WO2010066929A1 - Materiales basados en aluminosilicatos de litio con coeficiente de expansión térmica negativos en un amplio intervalo de temperatura, procedimiento de preparación y uso - Google Patents

Materiales basados en aluminosilicatos de litio con coeficiente de expansión térmica negativos en un amplio intervalo de temperatura, procedimiento de preparación y uso Download PDF

Info

Publication number
WO2010066929A1
WO2010066929A1 PCT/ES2009/070534 ES2009070534W WO2010066929A1 WO 2010066929 A1 WO2010066929 A1 WO 2010066929A1 ES 2009070534 W ES2009070534 W ES 2009070534W WO 2010066929 A1 WO2010066929 A1 WO 2010066929A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic materials
procedure
materials according
preparing ceramic
carried out
Prior art date
Application number
PCT/ES2009/070534
Other languages
English (en)
French (fr)
Inventor
Ramón TORRECILLAS SAN MILLÁN
Adolfo FERNÁNDEZ VALDÉS
Olga GARCÍA MORENO
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to EP09831502.1A priority Critical patent/EP2371786B1/en
Priority to US13/139,284 priority patent/US8529851B2/en
Publication of WO2010066929A1 publication Critical patent/WO2010066929A1/es
Priority to US13/967,788 priority patent/US20130337994A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention is related to ceramics with a negative thermal expansion coefficient and / or very close to zero, which can be used in the manufacture of components that require high dimensional stability. Therefore, the technology described in the invention is framed within the sector of new materials, while its application is within the sectors of microelectronics, precision optics and the aeronautical sector.
  • Materials with low coefficient of thermal expansion are materials in which the volumetric variations associated with temperature changes are very small.
  • the thermal expansion coefficient, CTE is usually used, which is defined as the variation of the volume that a material experiences with the increase in temperature and must always refer to the temperature range in which this variation is observed.
  • This custom design of the CTE of the composites can be carried out for different temperatures, in such a way that the final field of application of the components with zero CTE will depend on also obtaining the rest of the characteristics that the specific functionality for that application require.
  • the family of ceramics and glass ceramics of lithium aluminosilicates (LAS) is frequently used for this purpose in many fields of application, from ceramic hobs for kitchens to mirrors for satellites.
  • Some mineral phases of this family have negative CTE, which allows their use in composites with controlled and customized CTE.
  • the materials with negative CTE have a low fracture resistance since their negativity is due to a strong anisotropy between the different crystallographic orientations, in which one of them usually finds negative behavior and in the other two positive ones.
  • the LAS phase with a negative expansion coefficient is ⁇ -eucriptite (LiAISiO 4 ) while the spodumene (LiAISi 2 O 6 ) has virtually zero expansion.
  • the traditional method of manufacturing LAS ceramics is based on the formation of glass to produce ceramic hobs. This method comprises the manufacture of molten material that is subsequently formed and subjected to a heat treatment for partial crystallization [H. Bach, Low Thermal Expansion Glass Ceramics, Springer-Verlag, Berlin, 1995].
  • Sol-gel processing methods have been applied in the manufacture of LAS ceramics [W. Nan-Chung, Y. Sheng, US5320792 of 06/14/2004] for its many advantages such as low processing temperatures. However, these methods are tedious, expensive and difficult to apply in industrial processes where large amounts of material are required.
  • the present invention is based on a new process for obtaining ceramic materials based on lithium aluminosilicates (LAS) with thermal expansion coefficient close to zero and negative in the temperature range (-150 0 C to 450 0 C) comprising a step of preparing the lithium aluminosilicate (LAS) precursor from kaolin, L2CO3 and a precursor of SiO2 or AI2O3 in solution.
  • LAS lithium aluminosilicate
  • one aspect of the present invention is the process of preparation of ceramic materials based on lithium aluminosilicates with thermal expansion coefficient close to zero and negative in the temperature range -150 0 C to 450 0 C, which comprises a stage for preparing the lithium aluminosilicate precursor from kaolin, L2CO3 and a solution precursor of SiO2 or AI2O3.
  • a preferred aspect of the present invention is the process for obtaining ceramic materials, hereinafter procedure for preparing ceramic materials of the invention, characterized in that it comprises the following steps: a. synthesis of the lithium aluminosilicate precursor by means of the preparation of a suspension of kaolin, L2CO3 and a solution precursor of SiO2 or AI2O3, b. calcination of the resulting powder after drying the mixture obtained in a), c. grinding and drying of the material obtained in b), d. formed of the material obtained in c) e. sintering of the material obtained in d).
  • a more preferred aspect of the present invention is the process of preparing ceramic materials of the invention in which tetraethyl orthosilicate is used as a precursor to SiO2.
  • Another more preferred aspect of the present invention is the process of preparing ceramic materials of the invention in which aluminum ethoxide is used as an alumina precursor.
  • Another more preferred aspect of the present invention is the process of preparing ceramic materials of the invention in which the suspension of stage a) is in alcohol.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention in which the calcination of stage b) is carried out at a temperature between 400 and 97O 0 C for a time between 1 and 240 hours .
  • Calcinations at a temperature of 900 0 C transform the structure of kaolin giving directly one ⁇ type structure - eucryptite.
  • Lower temperatures can be used, but using longer calcination times.
  • the transformation of the structure from ⁇ to ⁇ in the ecriptite normally takes place at 970 0 C, so the calcination temperature must be greater than or equal to 970 0 C to obtain a LAS precursor with a single phase of type ⁇ structure - Eucriptite In this procedure, lower calcination temperatures have been achieved, resulting in the ⁇ phase.
  • a particular embodiment of the present invention is the process for preparing ceramic materials of the invention in which the calcination of step b) is performed at a temperature of 900 0 C for a period of 2 hours.
  • Another more preferred aspect of the present invention is the process of preparing ceramic materials of the invention in which the calcination of stage b) is carried out after sieving the solid obtained by drying the suspension obtained in a).
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention in which the grinding of stage c) is carried out by attrition in a high energy mill. Through the high-energy attrition mill a very fine grain size ⁇ -ecriptite powder is obtained. This very fine grain is essential when it comes to subsequently obtaining LAS ceramic bodies with high relative density with improved mechanical properties.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention in which the attrition in a high energy mill is carried out operating at 100-400 rpm, preferably 350 rpm, for times longer than 20 minutes.
  • Another more preferred aspect of the present invention is the process of preparing ceramic materials of the invention in which the drying of stage c) is carried out by atomization.
  • Another more preferred aspect of the present invention is the process of preparing ceramic materials of the invention in which the forming of the material of stage d) is carried out by isostatic pressing.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention in which the forming of the material of stage d) is carried out by cold isostatic pressing and at pressures between 100 and 400 MPa, preferably 200MPa.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention in which Ia sintering step e) is performed at a temperature between 900 and 1500 0 C.
  • Another particular embodiment of the present invention is the process of preparation of ceramic materials of the invention in which the sintering of stage e) is carried out at a temperature of 135O 0 C.
  • a particular example of the present invention is the preparation process of ceramic materials of the invention in which a heating ramp of between 2 and 10 ° C / min is used, preferably 5 ° C / min, maintaining the final temperature for a period between 1 and 4 hours, and a subsequent cooling up to 900 0 C via a ramp between 2 and 10 ° C / min, preferably 5 ° C / min.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention in which steps d) and e) are carried out by means of the hot pressing technique.
  • the hot pressing technique (in English hot-press) is based on the simultaneous application of pressure and high temperature to accelerate the speed of densification. In this technique, heating takes place through the use of graphite resistors.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention in which steps d) and e) are carried out by means of the hot pressing technique at a temperature within the range 900-1400 0 C, preferably 1100 0 C.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention in which steps d) and e) are carried out by means of the hot pressing technique at a pressure between 5 and 80 MPa, preferably 15 MPa.
  • Another more preferred aspect of the present invention is the process of preparing ceramic materials of the invention in which steps d) and e) are performed by means of the Plasma Discharge Sintering (SPS) technique.
  • the Plasma Tear Sintering technique (in English Spark Plasma Sintering - SPS) is also based on the simultaneous application of pressure and high temperature. Unlike hot pressing, in this technique the heating takes place by means of the application of electric discharges through the graphite molds and also of the sample, allowing to work with heating speeds of the order of hundreds of degrees per minute.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention in which steps d) and e) are performed by means of the Plasma Discharge Sintering (SPS) technique at a temperature between 900 and 1400 0 C, preferably 1100 0 C.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention in which steps d) and e) are carried out by means of the Plasma Discharge Sintering (SPS) technique, for a time greater than 1 minute, and preferably 5 minutes.
  • Another particular embodiment of the present invention is the process of preparing ceramic materials of the invention in which steps d) and e) are performed by means of the Plasma Discharge Sintering (SPS) technique at a pressure between 5 and 80 MPa , preferably 50 MPa.
  • Another aspect of the present invention is the ceramic material prepared by any of the procedures described above.
  • the ceramic materials of the present invention have negative CTE values and / or close to zero for a wide range of temperatures (between - 150 and 450 0 C).
  • the mechanical properties of the materials prepared by this invention are better than those of the materials with negative CTE available to date which have values of ⁇ f around 35 MPa and E around 36 GPa [SL Swartz, US6066585 of 23 / 05/2000].
  • Another preferred aspect of the present invention is the ceramic material based on lithium aluminosilicates, prepared by the process of preparing ceramic materials of the invention, in which its final density is greater than 98% of the theoretical density and its expansion coefficient Thermal is ⁇ 0.5x10 "6 K " 1 in the temperature range from -150 to 450 0 C.
  • the LAS ceramic materials of the present invention have a composition between the spodumene and the ecriptite, that is, L ⁇ 2 ⁇ : Al2 ⁇ 3: Si ⁇ 2 between 1: 1: 4 and 1: 1: 2.
  • the main phase in the sintered material is a solid solution of ⁇ -eucriptite, stable at relatively high temperatures.
  • Another aspect of the present invention is the use of ceramic material, prepared by any of the procedures described above, in the manufacture of new materials.
  • Another preferred aspect of the present invention is the use of ceramic material, prepared by any of the procedures described above, in the manufacture of components that require high dimensional stability such as high precision measuring instruments, mirrors for space observation systems , whether terrestrial or aerial, optical lithography scanners, holography, laser instrumentation or heat sinks.
  • FIGURE 1 DESCRIPTION OF THE FIGURES.
  • the solid solution ⁇ -eucriptite is indicated by the peaks marked with white circles.
  • the peaks corresponding to lithium lithium aluminate (examples 1 and 3) are indicated by black triangles.
  • FIGURE 2 Photographs obtained by scanning electron microscopy of the materials obtained in Example 2 in which the formation of a small percentage of vitreous phase (lighter gray) and the low porosity is observed.
  • FIGURE 3 Dilatometries corresponding to the materials prepared in the different examples: example 1: dashed line, example 2: solid line, example 3: dotted line
  • the method comprises the synthesis of a ceramic powder by calcination treatments prior to an essential high energy grinding step to obtain an improved microstructure of the final dense ceramic material.
  • kaolin in this example of Arcano de Moltuval kaolin (Spain), with a composition AI2O3.2.37S ⁇ O2.2.67H2O; Reactpur 99% lithium carbonate from VWR Prolabo and 99.5% tetraethyl orthosilicate (TEOS) from Sigma Aldrich.
  • TEOS tetraethyl orthosilicate
  • the mechanical agitation is maintained for one hour.
  • the suspension thus obtained is carried by solvent evaporation drying , raising the temperature to 80 0 C while maintaining stirring Ia. When virtually all the solvent has evaporated, the suspension is introduced into an oven at 120 0 C to complete drying.
  • the dried mixture is screened before the calcination treatment below 63 ⁇ m by means of a 63 ⁇ m sieve.
  • the calcination process is then carried out for the formation of the LAS precursor, for this the powder is placed in alumina crucibles that are introduced into an oven.
  • the calcination treatment was performed at 900 0 C for 2 hours with a heating rate of 5 ° C / min.
  • the starting powder is transformed into the LAS precursor.
  • This precursor is a solid solution of ⁇ -eucriptite whose composition is proven by X-ray diffraction.
  • the next step consists in the attrition of the precursor in a high energy mill.
  • a stable suspension of the precursor is prepared and introduced into the mill, dispersing the precursor powder in ethanol (40% solid content) by mechanical stirring for 60 minutes.
  • the precursor has a submicron size after grinding.
  • the suspension thus obtained is dried by atomization while the solvent is recovered.
  • the dry precursor is formed by cold isostatic pressing at 200 MPa.
  • This shaped material is sintered in a furnace at 1350 0 C for 2 hours with a heating rate of 5 ° C / min.
  • the cooling is controlled up to 900 0 C at the same speed.
  • the characterization has been carried out by X-ray diffraction in order to control the resulting association of phases in the sintered material.
  • the diffractogram corresponding to the material obtained according to this exemplary embodiment is shown in Fig. 1.
  • the ceramic body is mainly constituted by a solid solution of ⁇ -eucriptite. Small traces of LJAI02 have been detected. Small traces of the vitreous phase ( ⁇ 2vol.%) Have also been detected in the images of backscattered electrons by scanning electron microscopy, whose detail is shown in Fig. 2.
  • the sintered sample has been characterized with a Netszch DIL402C dilatometer to obtain the CTE value. The corresponding curve is shown in Fig. 3. Young's modulus was determined by the resonance frequency method, using a Grindosonic device. Its resistance to fracture was determined by a four-point bending test with an INSTRON 8562 device. The results of these properties are shown in Table I.
  • Example 2 Synthesis of a LAS precursor with higher AI2O3 content than the starting kaolin, and its subsequent densification by sintering by plasma discharge.
  • the synthesis of ceramic powders begins with the preparation of the starting materials. This implies the kaolin, in this example of Arcano kaolin from Moltuval (Spain), with a composition AI2O3.2.37S ⁇ O2.2.67H2O; Reactpur 99% lithium carbonate from VWR Prolabo and aluminum ethoxide> 97% from Sigma Aldrich.
  • the appropriate amounts of kaolin (550.3 g) are dispersed in 2 liters of ethanol. This dispersion is maintained under mechanical stirring at room temperature.
  • the dried mixture is screened before the calcination treatment below 63 ⁇ m by means of a 63 ⁇ m sieve.
  • the calcination process for the formation of the LAS precursor is carried out.
  • the powder is placed in alumina crucibles that are introduced into an oven.
  • the calcination treatment was performed at 900 0 C for 2 hours with a heating rate of 5 ° C / min.
  • the starting powder is transformed into the LAS precursor.
  • This precursor is a solid solution of ⁇ -eucriptite whose composition is proven by X-ray diffraction.
  • the next step consists in the attrition of the precursor in a high energy mill.
  • a stable suspension of the precursor was prepared and introduced into the mill, dispersing the precursor powder in ethanol (40% solid content) by mechanical stirring for 60 minutes.
  • the attrition mill with a 9/1 alumina ball content, operated at 350 rpm for 60 minutes.
  • the resulting precursor has a submicron size after grinding.
  • the suspension thus obtained is dried by atomization while the solvent is recovered.
  • the dried precursor is introduced into a graphite mold and an initial uniaxial pressure of 5 MPa is applied.
  • the material is sintered by means of SPS with the following experimental variables; heating rate of 25 ° C / min, maximum temperature 1150 0 C, maximum pressure 50 MPa, residence time at the temperature and maximum pressure 5 minutes.
  • the characterization has been carried out by X-ray diffraction in order to control the resulting association of phases in the sintered material.
  • the diffractogram corresponding to the material obtained according to this exemplary embodiment is shown in Fig. 1.
  • the ceramic body is mainly constituted by a solid solution of ⁇ -eucriptite. Small traces of the vitreous phase have also been detected as in the previous example.
  • the sintered sample has been characterized with a Netszch DIL402C dilatometer to obtain the CTE value.
  • the corresponding curve is shown in Fig. 3.
  • Young's modulus was determined by the resonance frequency method, using a Grindosonic device. Its resistance to fracture was determined by a four-point bending test with an INSTRON 8562 device. The results of these properties are shown in Table I.
  • Example 3 Synthesis of a LAS precursor with a higher SiO2 content than the starting kaolin, and its subsequent densification by hot pressing sintering.
  • the synthesis of ceramic powders begins with the preparation of the starting materials.
  • the appropriate amounts of kaolin (528.7 g) are dispersed in 2 liters of ethanol. This dispersion is maintained under mechanical stirring at room temperature.
  • the appropriate amount of lithium carbonate (131.9 g) is then incorporated into the dispersion while maintaining the stirring.
  • TEOS (339.4 g) is added slowly while stirring continues gradually.
  • the dried mixture is screened before the calcination treatment below 63 ⁇ m by means of a 63 ⁇ m sieve.
  • the calcination process for the formation of the LAS precursor is carried out.
  • the powder is placed in alumina crucibles that are introduced into an oven.
  • the calcination treatment was performed at 900 0 C for 2 hours with a heating rate of 5 ° C / min.
  • the starting powder is transformed into the LAS precursor.
  • This precursor is a solid solution of ⁇ -eucriptite whose composition is proven by X-ray diffraction.
  • the next step consists in the attrition of the precursor in a high energy mill. A stable suspension of the precursor is prepared to be introduced into the mill, dispersing the precursor powder in ethanol (40% solid content) by mechanical stirring for 60 minutes. The attrition mill, with a 9/1 alumina ball content, operated at 350 rpm for 60 minutes. The resulting precursor has a submicron size after grinding. The suspension thus obtained is dried by atomization while the solvent is recovered.
  • the dried precursor is introduced into a graphite mold and an initial uniaxial pressure of 5 MPa is applied. Then the material is sintered by hot pressing with the following experimental variables; heating speed 5 ° C / min, maximum temperature 1150 0 C, maximum pressure 15 MPa, residence time at the temperature and maximum pressure 1 hour.
  • the characterization has been carried out by X-ray diffraction in order to control the resulting association of phases in the sintered material.
  • the diffractogram corresponding to the material obtained according to this example of The embodiment is shown in Fig. 1.
  • the ceramic body is mainly constituted by a solid solution of ⁇ -eucriptite. Small traces of LJAI02 and vitreous phase have been detected as in the previous examples.
  • the sintered sample has been characterized with a Netszch DIL402C dilatometer to obtain the CTE value.
  • the corresponding curve is shown in Fig. 3.
  • Young's modulus was determined by the resonance frequency method, using a Grindosonic device. Its resistance to fracture was determined by a four-point bending test with an INSTRON 8562 device. The results of these properties are shown in Table I.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Nuevo procedimiento para la obtención de materiales cerámicos basados en aluminosilicatos de litio (LAS) con coeficiente de expansión térmica próximos a cero y negativos en el intervalo de temperatura (-150 0C a 450 0C) Estos materiales tienen su aplicación en la fabricación de componentes que requieran una alta estabilidad dimensional.

Description

MATERIALES BASADOS EN ALUMINOSILICATOS DE LITIO CON COEFICIENTE DE EXPANSIÓN TÉRMICA NEGATIVOS EN UN AMPLIO INTERVALO DE TEMPERATURA, PROCEDIMIENTO DE PREPARACIÓN Y USO.
SECTOR DE LA TÉCNICA
La presente invención está relacionada con las cerámicas con coeficiente de expansión térmica negativo y/o muy próximo a cero, las cuales se pueden utilizar en Ia fabricación de componentes que requieran una alta estabilidad dimensional. Por tanto, Ia tecnología descrita en Ia invención se enmarca dentro del sector de nuevos materiales, mientras que su aplicación se encuentra dentro de los sectores de Ia microelectrónica, Ia óptica de precisión y el sector aeronáutico.
ESTADO DE LA TÉCNICA
Los materiales con bajo coeficiente de dilatación térmica son materiales en los que las variaciones volumétricas asociadas a cambios de temperatura son muy pequeñas. Para evaluar los cambios de volumen de los materiales con Ia temperatura se suele utilizar el coeficiente de expansión térmica, CTE, el cual se define como Ia variación del volumen que experimenta un material con el incremento de temperatura y siempre ha de referirse al intervalo de temperatura en el que se observa esa variación.
En materiales cerámicos, compuestos por multitud de cristales con orientaciones aleatorias, se suele extrapolar Ia variación volumétrica a Ia variación lineal. Se habla entonces de cambios en Ia elongación con los cambios de temperatura. Esos cambios en Ia elongación con respecto a Ia longitud inicial con el incremento de Ia temperatura es Io que se define como coeficiente de expansión térmica lineal. En general y en esta invención, se habla de coeficiente de expansión térmica o CTE refiriéndose a esta variación lineal. Cuando el valor de Ia elongación con el incremento de Ia temperatura es positivo se habla de materiales con CTE positivo mientras que si esta variación es negativa se habla de materiales con CTE negativo. Los materiales con CTE bajo son materiales en los que esta variación en Ia elongación es muy próxima a cero. Son, por Io tanto, materiales con una alta estabilidad dimensional frente a cambios de temperatura y presentan por ello un gran interés en un amplio rango de aplicaciones en muy diversos campos. Este tipo de materiales son por ejemplo requeridos en muchos tipos de aparatos de precisión y de equipos de instrumentación en sistemas de alta tecnología, en Ia industria de Ia microelectrónica y Ia óptica de precisión. En todas aquellas aplicaciones en las que tenga que asegurarse Ia estabilidad dimensional de algún elemento de precisión con los cambios de temperatura será necesario disminuir el CTE de los materiales que conformen esos elementos. El problema del desajuste en Ia expansión térmica en elementos fabricados con distintos materiales puede también solventarse mediante el diseño de composites con un CTE requerido (y homogéneo). El diseño de estos materiales con CTE "a medida" se puede abordar mediante Ia combinación de componentes con expansión positiva y negativa. Este diseño a medida del CTE de los composites se puede llevar a cabo para diferentes temperaturas, de tal manera que el campo de aplicación final de los componentes con CTE nulo dependerá de que también se consigan el resto de características que Ia funcionalidad concreta para esa aplicación requiera. La familia de cerámicas y vitrocerámicas de aluminosilicatos de litio (LAS) es frecuentemente usada con este propósito en muchos campos de aplicación, desde las vitrocerámicas para cocinas hasta espejos para satélites. Algunas fases minerales de esta familia poseen CTE negativo, Io que permite su uso en composites con CTE controlado y a medida. Frecuentemente, los materiales con CTE negativo tienen una resistencia a Ia fractura baja ya que su negatividad es debida a una fuerte anisotropía entre las diferentes orientaciones cristalográficas, en las que en una de ellas se suele encontrar comportamiento negativo y en las otras dos positivo. Esta anisotropía suele causar microfisuras que dan como resultado valores bajos en las propiedades mecánicas de estos materiales. De todas maneras, Ia utilidad de estas propiedades de expansión para Ia fabricación de composites con CTE nulo tiene un amplio rango de potencial en aplicaciones en ingeniería, fotónica, electrónica y otras aplicaciones estructurales concretas [R. Roy et al., Annual Review of Materials Science, 19, 59-81 (1989)]
La fase LAS con coeficiente de expansión negativo es Ia β- eucriptita (LiAISiO4) mientras que Ia espodumena (LiAISi2O6) tiene expansión prácticamente nula.
El método tradicional de fabricación de cerámicas LAS se basa en Ia formación de vidrios para producir vitrocerámicas. Este método comprende Ia fabricación de material fundido que es posteriormente conformado y sometido a un tratamiento térmico para su cristalización parcial [H. Bach, Low Thermal Expansión Glass Ceramics, Springer-Verlag, Berlín, 1995].
Los productos cerámicos así obtenidos son frecuentemente heterogéneos. En otras ocasiones, se requieren materiales cerámicos en ausencia o con muy baja proporción de fase vitrea, Ia cual disminuye Ia rigidez y Ia resistencia de los productos cerámicos. Existe por tanto Ia necesidad de un método de fabricación de cerámicas LAS en estado sólido que sea, además de económico, sencillo para ajustar con precisión Ia composición final del material y en consecuencia su CTE.
Los métodos de procesado por sol-gel han sido aplicados en Ia fabricación de cerámicas LAS [W. Nan-Chung, Y. Sheng, US5320792 de 14/06/2004] por sus múltiples ventajas como las bajas temperaturas de procesado. Sin embargo, estos métodos son tediosos, caros y difíciles de aplicar en procesos industriales donde se requieren grandes cantidades de material.
Otros métodos de obtención de cerámicas LAS en estado sólido usan como materias primas carbonato de litio, óxido de aluminio y óxido de silicio [C. Jyh- Chen, S. Gwo-Jiun, de US2004112503 de 17/06/2004]. En ese trabajo se hace referencia a Ia calcinación para Ia obtención de un precursor y a un tratamiento térmico realizado después de Ia sinterización. Estos autores destacan Ia dificultad para sinterizar estas cerámicas.
[S. L. Swartz, US6066585 de 23/05/2000] también hace referencia a Ia calcinación para Ia obtención de un precursor pero en este caso utilizan un exceso de óxido de litio, en comparación con Ia composición estequiométrica de Ia β- eucriptita (LiAISiO4), con el fin de reducir las temperaturas de sinterización y aumentar Ia resistencia mecánica. Este procedimiento provoca Ia formación de segundas fases y en consecuencia modifica los valores de CTE comparados con las cerámicas de β- eucriptita monolíticas. Con el fin de obtener mejores microestructuras y mejor calidad en las cerámicas LAS con valores de CTE controlados, es necesario desarrollar un método con las mencionadas ventajas del método sol-gel y Ia capacidad para ser escaldo a procesos industriales. El método que aquí se propone se diferencia de otros previamente publicados [G. Maslennikova, Inorganic materials, 20, 9, 1984] y [A. Yamuna, et al., Journal of the American Ceramic Society, 84, 8, 2001] en los que Ia síntesis de β- eucriptita se basa en el uso como materias primas de carbonato de litio y caolín, más precursores de sílice y alúmina como arena de sílice y alúmina comercial, en que adicionalmente a Ia modificación de Ia estructura del caolín por medio de Ia adición de carbonato de litio, Ia sílice o alúmina necesaria para ajustar Ia estequiometría de Ia β- eucriptita que se quiera formar, es añadida en forma de precursores en disolución, Io que conduce a Ia formación de Ia fase β- eucriptita a temperaturas mucho más bajas, con mejor control de las fases resultantes. Se consigue de este modo un efecto similar al conseguido mediante métodos sol-gel, con Ia ventaja frente a estos métodos sol-gel de ser un proceso sencillo, económico y totalmente escalable a nivel industrial.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención se basa en un nuevo procedimiento para Ia obtención de materiales cerámicos basados en aluminosilicatos de litio (LAS) con coeficiente de expansión térmica próximos a cero y negativos en el intervalo de temperatura (-150 0C a 450 0C) que comprende una etapa de preparación del precursor de aluminosilicato de litio (LAS) a partir de caolín, LÍ2CO3 y un precursor de SiO2 o AI2O3 en disolución. Aunque se ha publicado un procedimiento de preparación de estos materiales en el que se utiliza caolín y LJCO3 mediante mezcla de polvos para Ia preparación del precursor de LAS [O. V. Kichkailo and I. A. Levitskii, Glass and Ceramics, 62, 5-6, 2005] y [A. Yamuna, et al. Journal of the American Ceramic Society, 84, 8, 2001] nunca se había publicado un procedimiento que utilizase precursores de SiO2 o AI2O3 en disolución en esta etapa de Ia preparación. La utilización de estos precursores de SiO2 o AI2O3 en disolución supone un aspecto novedoso y una ventaja técnica importante con respecto a otros métodos existentes en Ia bibliografía, ya que resulta imprescindible para obtener β- eucriptita a baja temperatura con control de las fases puras y, por consiguiente, con un mejor ajuste de su CTE.
Por tanto, un aspecto de Ia presente invención es el procedimiento de preparación de materiales cerámicos basados en aluminosilicatos de litio con coeficiente de expansión térmica próximos a cero y negativos en el intervalo de temperatura -150 0C a 450 0C, que comprende una etapa de preparación del precursor de aluminosilicato de litio a partir de caolín, LÍ2CO3 y un precursor en disolución de SiO2 o AI2O3.
Un aspecto preferente de Ia presente invención es el procedimiento de obtención de materiales cerámicos, en adelante procedimiento de preparación de materiales cerámicos de Ia invención, caracterizado porque comprende las siguientes etapas: a. síntesis del precursor de aluminosilicato de litio mediante Ia preparación de una suspensión de caolín, LÍ2CO3 y un precursor en disolución de SiO2 o AI2O3, b. calcinación del polvo resultante tras secado de Ia mezcla obtenida en a), c. molienda y secado del material obtenido en b), d. conformado del material obtenido en c) e. sinterización del material obtenido en d).
Un aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que se utiliza tetraetil ortosilicato como precursor de SiO2. Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que se utiliza etóxido de aluminio como precursor de alúmina.
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que Ia suspensión de Ia etapa a) es en alcohol.
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que Ia calcinación de Ia etapa b) se realiza a una temperatura comprendida entre 400 y 97O0C durante un tiempo comprendido entre 1 y 240 horas.
Calcinaciones a una temperatura de 900 0C transforman Ia estructura del caolín dando directamente una estructura tipo β - eucriptita. Se pueden utilizar temperaturas más bajas, pero utilizando tiempos de calcinación más largos. La transformación de Ia estructura de α a β en Ia eucriptita tiene lugar normalmente a 970 0C por Io que Ia temperatura de calcinación debe de ser superior o igual a 970 0C para obtener un precursor de LAS con una sola fase de estructura tipo β - eucriptita. En este procedimiento se han conseguido temperaturas de calcinación más bajas obteniendo como resultado Ia fase β.
Una realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que Ia calcinación de Ia etapa b) se realiza a una temperatura de 9000C durante un periodo de 2 horas.
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que Ia calcinación de Ia etapa b) se realiza tras tamizado del sólido obtenido al secar Ia suspensión obtenida en a).
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que Ia molienda de Ia etapa c) se realiza por atrición en molino de alta energía. Mediante el molino de atrición de alta energía se obtiene un polvo de β - eucriptita de tamaño de grano muy fino. Este grano muy fino es esencial a Ia hora de obtener posteriormente cuerpos cerámicos de LAS con alta densidad relativa con propiedades mecánicas mejoradas. Otra realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que Ia atrición en molino de alta energía se realiza operando a 100-400 r.p.m., preferentemente 350 r.p.m., durante tiempos superiores a 20 minutos.
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que el secado de Ia etapa c) se realiza mediante atomización.
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que el conformado del material de Ia etapa d) se realiza mediante prensado isostático. Otra realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que el conformado del material de Ia etapa d) se realiza mediante prensado isostático en frío y a presiones entre 100 y 400 MPa, preferentemente 200MPa.
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que Ia sinterización de Ia etapa e) se realiza a una temperatura entre 900 y 15000C.
Otra realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que Ia sinterización de Ia etapa e) se realiza a una temperatura de 135O0C. Un ejemplo particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que se utiliza una rampa de calentamiento de entre 2 y 10°C/min, preferentemente 5°C/min, manteniendo Ia temperatura final durante un periodo comprendido entre 1 y 4 horas, y un enfriamiento posterior hasta 9000C mediante una rampa de entre 2 y 10°C/min, preferentemente 5°C/min. Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que las etapas d) y e) se realizan mediante Ia técnica de prensado en caliente.
La técnica de prensado en caliente (en inglés hot-press) se basa en Ia aplicación simultánea de presión y alta temperatura para acelerar Ia velocidad de densificación. En esta técnica, el calentamiento tiene lugar mediante el empleo de resistencias de grafito.
Otra realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que las etapas d) y e) se realizan mediante Ia técnica de prensado en caliente a una temperatura comprendida dentro del rango 900-14000C, preferentemente 11000C.
Otra realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que las etapas d) y e) se realizan mediante Ia técnica de prensado en caliente a una presión entre 5 y 80 MPa, preferentemente 15 MPa.
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que las etapas d) y e) se realizan mediante Ia técnica de Sinterización por Descarga de Plasma (SPS). La técnica de Sinterizado por Desgarga de Plasma (en inglés Spark Plasma Sintering - SPS) también se basa en Ia aplicación simultánea de presión y alta temperatura. A diferencia del prensado en caliente, en esta técnica el calentamiento tiene lugar mediante Ia aplicación de descargas eléctricas a través de los moldes de grafito y también de Ia muestra, permitiendo trabajar con velocidades de calentamiento del orden de cientos de grados por minuto.
Otra realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que las etapas d) y e) se realizan mediante Ia técnica de Sinterización por Descarga de Plasma (SPS) a una temperatura comprendida entre 900 y 14000C, preferentemente 11000C. Otra realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que las etapas d) y e) se realizan mediante Ia técnica de Sinterización por Descarga de Plasma (SPS), durante un tiempo superior a 1 minuto, y preferentemente de 5 minutos. Otra realización particular de Ia presente invención es el procedimiento de preparación de materiales cerámicos de Ia invención en el que las etapas d) y e) se realizan mediante Ia técnica de Sinterización por Descarga de Plasma (SPS) a una presión comprendida entre 5 y 80 MPa, preferentemente 50 MPa.
Otro aspecto de Ia presente invención es el material cerámico preparado mediante cualquiera de los procedimientos descritos anteriormente.
Los materiales cerámicos de Ia presente invención poseen valores de CTE negativos y/o próximos a cero para un amplio rango de temperaturas (entre - 150 y 450 0C). Las propiedades mecánicas de los materiales preparados mediante esta invención son mejores que las de los materiales con CTE negativos disponibles hasta Ia fecha los cuales presentan valores de σf entorno a los 35 MPa y de E entorno a los 36 GPa [S. L. Swartz, US6066585 de 23/05/2000].
Otro aspecto preferente de Ia presente invención es el material cerámico basado en aluminosilicatos de litio, preparado mediante el procedimiento de preparación de materiales cerámicos de Ia invención, en el que su densidad final es superior al 98% de Ia densidad teórica y su coeficiente de dilatación térmica es <0.5x10"6 K"1 en el intervalo de temperatura de -150 a 450 0C.
Los materiales cerámicos LAS de Ia presente invención poseen una composición entre Ia espodumena y Ia eucriptita, esto es, L¡2θ:Al2θ3:Siθ2 entre 1 :1 :4 y 1 :1 :2. La principal fase en el material sinterizado es una solución sólida de β- eucriptita, estable a temperaturas relativamente altas.
Otro aspecto de Ia presente invención es el uso del material cerámico, preparado mediante cualquiera de los procedimientos descritos anteriormente, en Ia fabricación de nuevos materiales. Otro aspecto preferente de Ia presente invención es el uso del material cerámico, preparado mediante cualquiera de los procedimientos descritos anteriormente, en Ia fabricación de componentes que requieran una alta estabilidad dimensional como por ejemplo instrumentos de medida de alta precisión, espejos para sistemas de observación espacial, ya sean terrestres o aéreos, escáneres de litografía óptica, holografía, instrumentación láser o disipadores de calor.
DESCRIPCIÓN DE LAS FIGURAS FIGURA 1. Difractogramas de rayos X correspondientes a los materiales LAS obtenidos en los ejemplos 1 , 2 y 3. La β- eucriptita solución sólida está indicada por los picos marcados con círculos blancos. Los picos correspondientes al aluminato de litio de litio (ejemplos 1 y 3) están indicados por triángulos negros.
FIGURA 2. Fotografías obtenidas por microscopio de barrido electrónico de los materiales obtenidos en el ejemplo 2 en las que se observa Ia formación de un pequeño porcentaje de fase vitrea (gris más claro) y Ia escasa porosidad.
FIGURA 3. Dilatometrías correspondientes a los materiales preparados en los diferentes ejemplos: ejemplo 1 : línea discontinua, ejemplo 2: línea continua, ejemplo 3: línea de puntos
EJEMPLOS DE REALIZACIÓN
A continuación se describen una serie de ensayos realizados por los inventores, que son representativos de Ia efectividad del procedimiento de invención para obtener un material LAS con coeficiente de expansión térmico negativo o próximo a cero en el intervalo -15O0C a 45O0C. Estos ejemplos están ilustrados en las figuras 1 a 3.
El método comprende Ia síntesis de un polvo cerámico mediante tratamientos de calcinación previos a un paso de molienda de alta energía esencial para obtener una microestructura mejorada del material cerámico denso final. Ejemplo 1 - Síntesis de un precursor de LAS con mayor contenido en SiO2 que el caolín de partida, y su posterior densificación mediante sinterización en horno convencional.
La síntesis de los polvos cerámicos comienza con Ia preparación de los materiales de partida. Esto implica el caolín, en este ejemplo de caolín Arcano de Moltuval (España), con una composición AI2O3.2.37SÍO2.2.67H2O; el carbonato de litio Reactpur 99% de VWR Prolabo y tetraetil ortosilicato (TEOS) 99.5% de Sigma Aldrich. Las cantidades apropiadas de caolín (528.7 g) son dispersadas en 2 litros de etanol. Esta dispersión se mantiene en agitación mecánica a temperatura ambiente. La cantidad apropiada de carbonato de litio (131.9 g) es entonces incorporada a Ia dispersión manteniendo Ia agitación. Por último, el TEOS (339.4 g) es añadido lentamente mientras continua Ia agitación de manera gradual. Una vez mezcladas las materias primas se mantiene Ia agitación mecánica durante una hora. La suspensión así obtenida se lleva a secado mediante evaporación del disolvente subiendo Ia temperatura a 80 0C mientras se mantiene Ia agitación. Cuando prácticamente se ha evaporado todo el disolvente, Ia suspensión se introduce en un horno a 120 0C para completar su secado.
La mezcla seca se tamiza antes del tratamiento de calcinación por debajo de 63 μm mediante tamiz de 63 μm.
Se lleva a cabo a continuación el proceso de calcinación para Ia formación del precursor de LAS, para ello el polvo se coloca en crisoles de alúmina que son introducidos en un horno. El tratamiento de calcinación se realizó a 900 0C durante 2 horas con una rampa de calentamiento de 5 °C/min. Tras Ia calcinación, el polvo de partida se transforma en el precursor de LAS. Este precursor es una solución sólida de β- eucriptita cuya composición es comprobada mediante difracción de rayos X.
El siguiente paso consiste en Ia atrición del precursor en un molino de alta energía. Para ello se prepara una suspensión estable del precursor que es introducida en el molino, dispersando el polvo del precursor en etanol (40% de contenido en sólido) mediante agitación mecánica durante 60 minutos. El molino de atrición, con un contenido en bolas de alúmina 9/1 , opero a 350 r.p.m durante 60 minutos. El precursor tiene un tamaño submicrométrico tras Ia molienda. La suspensión así obtenida es secada mediante atomización al mismo tiempo que se recupera el disolvente. El precursor seco es conformado mediante prensado isostático en frío a 200 MPa.
Este material conformado se sinteriza en un horno a 1350 0C durante 2 horas con una rampa de calentamiento de 5 °C/min. El enfriamiento es controlado hasta 900 0C a Ia misma velocidad. Se ha realizado Ia caracterización mediante difracción de rayos X con el fin de controlar Ia asociación de fases resultante en el material sinterizado. El difractograma correspondiente al material obtenido según este ejemplo de realización se recoge en Ia Fig. 1. En este ejemplo, el cuerpo cerámico está constituido principalmente por una solución sólida de β- eucriptita. Se han detectado pequeñas trazas de LJAI02. También se han detectado pequeñas trazas de fase vitrea (<2vol.%) en las imágenes de electrones retrodispersados mediante microscopía electrónica de barrido, cuyo detalle se muestra en Ia Fig. 2. Este pequeño porcentaje de vidrio ayuda a Ia sinterización sin detrimento de las propiedades mecánicas. La muestra sinterizada ha sido caracterizada con un dilatómetro Netszch DIL402C para obtener el valor del CTE. La curva correspondiente se muestra en Ia Fig. 3. El módulo de Young se determinó mediante el método de frecuencia de resonancia, utilizando un equipo Grindosonic. Se determinó su resistencia a Ia fractura mediante un test de flexión en cuatro puntos con un equipo INSTRON 8562. Los resultados de estas propiedades se recogen en Ia Tabla I.
Ejemplo 2. - Síntesis de un precursor de LAS con mayor contenido en AI2O3 que el caolín de partida, y su posterior densificación mediante sinterización por descarga de plasma. La síntesis de los polvos cerámicos comienza con Ia preparación de los materiales de partida. Esto implica el caolín, en este ejemplo de caolín Arcano de Moltuval (España), con una composición AI2O3.2.37SÍO2.2.67H2O; el carbonato de litio Reactpur 99% de VWR Prolabo y etóxido de aluminio >97% de Sigma Aldrich. Las cantidades apropiadas de caolín (550.3 g) son dispersadas en 2 litros de etanol. Esta dispersión se mantiene en agitación mecánica a temperatura ambiente. La cantidad apropiada de carbonato de litio (164.7 g) es entonces incorporada a Ia dispersión manteniendo Ia agitación. Por último, el etóxido de aluminio (111.3 g) es añadido lentamente mientras continua Ia agitación de manera gradual. Una vez mezcladas las materias primas se mantiene Ia agitación mecánica durante una hora. La suspensión así obtenida se lleva a secado mediante evaporación del disolvente subiendo Ia temperatura a 80 0C mientras se mantiene Ia agitación. Cuando prácticamente se ha evaporado todo el disolvente, Ia suspensión ya casi seca se introduce en un horno a 120 0C para completar su secado.
La mezcla seca se tamiza antes del tratamiento de calcinación por debajo de 63 μm mediante tamiz de 63 μm.
Se lleva a cabo el proceso de calcinación para Ia formación del precursor de LAS. El polvo se coloca en crisoles de alúmina que son introducidos en un horno. El tratamiento de calcinación se realizó a 900 0C durante 2 horas con una rampa de calentamiento de 5 °C/min. Tras Ia calcinación, el polvo de partida se transforma en el precursor de LAS. Este precursor es una solución sólida de β- eucriptita cuya composición es comprobada mediante difracción de rayos X.
El siguiente paso consiste en Ia atrición del precursor en un molino de alta energía. Para ello se preparó una suspensión estable del precursor que fue introducida en el molino, dispersando el polvo del precursor en etanol (40% de contenido en sólido) mediante agitación mecánica durante 60 minutos. El molino de atrición, con un contenido en bolas de alúmina 9/1 , opero a 350 r.p.m durante 60 minutos. El precursor resultante tiene un tamaño submicrométrico tras Ia molienda. La suspensión así obtenida es secada mediante atomización al mismo tiempo que se recupera el disolvente. El precursor seco se introduce en un molde de grafito y se Ie aplica una presión uniaxial inicial de 5 MPa. A continuación se procede a Ia sinterización del material mediante SPS con las siguientes variables experimentales; velocidad de calentamiento de 25 °C/min, temperatura máxima 1150 0C, presión máxima 50 MPa, tiempo de estancia a Ia temperatura y presión máxima 5 minutos.
Se ha realizado Ia caracterización mediante difracción de rayos X con el fin de controlar Ia asociación de fases resultante en el material sinterizado. El difractograma correspondiente al material obtenido según este ejemplo de realización se recoge en Ia Fig. 1. En este ejemplo, el cuerpo cerámico está constituido principalmente por una solución sólida de β- eucriptita. También se han detectado pequeñas trazas de fase vitrea como en el ejemplo anterior.
La muestra sinterizada ha sido caracterizada con un dilatómetro Netszch DIL402C para obtener el valor del CTE. La curva correspondiente se muestra en Ia Fig. 3. El módulo de Young se determinó mediante el método de frecuencia de resonancia, utilizando un equipo Grindosonic. Se determinó su resistencia a Ia fractura mediante un test de flexión en cuatro puntos con un equipo INSTRON 8562. Los resultados de estas propiedades se recogen en Ia Tabla I.
Ejemplo 3.- Síntesis de un precursor de LAS con mayor contenido en SiO2 que el caolín de partida, y su posterior densificación mediante sinterización por prensado en caliente.
La síntesis de los polvos cerámicos comienza con Ia preparación de los materiales de partida. Esto implica el caolín, en este ejemplo de caolín Arcano de Moltuval (España), con una composición AI2θ3.2.37Siθ2.2.67H2O; el carbonato de litio Reactpur 99% de VWR Prolabo y tetraetil ortosilicato (TEOS) 99.5% de Sigma Aldrich. Las cantidades apropiadas de caolín (528.7 g) son dispersadas en 2 litros de etanol. Esta dispersión se mantiene en agitación mecánica a temperatura ambiente. La cantidad apropiada de carbonato de litio (131.9 g) es entonces incorporada a Ia dispersión manteniendo Ia agitación. Por último, el TEOS (339.4 g) es añadido lentamente mientras continua Ia agitación de manera gradual. Una vez mezcladas las materias primas se mantiene la agitación mecánica durante una hora. La suspensión así obtenida se lleva a secado mediante evaporación del disolvente subiendo Ia temperatura a 80 0C mientras se mantiene Ia agitación. Cuando prácticamente se ha evaporado todo el disolvente, Ia suspensión ya casi seca se introduce en un horno a 120 0C para completar su secado.
La mezcla seca se tamiza antes del tratamiento de calcinación por debajo de 63 μm mediante tamiz de 63 μm.
Se lleva a cabo el proceso de calcinación para Ia formación del precursor de LAS. El polvo se coloca en crisoles de alúmina que son introducidos en un horno. El tratamiento de calcinación se realizó a 900 0C durante 2 horas con una rampa de calentamiento de 5 °C/min.
Tras Ia calcinación, el polvo de partida se transforma en el precursor de LAS. Este precursor es una solución sólida de β- eucriptita cuya composición es comprobada mediante difracción de rayos X. El siguiente paso consiste en Ia atrición del precursor en un molino de alta energía. Se prepara una suspensión estable del precursor para ser introducida en el molino, dispersando el polvo del precursor en etanol (40% de contenido en sólido) mediante agitación mecánica durante 60 minutos. El molino de atrición, con un contenido en bolas de alúmina 9/1 , opero a 350 r.p.m durante 60 minutos. El precursor resultante tiene un tamaño submicrométrico tras Ia molienda. La suspensión así obtenida es secada mediante atomización al mismo tiempo que se recupera el disolvente.
El precursor seco se introduce en un molde de grafito y se Ie aplica una presión uniaxial inicial de 5 MPa. A continuación se procede a Ia sinterización del material mediante prensado en caliente con las siguientes variables experimentales; velocidad de calentamiento 5 °C/min, temperatura máxima 1150 0C, presión máxima 15 MPa, tiempo de estancia a Ia temperatura y presión máxima 1 hora.
Se ha realizado Ia caracterización mediante difracción de rayos X con el fin de controlar Ia asociación de fases resultante en el material sinterizado. El difractograma correspondiente al material obtenido según este ejemplo de realización se recoge en Ia Fig. 1. En este ejemplo, el cuerpo cerámico está constituido principalmente por una solución sólida de β- eucriptita. Se han detectado pequeñas trazas de LJAI02 y de fase vitrea como en los ejemplos anteriores.
La muestra sinterizada ha sido caracterizada con un dilatómetro Netszch DIL402C para obtener el valor del CTE. La curva correspondiente se muestra en Ia Fig. 3. El módulo de Young se determinó mediante el método de frecuencia de resonancia, utilizando un equipo Grindosonic. Se determinó su resistencia a Ia fractura mediante un test de flexión en cuatro puntos con un equipo INSTRON 8562. Los resultados de estas propiedades se recogen en Ia Tabla I.
TABLA I
Figure imgf000017_0001

Claims

REIVINDICACIONES
1. Procedimiento de preparación de materiales cerámicos basados en aluminosilicatos de litio con coeficiente de expansión térmica próximos a cero y negativos en el intervalo de temperatura (-150 0C a 450 0C) caracterizado porque comprende una etapa de preparación del precursor de aluminosilicato de litio a partir de caolín, LJ2CO3 y de un precursor de SiO2 o de AI2O3 en disolución.
2. Procedimiento de preparación de materiales cerámicos según reivindicación 1 caracterizado porque comprende las siguientes etapas: a. síntesis del precursor de aluminosilicato de litio mediante Ia preparación de una suspensión de caolín, LJ2CO3 y un precursor de SiO2 o de AI2O3 en disolución, b. calcinación del polvo resultante tras secado de Ia mezcla obtenida en a), c. molienda (y secado) del material obtenido en b), d. conformado del material obtenido en c), e. sinterización del material obtenido en d)
3. Procedimiento de preparación de materiales cerámicos según reivindicaciones 1 y 2 caracterizado porque se utiliza tetraetil ortosilicato como precursor de SiO2.
4. Procedimiento de preparación de materiales cerámicos según reivindicaciones 1 y 2 caracterizado porque se utiliza etóxido de aluminio como precursor de AI2O3.
5. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque Ia suspensión de Ia etapa a) es en alcohol.
6. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque Ia calcinación de Ia etapa b) se realiza a una temperatura comprendida entre 400 y 9000C durante un tiempo comprendido entre 1 y 240 horas.
7. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque Ia calcinación de Ia etapa b) se realiza a una temperatura de 9000C durante un periodo de 2 horas.
8. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque Ia calcinación de Ia etapa b) se realiza tras tamizado del sólido obtenido al secar Ia suspensión obtenida en a).
9. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque Ia molienda de Ia etapa c) se realiza por atrición en molino de alta energía.
10. Procedimiento de preparación de materiales cerámicos según reivindicación 9 caracterizado porque Ia atrición en molino de alta energía se realiza operando a 100-400 r.p.m., preferentemente 350 r.p.m., durante tiempos superiores a 20 minutos.
11. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque el secado de Ia etapa c) se realiza mediante atomización.
12. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque el conformado del material de Ia etapa d) se realiza mediante prensado isostático.
13. Procedimiento de preparación de materiales cerámicos según reivindicación 12 caracterizado porque el prensado isostático es en frío y a presiones entre 100 y 400 MPa, preferentemente 200 MPa.
14. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque Ia sinterización de Ia etapa e) se realiza a una temperatura entre 900 y 15000C.
15. Procedimiento de preparación de materiales cerámicos según reivindicación 14 caracterizado porque Ia sinterización de Ia etapa e) se realiza a una temperatura de 135O0C.
16. Procedimiento de preparación de materiales cerámicos según reivindicaciones 14 y 15 caracterizado porque se utiliza una rampa de calentamiento de entre 2 y 10°C/Min, preferentemente 5°C/min, manteniendo Ia temperatura final durante un periodo comprendido entre 1 y 4 horas, y un enfriamiento posterior hasta 9000C mediante una rampa de entre 2 y 10°C/min, preferentemente 50C.
17. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque las etapas d) y e) se realizan mediante Ia técnica de prensado en caliente.
18. Procedimiento de preparación de materiales cerámicos según reivindicación 17 caracterizado porque el proceso de prensado en caliente se realiza a una temperatura comprendida dentro del rango 900-14000C, preferentemente 11000C.
19. Procedimiento de preparación de materiales cerámicos según reivindicación 17 caracterizado porque el proceso de prensado en caliente se realiza a una presión entre 5 y 80 MPa, preferentemente 15 MPa.
20. Procedimiento de preparación de materiales cerámicos según reivindicación 2 caracterizado porque las etapas d) y e) se realizan mediante Ia técnica de Sinterización por Descarga de Plasma (SPS).
21. Procedimiento de preparación de materiales cerámicos según reivindicación 20 caracterizado porque el proceso de Sinterización por Descarga de Plasma (SPS) se realiza a una temperatura comprendida entre 900 y 125O0C, preferentemente 11000C.
22. Procedimiento de preparación de materiales cerámicos según reivindicación 20 caracterizado porque Ia duración del proceso de sinterización mediante Ia técnica de Sinterización por Descarga de Plasma
(SPS) es superior a 1 minuto, y preferentemente de 5 minutos.
23. Procedimiento de preparación de materiales cerámicos según reivindicación 22 caracterizado porque el proceso de Sinterización por Descarga de Plasma (SPS) se realiza a una presión comprendida entre 5 y 80 MPa, preferentemente 50 MPa.
24. Material cerámico preparado por cualquiera de las reivindicaciones anteriores.
25. Material cerámico basado en aluminosilicatos de litio según reivindicación 24 caracterizado porque su densidad final es superior al 95% de Ia densidad teórica y su coeficiente de dilatación térmica es <0.5x10"6 K"1 en el intervalo de temperatura de -150 a 450 0C.
26. Uso del material cerámico preparado según las reivindicaciones 1-23 en Ia fabricación de nuevos materiales.
27. Uso del material cerámico preparado según las reivindicaciones 1-23 en Ia fabricación de componentes que requieran una alta estabilidad dimensional.
PCT/ES2009/070534 2008-12-12 2009-11-27 Materiales basados en aluminosilicatos de litio con coeficiente de expansión térmica negativos en un amplio intervalo de temperatura, procedimiento de preparación y uso WO2010066929A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09831502.1A EP2371786B1 (en) 2008-12-12 2009-11-27 Method of preparation of lithium-aluminosilicate-based materials with near zero or negative thermal expansion coefficient in a broad temperature range
US13/139,284 US8529851B2 (en) 2008-12-12 2009-11-27 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range preparation process and use
US13/967,788 US20130337994A1 (en) 2008-12-12 2013-08-15 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200803530A ES2341081B1 (es) 2008-12-12 2008-12-12 Materiales basados en aluminosilicatos de litio con coeficiente de expansion termica negativos en un amplio intervalo de temperatura, procedimiento de preparacion y uso.
ESP200803530 2008-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/967,788 Division US20130337994A1 (en) 2008-12-12 2013-08-15 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use

Publications (1)

Publication Number Publication Date
WO2010066929A1 true WO2010066929A1 (es) 2010-06-17

Family

ID=42211712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070534 WO2010066929A1 (es) 2008-12-12 2009-11-27 Materiales basados en aluminosilicatos de litio con coeficiente de expansión térmica negativos en un amplio intervalo de temperatura, procedimiento de preparación y uso

Country Status (4)

Country Link
US (2) US8529851B2 (es)
EP (1) EP2371786B1 (es)
ES (1) ES2341081B1 (es)
WO (1) WO2010066929A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2354099B1 (es) 2009-08-27 2012-01-19 CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC) (Titular al 66,66%) Procedimiento de obtención de compuestos cerámicos, y material obtenible por dicho procedimiento.
FR2959506B1 (fr) 2010-04-30 2014-01-03 Thales Sa Materiau composite ceramique a base de beta-eucryptite et d'un oxyde et procede de fabrication dudit materiau.
FR3031975B1 (fr) * 2015-01-23 2019-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de preparation d'un materiau a base d'aluminosilicate, et procede de preparation d'un materiau composite a matrice en aluminosilicate
CN109704741B (zh) * 2019-01-28 2021-11-05 佛山石湾鹰牌陶瓷有限公司 一种特种陶瓷材料的制备方法以及该材料的应用
CN112410623B (zh) * 2019-08-21 2022-01-07 天津大学 一种高阻尼铝硅基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320792A (en) 1993-05-11 1994-06-14 National Science Council Process for the preparation of LAS ceramic sintered bodies
US6066585A (en) 1998-05-18 2000-05-23 Emerson Electric Co. Ceramics having negative coefficient of thermal expansion, method of making such ceramics, and parts made from such ceramics
WO2002028803A1 (en) * 2000-10-02 2002-04-11 Corning Incorporated Lithium aluminosilicate ceramic
US20040112503A1 (en) 2002-12-17 2004-06-17 Jyh-Chen Chen Method of producing lithium aluminosilicate ceramics

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB881240A (en) * 1958-12-15 1961-11-01 Carborundum Co Improvements relating to the manufacture of ceramic materials
ATE42088T1 (de) * 1984-02-28 1989-04-15 English Electric Co Ltd Glaskeramiken auf basis von lithiumaluminosilikat.
US5179051A (en) * 1991-12-16 1993-01-12 Uop High density lithium-based ceramics from zeolites
JP3034808B2 (ja) * 1996-09-10 2000-04-17 有限会社水野技研 耐熱衝撃性セラミックスおよびその製造方法
JP3133302B2 (ja) * 1999-06-29 2001-02-05 新日本製鐵株式会社 黒色低熱膨張セラミックス焼結体及びその製造方法
ES2354099B1 (es) 2009-08-27 2012-01-19 CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC) (Titular al 66,66%) Procedimiento de obtención de compuestos cerámicos, y material obtenible por dicho procedimiento.
ES2362229B1 (es) 2009-12-16 2012-05-09 Consejo Superior De Investigaciones Cientificas (Csic) (50%) Material compuesto electroconductor con coeficiente de expansión térmica controlado.
ES2362533B1 (es) 2009-12-21 2012-05-17 Consejo Superior De Investigaciones Cientificas (Csic) Material compuesto con coeficiente de expansión térmica controlado con cer�?micas ox�?dicas y su procedimiento de obtención.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320792A (en) 1993-05-11 1994-06-14 National Science Council Process for the preparation of LAS ceramic sintered bodies
US6066585A (en) 1998-05-18 2000-05-23 Emerson Electric Co. Ceramics having negative coefficient of thermal expansion, method of making such ceramics, and parts made from such ceramics
WO2002028803A1 (en) * 2000-10-02 2002-04-11 Corning Incorporated Lithium aluminosilicate ceramic
US20040112503A1 (en) 2002-12-17 2004-06-17 Jyh-Chen Chen Method of producing lithium aluminosilicate ceramics

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. YAMUNA ET AL., JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 84, 2001, pages 8
G. MASLENNIKOVA, INORGANIC MATERIALS, vol. 20, 1984, pages 9
H. BACH: "Low Thermal Expansion Glass Ceramics", 1995, SPRINGER-VERLAG
O.V. KICHKAILO, I.A. LEVITSKII, GLASS AND CERAMICS, vol. 62, 2005, pages 5 - 6
R. ROY ET AL., ANNUAL REVIEW OF MATERIALS SCIENCE, vol. 19, 1989, pages 59 - 81
See also references of EP2371786A4

Also Published As

Publication number Publication date
EP2371786B1 (en) 2015-11-11
EP2371786A1 (en) 2011-10-05
ES2341081B1 (es) 2011-05-23
US20130337994A1 (en) 2013-12-19
US20110301016A1 (en) 2011-12-08
EP2371786A4 (en) 2012-08-01
US8529851B2 (en) 2013-09-10
ES2341081A1 (es) 2010-06-14

Similar Documents

Publication Publication Date Title
EP2518037B1 (en) Composite material having controlled coefficient of thermal expansion with oxidic ceramics and procedure for the obtainment thereof
ES2341081B1 (es) Materiales basados en aluminosilicatos de litio con coeficiente de expansion termica negativos en un amplio intervalo de temperatura, procedimiento de preparacion y uso.
EP2514732B1 (en) Composite material of electroconductor having controlled coefficient of thermal expansion, its use and process for obtaining the material
CN102276243A (zh) 基于β-锂霞石和氧化物的陶瓷复合材料,和制造所述复合材料的方法
ES2711812T3 (es) Método de preparación de un material a base de aluminosilicato y de un material compuesto de matriz de aluminosilicato
ES2685711T3 (es) Material compuesto con una matriz de aluminosilicato, concretamente de aluminosilicato de bario &#34;BAS&#34;, reforzada con refuerzos de óxido de metal y su procedimiento de fabricación
CN100358833C (zh) 一种磷酸锆陶瓷材料的制备方法
Song et al. Fabrication, sintering and characterization of cordierite glass–ceramics for low temperature co-fired ceramic substrates from kaolin
ES2676539T3 (es) Procedimiento de obtención de compuestos cerámicos, y material obtenible por dicho procedimiento
KR101343808B1 (ko) 저온소성용 자기 조성물 및 이를 이용한 저온소성 자기의 제조방법
Rodin et al. Wollastonite ceramic from chalk and diatomite for refractory heat insulation
JP2011195429A (ja) ゼロ膨張係数の高強度で低誘電率のβ−ユ−クリプタイトセラミックス
KR20200046084A (ko) 유리 프릿으로부터 얻은 요시오카이트 유리-세라믹
Zhang et al. Preparation low dielectric constant material of cordierite with polyacrylamide gel method
Li et al. Influence of B2O3 on Dielectric, Mechanical, and Thermal Properties of MgO-Al2O3-SiO2 Glass-Ceramics
Naga et al. Preparation and characterization of anorthite-alumina composites
Thallapalli et al. Gel Casting of Si3N4–SiO2 Ceramic Composites and Evaluation Characteristics
Ezzat et al. Rheological, physico-mechanical and microstructural properties of porous mullite ceramic based on environmental wastes
KR20230000782A (ko) 고령토 광물을 활용한 저열팽창 코디어라이트 세라믹 제조방법 및 이를 이용한 고령토 광물을 포함한 저열팽창 코디어라이트계 세라믹 조성물
KR20200076774A (ko) 세라믹 히터용 코디어라이트계 세라믹 조성물
Knoll et al. Influence of green part microstructure and sintering atmosphere on the formation of porous silicon nitride ceramics with Yb-silicate matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009831502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13139284

Country of ref document: US