている。図16の例では、既存の直線L1,L2,L3それぞれに対して1つの追加測定点PM3が設定されており、各直線において、追加測定点PM3は、既存の測定点PMよりもステップS26で算出された楕円中心PC1に近い位置(すなわち、既存の測定点PMから楕円中心PC1に近づく方向にシフトした位置)に設定されている。
 上記追加測定点PM3の決定後、ステップS30において、中央制御部200は、決定された各追加測定点PM3において、再生信号振幅を測定する。すなわち、各追加測定点PM3について、球面収差補正量およびフォーカスバランス値を当該追加測定点PMに対応する値に設定し、再生信号振幅を測定する。
 次に、中央制御部200は、ステップS23に戻り、2次近似処理を行う。ここでの2次近似処理では、既に測定していた測定点PMの結果に加え、ステップS30で測定された追加測定点PM3の結果を用いて2次近似処理を行い、2次近似結果の更新を行う。
 さらに、中央制御部200は、ステップS23で更新された2次近似結果を基に、ステップS24で推定点PE(図16の黒四角印)を算出しなおし、ステップS25で楕円式(図16の楕円DE2に相当)を算出し、ステップS26で楕円中心の算出を行い、楕円中心PC2(図16参照)を得る。
 次に、ステップS28では、中央制御部200は、追加測定点PM3を含む測定点と、再度ステップS26で算出した楕円中心PCの結果(楕円中心PC2)との関係に基づき、楕円中心の妥当性を判断し、妥当であればステップS27へ進み、妥当でなければステップS29へ進む。すなわち、妥当な楕円中心が算出されるまで、追加測定点PM3を設定して楕円中心を求める処理を繰り返し行い、妥当な楕円中心が算出された場合に、球面収差補正量およびフォーカスバランス値を当該楕円中心に設定する。
 以上説明した本実施の形態によれば、上記(1)~(7)の他に、下記(8)~(10)の効果が得られ得る。
 (8)光情報処理装置は、測定の妥当性を判断し、妥当でないと判断した場合には、追加の測定位置において信号特性を測定し、当該追加の測定位置で測定された信号特性を含む測定結果から、球面収差補正量およびフォーカス調整値の調整を行う。これによれば、より妥当な測定の結果に基づいて調整を行うことができる。
 (9)光情報処理装置は、測定位置と、求められた楕円の中心位置との関係から、当該楕円の中心位置の妥当性を判断し、妥当でない場合(または問題がありそうな場合)には、追加の測定位置を設定し、当該追加の測定位置で追加の測定を行い、既に測定済みの測定位置での測定結果と合わせて、楕円の中心位置を再度求める。このため、楕円の中心位置を適正に求めることができ、適正な調整を行うことができる。特に、最初に設定された測定位置に対して、最適な球面収差補正量およびフォーカス調整値の位置が大きくずれるような場合にも、楕円の中心位置を適正に算出することができる。
 (10)光情報処理装置は、測定位置により規定される所定範囲内(測定位置の範囲内)に、求められた楕円の中心位置が含まれない場合に、測定(または楕円の中心位置)が妥当でないと判断し、当該楕円の中心位置が含まれる場合に、妥当であると判断する。本態様によれば、求められた楕円の中心位置が妥当か否かを適切に判断でき、楕円の中心位置を適正に求めることができる。
 なお、上記の説明では、既存の直線L1,L2,L3全てに追加測定点PM3を設定しているが、図16のような場合には、直線L3に対してのみ、追加測定点PM3を設定しても良い。これは、図16のような場合には、直線L1および直線L2における測定範囲は、これらの直線上における再生信号振幅の最大点を含んでおり、2次近似結果に大きな誤差が含まれにくい一方、直線L3における測定範囲は、当該直線上における再生信号振幅の最大点を含んでおらず、2次近似結果に大きな誤差が含まれやすいからである。
 また、上記の例では、既存の直線L1,L2,L3上に測定点が追加されるように追加測定点PM3を設定しているが、既存の直線上ではなく、既に測定した測定点PMと、追加測定点PM3とにより新たな直線が設定できるように、追加測定点PM3を設定しても良い。
 また、上記の例では、算出された楕円中心PCの妥当性を判断することにより測定の妥当性を判断しているが、これとは別の方法で測定の妥当性を判断しても良い。
 例えば、光情報処理装置は、少なくとも3つの直線のうち少なくとも1つにおいて、測定位置と測定位置で測定された信号特性との関係が単調増加または単調減少である場合に、測定が妥当でないと判断し、単調増加および単調現象のいずれでもない場合に、測定が妥当であると判断しても良い。例えば、図15のステップS28において、中央制御部200は、各直線について、測定位置と測定結果との関係が単調増加または単調減少であるかを判断し、少なくとも1つの直線において単調増加または単調減少と判断された場合には、NGと判断する。具体的には、ある直線において、各測定点PMにおける測定結果(再生信号振幅)を測定点PMの位置の順番に従って、結果1、結果2、・・・、結果nと表した場合に、結果1<結果2<・・・<結果nとなる単調増加であるか、結果1>結果2>・・・>結果nとなる単調減少であるときには、NGと判断する。単調増加または単調減少の場合には、測定点PMの範囲(または結果1~結果nの範囲)に再生信号振幅の最大値が含まれず、2次近似処理で誤差が生じる恐れがある。なお、中央制御部200は、図15のステップS22の後に上記判断を行い、OKであればステップS23に進み、NGであればステップS21に戻って測定点を追加して測定しなおしても良い。
 また例えば、中央制御部200は、ステップS23における2次近似処理の結果から、2次近似曲線のピーク位置(再生信号振幅が最大となる位置)を求め、ピーク位置が測定点PMの範囲に含まれていない場合に、NGと判断しても良い。この場合、中央制御部200は、図15のステップS28で上記判断を行っても良いし、ステップS23の後に上記判断を行い、OKであればステップS24に進み、NGであればステップS21に戻って測定点を追加して測定しなおしても良い。
 また例えば、球面収差補正量およびフォーカスバランス値に対する再生信号振幅の等高線の分布を調べておき、等高線を略楕円とみなした場合における楕円の長軸と短軸との比率を予め求めておき、中央制御部200は、ステップS25で算出された楕円式から長軸と短軸との比率を求め、2つの比率を比較し、その差が所定以上となった場合に、NGと判断しても良い。この判断は、ステップS28で行われても良いし、ステップS25の後に行われても良い。
実施の形態3.
 以下、実施の形態3に係る光情報処理装置および光情報処理方法について説明する。実施の形態3に係る光情報処理装置は、上記実施の形態1に係る光情報処理装置に対し、調整処理において異なっており、その他の部分については同様である。以下の説明では、実施の形態1と同様の部分については説明を省略または簡略化し、実施の形態1と同一または対応する要素については同一の符号を付す。
 図17は、図4の球面収差補正量およびフォーカスバランス値に対する再生信号振幅の分布に、本実施の形態の調整方法における測定点や楕円中心点などを追加で示したものである。以下、図17を適宜参照しながら、本実施の形態の調整処理について説明する。
 本実施の形態では、上記少なくとも3つの直線は、フォーカス調整値の座標軸(y軸)に平行な直線(以下、「フォーカス軸直線」と称す)と、フォーカス軸直線とは異なる少なくとも2つの直線(以下、「残直線」と称す)とを含む。各残直線は、例えば、球面収差補正量の座標軸(x軸)とフォーカス調整値の座標軸(y軸)とに対して傾いた直線である。図17には、フォーカス軸直線としての直線L1と、残直線としての直線L2および直線L3が示されている。直線L2は、x軸に平行な直線である。直線L3は、x軸およびy軸に対して傾きを持ち、xy平面における信号特性の等高線を楕円とみなした場合の楕円の長軸と略平行な直線である。
 中央制御部200は、フォーカス軸直線上の少なくとも3点の測定位置において再生信号の信号特性を測定した後、球面収差補正量を順次変更し、球面収差補正量を変更する毎に、変更後の球面収差補正量における各残直線上の測定位置において再生信号の信号特性を測定することにより、少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において再生信号の信号特性を測定する。例えば、図17に示すように、直線L1上の4点の測定点PM0,PM1,PM2,PM3において信号特性を測定した後、球面収差補正量を変更し、変更後の球面収差補正量における直線L2,L3上の測定点PM4,PM5で信号特性を測定し、さらに球面収差補正量を変更し、変更後の球面収差補正量における直線L2,L3上の測定点PM6,PM7で信号特性を測定する。図17において、破線矢印は測定順序を示す。一例では、中央制御部200は、以下のように構成される。
 中央制御部200は、フォーカス軸直線上の少なくとも3点の測定位置のうちのいずれかの測定位置を通るように各残直線を設定する。好適な一態様では、中央制御部200は、フォーカス軸直線について、測定位置と測定位置で測定された信号特性との関係を2次以上の多項式で近似した近似結果から、信号特性が極値となる位置を極値位置として求める。そして、フォーカス軸直線上の少なくとも3点の測定位置のうち、極値位置の近傍の測定位置を通過するように各残直線を設定する。極値位置の近傍の測定位置は、例えば、極値位置に最も近い測定位置である。図17の例では、極値位置として、直線L1上で再生信号振幅が最大となる最大点PMp1(黒四角印)が示されており、直線L2およびL3は、直線L1上の測定点のうち最大点PMp1に最も近い測定点PM2を通るように設定されている。ただし、極値位置の近傍の測定位置は、極値位置に最も近い測定位置に限られず、極値位置に隣接する測定位置などでもよい。また、少なくとも2つの残直線は、図17のように互いに同じ測定位置を通過するように設定されてもよいし、図12(a)のように互いに異なる測定位置を通過するように設定されてもよい。少なくとも2つの残直線が互いに異なる測定位置を通過する場合には、図12(a)のように残直線同士の交点に測定位置を設定することにより、測定位置の点数を少なく抑えることができる。
 また、中央制御部200は、各直線について、測定位置と測定位置で測定された信号特性との関係を2次以上の多項式で近似したときに信号特性が極値となる位置が、測定位置の範囲内に含まれるまで、測定位置の範囲を拡張するように測定位置を変更しながら信号特性の測定を行う。ここで、測定位置の範囲は、具体的には、測定位置の球面収差補正量またはフォーカス調整値の最小値と最大値との間の範囲である。
 また、中央制御部200は、少なくとも1つの直線について、少なくとも2点の測定位置で信号特性を測定した後、当該少なくとも2点の測定位置のうち両端の測定位置における信号特性を比較し、両端の測定位置のうち信号特性が良好な一方の測定位置から他方の測定位置と反対方向に離れた位置を、次の測定位置に決定する。ここで、信号特性が良好とは、例えば、信号特性が再生信号振幅の場合には信号特性が大きいことを、信号特性がi-MLSE値の場合には信号特性が小さいことを意味する。
 さらに、本実施の形態では、中央制御部200は、楕円近似を行った場合に、当該楕円近似の結果が楕円を示すか否かの判断を行う。そして、上記判断において楕円を示さないと判断された場合には、信号特性のレベルを変更して少なくとも5つの推定位置を求め、当該少なくとも5つの推定位置を使用して楕円近似を行った後、再び上記判断を行う。そして、上記判断において楕円を示すと判断された場合には、楕円を示す楕円近似の結果から楕円の中心位置を求め、当該楕円の中心位置に基づいて球面収差補正量およびフォーカス調整値を決定する。
 あるいは、中央制御部200は、信号特性の複数のレベルの各々において、少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置を楕円近似し、当該楕円近似の結果と少なくとも5つの推定位置との誤差量を求め、複数のレベルに対応する複数の楕円近似の結果のうち、誤差量が最も小さい楕円近似の結果から、楕円の中心位置を求め、当該楕円の中心位置に基づいて球面収差補正量およびフォーカス調整値を決定してもよい。
 図18は、本実施の形態3における調整処理を示すフローチャートである。図18の調整処理は、例えば、図13のステップS13において図14の調整処理の代わりに実行される。以下、図17および図18を参照して、本実施の形態における球面収差補正量およびフォーカスバランス値の調整方法について説明する。
 ステップS20において、実施の形態1と同様に、中央制御部200は、球面収差補正量およびフォーカスバランス値を調整するための調整用領域へ光ヘッド300を移動させ、光ディスク500の調整用領域で信号を再生できるようにする。
 次に、ステップS40において、中央制御部200は、球面収差補正量およびフォーカスバランス値を、予め定められた直線L1上の初期測定点PM0(図17の白四角印)に対応する値に設定する。
 次に、ステップS41において、中央制御部200は、設定された球面収差補正量およびフォーカスバランス値により、再生信号振幅を測定する。ステップS42では、中央制御部200は、測定済みの測定点が3点以上か否かを判断する。
 ステップS42で測定済みの測定点が3点より少ないと判断された場合(NOの場合)、中央制御部200は、ステップS43に進み、次に測定すべきフォーカスバランス値を設定する。ここで、球面収差補正量は、初期測定点PM0から変更されない。すなわち、ステップS43の処理は、図17において直線L1上で測定点を変更し、次の測定点を決定することに相当する。その後、中央制御部200は、ステップS41に戻り、ステップS43で変更されたフォーカスバランス値における再生信号振幅を測定し、ステップS42に進む。
 ステップS42で測定済みの測定点が3点以上と判断された場合(YESの場合)、処理がステップS44に進む。したがって、ステップS42の判断がYESとなるまで、ステップS43、S41、およびS42の処理が繰り返し実施され、ステップS42の判断がYESになると、処理がステップS44に進む。
 ステップS44では、中央制御部200は、測定済みの測定点と再生信号振幅との関係を2次近似し、その結果に基づき、再生信号振幅が最大となる直線L1上の点を最大点PMp1として求める。図17において、最大点PMp1は、直線L1上の黒四角印で示されている。なお、ステップS44では、2次近似の代わりに3次以上の近似を行って最大点PMp1を求めてもよい。この場合、近似の次数に応じてステップS42の判断において閾値となる点数を適当に設定する必要があり、具体的には、近似するのに最低限必要な点数以上に設定する必要がある。なお、ステップS42の判断における閾値となる点数を、近似するのに最低限必要な点数よりも大きく設定することで、上記近似の精度を向上することができる。
 次に、ステップS45において、中央制御部200は、最大点PMp1が測定済みの測定点の範囲内にあるか否かを判断する。具体的には、最大点PMp1のフォーカスバランス値が、測定済みの測定点のフォーカスバランス値の最小値と最大値との間にあるか否かを判断する。
 ステップS45で最大点PMp1が測定済み範囲外にあると判断された場合(NOの場合)、中央制御部200は、ステップS43に戻り、次に測定すべきフォーカスバランス値を設定し、ステップS41に戻る。
 ステップS45で最大点PMp1が測定済み範囲内にあると判断された場合(YESの場合)、処理がステップS50に進む。したがって、ステップS45の判断がYESとなるまで、ステップS43、S41、S42、およびS44の処理が繰り返し実施され、ステップS45の判断がYESになると、処理がステップS50に進む。
 図17には、直線L1に沿って、測定点PM0,PM1,PM2,PM3の順に、フォーカスバランス値を小さくしながら再生信号振幅の測定が行われ、測定点の点数が4点となったときに、最大点PMp1が測定範囲内となった場合が示されている。
 ここで、フォーカスバランス値の設定においては、フォーカスバランス値を一方方向に小さく、または大きくしていくのみではなく、できるだけ少ない測定点数で再生信号振幅の最大点が測定点の範囲に含まれるように、測定済みの測定点の測定結果を利用して効率良くフォーカスバランス値を設定することが望ましい。例えば、測定済みの測定点のうち、フォーカスバランス値が最大の測定点における再生信号振幅と、フォーカスバランス値が最小の測定点における再生信号振幅とを比較し、再生信号振幅が大きい方の測定点を基準として、測定点の範囲を拡張するように次の測定点のフォーカスバランス値を設定する。例えば、フォーカスバランス値が最大の測定点を基準とする場合は、当該基準の測定点のフォーカスバランス値に所定ステップを加算して次のフォーカスバランス値を設定し、フォーカスバランス値が最小の測定点を基準とする場合には、当該基準の測定点のフォーカスバランス値から所定ステップを減算して次のフォーカスバランス値を設定する。
 また、初期測定点PM0の次の測定点については、初期測定点PM0と、光情報処理装置における球面収差補正量およびフォーカスバランス値に対する再生信号振幅の特性とに基づいて、次のように設定されてもよい。例えば、再生信号振幅が最良となる点のフォーカスバランス値(すなわち最適なフォーカスバランス値)が、ある基準値(例えばゼロ)付近となることが多い光情報処理装置においては、初期測定点PM0のフォーカスバランス値が基準値より大きい場合は、当該フォーカスバランス値から所定ステップを減算して次の測定点のフォーカスバランス値を設定し、初期測定点PM0のフォーカスバランス値が基準値より小さい場合には、当該フォーカスバランス値に所定ステップを加算して次の測定点のフォーカスバランス値を設定する。これにより、再生信号振幅が大きくなる方向に次の測定点を設定できる可能性が高くなる。上記構成では、例えば、光情報処理装置における最適なフォーカスバランス値を予め複数のディスクや複数の光情報処理装置でばらつきを含めて調べておき、例えば、その平均的なフォーカスバランス値を基準値として光情報処理装置に設定しておくことができる。
 ステップS50では、中央制御部200は、直線L2の基準点および直線L3の基準点を、直線L1上の測定点のうち最大点PMp1に最も近い測定点(図17の例では測定点PM2)に設定する。直線L2の基準点は直線L2が通る点であり、直線L3の基準点は直線L3が通る点である。したがって、ステップS50では、直線L2および直線L3が設定される。なお、基準点とする測定点は、最大点PMp1に近ければよく、必ずしも最も近い必要はない。また、直線L2の基準点と直線L3の基準点とは、互いに異なる測定点に設定されてもよい。例えば、図17において、最大点PMp1に最も近い測定点PM2が直線L3の基準点とされ、最大点PMp2に2番目に近い測定点PM3が直線L2の基準点とされてもよい。
 ステップS51では、中央制御部200は、次の球面収差補正量を設定する。ここで、ステップS51が初めて実施される場合(図17の例では、測定点PM0からPM3までの測定が終わった後に、次の測定点の球面収差補正量がステップS51で設定される場合)、中央制御部200は、ステップS50で設定された基準点のフォーカスバランス値に基づいて、次の球面収差補正量を決定する。例えば、再生信号特性の分布が図17のようにy軸に対して右に傾いており、再生信号振幅が最良となる点のフォーカスバランス値(すなわち最適なフォーカスバランス値)が、ある基準値(例えばゼロ)付近となることが多い光情報処理装置においては、基準点のフォーカスバランス値が基準値より大きい場合は、基準点の球面収差補正量から所定ステップを減算して次の球面収差補正量を決定し、基準点のフォーカスバランス値が基準値より小さい場合には、基準点の球面収差補正量に所定ステップを加算して次の球面収差補正量を決定する。これにより、特に直線L3上において再生信号振幅が大きくなる方向に次の測定点を設定できる可能性が高くなる。上記構成では、例えば、光情報処理装置における最適なフォーカスバランス値を予め複数のディスクや複数の光情報処理装置でばらつきを含めて調べておき、例えば、その平均的なフォーカスバランス値を基準値として光情報処理装置に設定しておくことができる。なお、再生信号特性の分布がy軸に対して左に傾いている光情報処理装置においては、上記処理と逆の処理を行うようにすればよい。また、ステップS51の処理は、上記に限定されず、例えば、1回目のステップS51では基準点によらず予め設定された方向へ所定ステップだけ球面収差補正量を変更し、2回目以降のステップS51において、前回の球面収差補正量の変更によって再生信号振幅が大きくなったか否かに基づいて、次の測定点の球面収差補正量を決定してもよい。
 次に、ステップS52では、中央制御部200は、ステップS51で決定された球面収差補正量に対応する残直線L2およびL3上の点を、それぞれ残直線L2およびL3上の次の測定点として決定する。図17の例では、残直線L2およびL3上の次の測定点として、それぞれ、1回目のステップS52においては測定点PM4およびPM5が決定され、2回目のステップS52においては測定点PM6およびPM7が決定される。
 次に、ステップS53では、中央制御部200は、ステップS52で決定された直線L2およびL3のそれぞれの測定点において、再生信号振幅を測定する。ステップS54では、中央制御部200は、各直線上の測定済みの測定点が3点以上か否かを判断する。
 ステップS54で測定済みの測定点が3点より少ないと判断された場合(NOの場合)、中央制御部200は、ステップS51に戻り、次に測定すべき球面収差補正量を決定した後、次の測定点での再生信号振幅の測定を行い(ステップS52およびS53)、ステップS54に進む。
 ステップS54で測定済みの測定点が3点以上と判断された場合(YESの場合)、処理がステップS55に進む。したがって、ステップS54の判断がYESとなるまで、ステップS51からS54までの処理が繰り返し実施され、ステップS54の判断がYESとなると、処理がステップS55に進む。
 なお、本例では、ステップS52およびS53において、直線L2に対する処理と直線L3に対する処理とを並行して行うようになっているが、まず直線L2に対するステップS52およびS53の処理を行い、次に直線L3に対するステップS52およびS53の処理を行って、ステップS54に進んでもよい。また、直線L2および直線L3の設定によっては、直線L2と直線L3とで測定点が同一となる場合がある。この場合には、直線L2およびL3の測定点を別々の測定点として処理するのではなく、共通の測定点としてステップS52およびS53の処理を行うようにすればよい。
 ステップS55では、中央制御部200は、直線L2およびL3の各々について、測定済みの測定点と再生信号振幅との関係を2次近似し、その結果に基づき、再生信号振幅が最大となる当該直線上の点を最大点として求める。これにより、中央制御部200は、直線L2上の最大点PMp2と、直線L3上の最大点PMp3とを求める。図17において、最大点PMp2およびPMp3は、それぞれ直線L2およびL3上の黒四角印で示されている。なお、ステップS55では、ステップS44と同様に、2次近似の代わりに3次以上の近似を行って最大点を求めてもよい。この場合、近似の次数に応じてステップS54の判断において閾値となる点数を適当に設定する必要があり、具体的には、近似するのに最低限必要な点数以上に設定する必要がある。また、近似の次数は、全ての直線で同一でもよいし、異なってもよい。なお、ステップS54の判断における閾値となる点数を、近似するのに最低限必要な点数よりも大きく設定することで、上記近似の精度を向上することができる。また、ステップS54の判断における閾値となる点数は、直線L2と直線L3とで同一でもよいし、異なってもよい。
 次に、ステップS56において、中央制御部200は、直線L2およびL3の各々について、ステップS55で求められた最大点が測定済みの測定点の範囲内にあるか否かを判断する。具体的には、直線L2について、最大点PMp2の球面収差補正量が、測定済みの測定点の球面収差補正量の最小値と最大値との間にあるか否かを判断し、直線L3について、最大点PMp3の球面収差補正量(またはフォーカスバランス値)が、測定済みの測定点の球面収差補正量(またはフォーカスバランス値)の最小値と最大値との間にあるか否かを判断する。
 ステップS56において、いずれかの直線の最大点が測定済み範囲外にあると判断された場合(NOの場合)、中央制御部200は、ステップS51に戻り、ステップS51~S56の処理を再度行う。この場合の処理は、直線L2およびL3のうち、最大点が測定済み範囲外にあると判断された直線に対してのみ実行されればよい。
 ステップS56において、いずれの直線の最大点も測定済み範囲内にあると判断された場合(YESの場合)、処理がステップS24に進む。したがって、ステップS56の判断がYESとなるまで、ステップS51~S56の処理が繰り返し実施され、ステップS56の判断がYESになると、処理がステップS24に進む。
 ステップS24では、中央制御部200は、ステップS44およびS55の近似結果に基づき、実施の形態1と同様に、直線L1、L2、L3の各々について、再生信号振幅が推定用レベルZEとなる位置を推定点PEとして算出する。
 次に、ステップS25において、中央制御部200は、実施の形態1と同様に、ステップS24で求められた推定点PEから楕円式(または楕円式を構成する楕円係数)を算出する。
 次に、ステップS60において、中央制御部200は、ステップS25で算出された楕円式(または楕円係数)が妥当かどうかを判断する。楕円式(式(3))は、係数の条件によって、楕円(円を含む)だけではなく、双曲線や放物線、平行な2直線等の楕円以外の状態にもなり得る。そこで、ステップ60では、算出された楕円式(または楕円係数)が楕円を表すかどうかを判断する。具体的には、楕円係数を用いて下記式(11)により判定値Tを求め、T<0の場合に楕円であると判断し、それ以外の場合には楕円でないと判断する。
T=B-4・A・C …(11)
 ステップS60で楕円式が楕円を表さないと判断された場合(NOの場合)、中央制御部200は、ステップS61に進み、推定用レベルZEを変更した後、変更後の推定用レベルZEに基づき、推定点PEの算出(ステップS24)、楕円式の算出(ステップS25)、および楕円式が妥当かどうかの判定(ステップS60)を行う。
 ステップS60で楕円式が楕円を表すと判断された場合(YESの場合)、処理がステップS26に進む。したがって、ステップS60の判断がYESとなるまで、ステップS61、S24、S25、およびS60の処理が繰り返し実施され、ステップS60の判断がYESとなると、処理がステップS26に進む。
 なお、ステップS60では、楕円式が楕円を表すか否かの判断に加えて、楕円式から得られる楕円と各々の推定点PEとの誤差を求め、当該誤差から楕円式と推定点PEとの一致度合いを示す値(例えば誤差の合計または平均値)を算出し、当該値が所定値以下であるか否かを判断し、所定値以下である場合に妥当と判断し、そうでない場合には妥当でないと判断してもよい。また、ステップS24において複数の推定用レベルZEを設定し、各々の推定用レベルZEに対応する推定点PEを算出し、ステップS25において各々の推定用レベルZEに対応する楕円係数を求め、複数の推定用レベルZEに対応する楕円係数のうち最も推定点PEとの誤差が小さい楕円係数を、楕円中心の算出に用いる楕円係数として決定し、ステップS26に進んでもよい。
 ステップS26では、中央制御部200は、実施の形態1と同様に、ステップS25で求めた楕円式(または楕円係数)から、楕円中心PC(xc,yc)を算出する。そして、ステップS27において、中央制御部200は、実施の形態1と同様に、ステップS26で求めた楕円中心PCに、球面収差補正量およびフォーカスバランス値を設定する。
 以上説明した本実施の形態によれば、下記(11)~(18)の効果が得られ得る。
 (11)光情報処理装置は、フォーカス軸直線上の少なくとも3点の測定位置において信号特性を測定した後に、球面収差補正量を順次変更し、球面収差補正量を変更する毎に、変更後の球面収差補正量に対応する各残直線上の測定位置において信号特性を測定する。本態様によれば、設定変更に時間を要する球面収差補正量の変更回数を少なく抑えることができ、調整に要する時間を短く抑えることができる。
 (12)各残直線は、フォーカス軸直線上の少なくとも3点の測定位置のうちのいずれかを通る。これにより、残直線においてフォーカス軸直線上の測定位置の測定結果を利用することができ、測定回数を少なく抑えることができる。
 (13)各残直線は、フォーカス軸直線上の少なくとも3点の測定位置のうち、フォーカス軸直線上の極値位置の近傍の測定位置を通過する。本態様によれば、楕円の長軸に略平行な残直線を設定する場合に、信号特性が最良となる点の近傍を通るように残直線を設定することができ、楕円を精度良く近似することができる。
 (14)光情報処理装置は、測定済みの測定位置での測定結果に応じて、次の測定位置を設定する。本態様によれば、不要な測定位置での測定を避け、有効な測定位置での測定を行うことができ、全ての測定位置が予め設定されている場合と比較して、効率良く球面収差補正量およびフォーカス調整値の調整を行うことができる。
 (15)光情報処理装置は、各直線について、測定位置と信号特性との関係を2次以上の多項式で近似したときに信号特性が極値となる位置が、測定位置の範囲内に含まれるまで、測定位置の範囲を拡張するように測定位置を変更しながら信号特性の測定を行う。本態様によれば、より正確な推定位置を求めることができ、より適切な調整を行うことができる。
 (16)光情報処理装置は、少なくとも1つの直線について、測定済みの少なくとも2点の測定位置のうち両端の測定位置における信号特性を比較し、当該両端の測定位置のうち信号特性が良好な一方の測定位置から他方の測定位置と反対方向に離れた位置を、次の測定位置に決定する。本態様によれば、効率良く測定位置を設定することができる。
 (17)光情報処理装置は、楕円近似の結果が楕円を示すか否かを判断し、楕円を示さないと判断された場合には、信号特性のレベル(具体的には推定用レベルZE)を変更して楕円近似を再度行う。本態様によれば、楕円を示さない不適切な近似結果を用いて調整が行われることを防ぐことができる。
 (18)光情報処理装置は、信号特性の複数のレベル(具体的には推定用レベルZE)の各々において、推定位置を求めて楕円近似を行い、当該楕円近似の結果と推定位置との誤差量を求め、誤差量が最も小さい楕円近似の結果から楕円の中心位置を求める。本態様によれば、1つのレベルに対応する1つの楕円近似の結果から楕円の中心位置を求める場合と比較して、より正確な楕円の中心位置を求めることができる。
 なお、図18の調整処理において、例えば、直線L2および直線L3における測定点数が所定数以上となった場合、または初期測定点PM0の球面収差補正量とステップS55で求められる最大点の球面収差補正量との差が所定量以上となった場合に、中央制御部200は、フォーカスバランス値の座標軸に平行な新たな直線L4を設定し、当該直線L4についてステップS40からS45と同様の処理を行った後、直線L1の結果の代わりに直線L4の結果を用いて、ステップS24以降の処理を行ってもよい。この場合、ステップS51からS56において測定済みの球面収差補正量を直線L4の球面収差補正量として設定し、他の直線上の測定済みの測定点を直線L4上の測定点として設定することにより、追加の測定点数を少なくすることができる。なお、このように新たな直線L4を設定するのは、直線L1の球面収差補正量が最適値から大きく離れている場合に、楕円近似の精度が悪くなるのを避けるためであり、直線L4上の測定点の測定結果を代わりに用いることで、調整の精度を向上させることができる。
 また、直線および測定点の配置は、例えば図12に示される配置など、図17と異なる配置であってもよい。
実施の形態4.
 以下、実施の形態4に係る光情報処理装置および光情報処理方法について説明する。以下の説明では、実施の形態1と同様の部分については説明を省略または簡略化し、実施の形態1と同一または対応する要素については同一の符号を付す。
 本実施の形態では、光情報処理装置100は、光ディスク500に対して情報の記録を行う光記録装置であり、記録時に用いられる記録用のフォーカス調整値(ここではフォーカスバランス値)をさらに調整する。
 具体的には、光情報処理装置100は、図1に示される構成に加え、例えば、上位コントローラからのユーザーデータを光ディスク500へ記録するためのデータにエンコードするデータエンコーダや、光ディスク500へ記録する際のレーザの発光制御を行うライトストラテジ制御に係わる制御部など、光ディスク500への記録を行うのに必要な制御部を含む。このような記録用の制御部は、中央制御部200に含まれてもよい。
 一般的に光記録装置は、データを記録する場合に、光ヘッドの受光素子の光信号を電気信号に変換する際のゲインを、比較的高い再生用のゲインから、比較的低い記録用のゲインに切り替える。これは、再生時に用いられる再生パワー(光パワー)と比較して、記録時に用いられる記録パワー(光パワー)が高いため、再生用のゲインのままでは、受光素子の信号出力が飽和し、受光素子の応答性が悪くなり、記録時にサンプリングされて検出されるサーボ信号にも悪影響が及ぶためである。
 受光素子のゲインが変わることで、最適なフォーカスバランス値も変わるため、データを記録する場合には、再生時と異なるフォーカスバランス値を設定することが望ましく、一般的に光記録装置では、再生用のフォーカスバランス値と、記録用のフォーカスバランス値との2種類の値を再生時と記録時とでそれぞれ切り替えて使用する場合が多い。
 本実施の形態においても、光情報処理装置100は、光ヘッド300の受光素子370のゲインとして、再生時には比較的高い再生用のゲインを用い、記録時には比較的低い記録用のゲインを用いる。また、光情報処理装置100は、再生時には再生用のフォーカスバランス値を用い、記録時には記録用のフォーカスバランス値を用いる。
 本実施の形態に係る光情報処理装置100は、再生用の球面収差補正量とフォーカスバランス値を実施の形態1~3と同様に最適に調整した後、さらに記録用のフォーカスバランス値を最適に調整するように構成される。
 ここで、記録時のフォーカスバランス値(以下、「記録フォーカスバランス値」と称す)と再生信号特性との関係について説明する。ここでは、BD-REの3層ディスクの第2層について、記録フォーカスバランス値を変化させながら記録し、最適な再生用のフォーカスバランス値で再生信号特性を実測した結果を例にとって説明する。
 図19(a)は、記録フォーカスバランス値と再生信号振幅との関係を示す図である。図19(b)は、記録フォーカスバランス値と再生信号特性(変調度およびアシンメトリ)との関係を示す図である。図19(a)および(b)の測定では、記録フォーカスバランス値のみを変化させ、再生信号特性(振幅、変調度、アシンメトリ)を測定する際は、最適な再生用のフォーカスバランス値(全ての測定で同一の値)を用いている。図19(a)において、丸印は再生信号振幅の測定結果(実測値)を示し、実線は丸印の実測値を2次近似で近似したときの近似曲線である。図19(b)において、丸印および四角印は、それぞれ変調度およびアシンメトリの測定結果(実測値)を示し、実線および破線は、それぞれ丸印および四角印の実測値を2次近似で近似したときの近似曲線である。図19(a)および(b)より、再生信号振幅、変調度、およびアシンメトリのいずれについても、記録フォーカスバランス値との関係を2次式により近似できていることが分かる。
 なお、以上の説明では、BD-REの第2層についての実測結果を例にとって説明したが、他の層または他の種類のディスクでも、曲線の形状が異なるものの、上記と同様の結果が得られる。
 本実施の形態では、調整部202は、記録用のフォーカス調整値(ここではフォーカスバランス値)を調整する記録調整手段として機能する。具体的には、調整部202は、記録フォーカスバランス値を変更しながら固定の記録パワーを用いて光ディスク500へのテスト記録を行い、当該テスト記録により記録された信号を固定のフォーカスバランス値(例えば再生用のフォーカスバランス値)で再生して再生信号の信号特性を測定し、記録フォーカスバランス値と測定された信号特性との関係を2次以上の多項式で近似し、当該近似の結果から信号特性が最良となる記録フォーカスバランス値を求め、当該記録フォーカスバランス値を記録用のフォーカスバランス値として決定する。
 図20は、本実施の形態4に係る光情報処理装置100の記録動作の手順の一例を示すフローチャートである。以下、図20を参照して、光情報処理装置100の記録動作の手順を説明する。なお、図20のステップS10からS14の処理は概して図13と同様であり、図20のステップS14の後の処理が、記録に関する処理となっている点で図13と異なる。
 ステップS14で光ディスク500から光ディスクの固有情報や記録再生動作を制御するための制御情報等が読み出された後、中央制御部200は、ステップS70で記録に関する条件(ライトストラテジや記録パワー調整などの条件)を設定し、ステップS71で記録指示があるまで待機する。中央制御部200は、ステップS71で記録指示があったことを検出すると、ステップS72において、記録時に用いる記録用のフォーカスバランス値の調整を行う。
 次に、ステップS73において、中央制御部200は、光ディスク500のテスト記録領域で試し書きをすることにより、記録パワーを最適なパワーに調整する。ここで、ステップS73で記録パワーの調整を行う際には、ステップS72で調整した記録用のフォーカスバランス値を用いる。
 次に、ステップS74において、ステップS72およびS73で調整された記録用のフォーカスバランス値および記録パワーを用いて、光ディスク500に対するデータ記録を開始する。
 図21は、図20のステップS72の処理を示すフローチャートである。以下、図21を参照して、ステップS72の記録用のフォーカスバランス値の調整について説明する。
 まず、ステップS80において、中央制御部200は、スレッドモーター制御部150を介してスレッドモーター151を制御し、記録用のフォーカスバランス値を調整するためのテスト記録領域へ光ヘッド300を移動させる。
 ここで、テスト記録領域は、光ディスク500において、記録パワー等の最適化を行うためのテスト記録を行うことができる領域であり、光ディスクの内周または外周にデータ領域とは別に用意された領域である。
 次に、ステップS81で、中央制御部200は、記録フォーカスバランス値を初期値に設定する。ここで、初期値としては、例えば、ステップS13において調整された再生用のフォーカスバランス値が用いられる。ただし、初期値は、上記調整された再生用のフォーカスバランス値に限られず、予め設定された所定のフォーカスバランス値であってもよい。また、予め記録用のフォーカスバランス値と再生用のフォーカスバランス値との関係(または差)などを調べておき、ステップS13において調整された再生用のフォーカスバランス値に対して、上記記録用と再生用との関係分(または差分)をオフセットさせた値を初期値として用いてもよい。なお、球面収差補正量については、例えば、ステップS13で調整された球面収差補正量が固定的に用いられる。
 次に、ステップS82において、中央制御部200は、設定された記録フォーカスバランス値を用いてテスト記録を行う。このテスト記録では、固定の記録パワーが用いられる。つまり、記録用のフォーカスバランス値の調整処理(ステップS72の処理)の間に行われるテスト記録は、全て同一の記録パワーを用いて行われる。なお、固定の記録パワーは、記録後の信号を再生した場合に再生信号振幅を検出できるレベルであれば良く、必ずしも最適記録パワーである必要はない。例えば、ステップS14で光ディスク500から読み出された制御情報に記録されている記録パワーを固定の記録パワーとして用いてもよい。また、固定の記録パワーを設定する前に、一度記録パワーの最適調整を行い、調整された最適記録パワーを固定の記録パワーとして用いてもよい。また、テスト記録を行うサイズは、少なくとも再生信号振幅を測定可能なサイズとなっていればよく、テスト記録領域の使用量を抑える観点より、可能な限り小さいサイズであることが望ましい。
 次に、ステップS83において、中央制御部200は、ステップS82でテスト記録された信号を再生して、再生信号振幅を測定する。この測定では、固定のフォーカスバランス値を用いて再生が行われる。つまり、記録用のフォーカスバランス値の調整処理(ステップS72の処理)の間に行われる再生信号振幅の測定では、全て同一のフォーカスバランス値を用いて再生が行われる。固定のフォーカスバランス値としては、例えば、再生用のフォーカスバランス値(ステップS13で調整されたフォーカスバランス値)が用いられるが、これに限られない。
 ステップS84では、中央制御部200は、測定済みの測定点が3点以上か否かを判断する。
 ステップS84で測定済みの測定点が3点より少ないと判断された場合(NOの場合)、中央制御部200は、ステップS85に進み、次に測定すべき記録フォーカスバランス値を設定する。その後、ステップS82に戻り、ステップS85で設定された記録フォーカスバランス値によるテスト記録を行い、テスト記録された信号の再生信号振幅を測定し(ステップS83)、ステップS84に進む。
 ここで、記録フォーカスバランス値の設定においては、記録フォーカスバランス値を一方方向に小さく、または大きくしていくのみではなく、できるだけ少ない測定点数で再生信号振幅の最大点が測定点の範囲に含まれるように、測定済みの測定点の測定結果を利用して効率良く記録フォーカスバランス値を設定することが望ましい。例えば、測定済みの記録フォーカスバランス値のうち、最大の記録フォーカスバランス値における再生信号振幅と、最小の記録フォーカスバランス値における再生信号振幅とを比較し、再生信号振幅が大きい方の記録フォーカスバランス値を基準として、測定点の範囲を拡張するように次の測定点の記録フォーカスバランス値を設定する。例えば、最大の記録フォーカスバランス値を基準とする場合は、当該基準に所定ステップを加算して次の記録フォーカスバランス値を設定し、最小の記録フォーカスバランス値を基準とする場合には、当該基準から所定ステップを減算して次の記録フォーカスバランス値を設定する。
 また、初期の記録フォーカスバランス値の次の記録フォーカスバランス値については、初期の記録フォーカスバランス値と、光情報処理装置における球面収差補正量および記録フォーカスバランス値に対する再生信号振幅の特性とに基づいて、次のように設定されてもよい。例えば、再生信号振幅が最良となる記録フォーカスバランス値(すなわち最適な記録フォーカスバランス値)が、ある基準値(例えばゼロ)付近となることが多い光情報処理装置においては、初期の記録フォーカスバランス値が基準値より大きい場合は、当該記録フォーカスバランス値から所定ステップを減算して次の記録フォーカスバランス値を設定し、初期の記録フォーカスバランス値が基準値より小さい場合には、当該記録フォーカスバランス値に所定ステップを加算して次の記録フォーカスバランス値を設定する。これにより、再生信号振幅が大きくなる方向に次の測定点を設定できる可能性が高くなる。上記構成においては、例えば、光情報処理装置における最適な記録フォーカスバランス値を予め複数のディスクや複数の光情報処理装置でばらつきを含めて調べておき、例えば、その平均的な記録フォーカスバランス値を基準値として光情報処理装置に設定しておくことができる。
 ステップS84で測定済みの測定点が3点以上と判断された場合(YESの場合)、処理はステップS86に進む。したがって、ステップS84の判断がYESとなるまで、ステップS85、S82、S83、およびS84の処理が繰り返し実施され、ステップS84の判断がYESになると、処理がステップS86に進む。
 ステップS86では、中央制御部200は、測定済みの記録フォーカスバランス値と再生信号振幅との関係を2次近似し、その結果に基づき、再生信号振幅が最大となる最大記録フォーカスバランス値FMaxを求める。なお、ステップS86では、2次近似の代わりに3次以上の近似を行って最大記録フォーカスバランス値FMaxを求めてもよい。この場合、近似の次数に応じてステップS84の判断において閾値となる点数を適当に設定する必要があり、具体的には、近似するのに最低限必要な点数以上に設定する必要がある。なお、ステップS84の判断における閾値となる点数を、近似するのに最低限必要な点数よりも大きく設定することで、上記近似の精度を向上することができる。
 次に、ステップS87において、中央制御部200は、最大記録フォーカスバランス値FMaxが測定済みの記録フォーカスバランス値の範囲内にあるか否かを判断する。具体的には、最大記録フォーカスバランス値FMaxが、測定済みの記録フォーカスバランス値の最小値と最大値との間にあるか否かを判断する。
 ステップS87で最大記録フォーカスバランス値FMaxが測定済み範囲外にあると判断された場合(NOの場合)、中央制御部200は、ステップS85に戻り、次に測定すべき記録フォーカスバランス値を設定し、ステップS82に戻る。
 ステップS87で最大記録フォーカスバランス値FMaxが測定済み範囲内にあると判断された場合(YESの場合)、処理はステップS88に進む。したがって、ステップS87の判断がYESとなるまで、ステップS85、S82、S83、S84、S86、およびS87の処理が繰り返し実施され、ステップS87の判断がYESになると、処理がステップS88に進む。
 ステップS88では、中央制御部200は、最大記録フォーカスバランス値FMaxを記録用のフォーカスバランス値に設定して、記録用のフォーカスバランス値の調整を終了する。
 以上説明した本実施の形態によれば、球面収差補正量および再生用のフォーカスバランス値を調整した後、さらに記録用のフォーカスバランス値を調整するので、データの記録においても最適または適切なフォーカスバランス値を使用することができる。これにより、例えば、良好な記録品質を得ることができるとともに、記録時に必要な記録パワーを低く抑えることができる。
 なお、上記の説明では、再生信号振幅が最大となる記録フォーカスバランス値を求めているが、再生信号振幅の代わりに、変調度やアシンメトリなどの再生信号特性を測定し、再生信号特性が最大となる記録フォーカスバランス値を求めるようにしても良い。また、再生信号特性ではなく、再生信号品質(ジッターや、i-MLSE等)を求めて、再生信号品質が最良(または最小)となる記録フォーカスバランス値を求めるようにしても良い。
 また、上記の説明では、テスト記録を行う場合の記録パワーを固定の記録パワーとしているが、固定の記録パワーによるテスト記録の代わりに、複数の記録フォーカスバランス値の各々において、最適記録パワー調整を行って最適記録パワーを求めても良い。この場合、再生信号振幅が最大となる記録フォーカスバランス値を求めるのではなく、上記複数の記録フォーカスバランス値のうち、最適記録パワーが最小となる記録フォーカスバランス値を求めればよい。ここで、必ずしも最適記録パワーを用いる必要はなく、複数の記録フォーカスバランス値の各々において、例えば記録パワーと再生信号特性(変調度、アシンメトリ、振幅などのうちいずれか)との関係を測定することにより、同一の再生信号特性が得られる記録パワーを求めて、当該記録パワーが最小となる記録フォーカスバランス値を求めてもよい。
 また、上記の説明では、記録用の球面収差補正量およびフォーカスバランス値のうち、記録用のフォーカスバランス値のみを調整しているが、実施の形態1~3における再生用の球面収差補正量およびフォーカスバランス値の調整と同様に、記録用の球面収差補正量およびフォーカスバランス値の両方を調整してもよい。具体的には、実施の形態1~3と同様に、各測定点において再生信号の信号特性を測定し、測定結果を楕円近似し、楕円の中心を求めることで、記録用の球面収差補正量およびフォーカスバランス値を調整してもよい。この場合、信号特性の測定では、記録時の球面収差補正量とフォーカスバランス値とを変更して、各測定点において、テスト記録を行い、テスト記録された信号を再生して再生信号の信号特性を測定する。このとき、テスト記録された信号の再生においては、再生時の球面収差補正量およびフォーカスバランス値として、各測定点で共通の設定値(すなわち固定の値)が用いられる。
 なお、本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の態様で実施することができる。
 100 光情報処理装置、 110 ヘッドアンプ、 120 再生信号処理部、 121 信号品質測定部、 122 データデコーダ、 123 再生特性測定部、 130 FE信号生成部、 140 TE信号生成部、 141 TE信号特性測定部、 150 スレッドモータ制御部、 151 スレッドモータ、 160 球面収差補正部、 170 アクチュエータ制御部、 180 スピンドルモータ制御部、 181 スピンドルモータ、 200 中央制御部、 201 フォーカス調整部、 202 調整部、 210 CPU、 220 ROM、 230 RAM、 300 光ヘッド(光ピックアップ)、 310 半導体レーザ、 320 レーザ駆動回路、 330 コリメートレンズ、 340 ビームスプリッタ、 350 対物レンズ、 360 検出レンズ、 370 受光素子、 380 球面収差補正用レンズ、 390 アクチュエータ、 400 上位コントローラ、 500 光ディスク。

Claims (39)

  1.  光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光手段と、
     前記光ディスクに照射される光の球面収差を補正する球面収差補正手段と、
     前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整手段と、
     前記球面収差補正手段による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整手段と、
     を有することを特徴とする光情報処理装置。
  2.  前記少なくとも3つの直線は、前記フォーカス調整値の座標軸に平行なフォーカス軸直線と、前記フォーカス軸直線とは異なる少なくとも2つの残直線とを含み、
     前記調整手段は、前記フォーカス軸直線上の少なくとも3点の測定位置において前記信号特性を測定した後に、前記球面収差補正量を順次変更し、前記球面収差補正量を変更する毎に、変更後の球面収差補正量における前記各残直線上の測定位置において前記信号特性を測定することにより、前記少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記信号特性を測定することを特徴とする請求項1に記載の光情報処理装置。
  3.  前記各残直線は、前記フォーカス軸直線上の前記少なくとも3点の測定位置のうちのいずれかの測定位置を通過するように設定されることを特徴とする請求項2に記載の光情報処理装置。
  4.  前記フォーカス軸直線について、前記測定位置と前記測定位置で測定された信号特性との関係を2次以上の多項式で近似したときに前記信号特性が極値となる位置を極値位置としたとき、
     前記各残直線は、前記フォーカス軸直線上の前記少なくとも3点の測定位置のうち、前記極値位置の近傍の測定位置を通過するように設定されることを特徴とする請求項3に記載の光情報処理装置。
  5.  前記調整手段は、前記各直線について、前記測定位置と前記測定位置で測定された信号特性との関係を2次以上の多項式で近似したときに前記信号特性が極値となる位置が、前記測定位置の範囲内に含まれるまで、前記測定位置の範囲を拡張するように前記測定位置を変更しながら前記信号特性の測定を行うことを特徴とする請求項1から4のいずれか1項に記載の光情報処理装置。
  6.  前記少なくとも3つの直線は、前記球面収差補正量および前記フォーカス調整値の座標軸に対して傾きを持ち、前記平面における前記信号特性の等高線を楕円とみなした場合の楕円の長軸と略平行な直線を含むことを特徴とする請求項1から5のいずれか1項に記載の光情報処理装置。
  7.  前記調整手段は、前記少なくとも3つの直線のうち少なくとも1つの直線について、少なくとも2点の測定位置で前記信号特性を測定した後、前記少なくとも2点の測定位置のうち両端の測定位置における前記信号特性を比較し、前記両端の測定位置のうち前記信号特性が良好な一方の測定位置から他方の測定位置と反対方向に離れた位置を、次の測定位置に決定することを特徴とする請求項1から6のいずれか1項に記載の光情報処理装置。
  8.  前記調整手段は、前記少なくとも5つの推定位置を楕円近似し、当該楕円近似の結果から楕円の中心位置を求め、当該楕円の中心位置に基づいて前記球面収差補正量および前記フォーカス調整値を決定することを特徴とする請求項1から7のいずれか1項に記載の光情報処理装置。
  9.  前記調整手段は、前記各直線について、前記測定位置と前記測定位置で測定された信号特性との関係を2次以上の多項式で近似した近似結果から、前記信号特性が所定のレベルとなる前記平面上の位置を前記推定位置として求め、得られた推定位置のうち少なくとも5つを使用して前記楕円近似を行うことを特徴とする請求項8に記載の光情報処理装置。
  10.  前記調整手段は、
     前記楕円近似の結果が楕円を示すか否かの判断を行い、
     前記判断において楕円を示さないと判断された場合には、前記信号特性のレベルを変更して前記少なくとも5つの推定位置を求め、当該少なくとも5つの推定位置を使用して前記楕円近似を行った後、再び前記判断を行い、
     前記判断において楕円を示すと判断された場合に、前記楕円近似の結果から前記楕円の中心位置を求めることを特徴とする請求項8または9に記載の光情報処理装置。
  11.  前記調整手段は、
     前記信号特性の複数のレベルの各々において、前記少なくとも5つの推定位置を求め、当該少なくとも5つの推定位置を楕円近似し、当該楕円近似の結果と前記少なくとも5つの推定位置との誤差量を求め、
     前記複数のレベルに対応する複数の楕円近似の結果のうち、前記誤差量が最も小さい楕円近似の結果から、前記楕円の中心位置を求めることを特徴とする請求項8または9に記載の光情報処理装置。
  12.  前記調整手段は、前記測定の妥当性を判断し、妥当でないと判断した場合には、追加の測定位置において前記信号特性を測定し、当該追加の測定位置で測定された信号特性を含む測定結果から、前記調整を行うことを特徴とする請求項1から11のいずれか1項に記載の光情報処理装置。
  13.  前記調整手段は、前記測定位置により規定される所定範囲内に前記求められた楕円の中心位置が含まれない場合に、前記測定が妥当でないと判断することを特徴とする請求項12に記載の光情報処理装置。
  14.  前記調整手段は、前記少なくとも3つの直線のうち少なくとも1つにおいて、前記測定位置と前記測定位置で測定された信号特性との関係が単調増加または単調減少である場合に、前記測定が妥当でないと判断することを特徴とする請求項12に記載の光情報処理装置。
  15.  前記信号特性は、前記再生信号の振幅であることを特徴とする請求項1から14のいずれか1項に記載の光情報処理装置。
  16.  前記信号特性は、前記再生信号の品質であることを特徴とする請求項1から14のいずれか1項に記載の光情報処理装置。
  17.  前記信号特性は、トラッキングエラー信号の振幅であることを特徴とする請求項1から14のいずれか1項に記載の光情報処理装置。
  18.  前記光ディスクへの記録時に用いられる記録用のフォーカス調整値を調整する記録調整手段をさらに有し、
     前記記録調整手段は、前記フォーカス調整値を変更しながら固定の記録パワーを用いて前記光ディスクへのテスト記録を行い、前記テスト記録により記録された信号を固定のフォーカス調整値で再生して再生信号の信号特性を測定し、前記フォーカス調整値と前記測定された信号特性との関係を2次以上の多項式で近似し、当該近似の結果から信号特性が最良となるフォーカス調整値を求め、当該フォーカス調整値を前記記録用のフォーカス調整値として決定することを特徴とする請求項1から17のいずれか1項に記載の光情報処理装置。
  19.  光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光工程と、
     前記光ディスクに照射される光の球面収差を補正する球面収差補正工程と、
     前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整工程と、
     前記球面収差補正工程による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整工程と、
     を有することを特徴とする光情報処理方法。
  20.  前記少なくとも3つの直線は、前記フォーカス調整値の座標軸に平行なフォーカス軸直線と、前記フォーカス軸直線とは異なる少なくとも2つの残直線とを含み、
     前記調整工程は、前記フォーカス軸直線上の少なくとも3点の測定位置において前記信号特性を測定した後に、前記球面収差補正量を順次変更し、前記球面収差補正量を変更する毎に、変更後の球面収差補正量における前記各残直線上の測定位置において前記信号特性を測定することにより、前記少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記信号特性を測定することを特徴とする請求項19に記載の光情報処理方法。
  21.  前記各残直線は、前記フォーカス軸直線上の前記少なくとも3点の測定位置のうちのいずれかの測定位置を通過するように設定されることを特徴とする請求項20に記載の光情報処理方法。
  22.  前記フォーカス軸直線について、前記測定位置と前記測定位置で測定された信号特性との関係を2次以上の多項式で近似したときに前記信号特性が極値となる位置を極値位置としたとき、
     前記各残直線は、前記フォーカス軸直線上の前記少なくとも3点の測定位置のうち、前記極値位置の近傍の測定位置を通過するように設定されることを特徴とする請求項21に記載の光情報処理方法。
  23.  前記調整工程は、前記各直線について、前記測定位置と前記測定位置で測定された信号特性との関係を2次以上の多項式で近似したときに前記信号特性が極値となる位置が、前記測定位置の範囲内に含まれるまで、前記測定位置の範囲を拡張するように前記測定位置を変更しながら前記信号特性の測定を行うことを特徴とする請求項19から22のいずれか1項に記載の光情報処理方法。
  24.  前記少なくとも3つの直線は、前記球面収差補正量および前記フォーカス調整値の座標軸に対して傾きを持ち、前記平面における前記信号特性の等高線を楕円とみなした場合の楕円の長軸と略平行な直線を含むことを特徴とする請求項19から23のいずれか1項に記載の光情報処理方法。
  25.  前記調整工程は、前記少なくとも3つの直線のうち少なくとも1つの直線について、少なくとも2点の測定位置で前記信号特性を測定した後、前記少なくとも2点の測定位置のうち両端の測定位置における前記信号特性を比較し、前記両端の測定位置のうち前記信号特性が良好な一方の測定位置から他方の測定位置と反対方向に離れた位置を、次の測定位置に決定することを特徴とする請求項19から24のいずれか1項に記載の光情報処理方法。
  26.  前記調整工程は、前記少なくとも5つの推定位置を楕円近似し、当該楕円近似の結果から楕円の中心位置を求め、当該楕円の中心位置に基づいて前記球面収差補正量および前記フォーカス調整値を決定することを特徴とする請求項19から25のいずれか1項に記載の光情報処理方法。
  27.  前記調整工程は、前記各直線について、前記測定位置と前記測定位置で測定された信号特性との関係を2次以上の多項式で近似した近似結果から、前記信号特性が所定のレベルとなる前記平面上の位置を前記推定位置として求め、得られた推定位置のうち少なくとも5つを使用して前記楕円近似を行うことを特徴とする請求項26に記載の光情報処理方法。
  28.  前記調整工程は、
     前記楕円近似の結果が楕円を示すか否かの判断を行い、
     前記判断において楕円を示さないと判断された場合には、前記信号特性のレベルを変更して前記少なくとも5つの推定位置を求め、当該少なくとも5つの推定位置を使用して前記楕円近似を行った後、再び前記判断を行い、
     前記判断において楕円を示すと判断された場合に、前記楕円近似の結果から前記楕円の中心位置を求めることを特徴とする請求項26または27に記載の光情報処理方法。
  29.  前記調整工程は、
     前記信号特性の複数のレベルの各々において、前記少なくとも5つの推定位置を求め、当該少なくとも5つの推定位置を楕円近似し、当該楕円近似の結果と前記少なくとも5つの推定位置との誤差量を求め、
     前記複数のレベルに対応する複数の楕円近似の結果のうち、前記誤差量が最も小さい楕円近似の結果から、前記楕円の中心位置を求めることを特徴とする請求項26または27に記載の光情報処理方法。
  30.  前記調整工程は、前記測定の妥当性を判断し、妥当でないと判断した場合には、追加の測定位置において前記信号特性を測定し、当該追加の測定位置で測定された信号特性を含む測定結果から、前記調整を行うことを特徴とする請求項19から29のいずれか1項に記載の光情報処理方法。
  31.  前記調整工程は、前記測定位置により規定される所定範囲内に前記求められた楕円の中心位置が含まれない場合に、前記測定が妥当でないと判断することを特徴とする請求項30に記載の光情報処理方法。
  32.  前記調整工程は、前記少なくとも3つの直線のうち少なくとも1つにおいて、前記測定位置と前記測定位置で測定された信号特性との関係が単調増加または単調減少である場合に、前記測定が妥当でないと判断することを特徴とする請求項30に記載の光情報処理方法。
  33.  前記信号特性は、前記再生信号の振幅であることを特徴とする請求項19から32のいずれか1項に記載の光情報処理方法。
  34.  前記信号特性は、前記再生信号の品質であることを特徴とする請求項19から32のいずれか1項に記載の光情報処理方法。
  35.  前記信号特性は、前記再生信号から得られるトラッキングエラー信号の振幅であることを特徴とする請求項19から32のいずれか1項に記載の光情報処理方法。
  36.  前記光ディスクへの記録時に用いられる記録用のフォーカス調整値を調整する記録調整工程をさらに有し、
     前記記録調整工程は、前記フォーカス調整値を変更しながら固定の記録パワーを用いて前記光ディスクへのテスト記録を行い、前記テスト記録により記録された信号を固定のフォーカス調整値で再生して再生信号の信号特性を測定し、前記記録時のフォーカス調整値と前記測定された信号特性との関係を2次以上の多項式で近似し、当該近似の結果から信号特性が最良となる記録時のフォーカス調整値を求め、当該フォーカス調整値を前記記録用のフォーカス調整値として決定することを特徴とする請求項19から35のいずれか1項に記載の光情報処理方法。
  37.  光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光手段と、前記光ディスクに照射される光の球面収差を補正する球面収差補正手段と、前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整手段とを有する光情報処理装置の調整装置であって、
     前記球面収差補正手段による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整手段を有することを特徴とする光情報処理装置の調整装置。
  38.  光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光手段と、前記光ディスクに照射される光の球面収差を補正する球面収差補正手段と、前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整手段とを有する光情報処理装置の調整方法であって、
     前記球面収差補正手段による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整工程を有することを特徴とする光情報処理装置の調整方法。
  39.  光ディスクに光を照射し、前記光ディスクからの反射光を検出して再生信号を出力する照射受光手段と、前記光ディスクに照射される光の球面収差を補正する球面収差補正手段と、前記光ディスクに照射される光のフォーカス位置をフォーカス調整値に基づいて調整するフォーカス調整手段とを有する光情報処理装置の調整プログラムであって、
     前記球面収差補正手段による球面収差補正量および前記フォーカス調整値を座標軸とする平面上の少なくとも3つの直線の各々について、当該直線上の少なくとも3点の測定位置において前記再生信号の信号特性を測定し、当該測定結果から前記信号特性が略同一レベルとなる前記平面上の少なくとも5つの位置を推定位置として求め、当該少なくとも5つの推定位置に基づいて前記球面収差補正量および前記フォーカス調整値を調整する調整工程をコンピュータに実行させることを特徴とする光情報処理装置の調整プログラム。
     
PCT/JP2013/054273 2012-03-22 2013-02-21 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム WO2013140933A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014506093A JP5921670B2 (ja) 2012-03-22 2013-02-21 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム
CN201380015274.1A CN104205219B (zh) 2012-03-22 2013-02-21 光信息处理装置和光信息处理方法
DE112013001616.8T DE112013001616T5 (de) 2012-03-22 2013-02-21 Optik-Informations-Verarbeitungssvorrichtung und Optik-Informations-Verarbeitungsverfahren, sowie Einstellvorrichtung, Einstellverfahren und Einstellprogramm für Optik-Informations-Verarbeitungsvorrichtung
US14/374,866 US9454987B2 (en) 2012-03-22 2013-02-21 Optical information processing apparatus and optical information processing method, and adjustment device, adjustment method, and adjustment program for optical information processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-065713 2012-03-22
JP2012065713 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140933A1 true WO2013140933A1 (ja) 2013-09-26

Family

ID=49222396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054273 WO2013140933A1 (ja) 2012-03-22 2013-02-21 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム

Country Status (5)

Country Link
US (1) US9454987B2 (ja)
JP (1) JP5921670B2 (ja)
CN (1) CN104205219B (ja)
DE (1) DE112013001616T5 (ja)
WO (1) WO2013140933A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9372076B2 (en) * 2014-04-10 2016-06-21 Tri Tool Inc. System and method for automated pipe measurement and alignment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141369A (ja) * 2005-11-18 2007-06-07 Sony Corp 再生装置、球面収差補正値及びフォーカスバイアス調整方法
WO2010067575A1 (ja) * 2008-12-10 2010-06-17 三菱電機株式会社 光情報処理方法及び光情報処理装置
JP2010287276A (ja) * 2009-06-11 2010-12-24 Funai Electric Co Ltd 光ディスク装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324328A (ja) 2001-04-25 2002-11-08 Pioneer Electronic Corp 情報再生装置および光学式記録媒体
US7277365B2 (en) 2001-12-07 2007-10-02 Matsushita Electric Industrial Co., Ltd. Optical information processing apparatus and method of processing optical information
JP4468394B2 (ja) 2001-12-07 2010-05-26 パナソニック株式会社 光情報処理装置および光情報処理方法
US7379398B2 (en) * 2003-12-08 2008-05-27 Matsushita Electric Industrial Co., Ltd. Optical disc apparatus, an optical disc method, and a semiconductor integrated circuit capable of adjusting a focus position of a light beam and a spherical aberration
JP2005267800A (ja) 2004-03-19 2005-09-29 Sony Corp ディスクドライブ装置及びキャリブレーション方法
JP2008059686A (ja) 2006-08-31 2008-03-13 Canon Inc 球面収差及びフォーカスオフセット調整方法、それを用いた情報記録再生装置
CN101681640A (zh) * 2007-06-06 2010-03-24 松下电器产业株式会社 光盘装置以及透镜倾斜控制方法
JP2011096299A (ja) 2009-10-27 2011-05-12 Sharp Corp 光情報処理方法、およびその光情報処理機能を備えた光情報記録装置
JP2011134391A (ja) 2009-12-24 2011-07-07 Sharp Corp 光ピックアップ装置、光ディスク装置及び光ピックアップ調整方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141369A (ja) * 2005-11-18 2007-06-07 Sony Corp 再生装置、球面収差補正値及びフォーカスバイアス調整方法
WO2010067575A1 (ja) * 2008-12-10 2010-06-17 三菱電機株式会社 光情報処理方法及び光情報処理装置
JP2010287276A (ja) * 2009-06-11 2010-12-24 Funai Electric Co Ltd 光ディスク装置

Also Published As

Publication number Publication date
CN104205219A (zh) 2014-12-10
CN104205219B (zh) 2017-05-31
DE112013001616T5 (de) 2014-12-24
US20140355403A1 (en) 2014-12-04
JPWO2013140933A1 (ja) 2015-08-03
US9454987B2 (en) 2016-09-27
JP5921670B2 (ja) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5199675B2 (ja) 光ディスク及び光ディスク装置
JP2007122815A (ja) 光ディスク装置の球面収差及びフォーカスオフセット調整方法、それを用いた光ディスク装置
US20080056077A1 (en) Method of adjusting spherical aberration and focus offset and information recording/reproduction apparatus using the same
US7859967B2 (en) Optical disk drive with spherical aberration measurement and method of measuring spherical aberration in an optical disk drive
JP4840167B2 (ja) 光ディスク装置
JP4074063B2 (ja) 光情報記録方法および装置並びに光情報記録制御プログラムを記録した記録媒体
JP5921670B2 (ja) 光情報処理装置及び光情報処理方法、並びに光情報処理装置の調整装置、調整方法、及び調整プログラム
JP2004062938A (ja) 球面収差補正装置及び球面収差補正方法
JP2008299957A (ja) 光ディスク装置、及び光ディスク装置の制御方法
US7602690B2 (en) Aberration adjustment device, method thereof, optical pickup, and optical information recording apparatus
JP5108881B2 (ja) 光ディスク装置およびレンズチルト制御方法
JP2007172797A (ja) 光ディスク装置におけるレーザ光の記録パワー補正方法およびこれを用いた光ディスク装置
JP4460569B2 (ja) 光ディスク装置及びその記録パワー設定方法
US7499381B2 (en) Optical disk apparatus
KR20120140191A (ko) 광디스크 장치, 틸트 보정 방법 및 프로그램
JP2005085307A (ja) 光ディスク駆動装置および方法、記録媒体、並びにプログラム
US8456974B2 (en) Recording adjusting method, information recording and reproducing device, and information recording medium
JP2006331546A (ja) 光ディスク、光ディスク装置および光ディスク製造装置
JP4287471B2 (ja) 光ディスク装置および光ディスク装置の集積回路
JP5455819B2 (ja) 光記録装置及び方法
JP5397395B2 (ja) 光ディスク装置
JP2006179037A (ja) 光ディスク装置および光ディスクのチルト補正方法
JP2009123322A (ja) 光ディスク装置
US20080137502A1 (en) Optical disc apparatus and optical disc recording and reproducing method
WO2006088050A1 (ja) 光ディスク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506093

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14374866

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130016168

Country of ref document: DE

Ref document number: 112013001616

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764578

Country of ref document: EP

Kind code of ref document: A1