US20130337994A1 - Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use - Google Patents

Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use Download PDF

Info

Publication number
US20130337994A1
US20130337994A1 US13/967,788 US201313967788A US2013337994A1 US 20130337994 A1 US20130337994 A1 US 20130337994A1 US 201313967788 A US201313967788 A US 201313967788A US 2013337994 A1 US2013337994 A1 US 2013337994A1
Authority
US
United States
Prior art keywords
precursor
materials
thermal expansion
expansion coefficient
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/967,788
Inventor
Ramón Torrecillas San Millán
Adolfo Fernández Valdés
Olga García Moreno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to US13/967,788 priority Critical patent/US20130337994A1/en
Publication of US20130337994A1 publication Critical patent/US20130337994A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to ceramics having a negative and/or near-zero thermal expansion coefficient, which can be used in the manufacture of components that require a high level of dimensional stability. Therefore, the technology described in the invention falls within the new materials sector, while its application falls within the microelectronics, precision optics and aeronautical sectors.
  • TEC thermal expansion coefficient
  • This customised TEC design of the composites can be carried out for different temperatures, in such a manner that the final field of application of components having zero TEC will depend on whether they also achieve the rest of the specific functionality characteristics required by this application.
  • the lithium aluminosilicate (LAS) family of ceramics and vitroceramics is frequently used for this purpose in many fields of application, from vitroceramics for kitchens to mirrors for satellites.
  • Some mineral phases of this family have a negative TEC, which allows their use in composites with a controlled and customised TEC.
  • Materials with a negative TEC often have low fracture resistance, as their negativity is due to a strong anisotropy between the different crystallographic orientations, wherein one of these usually exhibits negative behaviour and the other two positive behaviour.
  • the LAS phase with negative expansion coefficient is ⁇ -eucryptite (LiAlSiO 4 ), while spodumene (LiAlSi 2 O 6 ) has practically zero expansion.
  • the traditional LAS ceramic manufacturing method is based on the formation of glasses to produce vitroceramics. This method comprises the manufacture of molten material which is subsequently shaped and subjected to thermal treatment for partial crystallisation thereof [H, Bach, Low Thermal Expansion Glass Ceramics, Springer-Verlag, Berlin, 1995].
  • the ceramic products thus obtained are frequently heterogeneous.
  • ceramic materials are required in the absence of or with a very low proportion of the vitreous phase, which reduces the rigidity and resistance of the ceramic products. Therefore, a method for manufacturing solid-state LAS ceramics is required which, in addition to being inexpensive, is easy to accurately adapt the final composition of the material and consequently its TEC.
  • Sol-gel processing methods have been applied in the manufacture of LAS ceramics [W. Nan-Chung, Y. Sheng, U.S. Pat. No. 5,320,792 dated Jun. 14, 2004] due to its multiple advantages and low processing temperatures. However, these methods are tedious, expensive and difficult to apply in industrial processes that require large amounts of material.
  • the present invention is based on a new process for obtaining lithium aluminosilicate-based (LAS) ceramic materials having a near-zero and negative thermal expansion coefficient within the temperature range ( ⁇ 150° C. to 450° C.) which comprises a preparation stage of the lithium aluminosilicate (LAS) as of kaolin, Li2CO3 and a SiO2 or Al2O3 precursor solution.
  • LAS lithium aluminosilicate-based
  • one aspect of the present invention is the process for preparing lithium aluminosilicate-based ceramic materials having a near-zero and negative thermal expansion coefficient within the temperature range 31 150° C. to 450° C., which comprises a stage for preparing the lithium aluminosilicate precursor as of kaolin, Li2CO3 and a SiO2 or Al2O3 precursor solution.
  • a preferred aspect of the present invention is the process for obtaining ceramic materials, hereinafter referred to as the process for preparing ceramic materials of the invention, characterised in that it comprises the following stages:
  • a more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein tetraethyl orthosilicate is used as a SiO2 precursor.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein aluminium ethoxide as an alumina precursor.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the suspension of stage a) is an alcohol.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the calcination of stage b) is carried out at a temperature comprised between 400° C. and 970° C. for a period comprised between 1 and 240 hours.
  • Calcinations at a temperature of 900° C. transform the structure of kaolin, directly giving a ⁇ -eucryptite-type structure.
  • Lower temperatures can be used, but using longer calcination times.
  • the transformation of the structure of ⁇ into ⁇ in the eurocryptite normally takes place at 970° C., due to which the calcination temperature must be greater than or equal to 970° C. in order to obtain a LAS precursor having a single ⁇ -eucryptite-type structural phase.
  • lower calcination temperatures have been achieved, obtaining the ⁇ phase as a result.
  • a particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein the calcination of stage b) is carried out at a temperature of 900° C. for a period of 2 hours.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the calcination of stage b) is carried out after sifting the solid obtained on drying the suspension obtained in a).
  • Another more preferred aspect of the invention is the process for preparing ceramic materials of the invention wherein the milling of stage c) is carried out by attrition in a high-energy mill.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein attrition in the high-energy mill is carried out operating at 100-400 r.p.m. preferably 350 r.p.m., for periods of more than 20 minutes.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the drying of stage c) is carried out by means of atomisation.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the shaping of the material of stage d) is carried out by means of isostatic pressing.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein the shaping of the material of stage d) is carried out by means of cold isostatic pressing and at pressures of between 100 and 400 MPa, preferably 200 MPa.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the sintering of stage e) is carried out at a temperature of between 900° C. and 1,500° C.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials wherein the sintering of stage e) is carried out at a temperature of 1,350° C.
  • a particular example of the present invention is the process for preparing ceramic materials of the invention wherein a temperature ramp of 2-10° C./min, preferably 5° C./min, is used, maintaining the final temperature for a period comprised between 1 and 4 hours, and a subsequent cooling of up to 900° C. using a temperature ramp of 2-10° C./min, preferably 5° C./min.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the hot-press technique.
  • the hot-press technique is based on the simultaneous application of pressure and high temperature to accelerate densification speed.
  • heating takes place by means of graphite resistors.
  • stages d) and e) are carried out using the hot-press technique at a temperature comprised within the range of 900-1,400° C., preferably 1,100° C.
  • stages d) and e) are carried out using the hot-press technique at a pressure of 5 and 80 MPa, preferably 15 MPa.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the spark plasma sintering (SPS) technique.
  • SPS spark plasma sintering
  • the spark plasma sintering technique is also based on the simultaneous application of pressure and high temperature. As opposed to hot-pressing, this technique is based on the application of spark discharges through the graphite moulds and the sample, allowing the use of heating speeds in the order of hundreds of degrees per minute.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the spark plasma sintering (SPS) technique at a temperature comprised between 900° C. and 1,400° C., preferably 1,100° C.
  • SPS spark plasma sintering
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the spark plasma sintering (SPS) technique, for a period of more than 1 minute, preferably 5 minutes.
  • SPS spark plasma sintering
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the spark plasma sintering (SPS) technique at a pressure comprised between 5 and 80 MPa, preferably 50 MPa.
  • SPS spark plasma sintering
  • Another aspect of the present invention is the ceramic material prepared using any of the previously described processes.
  • the ceramic materials of the present invention have negative and/or near-zero TEC values for a broad temperature range (between ⁇ 150° C. and 450° C.).
  • the mechanical properties of the materials prepared by means of this invention are better than those of materials with negative TEC values available to date, which have values of approximately 35 MPa and E values of approximately 36 GPa [S. L. Swartz, U.S. Pat. No. 6,066,585 dated May 23, 2000].
  • Another preferred aspect of the present invention is the lithium aluminosilicate-based ceramic material prepared using the process for preparing ceramic materials of the invention, wherein its final density is 98% higher than the theroretical density and its thermal expansion coefficient is ⁇ 0.5 ⁇ 10 ⁇ 6 K ⁇ 1 within the temperature range ⁇ 150° C. to 450° C.
  • composition of the LAS ceramic materials of the present invention lies between spodumene and eucryptite, i.e. Li 2 O:Al 2 O 3 :SiO 2 between 1:1:4 and 1:1:2.
  • the main phase in the sintered material is a ⁇ -eucryptite solid solution which is stable at relatively high temperatures.
  • Another aspect of the present invention is the use of ceramic material, prepared using any of the previously described processes, in the manufacture of new materials.
  • Another preferred aspect of the present invention is the use of the ceramic material, prepared by means of any of the previously described processes, in the manufacture of components that require a high level of dimensional stability, such as for example high-precision measuring instruments, mirrors for space observation systems, whether terrestrial or aerial, optical lithography scanners, holography, laser instruments or heat dissipaters.
  • FIG. 1 shows X-ray diffractogrammes corresponding to the LAS materials obtained in examples 1, 2 and 3.
  • the ⁇ -eucryptite solid solution is indicated by the peaks circled in white.
  • the peaks corresponding to lithium aluminosilicate (examples 1 and 3) are indicated by black triangles.
  • FIG. 2 shows photographs of the materials obtained in example 2 obtained using a scanning electron microscope, wherein the formation of a small percentage of vitreous phase (lighter grey) and scarce porosity can be observed.
  • FIG. 3 shows dilatometries corresponding to the materials prepared in the different examples: example 1: dashed line; example 2: continuous line: example 3: dotted line.
  • the method comprises the synthesis of a ceramic powder by means of calcination treatments prior to a high-energy milling stage essential to obtaining an improved microstructure of the final dense ceramic material.
  • the synthesis of ceramic powder starts by preparing the starting materials.
  • the appropriate quantities of kaolin (528.7 g) are dispersed in 2 litres of ethanol. This dispersion is mechanically agitated at ambient temperature.
  • the appropriate quantity of lithium carbonate (131.9 g) is then added to the dispersion, continuing agitation.
  • the TEOS (339.4 g) is slowly added while gradually continuing agitation thereof. After mixing the raw materials, agitation is continued for 1 hour.
  • the suspension thus obtained is dried by evaporation of the solvent, raising the temperature to 80° C. while continuing agitation. When practically all of the solvent has evaporated, the nearly dry suspension is introduced in an oven at 120° C. in order to complete drying thereof.
  • the dry mixture is sifted prior to the calcination treatment in order to reach graining below 63 ⁇ m using a 63 ⁇ m sieve.
  • the calcination process is carried out for the formation of the LAS precursor, to which end the powder is placed in alumina crucibles which are introduced in an oven.
  • the calcination treatment was carried out at 900° C. for 2 hours with a temperature ramp of 5° C./min.
  • the starting powder is transformed into the LAS precursor.
  • This precursor is a ⁇ -eucryptite solid solution, the composition of which is verified by means of X-ray diffraction.
  • the next step consists of attrition of the precursor in a high-energy mill.
  • a stable precursor suspension is prepared and introduced in the mill, dispersing the precursor powder in ethanol (40% of solid content) by mechanical agitation for 60 minutes.
  • the attrition mill with a 9/1 content of alumina balls, operated at 350 r.p.m. for 60 minutes, The precursor has a sub-micrometric size after milling.
  • the suspension thus obtained is dried by atomisation at the same time that the solvent is recovered.
  • the dry precursor is shaped by means of cold isostatic pressing at 200 MPa.
  • This shaped material is sintered in an oven at 1,350° C. for 2 hours with a temperature ramp of 5° C./min. Cooling is controlled up to 900° C. at the same speed.
  • Characterisation has been carried out by means of X-ray diffraction for the purpose of controlling the resulting association of phases in the sintered material.
  • the diffractogramme corresponding to the material obtained according to this example of embodiment is shown in FIG. 1 .
  • the ceramic body consists mainly of a ⁇ -eucryptite solid solution. Small traces of LiAlO2 have been detected. Small traces of vitreous phase ( ⁇ 2vol %) have also been detected in the images of retro-dispersed electrons obtained by scanning electron microscopy, a detailed view of which is shown in FIG. 2 . This small percentage of glass aids sintering without affecting the mechanical properties.
  • the sintered sample has been characterised using a Netszch DIL402C dilatometer to obtain the TEC value.
  • the corresponding curve is shown in FIG. 3 .
  • the Young module was determined by means of the resonance frequency method, using a Grindosonic apparatus. Its fracture resistance was determined by conducting a four-point bend test using INSTRON 8562 testing equipment. The results of these properties are shown in Table I.
  • the synthesis of ceramic powder starts by preparing the starting materials.
  • the appropriate quantities of kaolin (550.3 g) are dispersed in 2 litres of ethanol. This dispersion is mechanically agitated at ambient temperature.
  • the appropriate quantity of lithium carbonate (164.7 g) is then added to the dispersion, continuing agitation thereof.
  • the aluminium ethoxide (111.3 g) is slowly added while gradually continuing agitation. After mixing the raw materials, agitation is continued for 1 hour. The suspension thus obtained is dried by evaporation of the solvent, raising the temperature to 80° C. while continuing agitation. When practically all of the solvent has evaporated, the nearly dry suspension is introduced in an oven at 120° C. in order to complete drying thereof.
  • the dry mixture is sifted prior to the calcination treatment in order to reach graining below 63 ⁇ m using a 63 ⁇ m sieve.
  • the calcination process is carried out for the formation of the LAS precursor.
  • the powder is placed in alumina crucibles which are introduced in an oven.
  • the calcination treatment was carried out at 900° C. for 2 hours with a temperature ramp of 5° C./min.
  • the starting powder is transformed into the LAS precursor.
  • This precursor is a ⁇ -eucryptite solid solution, the composition of which is verified by means of X-ray diffraction.
  • the next step consists of attrition of the precursor in a high-energy mill.
  • a stable precursor suspension was prepared and introduced in the mill, dispersing the precursor powder in ethanol (40% of solid content) by mechanical agitation for 60 minutes.
  • the attrition mill with a 9/1 content of alumina balls, operated at 350 r.p.m. for 60 minutes.
  • the precursor has a sub-micrometric size after milling.
  • the suspension thus obtained is dried by atomisation at the same time that the solvent is recovered.
  • the dry precursor is introduced in a graphite mould and subjected to an initial uniaxial pressure of 5 MPa.
  • the material is sintered using the SPS technique with the following experimental variables: heating speed of 25° C./min, maximum temperature of 1,150° C., maximum pressure of 50 MPa, permanence time of 5 minutes at maximum temperature and pressure.
  • Characterisation has been carried out by means of X-ray diffraction for the purpose of controlling the resulting association of phases in the sintered material.
  • the diffractograrnme corresponding to the material obtained according to this example of embodiment is shown in FIG. 1 .
  • the ceramic body consists mainly of a ⁇ -eueryptite solid solution. As in the preceding example, small traces of the vitreous phase were also detected.
  • the sintered sample has been characterised using a Netszch DIL402C dilatometer to obtain the TEC value.
  • the corresponding curve is shown in FIG. 3 .
  • the Young module was determined by means of the resonance frequency method, using a Grindosonic apparatus. Its fracture resistance was determined by conducting a four-point bend test using INSTRON 8562 testing equipment. The results of these properties are shown in Table I.
  • the synthesis of ceramic powder starts by preparing the starting materials.
  • the appropriate quantities of kaolin (528.7 g) are dispersed in 2 litres of ethanol. This dispersion is mechanically agitated at ambient temperature.
  • the appropriate quantity of lithium carbonate (131.9 g) is then added to the dispersion, continuing agitation.
  • the TEOS (339.4 g) is slowly added while gradually continuing agitation thereof. After mixing the raw materials, agitation is continued for 1 hour.
  • the suspension thus obtained is dried by evaporation of the solvent, raising the temperature to 80° C. while continuing agitation. When practically all of the solvent has evaporated, the nearly dry suspension is introduced in an oven at 120° C. in order to complete drying thereof.
  • the dry mixture is sifted prior to the calcination treatment to reach graining below 63 ⁇ m using a 63 ⁇ m sieve.
  • the calcination process is carried out for the formation of the LAS precursor.
  • the powder is placed in alumina crucibles which are introduced in an oven.
  • the calcination treatment was carried out at 900° C. for 2 hours with a temperature ramp of 5° C./min.
  • the starting powder is transformed into the LAS precursor.
  • This precursor is a ⁇ -eucryptite solid solution, the composition of which is verified by means of X-ray diffraction.
  • the next step consists of attrition of the precursor in a high-energy mill.
  • a stable precursor suspension was prepared and introduced in the mill, dispersing the precursor powder in ethanol (40% of solid content) by mechanical agitation for 60 minutes.
  • the attrition mill with a 9/1 content of alumina balls, operated at 350 r.p.m. for 60 minutes.
  • the precursor has a sub-micrometric size after milling,
  • the suspension thus obtained is dried by atomisation at the same time that the solvent is recovered.
  • the dry precursor is introduced in a graphite mould and subjected to an initial uniaxial pressure of 5 MPa.
  • the material is sintered by means of hot-pressing with the following experimental variables: heating speed of 5° C./min, maximum temperature of 1,150° C., maximum pressure of 15 MPa, permanence time of 1 hour at maximum temperature and pressure.
  • Characterisation has been carried out by means of X-ray diffraction for the purpose of controlling the resulting association of phases in the sintered material.
  • the diffractogramme corresponding to the material obtained according to this example of embodiment is shown in FIG. 1 .
  • the ceramic body consists mainly of a ⁇ -eucryptite solid solution.
  • small traces of LiAlO2 and vitreous phase were also detected.
  • the sintered sample has been characterised using a Netszch DIL402C dilatometer to obtain the TEC value.
  • the corresponding curve is shown in FIG. 3 .
  • the Young module was determined using the resonance frequency method, using a Grindosonic apparatus. Its fracture resistance was determined by conducting a four-point bend test using INSTRON 8562 testing equipment. The results of these properties are shown in Table I.
  • Example 2 Example 3 Density % 95.6 99.3 98.5 Yound Mod. (GPa) 35 107 96 Resistance (MPa) 37 110 99 TEC between ⁇ 150° C. and 450° C. ⁇ 1.13 0.45 ⁇ 0.33 (1/K * 10 ⁇ 6)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

New process for obtaining lithium aluminosilicate-based (LAS) ceramic materials having a near-zero and negative thermal expansion coefficient within a temperature range of (−150° C. to 450° C.). These materials are applicable to the manufacture of components that require a high level of dimensional stability.

Description

    FIELD OF THE ART
  • The present invention relates to ceramics having a negative and/or near-zero thermal expansion coefficient, which can be used in the manufacture of components that require a high level of dimensional stability. Therefore, the technology described in the invention falls within the new materials sector, while its application falls within the microelectronics, precision optics and aeronautical sectors.
  • STATE OF THE ART
  • Materials with a low thermal expansion coefficient are those wherein the volume variations associated to temperature changes are very small. Temperature-driven changes in the volume of materials is normally evaluated using the thermal expansion coefficient (TEC), which is defined as the variation in volume of a material with increasing temperature and must always refer to the temperature range wherein said variation was observed.
  • In ceramic materials, composed of a multitude of randomly oriented crystals, volume variation is usually extrapolated to linear variation. This is referred to as changes in elongation driven by temperature changes. These changes in elongation with regard to initial length driven by an increase in temperature are defined as linear thermal expansion coefficient. In general and herein, reference is made to the thermal expansion coefficient or TEC, referring to the aforementioned linear variation. When elongation value with increasing temperature is positive, we refer to positive TEC materials, while if this variation is negative we refer to negative TEC materials. Materials with a low TEC are materials wherein this variation in elongation is very close to zero. These materials therefore have a high level of dimensional stability upon temperature change, due to which they are of great interest for a wide range of applications in very diverse fields. These types of materials are, for example, required in many types of high-precision devices and instrumentation equipment in high technology systems, and in the microelectronics and precision optics industry. In all those applications wherein the dimensional stability of a precision element upon temperature change must be ensured, it will be necessary to lower the TEC of the constituent materials of those elements. The problem of the alteration in thermal expansion in elements manufactured using different materials can also be solved by means of the design of composites with a required (and homogeneous) TEC. The design of these materials with a “customised” TEC can be addressed using a combination of components with positive and negative expansion. This customised TEC design of the composites can be carried out for different temperatures, in such a manner that the final field of application of components having zero TEC will depend on whether they also achieve the rest of the specific functionality characteristics required by this application. The lithium aluminosilicate (LAS) family of ceramics and vitroceramics is frequently used for this purpose in many fields of application, from vitroceramics for kitchens to mirrors for satellites. Some mineral phases of this family have a negative TEC, which allows their use in composites with a controlled and customised TEC. Materials with a negative TEC often have low fracture resistance, as their negativity is due to a strong anisotropy between the different crystallographic orientations, wherein one of these usually exhibits negative behaviour and the other two positive behaviour. This anisotropy usually causes micro-fissures, resulting in low values in the mechanical properties of these materials. In any case, the use of these expansion properties for manufacturing composites with zero TEC has a broad range of potential applications in engineering, photonics and electronics and in other specific structural applications [R. Roy et al., Annual Review of Materials Science, 19, 59-81 (1989)].
  • The LAS phase with negative expansion coefficient is β-eucryptite (LiAlSiO4), while spodumene (LiAlSi2O6) has practically zero expansion.
  • The traditional LAS ceramic manufacturing method is based on the formation of glasses to produce vitroceramics. This method comprises the manufacture of molten material which is subsequently shaped and subjected to thermal treatment for partial crystallisation thereof [H, Bach, Low Thermal Expansion Glass Ceramics, Springer-Verlag, Berlin, 1995].
  • The ceramic products thus obtained are frequently heterogeneous. On other occasions, ceramic materials are required in the absence of or with a very low proportion of the vitreous phase, which reduces the rigidity and resistance of the ceramic products. Therefore, a method for manufacturing solid-state LAS ceramics is required which, in addition to being inexpensive, is easy to accurately adapt the final composition of the material and consequently its TEC.
  • Sol-gel processing methods have been applied in the manufacture of LAS ceramics [W. Nan-Chung, Y. Sheng, U.S. Pat. No. 5,320,792 dated Jun. 14, 2004] due to its multiple advantages and low processing temperatures. However, these methods are tedious, expensive and difficult to apply in industrial processes that require large amounts of material.
  • Other methods for obtaining solid-state LAS ceramics use lithium carbonate, aluminium oxide and silicon oxide as raw materials [C. Jyh-Chen, S. Gwo-Jiun, US2004112503 dated Jun. 17, 2004]. In this paper, reference is made to calcination for obtaining a precursor and to a thermal treatment applied subsequent to sintering. These authors highlight the difficulty of sintering these ceramics.
  • [S. L. Swartz, U.S. Pat. No. 6,066,585 dated May 23, 2000] also makes reference to calcination for obtaining a precursor, although in this case they use an excess of lithium oxide, in comparison to the stechiometric composition of β-eucryptite (LiAlSiO4), aimed at lowering sintering temperatures and increasing mechanical resistance. This procedure causes the formation of second phases and consequently modifies the TEC values compared to monolithic β-eucryptite ceramics. In order to obtain better micro-structures and higher quality in LAS ceramics with controlled TEC values, a method including the aforementioned advantages of the sol-gel method and having industrial scalding process capacity must be developed.
  • The method developed herein differs from other previously published methods [G. Maslennikova, Inorganic materials, 20, 9, 1984] and [A. Yamuna, et al., Journal of the American Ceramic Society, 84, 8, 2001] wherein β-eucryptite synthesis is based on the use of lithium carbonate raw materials and kaolin, as well as silica and alumina precursors such as silica sand and commercial alumina, wherein, in addition to the modification of the structure of kaolin by addition to lithium carbonate, the necessary silica and alumina for adjusting the stechiometry of the β-eucryptite being formed, is added in the form of a precursor solution, which leads to the formation of the β-eucryptite synthesis phase at much lower temperatures, with better control over the resulting phases. In this manner, an effect similar to that achieved by means of sol-gel methods is achieved, with the advantage over said sol-gel methods of being a simple, inexpensive and totally scalable process at industrial level.
  • DESCRIPTION OF THE INVENTION
  • The present invention is based on a new process for obtaining lithium aluminosilicate-based (LAS) ceramic materials having a near-zero and negative thermal expansion coefficient within the temperature range (−150° C. to 450° C.) which comprises a preparation stage of the lithium aluminosilicate (LAS) as of kaolin, Li2CO3 and a SiO2 or Al2O3 precursor solution. Although a process for preparing these materials has been published wherein kaolin and LiCO3 are used in a powder mixture for preparing the LAS precursor [O. V. Kichkailo and I. A. Levitskii, Glass and Ceramics, 62, 5-6, 2005] and [A. Yamuna, et al., Journal of the American Ceramic Society, 84, 8, 2001], a process that uses a SiO2 or Al2O3 precursor solution in this stage of the preparation had never been published. The use of this SiO2 or Al2O3 precursor solution represents a novel aspect and a significant technical advantage with respect to other methods mentioned in the literature, as it is essential for obtaining β-eucryptite at a low temperature with control of the pure phases and, consequently, with a more accurately adjusted TEC.
  • Therefore, one aspect of the present invention is the process for preparing lithium aluminosilicate-based ceramic materials having a near-zero and negative thermal expansion coefficient within the temperature range 31 150° C. to 450° C., which comprises a stage for preparing the lithium aluminosilicate precursor as of kaolin, Li2CO3 and a SiO2 or Al2O3 precursor solution.
  • A preferred aspect of the present invention is the process for obtaining ceramic materials, hereinafter referred to as the process for preparing ceramic materials of the invention, characterised in that it comprises the following stages:
  • a. synthesis of the lithium aluminosilicate precursor by means of the preparation of a kaolin suspension, Li2CO3 and a SiO2 or Al2O3 precursor solution,
  • b. calcination of the resulting powder after drying the mixture obtained in a),
  • c. milling and drying of the material obtained in b),
  • d. shaping of the material obtained in c),
  • e. sintering of the material obtained in d).
  • A more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein tetraethyl orthosilicate is used as a SiO2 precursor.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein aluminium ethoxide as an alumina precursor.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the suspension of stage a) is an alcohol.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the calcination of stage b) is carried out at a temperature comprised between 400° C. and 970° C. for a period comprised between 1 and 240 hours.
  • Calcinations at a temperature of 900° C. transform the structure of kaolin, directly giving a β-eucryptite-type structure. Lower temperatures can be used, but using longer calcination times. The transformation of the structure of α into β in the eurocryptite normally takes place at 970° C., due to which the calcination temperature must be greater than or equal to 970° C. in order to obtain a LAS precursor having a single β-eucryptite-type structural phase. In this process lower calcination temperatures have been achieved, obtaining the β phase as a result. A particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein the calcination of stage b) is carried out at a temperature of 900° C. for a period of 2 hours.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the calcination of stage b) is carried out after sifting the solid obtained on drying the suspension obtained in a).
  • Another more preferred aspect of the invention is the process for preparing ceramic materials of the invention wherein the milling of stage c) is carried out by attrition in a high-energy mill.
  • By means of the high-energy attrition mill, a β-eucryptite powder with a very fine grain size is obtained. This very fine grain size is essential to subsequently obtaining ceramic LAS bodies having a high relative density with enhanced mechanical properties.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein attrition in the high-energy mill is carried out operating at 100-400 r.p.m. preferably 350 r.p.m., for periods of more than 20 minutes.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the drying of stage c) is carried out by means of atomisation.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the shaping of the material of stage d) is carried out by means of isostatic pressing.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein the shaping of the material of stage d) is carried out by means of cold isostatic pressing and at pressures of between 100 and 400 MPa, preferably 200 MPa.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein the sintering of stage e) is carried out at a temperature of between 900° C. and 1,500° C.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials wherein the sintering of stage e) is carried out at a temperature of 1,350° C.
  • A particular example of the present invention is the process for preparing ceramic materials of the invention wherein a temperature ramp of 2-10° C./min, preferably 5° C./min, is used, maintaining the final temperature for a period comprised between 1 and 4 hours, and a subsequent cooling of up to 900° C. using a temperature ramp of 2-10° C./min, preferably 5° C./min.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the hot-press technique.
  • The hot-press technique is based on the simultaneous application of pressure and high temperature to accelerate densification speed. In this technique, heating takes place by means of graphite resistors.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the hot-press technique at a temperature comprised within the range of 900-1,400° C., preferably 1,100° C.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the hot-press technique at a pressure of 5 and 80 MPa, preferably 15 MPa.
  • Another more preferred aspect of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the spark plasma sintering (SPS) technique.
  • The spark plasma sintering technique is also based on the simultaneous application of pressure and high temperature. As opposed to hot-pressing, this technique is based on the application of spark discharges through the graphite moulds and the sample, allowing the use of heating speeds in the order of hundreds of degrees per minute.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the spark plasma sintering (SPS) technique at a temperature comprised between 900° C. and 1,400° C., preferably 1,100° C.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the spark plasma sintering (SPS) technique, for a period of more than 1 minute, preferably 5 minutes.
  • Another particular embodiment of the present invention is the process for preparing ceramic materials of the invention wherein stages d) and e) are carried out using the spark plasma sintering (SPS) technique at a pressure comprised between 5 and 80 MPa, preferably 50 MPa.
  • Another aspect of the present invention is the ceramic material prepared using any of the previously described processes.
  • The ceramic materials of the present invention have negative and/or near-zero TEC values for a broad temperature range (between −150° C. and 450° C.). The mechanical properties of the materials prepared by means of this invention are better than those of materials with negative TEC values available to date, which have values of approximately 35 MPa and E values of approximately 36 GPa [S. L. Swartz, U.S. Pat. No. 6,066,585 dated May 23, 2000].
  • Another preferred aspect of the present invention is the lithium aluminosilicate-based ceramic material prepared using the process for preparing ceramic materials of the invention, wherein its final density is 98% higher than the theroretical density and its thermal expansion coefficient is <0.5×10−6 K−1 within the temperature range −150° C. to 450° C.
  • The composition of the LAS ceramic materials of the present invention lies between spodumene and eucryptite, i.e. Li2O:Al2O3:SiO2 between 1:1:4 and 1:1:2. The main phase in the sintered material is a β-eucryptite solid solution which is stable at relatively high temperatures.
  • Another aspect of the present invention is the use of ceramic material, prepared using any of the previously described processes, in the manufacture of new materials.
  • Another preferred aspect of the present invention is the use of the ceramic material, prepared by means of any of the previously described processes, in the manufacture of components that require a high level of dimensional stability, such as for example high-precision measuring instruments, mirrors for space observation systems, whether terrestrial or aerial, optical lithography scanners, holography, laser instruments or heat dissipaters.
  • DESCRIPTION OF THE FIGURES
  • FIG. 1 shows X-ray diffractogrammes corresponding to the LAS materials obtained in examples 1, 2 and 3. The β-eucryptite solid solution is indicated by the peaks circled in white. The peaks corresponding to lithium aluminosilicate (examples 1 and 3) are indicated by black triangles.
  • FIG. 2 shows photographs of the materials obtained in example 2 obtained using a scanning electron microscope, wherein the formation of a small percentage of vitreous phase (lighter grey) and scarce porosity can be observed.
  • FIG. 3 shows dilatometries corresponding to the materials prepared in the different examples: example 1: dashed line; example 2: continuous line: example 3: dotted line.
  • EXAMPLES OF EMBODIMENT
  • A series of trials conducted by the inventors, which are representative of the effectiveness of the process of the invention for obtaining a LAS material having a negative or near-zero thermal expansion coefficient in the temperature range of −150° C. to 450° C., are described below. These examples are shown in FIGS. 1 to 3.
  • The method comprises the synthesis of a ceramic powder by means of calcination treatments prior to a high-energy milling stage essential to obtaining an improved microstructure of the final dense ceramic material.
  • Example 1 Synthesis of a LAS Precursor Having Greater SiO2 Content Than That of the Starting Kaolin and Subsequent Densification Thereof by Means of Sintering in a Conventional Oven
  • The synthesis of ceramic powder starts by preparing the starting materials. This implies the use of kaolin, in this example “Arcano” kaolin from Moltuval (Spain), with a composition of Al2O3.2.37SiO2.2.67H2O; lithium carbonate RECTAPUR (99%, VWR Prolabo) and tetraethyl orthosilicate (TEOS) (99.5%, Sigma-Aldrich). The appropriate quantities of kaolin (528.7 g) are dispersed in 2 litres of ethanol. This dispersion is mechanically agitated at ambient temperature. The appropriate quantity of lithium carbonate (131.9 g) is then added to the dispersion, continuing agitation. Finally, the TEOS (339.4 g) is slowly added while gradually continuing agitation thereof. After mixing the raw materials, agitation is continued for 1 hour. The suspension thus obtained is dried by evaporation of the solvent, raising the temperature to 80° C. while continuing agitation. When practically all of the solvent has evaporated, the nearly dry suspension is introduced in an oven at 120° C. in order to complete drying thereof.
  • The dry mixture is sifted prior to the calcination treatment in order to reach graining below 63 μm using a 63 μm sieve.
  • Next, the calcination process is carried out for the formation of the LAS precursor, to which end the powder is placed in alumina crucibles which are introduced in an oven. The calcination treatment was carried out at 900° C. for 2 hours with a temperature ramp of 5° C./min.
  • After calcination, the starting powder is transformed into the LAS precursor. This precursor is a β-eucryptite solid solution, the composition of which is verified by means of X-ray diffraction.
  • The next step consists of attrition of the precursor in a high-energy mill. To this end, a stable precursor suspension is prepared and introduced in the mill, dispersing the precursor powder in ethanol (40% of solid content) by mechanical agitation for 60 minutes. The attrition mill, with a 9/1 content of alumina balls, operated at 350 r.p.m. for 60 minutes, The precursor has a sub-micrometric size after milling. The suspension thus obtained is dried by atomisation at the same time that the solvent is recovered.
  • The dry precursor is shaped by means of cold isostatic pressing at 200 MPa.
  • This shaped material is sintered in an oven at 1,350° C. for 2 hours with a temperature ramp of 5° C./min. Cooling is controlled up to 900° C. at the same speed.
  • Characterisation has been carried out by means of X-ray diffraction for the purpose of controlling the resulting association of phases in the sintered material. The diffractogramme corresponding to the material obtained according to this example of embodiment is shown in FIG. 1. In this example, the ceramic body consists mainly of a β-eucryptite solid solution. Small traces of LiAlO2 have been detected. Small traces of vitreous phase (<2vol %) have also been detected in the images of retro-dispersed electrons obtained by scanning electron microscopy, a detailed view of which is shown in FIG. 2. This small percentage of glass aids sintering without affecting the mechanical properties.
  • The sintered sample has been characterised using a Netszch DIL402C dilatometer to obtain the TEC value. The corresponding curve is shown in FIG. 3. The Young module was determined by means of the resonance frequency method, using a Grindosonic apparatus. Its fracture resistance was determined by conducting a four-point bend test using INSTRON 8562 testing equipment. The results of these properties are shown in Table I.
  • Example 2 Synthesis of a LAS Precursor Having a Higher Al2O3 Content Than That of the Starting Kaolin and Subsequent Densification Thereof by Means of Spark Plasma Sintering
  • The synthesis of ceramic powder starts by preparing the starting materials. This implies the use of kaolin, in this example “Arcano” kaolin from Moltuval (Spain), with a composition of Al2O3.2.37SiO2.2.67H2O; lithium carbonate RECTAPUR (99%, VWR Prolabo) and aluminium ethoxide (>97%, Sigma-Aldrich). The appropriate quantities of kaolin (550.3 g) are dispersed in 2 litres of ethanol. This dispersion is mechanically agitated at ambient temperature. The appropriate quantity of lithium carbonate (164.7 g) is then added to the dispersion, continuing agitation thereof. Finally, the aluminium ethoxide (111.3 g) is slowly added while gradually continuing agitation. After mixing the raw materials, agitation is continued for 1 hour. The suspension thus obtained is dried by evaporation of the solvent, raising the temperature to 80° C. while continuing agitation. When practically all of the solvent has evaporated, the nearly dry suspension is introduced in an oven at 120° C. in order to complete drying thereof.
  • The dry mixture is sifted prior to the calcination treatment in order to reach graining below 63 μm using a 63 μm sieve.
  • Next, the calcination process is carried out for the formation of the LAS precursor. The powder is placed in alumina crucibles which are introduced in an oven. The calcination treatment was carried out at 900° C. for 2 hours with a temperature ramp of 5° C./min.
  • After calcination, the starting powder is transformed into the LAS precursor. This precursor is a β-eucryptite solid solution, the composition of which is verified by means of X-ray diffraction.
  • The next step consists of attrition of the precursor in a high-energy mill. To this end, a stable precursor suspension was prepared and introduced in the mill, dispersing the precursor powder in ethanol (40% of solid content) by mechanical agitation for 60 minutes. The attrition mill, with a 9/1 content of alumina balls, operated at 350 r.p.m. for 60 minutes. The precursor has a sub-micrometric size after milling. The suspension thus obtained is dried by atomisation at the same time that the solvent is recovered.
  • The dry precursor is introduced in a graphite mould and subjected to an initial uniaxial pressure of 5 MPa. Next, the material is sintered using the SPS technique with the following experimental variables: heating speed of 25° C./min, maximum temperature of 1,150° C., maximum pressure of 50 MPa, permanence time of 5 minutes at maximum temperature and pressure.
  • Characterisation has been carried out by means of X-ray diffraction for the purpose of controlling the resulting association of phases in the sintered material. The diffractograrnme corresponding to the material obtained according to this example of embodiment is shown in FIG. 1. In this example, the ceramic body consists mainly of a β-eueryptite solid solution. As in the preceding example, small traces of the vitreous phase were also detected.
  • The sintered sample has been characterised using a Netszch DIL402C dilatometer to obtain the TEC value. The corresponding curve is shown in FIG. 3. The Young module was determined by means of the resonance frequency method, using a Grindosonic apparatus. Its fracture resistance was determined by conducting a four-point bend test using INSTRON 8562 testing equipment. The results of these properties are shown in Table I.
  • Example 3 Synthesis of a LAS Precursor Having a Higher SiO2 Content Than That of the Starting Kaolin and Subsequent Densification Thereof by Means of Hot-Pressing
  • The synthesis of ceramic powder starts by preparing the starting materials. This implies the use of kaolin, in this example “Arcano” kaolin from Moltuval (Spain), with a composition of Al2O3.2.37SiO2.2.67H2O; lithium carbonate RECTAPUR (99%. VWR Prolabo) and tetraethyl orthosilicate (99.5%, Sigma-Aldrich). The appropriate quantities of kaolin (528.7 g) are dispersed in 2 litres of ethanol. This dispersion is mechanically agitated at ambient temperature. The appropriate quantity of lithium carbonate (131.9 g) is then added to the dispersion, continuing agitation. Finally, the TEOS (339.4 g) is slowly added while gradually continuing agitation thereof. After mixing the raw materials, agitation is continued for 1 hour. The suspension thus obtained is dried by evaporation of the solvent, raising the temperature to 80° C. while continuing agitation. When practically all of the solvent has evaporated, the nearly dry suspension is introduced in an oven at 120° C. in order to complete drying thereof.
  • The dry mixture is sifted prior to the calcination treatment to reach graining below 63 μm using a 63 μm sieve.
  • Next, the calcination process is carried out for the formation of the LAS precursor. The powder is placed in alumina crucibles which are introduced in an oven. The calcination treatment was carried out at 900° C. for 2 hours with a temperature ramp of 5° C./min.
  • After calcination, the starting powder is transformed into the LAS precursor. This precursor is a β-eucryptite solid solution, the composition of which is verified by means of X-ray diffraction.
  • The next step consists of attrition of the precursor in a high-energy mill. A stable precursor suspension was prepared and introduced in the mill, dispersing the precursor powder in ethanol (40% of solid content) by mechanical agitation for 60 minutes. The attrition mill, with a 9/1 content of alumina balls, operated at 350 r.p.m. for 60 minutes. The precursor has a sub-micrometric size after milling, The suspension thus obtained is dried by atomisation at the same time that the solvent is recovered.
  • The dry precursor is introduced in a graphite mould and subjected to an initial uniaxial pressure of 5 MPa. Next, the material is sintered by means of hot-pressing with the following experimental variables: heating speed of 5° C./min, maximum temperature of 1,150° C., maximum pressure of 15 MPa, permanence time of 1 hour at maximum temperature and pressure.
  • Characterisation has been carried out by means of X-ray diffraction for the purpose of controlling the resulting association of phases in the sintered material. The diffractogramme corresponding to the material obtained according to this example of embodiment is shown in FIG. 1. In this example, the ceramic body consists mainly of a β-eucryptite solid solution. As in the preceding examples, small traces of LiAlO2 and vitreous phase were also detected.
  • The sintered sample has been characterised using a Netszch DIL402C dilatometer to obtain the TEC value. The corresponding curve is shown in FIG. 3. The Young module was determined using the resonance frequency method, using a Grindosonic apparatus. Its fracture resistance was determined by conducting a four-point bend test using INSTRON 8562 testing equipment. The results of these properties are shown in Table I.
  • TABLE I
    Property Example 1 Example 2 Example 3
    Density % 95.6 99.3 98.5
    Yound Mod. (GPa) 35 107 96
    Resistance (MPa) 37 110 99
    TEC between −150° C. and 450° C. −1.13 0.45 −0.33
    (1/K * 10−6)

Claims (7)

1-23. (canceled)
24. A lithium aluminosilicates based ceramic material prepared by a process comprising the steps of:
a) preparing a lithium aluminasilicate precursor comprising kaolin suspension, Li2CO3 and a precursor solution of SiO2 or Al2O3 and drying said aluminosilicate precursor to form a powder,
b) calcining the powder obtained in step a),
c) milling and drying the powder obtained in step b),
d) shaping the powder obtained in step c) to form a shaped material, and
e) sintering the shaped material obtained in step d).
25. The lithium aluminosilicate-based ceramic material, according to claim 24, wherein its final density is greater than 95% of theoretical density and its thermal expansion coefficient is <0.5×10-6 K-1 within the temperature interval of −150° C. to 450° C.
26-27. (canceled)
28. A lithium aluminosilicate-based ceramic material with thermal expansion coefficient of <0.5×10-6 K-1 within the temperature interval of −150° C. to 450° C. and a single beta-crystalline phase characterized by X-ray powder diffraction pattern having at least 19.4±0.3, 34.6±0.3, 38.1±0.3, 39.5±0.3, 43±0.3, 47.8±0.3, 56.0±0.3 and 63.6±0.3 peaks in degrees 2Θ that are identified as characteristic peaks of crystalline beta-eucryptite phase.
29. New materials comprising components that require a high level of dimensional stability and the ceramic material according to claim 24, selected from the group consisting of high-precision measuring instruments, mirrors for space observation systems, whether terrestrial or aerial, optical lithography scanners, holography, laser instruments and heat dissipaters.
30. New materials comprising components that require a high level of dimensional stability and the ceramic material according to claim 26, selected from the group consisting of high-precision measuring instruments, mirrors for space observation systems, whether terrestrial or aerial, optical lithography scanners, holography, laser instruments and heat dissipaters.
US13/967,788 2008-12-12 2013-08-15 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use Abandoned US20130337994A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/967,788 US20130337994A1 (en) 2008-12-12 2013-08-15 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
ESP200803530 2008-12-12
ES200803530A ES2341081B1 (en) 2008-12-12 2008-12-12 MATERIALS BASED ON LITHIUM ALUMINOSILICATES WITH NEGATIVE THERMAL EXPANSION COEFFICIENT IN A WIDE INTERVAL TEMPERATURE, PREPARATION AND USE PROCEDURE.
PCT/ES2009/070534 WO2010066929A1 (en) 2008-12-12 2009-11-27 Lithium-aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, method of preparation and use
US201113139284A 2011-08-24 2011-08-24
US13/967,788 US20130337994A1 (en) 2008-12-12 2013-08-15 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/ES2009/070534 Division WO2010066929A1 (en) 2008-12-12 2009-11-27 Lithium-aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, method of preparation and use
US201113139284A Division 2008-12-12 2011-08-24

Publications (1)

Publication Number Publication Date
US20130337994A1 true US20130337994A1 (en) 2013-12-19

Family

ID=42211712

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/139,284 Active 2030-01-16 US8529851B2 (en) 2008-12-12 2009-11-27 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range preparation process and use
US13/967,788 Abandoned US20130337994A1 (en) 2008-12-12 2013-08-15 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/139,284 Active 2030-01-16 US8529851B2 (en) 2008-12-12 2009-11-27 Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range preparation process and use

Country Status (4)

Country Link
US (2) US8529851B2 (en)
EP (1) EP2371786B1 (en)
ES (1) ES2341081B1 (en)
WO (1) WO2010066929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180009669A1 (en) * 2015-01-23 2018-01-11 Commissariat A L'energie Atomique Et Aux Energies Al Ternatives Method for preparing a material made from aluminosilicate and method for preparing a composite material having an aluminosilicate matrix

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2354099B1 (en) 2009-08-27 2012-01-19 CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC) (Titular al 66,66%) PROCEDURE FOR OBTAINING CERAMIC COMPOUNDS, AND MATERIAL OBTAINABLE BY SUCH PROCEDURE.
FR2959506B1 (en) 2010-04-30 2014-01-03 Thales Sa CERAMIC COMPOSITE MATERIAL BASED ON BETA-EUCRYPTITE AND OXIDE AND PROCESS FOR THE PRODUCTION OF SAID MATERIAL
CN109704741B (en) * 2019-01-28 2021-11-05 佛山石湾鹰牌陶瓷有限公司 Preparation method of special ceramic material and application of special ceramic material
CN112410623B (en) * 2019-08-21 2022-01-07 天津大学 High-damping aluminum-silicon-based composite material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2154575A (en) * 1984-02-28 1985-09-11 English Electric Co Ltd Cerate refining of glass ceramics
US5179051A (en) * 1991-12-16 1993-01-12 Uop High density lithium-based ceramics from zeolites

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB881240A (en) * 1958-12-15 1961-11-01 Carborundum Co Improvements relating to the manufacture of ceramic materials
US5320792A (en) 1993-05-11 1994-06-14 National Science Council Process for the preparation of LAS ceramic sintered bodies
JP3034808B2 (en) * 1996-09-10 2000-04-17 有限会社水野技研 Thermal shock resistant ceramics and manufacturing method thereof
US6066585A (en) * 1998-05-18 2000-05-23 Emerson Electric Co. Ceramics having negative coefficient of thermal expansion, method of making such ceramics, and parts made from such ceramics
JP3133302B2 (en) * 1999-06-29 2001-02-05 新日本製鐵株式会社 Black low thermal expansion ceramics sintered body and method for producing the same
DE60132106T2 (en) * 2000-10-02 2008-12-11 Corning Incorporated Lithium aluminum silicate-CERAMICS
US6764565B2 (en) * 2002-12-17 2004-07-20 National Central University Method of producing lithium aluminosilicate ceramics
ES2354099B1 (en) 2009-08-27 2012-01-19 CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC) (Titular al 66,66%) PROCEDURE FOR OBTAINING CERAMIC COMPOUNDS, AND MATERIAL OBTAINABLE BY SUCH PROCEDURE.
ES2362229B1 (en) 2009-12-16 2012-05-09 Consejo Superior De Investigaciones Cientificas (Csic) (50%) ELECTROCONDUCTOR COMPOSITE MATERIAL WITH CONTROLLED THERMAL EXPANSION COEFFICIENT.
ES2362533B1 (en) 2009-12-21 2012-05-17 Consejo Superior De Investigaciones Cientificas (Csic) COMPOSITE MATERIAL WITH THERMAL EXPANSION COEFFICIENT CONTROLLED WITH OXIDIC MICAS CERAMICS AND THEIR OBTAINING PROCEDURE.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2154575A (en) * 1984-02-28 1985-09-11 English Electric Co Ltd Cerate refining of glass ceramics
US5179051A (en) * 1991-12-16 1993-01-12 Uop High density lithium-based ceramics from zeolites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180009669A1 (en) * 2015-01-23 2018-01-11 Commissariat A L'energie Atomique Et Aux Energies Al Ternatives Method for preparing a material made from aluminosilicate and method for preparing a composite material having an aluminosilicate matrix
US10717656B2 (en) * 2015-01-23 2020-07-21 Commissariat àl'Énergie Atomique et aux Énergies Alternatives Method for preparing a material made from aluminosilicate and method for preparing a composite material having an aluminosilicate matrix

Also Published As

Publication number Publication date
US8529851B2 (en) 2013-09-10
EP2371786A1 (en) 2011-10-05
ES2341081B1 (en) 2011-05-23
EP2371786B1 (en) 2015-11-11
WO2010066929A1 (en) 2010-06-17
US20110301016A1 (en) 2011-12-08
EP2371786A4 (en) 2012-08-01
ES2341081A1 (en) 2010-06-14

Similar Documents

Publication Publication Date Title
US20130337994A1 (en) Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use
EP2518037B1 (en) Composite material having controlled coefficient of thermal expansion with oxidic ceramics and procedure for the obtainment thereof
EP2514732B1 (en) Composite material of electroconductor having controlled coefficient of thermal expansion, its use and process for obtaining the material
US20120107585A1 (en) Ceramic Composite Based on Beta-Eucryptite and an Oxide, and Process of Manufacturing Said Composite
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
CN110128114B (en) Low-temperature co-fired ceramic dielectric material and preparation method thereof
CN100358833C (en) Method for preparing ceramic material of zirconium phosphate
CN112062556B (en) Calcium zirconate-strontium zirconate-barium zirconate solid solution ceramic material and preparation method thereof
US10968139B1 (en) Moldable silicon nitride green-body composite and reduced density silicon nitride ceramic process
US8828281B2 (en) Method for obtaining ceramic compounds and resulting material
JP2006232667A (en) Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
US11365155B1 (en) Moldable silicon nitride green-body composite and reduced density silicon nitride ceramic process
US6764565B2 (en) Method of producing lithium aluminosilicate ceramics
JP3805119B2 (en) Method for producing low thermal expansion ceramics
US8486851B2 (en) Process for manufacturing a ceramic composite based on silicon nitride and β-eucryptite
JP6179026B2 (en) Low thermal expansion ceramics and method for producing the same
TW593204B (en) A method of producing lithium aluminosilicate ceramics
JP2011195429A (en) β-EUCRYPTITE CERAMIC HAVING ZERO EXPANSION COEFFICIENT, HIGH STRENGTH AND LOW DIELECTRIC CONSTANT
JP2002338341A (en) Porcelain calcined at low temperature, its manufacturing method and wiring board
KR102368968B1 (en) Low thermal expansion LAS-based ceramic material, and method of manufacturing thereof
JPH04305057A (en) Method for strengthening piezoelectric ceramics
JP2001058867A (en) Structure part
JPH08148786A (en) Alumina multilayer printed circuit board, manufacturing method thereof and manufacturing method of alumina sintered product

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION