WO2010067504A1 - 投写型表示装置 - Google Patents
投写型表示装置 Download PDFInfo
- Publication number
- WO2010067504A1 WO2010067504A1 PCT/JP2009/005507 JP2009005507W WO2010067504A1 WO 2010067504 A1 WO2010067504 A1 WO 2010067504A1 JP 2009005507 W JP2009005507 W JP 2009005507W WO 2010067504 A1 WO2010067504 A1 WO 2010067504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- optical axis
- projection display
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2013—Plural light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2053—Intensity control of illuminating light
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2066—Reflectors in illumination beam
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/74—Projection arrangements for image reproduction, e.g. using eidophor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3152—Modulator illumination systems for shaping the light beam
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3164—Modulator illumination systems using multiple light sources
Definitions
- the present invention relates to a projection display device using a plurality of light source lamps.
- Patent Document 1 paragraphs 0013 to 0018 of FIG. 1 in Japanese Patent Laid-Open No. 2001-359025, FIG. 1 discloses a prism in which light beams from two light source lamps arranged opposite to each other are arranged near the condensing point of the light source lamp.
- a light source device for a projection-type display device that is synthesized using the above.
- an object of the present invention is to provide a projection display device including a light source device having high light use efficiency and a long lifetime. .
- the projection display device includes a first light source unit that emits a first light beam, and a second light source unit that is arranged so as to face the first light source unit and emits a second light beam. And a light intensity equalizing means for converting the light beam incident on the incident end into a light beam having a uniform intensity distribution and emitting the light from the output end, and the first light source.
- First bending means for directing the first light flux emitted from the means toward the incident end; and second bending means for directing the second light flux emitted from the second light source means toward the incident end;
- An image display element that modulates a light beam emitted from the emission end of the light intensity uniformizing means to convert it into image light, and a projection optical system that projects the image light on a screen, and the first light source.
- the first optical axis of the means is the second light of the second light source means
- the first light source means so that the first distance from the first bending means to the incident end is different from the second distance from the second bending means to the incident end.
- the second light source means, the first bending means, and the second bending means are arranged.
- the first optical axis of the first light source means does not coincide with the second optical axis of the second light source means, and the first light from the first bending means to the incident end of the light intensity equalizing means. Since each component is arranged so that the distance 1 is different from the second distance from the second bending means to the incident end of the light intensity uniformizing means, the first light source means goes to the second light source means. Loss light and loss light from the second light source means toward the first light source means can be reduced to increase the light utilization efficiency. In addition, according to the present invention, the first light source means and the second light source means are less affected by the loss light, so that there is an effect that the life can be extended.
- FIG. 1 is a diagram schematically showing a configuration of a projection display apparatus according to Embodiment 1 of the present invention.
- (A) is a figure which shows roughly distribution of the light beam in the incident end of the light intensity equalization element in a comparative example
- (b) is a figure of the light beam in the incident end of the light intensity equalization element in Embodiment 1.
- FIG. It is a figure which shows distribution roughly
- (c) is a figure which shows schematically the other example of distribution of the light beam in the incident end of the light intensity equalization element in Embodiment 1.
- FIG. It is a figure which shows roughly arrangement
- 1 is a diagram illustrating a configuration of a main part of a projection display device according to Embodiment 1.
- FIG. A configuration for calculating the relationship between the amount of eccentricity of the central beam of the first light beam from the first light source lamp and the amount of eccentricity of the central beam of the second light beam from the second light source lamp and the light utilization efficiency is shown. It is explanatory drawing It is a figure which shows the result of having calculated the amount of eccentricity of the central ray of the 1st light beam from a 1st light source lamp, the amount of eccentricity of the central ray of the 2nd light beam from a 2nd light source lamp, and the light utilization efficiency. is there.
- FIG. 1 is a diagram schematically showing a configuration of a projection display apparatus according to Embodiment 1 of the present invention.
- the projection display device according to the first embodiment uses a light source device 10 that emits a light beam with uniform intensity and a light beam L3 emitted from the light source device 10 according to an input video signal.
- an image display element (light valve) 61 that modulates and converts the image light L4 to image light L4, and a projection optical system 62 that enlarges and projects the image light L4 onto a screen 63.
- FIG. 1 shows a reflective image display element 61, the image display element 61 may be a transmissive image display element.
- the image display element 61 is, for example, a liquid crystal light valve, a digital micromirror device (DMD), or the like.
- the screen 63 is a part of the projection display device. Further, the arrangement of the light source device 10, the image display element 61, the projection optical system 62, and the screen 63 is not limited to the illustrated example.
- the light source device 10 is disposed so as to face the first light source lamp 11 and the first light source lamp 11 as the first light source means for emitting the first light beam L1, and emits the second light beam L2.
- Second light source lamp 12 as second light source means and light as light intensity uniformizing means for converting the light beam incident on the incident end 15a into a light beam having a uniform intensity distribution and exiting from the output end 15b
- the first bending mirror 13 as the first bending means for directing the first light beam L1 emitted from the first light source lamp 11 to the incident end 15a, and the second light source lamp 12.
- a second folding mirror 14 as second folding means for directing the emitted second light beam L2 toward the incident end 15a.
- the first light beam L1 emitted from the first light source lamp 11 and the second light beam L2 emitted from the second light source lamp 12 are condensed light beams.
- the first optical axis 11c of the first light source lamp 11 does not coincide with the second optical axis 12c of the second light source lamp 12, and the first optical path from the first bending mirror 13 to the incident end 15a
- One bending mirror 13, second bending mirror 14, and light intensity equalizing element 15 are arranged.
- the angle formed by the first optical axis 11 c of the first light source lamp 11 and the optical axis 15 c of the light intensity uniformizing element 15 is 90 degrees
- the second light source lamp 12 has a second angle.
- the first light source lamp 11 includes, for example, a light emitter 11a that emits white light and an ellipsoidal mirror 11b provided around the light emitter 11a.
- the ellipsoidal mirror 11b reflects the light beam emitted from the first focal point corresponding to the first center of the ellipse and converges it to the second focal point corresponding to the second center of the ellipse.
- the light emitter 11a is disposed in the vicinity of the first focal point of the ellipsoidal mirror 11b, and the light beam emitted from the light emitter 11a is converged in the vicinity of the second focal point of the ellipsoidal mirror 11b.
- the second light source lamp 12 includes, for example, a light emitter 12a that emits white light and an ellipsoidal mirror 12b provided around the light emitter 12a.
- the ellipsoidal mirror 12b reflects the light beam emitted from the first focal point corresponding to the first center of the ellipse and converges it to the second focal point corresponding to the second center of the ellipse.
- the light emitter 12a is disposed in the vicinity of the first focal point of the ellipsoidal mirror 12b, and the light beam emitted from the light emitter 12a is converged in the vicinity of the second focal point of the ellipsoidal mirror 12b.
- a parabolic mirror may be used instead of the ellipsoidal mirrors 11b and 12b.
- the light beams emitted from the light emitters 11a and 12a may be substantially collimated by a parabolic mirror and then converged by a condenser lens (not shown). Further, a concave mirror other than a parabolic mirror can be used in place of the ellipsoidal mirrors 11b and 12b. Further, the number of light source lamps may be three or more.
- the first condensing point F1 of the first light beam L1 is located on the light intensity equalizing element 15 side with respect to the first folding mirror 13, and the second The first light source lamp 11, the second light source lamp 12, and the first folding mirror so that the second light condensing point F2 of the light beam L2 is positioned closer to the light intensity equalizing element 15 than the second folding mirror 14. 13, a second bending mirror 14, and a light intensity equalizing element 15 are arranged.
- the first light beam L1 collected by the ellipsoidal mirror 11b is collected by the first bending mirror 13 in the vicinity of the incident end 15a of the light intensity uniformizing element 15.
- the second light beam L2 collected by the ellipsoidal mirror 12b is collected near the incident end 15a of the light intensity uniformizing element 15 by the second bending mirror.
- the first incident position where the central ray of the first light beam L1 (in the first embodiment, parallel to the optical axis 15c) enters the incident end 15a, and The second light incident position at which the central ray of the second light beam L2 (parallel to the optical axis 15c in the first embodiment) enters the incident end 15a is different from each other, and the light intensity uniformizing element. This is a position deviated from the 15 optical axes 15c (a position deviated by eccentric amounts d1 and d2 described later).
- the light intensity uniformizing element 15 converts the first light beam L1 guided by the first bending mirror 13 and the second light beam L2 guided by the second bending mirror 14 into the light beam cross section (that is, the light intensity). It has a function of making the light intensity uniform (that is, reducing illuminance unevenness) in a plane perpendicular to the optical axis 15c of the uniformizing element 15.
- the light intensity uniformizing element 15 is generally made of a transparent material such as glass or resin, and is a polygonal columnar rod (that is, the cross-sectional shape is polygonal) configured such that the inner side of the side wall becomes a total reflection surface.
- the light intensity equalizing element 15 is a polygonal columnar rod, the light is reflected multiple times using the total reflection action between the transparent material and the air interface and then emitted from the emission end.
- the light intensity equalizing element 15 is a polygonal pipe, the light is reflected from the inner surface of the light source a plurality of times by using the reflecting action of the surface mirror facing inward and then emitted from the emission end (emission port).
- the light intensity uniformizing element 15 secures an appropriate length in the traveling direction of the light beam, the light reflected a plurality of times inside is superimposed and irradiated in the vicinity of the exit end 15 b of the light intensity uniformizing element 15, so that the light intensity is uniform. A substantially uniform intensity distribution is obtained in the vicinity of the emitting end 15 b of the activating element 15.
- FIGS. 2 (a) to 2 (c) are explanatory diagrams schematically showing the distribution of light fluxes at the incident end 15a of the light intensity uniformizing element 15.
- FIG. 1A shows an example of the light flux distribution at the incident end of the light intensity equalizing element in the case of the comparative example using one light source lamp.
- FIG. 2A shows a distribution in which there is a peak of light intensity near the center of the incident end 15a, and it gradually becomes darker toward the periphery.
- FIG. 2B and 2C show examples of the light flux distribution at the incident end 15a of the light intensity equalizing element 15 in the case of the present invention using two light source lamps.
- FIG. 2B shows that the light irradiation area of the first light source lamp 11 and the light irradiation area of the second light source lamp 12 almost overlap at the incident end 15a at the incident end 15a of the light intensity uniformizing element 15. An example that does not.
- FIG. 2C shows that the light irradiation area of the first light source lamp 11 and the light irradiation area of the second light source lamp 12 substantially overlap at the incident end 15a at the incident end 15a of the light intensity equalizing element 15.
- the direction of the central light beam of the first light beam L1 is inclined with respect to the optical axis 15c
- the direction of the central light beam of the second light beam L2 is the direction of the central light beam and the optical axis of the first light beam L1. The case where it inclines with respect to both of 15c is shown.
- FIG. 3 is a diagram schematically showing the arrangement of the folding mirrors in the comparative example.
- one light source lamp is arranged, the optical axis 111c of the light source lamp and the optical axis 115c of the light intensity uniformizing element 115 are orthogonal, and the central light beam of the light beam L1 reflected by the bending mirror 113 is made uniform in light intensity.
- the case where it is configured to coincide with the optical axis 115c of the element is shown.
- the size of the reflecting surface of the folding mirror 113 can be made sufficiently large, so that the light beam L1 from the light source lamp can be bent so as not to be lost.
- FIG. 4 is a diagram illustrating a configuration of a main part of the projection display device according to the first embodiment.
- FIG. 4 shows the first bending mirror 13, the second bending mirror 14, and the light intensity equalizing element 15.
- the second focal point of the ellipsoidal mirror 11b of the first light source lamp 11 and the second focal point of the ellipsoidal mirror 12b of the second light source lamp 12 are uniform in light intensity.
- Each component is arranged so as to be near the incident end 15 a of the activating element 15.
- first optical axis 11c of the first light source lamp 11 and the second optical axis 12c of the second light source lamp 12 do not coincide with each other, and the first optical axis 11c and the second optical axis 12c
- the interval is configured to be a value larger than 0 (offset amount OS).
- the first light beam L1 from the first light source lamp 11 is incident on the incident end 15a of the light intensity equalizing element 15 using the first bending mirror 13, and at the same time, the second light beam from the second light source lamp 12 is
- the first bending mirror 13 does not block the second light beam L2. It will not be possible to ensure a sufficient size. Therefore, in the configuration shown in FIG. 4, it is inevitable that the first light beam L1 and the second light beam L2 are lost to some extent.
- the central light beam L10 of the first light beam L1 bent by the first bending mirror 13 and the central light beam L20 of the first light beam L2 bent by the second folding mirror 14 are converted into the light intensity uniformizing element 15 by the light beam. If it is attempted to coincide with the optical axis 15c, the loss of light further increases. For this reason, in the projection display apparatus according to Embodiment 1, the amount of eccentricity d1 of the central light beam L10 of the first light beam L1 bent by the first bending mirror 13 with respect to the optical axis 15c of the light intensity uniformizing element 15 is determined.
- the eccentric amount d2 of the central light beam L20 of the second light beam L2 bent by the second bending mirror 14 with respect to the optical axis 15c of the light intensity equalizing element 15 is set to a value larger than zero.
- FIG. 5 is an explanatory diagram showing a configuration for calculating the relationship between the eccentric amounts d1 and d2 and the light utilization efficiency.
- FIG. 5 for example, when the central light beam L10 of the first light flux from the first light source lamp 11 is incident on the position of the eccentricity d1, the first light source from the first light source lamp 11 Since the light beam L1 is condensed on the incident end 15a of the light intensity uniformizing element 15 at a position shifted by the amount of eccentricity d1, the light utilization efficiency at the incident end 15a of the light intensity uniformizing element 15 is reduced.
- FIG. 5 is an explanatory diagram showing a configuration for calculating the relationship between the eccentric amounts d1 and d2 and the light utilization efficiency.
- the second light source lamp 12 emits light. Since the second light beam L2 is condensed on the incident end 15a of the light intensity uniformizing element 15 at a position shifted by the amount of eccentricity d2, the light use efficiency at the incident end 15a of the light intensity uniformizing element 15 is reduced.
- FIG. 6 is a diagram showing the result of the simulation calculation of the relationship between the eccentricity d1, d2 and the light utilization efficiency B.
- the light utilization efficiency B is such that when the eccentric amounts d1 and d2 are 0, that is, as shown in FIG. 4, the central ray of the light beam incident on the light intensity uniformizing element 15 is It is shown as a ratio to the light use efficiency when it coincides with the optical axis 15c. From FIG. 6, when the eccentricity d1 is 0, the light utilization efficiency B is 1. When the eccentricity d1 is 0.5 mm, the light utilization efficiency B is 0.99, and when the eccentricity d1 is increased to 1 mm, 1.5 mm, and 2 mm, the light utilization efficiency B is 0.97, 0.92, 0.
- the light utilization efficiency B is as high as 0.9 or more, and the second light flux L2 from the second light source lamp 12 is not easily blocked by the first bending mirror 14.
- the eccentric amounts d1 and d2 are both set to 1.5 mm (that is, to reduce interference).
- the eccentric amounts d1 and d2 can be determined according to various factors such as the shape, size, arrangement, light beam traveling direction, optical characteristics of each component, and required performance.
- FIG. 7 is a diagram showing the result of the simulation calculation of the relationship between the eccentricity d3 and the light utilization efficiency C.
- the first optical axis 11 c of the first light source lamp 11 is light intensity equalizing element 15 than the second optical axis 12 c of the second light source lamp 12. It is arranged on the side close to.
- the end portion 13a on the optical axis 15c side of the light intensity uniformizing element 15 of the first bending mirror 13 is made uniform in order to avoid interference with the second light beam L2 from the second light source lamp 12 as much as possible. It arrange
- FIG. 7 shows the result of simulation calculation of the light utilization efficiency C when the eccentricity d1 in FIG. 4 is fixed to 1.5 mm and the eccentricity d3 is changed.
- the light utilization efficiency C in FIG. 7 is equalized when the eccentricity d1 in FIG. It is shown as a ratio to the light utilization efficiency when the optical axis 15c of the element 15 coincides.
- FIG. 7 shows a change in light utilization efficiency C when the eccentricity d3 is changed from 1 mm to 5 mm.
- the amount of eccentricity d3 is small, the first bending mirror 13 is small, so that the light utilization efficiency C decreases.
- the amount of eccentricity d3 is increased from 1 mm, the light utilization efficiency C gradually increases.
- the light utilization efficiency C is the highest when the eccentricity d3 is 3 mm and 3.5 mm.
- FIG. 8 is a diagram showing the relationship between the offset amount OS and the light utilization efficiency, and the relationship between the offset amount OS and the loss light.
- the eccentric amounts d1 and d2 are fixed to 1.5 mm
- the eccentric amount d3 is fixed to 3.5 mm
- the first optical axis 11c of the first light source lamp 11 and the second light source lamp 12 are second.
- the result shows that the light use efficiency and the loss light when the offset amount OS of the optical axis 12c is changed from 0 mm to 8.5 mm are calculated as relative values with respect to the case where the offset amount OS is 0 mm.
- the offset amount OS of the first optical axis 11c of the first light source lamp 11 and the second optical axis 12c of the second light source lamp 12 if the offset amount OS shown in FIG. Although it is necessary to enlarge the second bending mirror 14 of the light source lamp 12, the end 14 a of the second bending mirror 14 on the first light source lamp 11 side is more than the optical axis 15 c of the light intensity equalizing element 15. Since it can be extended to the first light source lamp 11 side, the optical loss in the second bending mirror 14 does not increase even if the offset amount OS is increased.
- the light use efficiency is constant even when the offset amount OS between the first optical axis 11 c of the first light source lamp 11 and the second optical axis 12 c of the second light source lamp 12 is changed. . Therefore, it is desirable to determine the optimum offset amount OS according to the amount of lost light.
- the loss light LA decreases when the offset amount OS is increased.
- the loss light LB decreases when the offset amount OS is increased.
- the loss light LA becomes almost zero when the offset OS is 2.5 mm or more.
- the offset amount OS between the first optical axis 11c of the first light source lamp 11 and the second optical axis 12c of the second light source lamp 12 is secured with a certain level or more, the light Loss light can be significantly reduced while maintaining high utilization efficiency.
- the optimum offset amount OS is not limited to the example in FIG. 8, and is determined according to various factors such as the shape, size, arrangement, light beam traveling direction, optical characteristics of each component, and required performance of each component. can do.
- the first optical axis 11c of the first light source lamp 11 and the second optical axis 12c of the second light source lamp 12 are coincident with each other. Therefore, the loss of light can be greatly reduced while maintaining high light utilization efficiency.
- the condensing points of the first light source lamp 11 and the second light source lamp 12 are arranged in the vicinity of the incident end 15a of the light intensity uniformizing element 15, light utilization is performed.
- An optical system with high efficiency can be provided.
- the first folding mirror 13 is arranged between the first light source lamp 11 and the condensing point F1, and the condensing point of the second light source lamp 12 is used.
- the second folding mirror 14 is disposed between the first beam L1 and the second beam L2 up to F2. Can do.
- the light intensity uniformizing element 15 is formed of a tubular member having an inner surface as a light reflecting surface, it is easy to design a holding structure for the light intensity uniformizing element 15. In addition, the heat dissipation performance is improved.
- the light intensity uniformizing element 15 is a columnar optical element having a polygonal cross-section made of a transparent material
- the light intensity uniformizing element 15 is designed. Becomes easier.
- each configuration is configured so that the light condensing point is located closer to the light intensity equalizing element 15 than the first folding mirror 13 and the second folding mirror 14. Since it arrange
- FIG. FIG. 9 is a diagram schematically showing the configuration of the light source device 20 of the projection display apparatus according to Embodiment 2 of the present invention.
- the light source device 20 shown in FIG. 9 can be used as the light source device of the projection display device shown in FIG. 1 (Embodiment 1).
- the first light source lamp 21, the second light source lamp 22, the first bending mirror 23, the second bending mirror 24, and the light intensity equalizing element 25 in FIG. 9 are respectively the first light source lamp 11 in FIG.
- the second light source lamp 12, the first bending mirror 13, the second bending mirror 14, and the light intensity equalizing element 15 have the same configuration.
- the projection display device according to the second embodiment uses the first light flux L1 folded by the first folding mirror 23 and the second light flux L2 folded by the second folding mirror 24 as a light intensity uniformizing element.
- the projection optical display device according to the first embodiment is different from the projection display device according to the first embodiment in that a relay optical system 26 led to 25 is provided. As shown in FIG.
- the relay optical system 26 includes a lens 26 a and a lens 26 b, and guides the light flux to the light intensity uniformizing element 25.
- the relay optical system 26 By disposing the relay optical system 26, the distribution of the light beam incident on the incident end 25a of the light intensity uniformizing element 25 can be converted into a desired distribution.
- FIG. FIG. 10 is a diagram schematically showing the configuration of the light source device 30 of the projection display apparatus according to Embodiment 3 of the present invention.
- the light source device 30 shown in FIG. 10 can be used as the light source device of the projection display device shown in FIG. 1 (Embodiment 1).
- the first light source lamp 31, the second light source lamp 32, the first folding mirror 33, the second folding mirror 34, and the light intensity equalizing element 35 in FIG. 10 are respectively the first light source lamp 11 in FIG.
- the second light source lamp 12, the first bending mirror 13, the second bending mirror 14, and the light intensity equalizing element 15 have the same configuration.
- the projection display apparatus according to Embodiment 3 uses the first light flux L1 folded by the first folding mirror 33 and the second light flux L2 folded by the second folding mirror 34 as the light intensity uniformizing element.
- the projection optical display device according to the first embodiment is different from the projection display device according to the first embodiment in that a relay optical system 36 that leads to 35 is provided. As shown in FIG.
- the relay optical system 36 includes a lens 36 a, a bending mirror 36 b, and a lens 36 c, and guides the light flux to the light intensity uniformizing element 35.
- the relay optical system 36 guides the light flux to the light intensity uniformizing element 35.
- FIG. FIG. 11 is a diagram schematically showing the configuration of the light source device 40 of the projection display apparatus according to Embodiment 4 of the present invention.
- the light source device 40 shown in FIG. 11 can be used as the light source device of the projection display device shown in FIG. 1 (Embodiment 1).
- the first light source lamp 41, the second light source lamp 42, the first folding mirror 43, the second folding mirror 44, and the relay optical system 46 shown in FIG. 11 are each shown in FIG. 9 (Embodiment 2).
- the light source lamp 21, the second light source lamp 22, the first bending mirror 23, the second bending mirror 24, and the relay optical system 26 have the same configuration.
- the light emitters 41a and 42a, the ellipsoidal mirrors 41b and 42b, and the optical axes 41c and 42c in FIG. 11 have the same configuration as the light emitters 21a and 22a, the ellipsoidal mirrors 21b and 22b, and the optical axes 21c and 22c in FIG. is there.
- the configuration of the light intensity uniformizing element 45 is different from that of the projection display device according to the second embodiment.
- the light intensity equalizing element 45 is configured by arranging lens arrays 45a and 45b in which a plurality of lens elements are two-dimensionally arranged side by side in the direction of the optical axis 45c. ing.
- the light intensity equalizing element 45 having such a configuration makes it possible to make the intensity distribution in the cross section of the illumination light beam uniform, and to suppress unevenness in illuminance. Further, according to the projection display device according to the fourth embodiment, it is possible to reduce the size in the direction of the optical axis 45c as compared with the case where the light intensity uniformizing element is configured by a rod of an optical member.
- FIG. FIG. 12 is a diagram schematically showing the configuration of the light source device 50 of the projection display apparatus according to Embodiment 5 of the present invention.
- the light source device 50 shown in FIG. 12 can be used as the light source device of the projection display device shown in FIG. 1 (Embodiment 1).
- the second light source lamp 12, the first bending mirror 13, the second bending mirror 14, and the light intensity equalizing element 15 have the same configuration.
- the angle formed by the first optical axis 51c and the optical axis 55c of the light intensity uniformizing element 55 is smaller than 90 degrees, and the second optical axis 52c and the light intensity uniformized.
- the point where the uniformizing element 55 is arranged is different from the case of the projection display device according to the first embodiment.
- the size of the light source device 50 in the vertical direction in FIG. 12 can be shortened.
- the angle formed between the first optical axis 51c and the optical axis 55c of the light intensity uniformizing element 55 is greater than 90 degrees, and the angle formed between the second optical axis 52c and the optical axis 55c of the light intensity uniformizing element 55. It is also possible to arrange the first light source lamp 51, the second light source lamp 52, the first folding mirror 53, the second folding mirror 54, and the light intensity equalizing element 55 so that the angle becomes larger than 90 degrees. It is.
- FIG. 13 is a diagram schematically showing a configuration of a light source device 70 of the projection display apparatus according to Embodiment 6 of the present invention.
- the light source device 70 shown in FIG. 13 can be used as the light source device of the projection display device shown in FIG. 1 (Embodiment 1).
- the first light source lamp 71, the second light source lamp 72, the first bending mirror 73, the second bending mirror 74, and the light intensity equalizing element 75 in FIG. 13 are respectively the first light source lamp 11 in FIG.
- the second light source lamp 12, the first bending mirror 13, the second bending mirror 14, and the light intensity equalizing element 15 have the same configuration.
- the second light source lamp 72 (particularly, the light emitter 72a and the ellipse) emitted from the first light source lamp 71 is adjacent to the incident end 75a of the light intensity uniformizing element 75.
- the projection display device according to the first embodiment is different from the projection display device according to the first embodiment in that a light shielding plate 76 that shields (reflects or absorbs) a light beam traveling toward the inner surface (reflection surface) of the surface mirror 72b.
- the light shielding plate 76 shields (reflects or absorbs) a light beam emitted from the second light source lamp 72 and traveling toward the first light source lamp 71 (particularly, the inner surface (reflection surface) of the light emitter 71a and the ellipsoidal mirror 71b). It also has a function to do.
- the light shielding plate 76 may be made of a material that does not transmit light.
- the light shielding plate 76 is provided on the first light source lamp 71 side adjacent to the incident end 75 a of the light intensity uniformizing element 75.
- the light shielding plate 76 may be provided on the second light source lamp 72 side adjacent to the incident end 75 a of the light intensity uniformizing element 75.
- the light shielding plate 76 is a position that does not block the light beam L1 from the first light source lamp 71 toward the first folding mirror 73, and the light beam L2 from the second light source lamp 72 toward the second folding mirror 74. It is desirable to place it in a position that does not block it.
- the light shielding plate 76 shields as much as possible the light flux from the first light source lamp 71 to the second light source lamp 72 (or the light flux from the second light source lamp 72 to the first light source lamp 71). It is desirable to have a size (length and width) and shape.
- the loss light L5 that does not reach the first bending mirror 73 out of the light flux from the first light source lamp 71 and the light from the second light source lamp 72 Loss light in the light beam can be shielded by the light shielding plate 76. Therefore, the loss light from the first light source lamp 71 to the second light source lamp 72 and the loss light from the second light source lamp 72 to the first light source lamp 71 are reduced, and the first light source lamp 71 is reduced. In addition, the second light source lamp 72 is less affected by the loss light, so that the lifetime of the first light source lamp 71 and the second light source lamp 72 can be extended.
- FIG. 14 is a diagram showing the result of confirming the effect when the light shielding plate 76 is actually arranged.
- FIG. 14 shows the light utilization efficiency when the length E1 of the light shielding plate 76 is changed by 0.1 mm from 0.1 mm to 0.6 mm, and the second light source when only the first light source lamp 71 is turned on. The amount (relative value) of the loss light LB reaching the light source 72a of the lamp 72 is shown. It can be seen that when the length E1 of the light shielding plate 76 is increased, the light utilization efficiency is slightly reduced, but the loss light LB can be significantly reduced.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Projection Apparatus (AREA)
- Liquid Crystal (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
図1は、本発明の実施の形態1に係る投写型表示装置の構成を概略的に示す図である。図1に示されるように、実施の形態1に係る投写型表示装置は、強度が均一化された光束を出射する光源装置10と、光源装置10から出射された光束L3を入力映像信号に応じて変調して画像光L4に変換する画像表示素子(ライトバルブ)61と、画像光L4をスクリーン63に拡大投写する投写光学系62とを有している。図1には反射型の画像表示素子61を示しているが、画像表示素子61は、透過型の画像表示素子であってもよい。画像表示素子61は、例えば、液晶ライトバルブ、デジタルマイクロミラーデバイス(DMD)などである。背面投射型の投写型表示装置の場合には、スクリーン63は投写型表示装置の一部である。また、光源装置10、画像表示素子61、投写光学系62、及びスクリーン63の配置は、図示の例に限定されない。
図9は、本発明の実施の形態2に係る投写型表示装置の光源装置20の構成を概略的に示す図である。図9に示される光源装置20は、図1(実施の形態1)に示される投写型表示装置の光源装置として使用することができる。図9における第1の光源ランプ21、第2の光源ランプ22、第1の折り曲げミラー23、第2の折り曲げミラー24、及び光強度均一化素子25はそれぞれ、図1における第1の光源ランプ11、第2の光源ランプ12、第1の折り曲げミラー13、第2の折り曲げミラー14、及び光強度均一化素子15と同様の構成である。図9における発光体21a及び22a、楕円面鏡21b及び22b、光軸21c及び22c、入射端25a、出射端25b、並びに、光軸25cはそれぞれ、図1における発光体11a及び12a、楕円面鏡11b及び12b、光軸11c及び12c、入射端15a、出射端15b、並びに、光軸15cと同様の構成である。実施の形態2に係る投写型表示装置は、第1の折り曲げミラー23で折り曲げられた第1の光束L1及び第2の折り曲げミラー24で折り曲げられた第2の光束L2を、光強度均一化素子25に導くリレー光学系26を備えた点が、上記実施の形態1に係る投写型表示装置と相違する。図9に示されるように、実施の形態2においては、リレー光学系26は、レンズ26a及びレンズ26bで構成されており、光束を光強度均一化素子25に導く。リレー光学系26を配置することにより、光強度均一化素子25の入射端25aに入射される光束の分布を、所望の分布に変換することが可能になる。
図10は、本発明の実施の形態3に係る投写型表示装置の光源装置30の構成を概略的に示す図である。図10に示される光源装置30は、図1(実施の形態1)に示される投写型表示装置の光源装置として使用することができる。図10における第1の光源ランプ31、第2の光源ランプ32、第1の折り曲げミラー33、第2の折り曲げミラー34、及び光強度均一化素子35はそれぞれ、図1における第1の光源ランプ11、第2の光源ランプ12、第1の折り曲げミラー13、第2の折り曲げミラー14、及び光強度均一化素子15と同様の構成である。図10における発光体31a及び32a、楕円面鏡31b及び32b、光軸31c及び32c、入射端35a、出射端35b、並びに、光軸35cはそれぞれ、図1における発光体11a及び12a、楕円面鏡11b及び12b、光軸11c及び12c、入射端15a、出射端15b、並びに、光軸15cと同様の構成である。実施の形態3に係る投写型表示装置は、第1の折り曲げミラー33で折り曲げられた第1の光束L1及び第2の折り曲げミラー34で折り曲げられた第2の光束L2を、光強度均一化素子35に導くリレー光学系36を備えた点が、上記実施の形態1に係る投写型表示装置と相違する。図10に示されるように、実施の形態3においては、リレー光学系36は、レンズ36a、折り曲げミラー36b、及びレンズ36cで構成されており、光束を光強度均一化素子35に導く。リレー光学系36を配置することにより、光強度均一化素子35の入射端35aに入射される光束の分布を、所望の分布に変換することが可能になる。また、図10に示すように、リレー光学系36は折り曲げミラー36bを有しているので、投写型表示装置の各構成の配置の自由度を高める(すなわち、柔軟なレイアウトを実現する)ことができる。
図11は、本発明の実施の形態4に係る投写型表示装置の光源装置40の構成を概略的に示す図である。図11に示される光源装置40は、図1(実施の形態1)に示される投写型表示装置の光源装置として使用することができる。図11における第1の光源ランプ41、第2の光源ランプ42、第1の折り曲げミラー43、第2の折り曲げミラー44、及びリレー光学系46はそれぞれ、図9(実施の形態2)における第1の光源ランプ21、第2の光源ランプ22、第1の折り曲げミラー23、第2の折り曲げミラー24、及びリレー光学系26と同様の構成である。図11における発光体41a及び42a、楕円面鏡41b及び42b、光軸41c及び42cはそれぞれ、図9における発光体21a及び22a、楕円面鏡21b及び22b、光軸21c及び22cと同様の構成である。実施の形態4に係る投写型表示装置は、光強度均一化素子45の構成が、上記実施の形態2に係る投写型表示装置のものと相違する。図11に示されるように、実施の形態4においては、光強度均一化素子45は、複数のレンズ素子を2次元配列したレンズアレイ45a及び45bを光軸45c方向に並べて配置することによって構成されている。このような構成の光強度均一化素子45によって、照明光束の断面内の強度分布を均一にし、照度ムラを抑えることが可能になる。また、実施の形態4に係る投写型表示装置によれば、光強度均一化素子を光学部材のロッドで構成した場合に比べて、光軸45c方向のサイズを小さくすることが可能になる。
図12は、本発明の実施の形態5に係る投写型表示装置の光源装置50の構成を概略的に示す図である。図12に示される光源装置50は、図1(実施の形態1)に示される投写型表示装置の光源装置として使用することができる。図12における第1の光源ランプ51、第2の光源ランプ52、第1の折り曲げミラー53、第2の折り曲げミラー54、及び光強度均一化素子55はそれぞれ、図1における第1の光源ランプ11、第2の光源ランプ12、第1の折り曲げミラー13、第2の折り曲げミラー14、及び光強度均一化素子15と同様の構成である。図12における発光体51a及び52a、楕円面鏡51b及び52b、光軸51c及び52c、入射端55a、出射端55b、並びに、光軸55cはそれぞれ、図1における発光体11a及び12a、楕円面鏡11b及び12b、光軸11c及び12c、入射端15a、出射端15b、並びに、光軸15cと同様の構成である。実施の形態5に係る投写型表示装置は、第1の光軸51cと光強度均一化素子55の光軸55cとの成す角度が90度より小さく、第2の光軸52cと光強度均一化素子55の光軸55cとの成す角度が90度より小さくなるように、第1の光源ランプ51、第2の光源ランプ52、第1の折り曲げミラー53、第2の折り曲げミラー54、及び光強度均一化素子55を配置した点が、上記実施の形態1に係る投写型表示装置の場合と相違する。実施の形態5の構成によれば、光源装置50の図12における縦方向のサイズを短縮できる。
図13は、本発明の実施の形態6に係る投写型表示装置の光源装置70の構成を概略的に示す図である。図13に示される光源装置70は、図1(実施の形態1)に示される投写型表示装置の光源装置として使用することができる。図13における第1の光源ランプ71、第2の光源ランプ72、第1の折り曲げミラー73、第2の折り曲げミラー74、及び光強度均一化素子75はそれぞれ、図1における第1の光源ランプ11、第2の光源ランプ12、第1の折り曲げミラー13、第2の折り曲げミラー14、及び光強度均一化素子15と同様の構成である。図13における発光体71a及び72a、楕円面鏡71b及び72b、光軸71c及び72c、入射端75a、出射端75b、並びに、光軸75cはそれぞれ、図1における発光体11a及び12a、楕円面鏡11b及び12b、光軸11c及び12c、入射端15a、出射端15b、並びに、光軸15cと同様の構成である。
Claims (10)
- 第1の光束を出射する第1の光源手段と、
前記第1の光源手段に概ね向き合うように配置され、第2の光束を出射する第2の光源手段と、
入射端及び出射端を有し、前記入射端に入射された光束を強度分布が均一化された光束に変換して前記出射端から出射する光強度均一化手段と、
前記第1の光源手段から出射された前記第1の光束を前記入射端に向ける第1の折り曲げ手段と、
前記第2の光源手段から出射された前記第2の光束を前記入射端に向ける第2の折り曲げ手段と、
前記光強度均一化手段の前記出射端から出射された光束を変調して画像光に変換する画像表示素子と、
前記画像光をスクリーンに投写する投写光学系と
を備え、
前記第1の光源手段の第1の光軸が前記第2の光源手段の第2の光軸と一致せず、前記第1の折り曲げ手段から前記入射端までの第1の距離と前記第2の折り曲げ手段から前記入射端までの第2の距離とが異なるように、前記第1の光源手段、前記第2の光源手段、前記第1の折り曲げ手段、及び前記第2の折り曲げ手段を配置した
ことを特徴とする投写型表示装置。 - 前記第1の光源手段から出射される前記第1の光束及び前記第2の光源手段から出射される前記第2の光束は集光光束であり、
前記第1の光束の第1の集光点が前記第1の折り曲げ手段より前記光強度均一化手段側に位置し、前記第2の光束の第2の集光点が前記第2の折り曲げ手段より前記光強度均一化手段側に位置するように、前記第1の光源手段、前記第2の光源手段、前記第1の折り曲げ手段、前記第2の折り曲げ手段、及び前記光強度均一化手段を配置した
ことを特徴とする請求項1記載の投写型表示装置。 - 前記第1の光束の中心光線が前記入射端に入射する第1の入射位置と前記第2の光束の中心光線が前記入射端に入射する第2の入射位置とが、互いに異なる位置であり、且つ、前記光強度均一化手段の光軸からずれた位置であることを特徴とする請求項1又は2に記載の投写型表示装置。
- 前記入射端に隣接して設けられ、前記第1の光源手段から出射され前記第2の光源手段に向かう光、及び、前記第2の光源手段から出射され前記第1の光源手段に向かう光を遮光する遮光手段を備えたことを特徴とする請求項1乃至3のいずれか1項に記載の投写型表示装置。
- 前記第1の折り曲げ手段で折り曲げられた前記第1の光束及び前記第2の折り曲げ手段で折り曲げられた前記第2の光束を、前記光強度均一化手段に導くリレー光学系を備えたことを特徴とする請求項1乃至4のいずれか1項に記載の投写型表示装置。
- 前記光強度均一化手段は、内面を光反射面とした管状部材を含むことを特徴とする請求項1乃至5のいずれか1項に記載の投写型表示装置。
- 前記光強度均一化手段は、透明材料による多角柱状の部材を含むことを特徴とする請求項1乃至5のいずれか1項に記載の投写型表示装置。
- 前記光強度均一化手段は、複数のレンズ素子を2次元配列したレンズアレイを含むことを特徴とする請求項1乃至5のいずれか1項に記載の投写型表示装置。
- 前記第1の光源手段の前記第1の光軸と前記光強度均一化手段の光軸との成す角度が90度であり、前記第2の光源手段の前記第2の光軸と前記光強度均一化手段の光軸との成す角度が90度であるように、前記第1の光源手段、前記第2の光源手段、前記第1の折り曲げ手段、前記第2の折り曲げ手段、及び前記光強度均一化手段を配置したことを特徴とする請求項1乃至8のいずれか1項に記載の投写型表示装置。
- 前記第1の光源手段の前記第1の光軸と前記光強度均一化手段の光軸との成す角度が90度より小さく、前記第2の光源手段の前記第2の光軸と前記光強度均一化手段の光軸との成す角度が90度より小さくなるように、前記第1の光源手段、前記第2の光源手段、前記第1の折り曲げ手段、前記第2の折り曲げ手段、及び前記光強度均一化手段を配置したことを特徴とする請求項1乃至8のいずれか1項に記載の投写型表示装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09831613A EP2357526A1 (en) | 2008-12-08 | 2009-10-21 | Projection display device |
US12/746,828 US8434876B2 (en) | 2008-12-08 | 2009-10-21 | Projection type display apparatus having a light source device with improved light utilization efficiency |
KR1020117009565A KR101299890B1 (ko) | 2008-12-08 | 2009-10-21 | 투사형 표시 장치 |
CN2009801388346A CN102171610B (zh) | 2008-12-08 | 2009-10-21 | 投影型显示装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008311932 | 2008-12-08 | ||
JP2008-311932 | 2008-12-08 | ||
JP2009011852A JP4516622B2 (ja) | 2008-12-08 | 2009-01-22 | 投写型表示装置 |
JP2009-011852 | 2009-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010067504A1 true WO2010067504A1 (ja) | 2010-06-17 |
Family
ID=42242502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005507 WO2010067504A1 (ja) | 2008-12-08 | 2009-10-21 | 投写型表示装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8434876B2 (ja) |
EP (1) | EP2357526A1 (ja) |
JP (1) | JP4516622B2 (ja) |
KR (1) | KR101299890B1 (ja) |
CN (1) | CN102171610B (ja) |
TW (1) | TWI412869B (ja) |
WO (1) | WO2010067504A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5609158B2 (ja) * | 2010-02-26 | 2014-10-22 | 三菱電機株式会社 | 光源装置および投写型表示装置 |
WO2012104958A1 (ja) * | 2011-01-31 | 2012-08-09 | Necディスプレイソリューションズ株式会社 | 光源装置及び投写型表示装置 |
WO2012114423A1 (ja) * | 2011-02-21 | 2012-08-30 | Necディスプレイソリューションズ株式会社 | 投射型表示装置 |
JP6421930B2 (ja) * | 2014-01-09 | 2018-11-14 | パナソニックIpマネジメント株式会社 | 照明装置及び投写型映像表示装置 |
CN104749866B (zh) * | 2015-03-11 | 2016-08-24 | 苏州佳世达光电有限公司 | 光源系统及投影装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005115094A (ja) * | 2002-10-09 | 2005-04-28 | Matsushita Electric Ind Co Ltd | 照明装置及びそれを用いた投写型画像表示装置 |
JP2006078949A (ja) * | 2004-09-13 | 2006-03-23 | Matsushita Electric Ind Co Ltd | 投写型表示装置の光源装置 |
JP2006162689A (ja) * | 2004-12-02 | 2006-06-22 | Casio Comput Co Ltd | 光源装置及びそれを備えたプロジェクタ |
JP2006308778A (ja) * | 2005-04-27 | 2006-11-09 | Konica Minolta Opto Inc | 2灯合成光学系およびそれを備えた画像投影装置 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3322608B2 (ja) * | 1997-06-16 | 2002-09-09 | 三洋電機株式会社 | 照明装置 |
JP3589856B2 (ja) * | 1998-03-26 | 2004-11-17 | 日本アビオニクス株式会社 | 光インテグレータ |
JP3448223B2 (ja) | 1998-08-31 | 2003-09-22 | シャープ株式会社 | 光源装置 |
JP3408202B2 (ja) | 1999-07-06 | 2003-05-19 | 三洋電機株式会社 | 照明装置および投写型映像表示装置 |
JP3823659B2 (ja) * | 2000-02-04 | 2006-09-20 | セイコーエプソン株式会社 | プロジェクタ |
JP2001305656A (ja) * | 2000-04-24 | 2001-11-02 | Ushio Inc | カラー像投影装置 |
JP2001356404A (ja) * | 2000-06-09 | 2001-12-26 | Mitsubishi Electric Corp | 画像表示装置 |
JP2001359025A (ja) | 2000-06-12 | 2001-12-26 | Minolta Co Ltd | 光源装置 |
JP2003279886A (ja) * | 2002-03-20 | 2003-10-02 | Fuji Photo Optical Co Ltd | インテグレータ、照明光学系および投写型画像表示装置 |
KR100704203B1 (ko) * | 2002-10-09 | 2007-04-05 | 마쯔시다덴기산교 가부시키가이샤 | 조명 장치 및 이를 이용한 투사형 화상 표시 장치 |
CN100559260C (zh) * | 2002-10-09 | 2009-11-11 | 松下电器产业株式会社 | 照明装置以及使用该照明装置的投影图像显示器 |
JP3955597B2 (ja) * | 2002-10-11 | 2007-08-08 | 松下電器産業株式会社 | 照明装置および照明方法 |
JP4514440B2 (ja) * | 2003-12-01 | 2010-07-28 | 三洋電機株式会社 | 投写型映像表示装置 |
JP4696666B2 (ja) * | 2005-04-27 | 2011-06-08 | コニカミノルタオプト株式会社 | 照明光学系およびそれを備えた画像投影装置 |
EP1746454A1 (en) * | 2005-07-18 | 2007-01-24 | Barco, naamloze vennootschap. | Device for coupling the light of multiple light sources |
JP2007093970A (ja) * | 2005-09-28 | 2007-04-12 | Sanyo Electric Co Ltd | 投写型映像表示装置 |
CN101135833A (zh) * | 2006-08-30 | 2008-03-05 | 台达电子工业股份有限公司 | 用于投影装置的照明系统及包含该照明系统的投影装置 |
CN201028331Y (zh) * | 2007-03-29 | 2008-02-27 | 广东威创日新电子有限公司 | 双光源照明装置 |
US20080259284A1 (en) * | 2007-04-19 | 2008-10-23 | Sanyo Electric Co., Ltd. | Illumination device and projection video display device |
CN101681087B (zh) * | 2007-06-21 | 2011-05-18 | 松下电器产业株式会社 | 光源装置及利用该光源装置的投射式显示装置 |
TWI346245B (en) * | 2007-07-06 | 2011-08-01 | Delta Electronics Inc | Light collecting device for use in a projection apparatus |
TWI370316B (en) * | 2007-07-27 | 2012-08-11 | Aixin Technologies Llc | Illumination system |
CN201107538Y (zh) | 2007-11-09 | 2008-08-27 | 上海广电光显技术有限公司 | 双反射镜式双光源光机 |
-
2009
- 2009-01-22 JP JP2009011852A patent/JP4516622B2/ja not_active Expired - Fee Related
- 2009-10-21 CN CN2009801388346A patent/CN102171610B/zh not_active Expired - Fee Related
- 2009-10-21 KR KR1020117009565A patent/KR101299890B1/ko not_active IP Right Cessation
- 2009-10-21 EP EP09831613A patent/EP2357526A1/en not_active Withdrawn
- 2009-10-21 WO PCT/JP2009/005507 patent/WO2010067504A1/ja active Application Filing
- 2009-10-21 US US12/746,828 patent/US8434876B2/en not_active Expired - Fee Related
- 2009-11-06 TW TW098137700A patent/TWI412869B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005115094A (ja) * | 2002-10-09 | 2005-04-28 | Matsushita Electric Ind Co Ltd | 照明装置及びそれを用いた投写型画像表示装置 |
JP2006078949A (ja) * | 2004-09-13 | 2006-03-23 | Matsushita Electric Ind Co Ltd | 投写型表示装置の光源装置 |
JP2006162689A (ja) * | 2004-12-02 | 2006-06-22 | Casio Comput Co Ltd | 光源装置及びそれを備えたプロジェクタ |
JP2006308778A (ja) * | 2005-04-27 | 2006-11-09 | Konica Minolta Opto Inc | 2灯合成光学系およびそれを備えた画像投影装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI412869B (zh) | 2013-10-21 |
CN102171610A (zh) | 2011-08-31 |
EP2357526A1 (en) | 2011-08-17 |
CN102171610B (zh) | 2013-06-12 |
JP4516622B2 (ja) | 2010-08-04 |
US8434876B2 (en) | 2013-05-07 |
JP2010160454A (ja) | 2010-07-22 |
KR101299890B1 (ko) | 2013-08-23 |
KR20110076974A (ko) | 2011-07-06 |
US20110043763A1 (en) | 2011-02-24 |
TW201022825A (en) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100747856B1 (ko) | Dlp 광학 엔진 | |
JP3904597B2 (ja) | 投写型表示装置 | |
JPWO2002031592A1 (ja) | 照明光学装置及びこれを用いた投写型表示装置 | |
JP4516622B2 (ja) | 投写型表示装置 | |
JP4837130B2 (ja) | 光源装置 | |
JPWO2008132831A1 (ja) | 投写型表示装置 | |
JP5162901B2 (ja) | 投射型表示装置及び光学ユニット | |
JP2010091846A (ja) | 投写型表示装置 | |
JP2010014816A (ja) | 背面投射型表示装置 | |
JP3791103B2 (ja) | 光源装置および投写型表示装置 | |
JP5097042B2 (ja) | 照明光学装置及びそれを用いた投写型表示装置 | |
JPH11311762A (ja) | 液晶プロジェクタの照明装置 | |
JP2006292792A (ja) | 光投射装置及びプロジェクタ | |
JP2008234897A (ja) | 光源装置及びプロジェクタ | |
TWI421539B (zh) | 光源裝置及投影型顯示裝置 | |
JP2002296679A (ja) | プロジェクタ装置 | |
JP3972940B2 (ja) | 光源装置および投写型表示装置 | |
JP3901707B2 (ja) | プロジェクタ | |
KR0132824B1 (ko) | 액정프로젝터 | |
JP5035878B2 (ja) | 照明光学系およびその投写型表示装置 | |
JP6236781B2 (ja) | ライトトンネル、及び画像照射装置 | |
JPH0990354A (ja) | 投射型液晶表示装置 | |
JP2014119655A (ja) | 画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980138834.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12746828 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09831613 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009831613 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117009565 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |