WO2010064872A2 - 반도체 발광소자 - Google Patents

반도체 발광소자 Download PDF

Info

Publication number
WO2010064872A2
WO2010064872A2 PCT/KR2009/007241 KR2009007241W WO2010064872A2 WO 2010064872 A2 WO2010064872 A2 WO 2010064872A2 KR 2009007241 W KR2009007241 W KR 2009007241W WO 2010064872 A2 WO2010064872 A2 WO 2010064872A2
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
electrode
nitride semiconductor
emitting device
layer
Prior art date
Application number
PCT/KR2009/007241
Other languages
English (en)
French (fr)
Other versions
WO2010064872A3 (ko
Inventor
김창태
남기연
Original Assignee
주식회사 에피밸리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에피밸리 filed Critical 주식회사 에피밸리
Priority to US13/132,854 priority Critical patent/US20110233603A1/en
Priority to CN2009801488452A priority patent/CN102239576A/zh
Priority to JP2011539452A priority patent/JP2012511249A/ja
Publication of WO2010064872A2 publication Critical patent/WO2010064872A2/ko
Publication of WO2010064872A3 publication Critical patent/WO2010064872A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present disclosure relates to a semiconductor light emitting device as a whole, and more particularly, to a semiconductor light emitting device for improving the detachment of a pad to be wire bonded.
  • the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device.
  • the group III nitride semiconductor consists of a compound of Al (x) Ga (y) In (1-x-y) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • GaAs type semiconductor light emitting elements used for red light emission, etc. are mentioned.
  • FIG. 1 is a view illustrating an example of a conventional Group III nitride semiconductor light emitting device, wherein the Group III nitride semiconductor light emitting device is grown on the substrate 100, the buffer layer 200 grown on the substrate 100, and the buffer layer 200.
  • the p-side electrode 600 formed on the group nitride semiconductor layer 500, the p-side bonding pad 700 formed on the p-side electrode 600, the p-type group III nitride semiconductor layer 500 and the active layer 400 are formed.
  • the n-side electrode 800 and the passivation layer 900 are formed on the n-type group III nitride semiconductor layer 300 exposed by mesa etching.
  • a GaN-based substrate is used as the homogeneous substrate, and a sapphire substrate, a SiC substrate, or a Si substrate is used as the heterogeneous substrate. Any substrate may be used as long as the group III nitride semiconductor layer can be grown.
  • the n-side electrode 800 may be formed on the SiC substrate side.
  • Group III nitride semiconductor layers grown on the substrate 100 are mainly grown by MOCVD (organic metal vapor growth method).
  • the buffer layer 200 is intended to overcome the difference in lattice constant and thermal expansion coefficient between the dissimilar substrate 100 and the group III nitride semiconductor, and US Pat.
  • a technique for growing an AlN buffer layer having a thickness of US Pat. No. 5,290,393 describes Al (x) Ga (1-x) N having a thickness of 10 kPa to 5000 kPa at a temperature of 200 to 900 C on a sapphire substrate. (0 ⁇ x ⁇ 1)
  • a technique for growing a buffer layer is described, and US Patent Publication No. 2006/154454 discloses growing a SiC buffer layer (seed layer) at a temperature of 600 ° C.
  • the undoped GaN layer is grown prior to the growth of the n-type Group III nitride semiconductor layer 300, which may be viewed as part of the buffer layer 200 or as part of the n-type Group III nitride semiconductor layer 300. .
  • n-type contact layer In the n-type group III nitride semiconductor layer 300, at least a region (n-type contact layer) in which the n-side electrode 800 is formed is doped with impurities, and the n-type contact layer is preferably made of GaN and doped with Si. .
  • U. S. Patent No. 5,733, 796 describes a technique for doping an n-type contact layer to a desired doping concentration by controlling the mixing ratio of Si and other source materials.
  • the active layer 400 is a layer that generates photons (light) through recombination of electrons and holes, and is mainly composed of In (x) Ga (1-x) N (0 ⁇ x ⁇ 1), and one quantum well layer (single quantum wells) or multiple quantum wells.
  • the p-type III-nitride semiconductor layer 500 is doped with an appropriate impurity such as Mg, and has an p-type conductivity through an activation process.
  • U.S. Patent No. 5,247,533 describes a technique for activating a p-type group III nitride semiconductor layer by electron beam irradiation, and U.S. Patent No. 5,306,662 annealing the p-type Group III nitride semiconductor layer at a temperature of 400 ⁇ ⁇ or higher. A technique for activating is described, and US Patent Publication No.
  • 2006/157714 discloses a p-type III-nitride semiconductor layer without an activation process by using ammonia and a hydrazine-based source material together as a nitrogen precursor for growth of the p-type III-nitride semiconductor layer. Techniques for having this p-type conductivity have been described.
  • the p-side electrode 600 is provided to supply a good current to the entire p-type group III nitride semiconductor layer 500.
  • US Patent No. 5,563,422 is formed over almost the entire surface of the p-type group III nitride semiconductor layer.
  • a light-transmitting electrode made of Ni and Au in ohmic contact with the p-type III-nitride semiconductor layer 500 is described.
  • US Pat. No. 6,515,306 discloses n on the p-type III-nitride semiconductor layer. A technique is described in which a type superlattice layer is formed and then a translucent electrode made of indium tin oxide (ITO) is formed thereon.
  • ITO indium tin oxide
  • the p-side electrode 600 may be formed to have a thick thickness so as not to transmit light, that is, to reflect the light toward the substrate side, this technique is referred to as flip chip (flip chip) technology.
  • U. S. Patent No. 6,194, 743 describes a technique relating to an electrode structure including an Ag layer having a thickness of 20 nm or more, a diffusion barrier layer covering the Ag layer, and a bonding layer made of Au and Al covering the diffusion barrier layer.
  • the p-side bonding pad 700 and the n-side electrode 800 are for supplying current and wire bonding to the outside, and US Patent No. 5,563,422 describes a technique in which the n-side electrode is composed of Ti and Al.
  • the passivation layer 900 is formed of a material such as silicon dioxide and may be omitted.
  • the n-type III-nitride semiconductor layer 300 or the p-type III-nitride semiconductor layer 500 may be composed of a single layer or a plurality of layers, and recently, the substrate 100 may be formed by laser or wet etching. A technique for manufacturing a vertical light emitting device by separating from group III nitride semiconductor layers has been introduced.
  • such a light emitting device may cause a problem that the p-side bonding pad 700 is peeled off from the light emitting device when wire bonding to the p-side bonding pad 700.
  • FIG. 2 is a view showing an example of a group III nitride semiconductor light emitting device described in US Pat. No. 5,563,422, wherein the light emitting device is a substrate 110, an n-type group III nitride semiconductor layer 210 formed on the substrate 110, and n.
  • the p-type III-nitride semiconductor layer 310 formed on the type-III group nitride semiconductor layer 210 and the p-type III-nitride semiconductor layer 310 are formed, and include a cut-out portion 412.
  • the p-side bonding pad 510 is attached to the group III nitride semiconductor layer 310, and the p-side bonding pad 510 is directly bonded to the p-type group III nitride semiconductor layer 310, thereby providing the p-side bonding pad 510.
  • wire bonding to the light emitting device a technique related to a light emitting device that is intended to improve the problem that the p-side bonding pad 510 is separated from the light emitting device It is
  • the light emitting device also has poor adhesion between the p-side bonding pad 510 (for example, a metal such as Cr and Au) and the p-side electrode 410 (for example, a conductive oxide film such as ITO).
  • the p-side bonding pad 510 for example, a metal such as Cr and Au
  • the p-side electrode 410 for example, a conductive oxide film such as ITO.
  • a portion where the p-side bonding pad 510 and the p-side electrode 410 overlap is present at least a predetermined amount. This leads to a loss of luminous efficiency of the device.
  • an according to one aspect of the present disclosure includes: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and a first semiconductor layer; A plurality of semiconductor layers positioned between the second semiconductor layers and having an active layer generating light through recombination of electrons and holes; Bonding pads electrically connected to the plurality of semiconductor layers; A first electrode spreading over the plurality of semiconductor layers; And a second electrode extending from the bonding pad to the first electrode and electrically connecting the bonding pad and the first electrode.
  • the bonding pads are separated from the light emitting device during wire bonding.
  • FIG. 1 is a view showing an example of a conventional group III nitride semiconductor light emitting device
  • FIG. 2 is a view showing an example of a group III nitride semiconductor light emitting device described in US Patent No. 5,563,422;
  • FIG. 3 is a view showing an example of a group III nitride semiconductor light emitting device according to the present disclosure
  • FIG. 4 is a view showing an example of a cross section of a group III nitride semiconductor light emitting device according to the present disclosure
  • FIG. 5 is a view showing an example of a method of manufacturing a group III nitride semiconductor light emitting device according to the present disclosure
  • 6 is a photo of the group III nitride semiconductor light emitting device according to the present disclosure to emit light according to the current change.
  • FIG. 3 and 4 are diagrams illustrating an example of a group III nitride semiconductor light emitting device according to the present disclosure
  • FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. 3.
  • the light emitting device is grown on the substrate 10, the buffer layer 20 grown on the substrate 10, the n-type Group III nitride semiconductor layer 30, and the n-type Group III nitride semiconductor layer 30 grown on the buffer layer 20.
  • the n-side electrode 80, the p-side bonding pad 70, the p-side electrode 60, and the branch electrodes 72 and 82 formed on the semiconductor layer 30 are included.
  • the p-side bonding pad 70 is formed on the p-type group III nitride semiconductor layer 50, and a wire for supplying electricity to the light emitting element is bonded.
  • the p-side bonding pad 70 may be p-type III-nitride semiconductor layer 50 to maintain adhesion to the p-type III-nitride semiconductor layer 50 even when pulled by the wire during or after wire bonding. 50 and a high adhesive force, for example, may be formed by laminating Cr / Ni / Au to a thickness of about 1.5 ⁇ m.
  • the p-side electrode 60 is for smoothly supplying current to the entire p-type group III nitride semiconductor layer 50 and is formed on the p-type group III nitride semiconductor layer 50.
  • the p-side electrode 60 may be made of a conductive oxide film.
  • the p-side electrode 60 prevents the p-side bonding pad 70 from being separated from the p-type group III nitride semiconductor layer 50 by external force due to the low adhesion between the p-side bonding pad 70 and the p-side electrode 60.
  • a cutout 65 is formed to be spaced apart from the p-side electrode 60.
  • the p-side electrode 60 may be made of indium tin oxide (ITO), and may be formed to a thickness of about 1750 ⁇ s.
  • the branch electrode 72 is in contact with the p-side bonding pad 70 and in contact with the p-side electrode 60. This is because the current supplied to the p-side bonding pad 70 is supplied to the p-side electrode 60 through the branch electrode 72, thereby forming a gap between the p-side bonding pad 70 and the p-type group III nitride semiconductor layer 50. This is to supply a smooth current to the entire p-type group III nitride semiconductor layer 50 while maintaining strong adhesion. To this end, the branch electrode 72 extends from the p-side bonding pad 70 and extends over the p-side electrode 60. For example, the branch electrode 72 may be formed by stacking Cr / Ni / Au to a thickness of about 1.5 ⁇ m.
  • FIG. 5 is a view showing an example of a method of manufacturing a group III nitride semiconductor light emitting device according to the present disclosure.
  • a buffer layer 20, an n-type group III nitride semiconductor layer 30, an active layer 40, and a p-type group III nitride semiconductor layer 50 are grown on the substrate 10 (see FIG. 5A). ).
  • the p-type group III nitride semiconductor layer 50 and the active layer 40 are etched to expose the n-type group III nitride semiconductor layer 30 for forming the n-side electrode 80 (FIG. 5B). )Reference).
  • the p-side electrode 60 having the cutout 65 may be formed by photolithography, except for the p-type group III nitride semiconductor layer 50 except for the portion where the p-side electrode 60 is to be formed.
  • the photoresist 90 is formed thereon (see FIG. 5B), and the p-side electrode 60 is deposited on the p-type group III nitride semiconductor layer 50 (see FIG. 5C).
  • the p-side electrode 60 may be formed before etching to expose the n-type group III nitride semiconductor layer 30.
  • the p-side electrode 60 in order to form the p-side electrode 60 having the cutout 65, the p-side electrode 60 must be formed on the p-type group III nitride semiconductor layer 50, and the cutout 65 must be formed.
  • An etch mask (not shown) is formed on the p-side electrode 60 so as to expose the position, and the p-side electrode 60 exposed by the etch mask (not shown) is removed through wet etching, thereby cutting the cut portion 65. May be formed.
  • wet etching may be performed by immersing the p-side electrode 60 in ITO for about 30 seconds at about 45 ° C. in a solution containing HCl.
  • the p-side bonding pad 70 is formed on the p-type group III nitride semiconductor layer 50 exposed by the notch 65 (see FIG. 5E).
  • the branch electrode 72 is also formed at the same time, it may be formed through a separate process.
  • the p-side bonding pad 70 may be formed to have a thickness of about 1.5 ⁇ m by sequentially stacking Cr, Ni, and Au layers using an electron beam deposition method.
  • the n-side electrode 80 and the branch electrode 82 may also be formed in the same manner.
  • FIG. 6 is a photo of the group III nitride semiconductor light emitting device according to the present disclosure that emits light according to a current change, wherein the branch electrode 72 (see FIG. 3) has a p-side bonding pad 70 (see FIG. 3) and a p-side electrode ( 60 (see FIG. 3), the current is smoothly diffused to the p-side electrode 60 (see FIG. 3), and light is uniformly emitted from the entire light emitting device.
  • a semiconductor light emitting element having a cutout portion in a p-side electrode so that a p-side bonding pad and a p-side electrode are spaced apart.
  • the p-side bonding pad can be improved from being separated from the light emitting element by an external force at the time of wire bonding due to the low adhesive force with the p-side electrode.
  • the partial overlap between the p-side bonding pad and the p-side electrode is not excluded from the portion where the branch electrode is formed from the p-side bonding pad.
  • a semiconductor light emitting element comprising a branch electrode extending from the p-side bonding pad and in contact with the p-side electrode. Thereby, a current can be supplied from a p side bonding pad to a p side electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 개시는 반도체 발광소자에 관한 것으로, 보다 상세하게는 제1 전도성을 지니는 제1 반도체층, 제1 전도성과 다른 제2 전도성을 지니는 제2 반도체층, 그리고 제1 반도체층과 제2 반도체층 사이에 위치하며, 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하는 복수개의 반도체층; 복수개의 반도체층과 전기적으로 연결되는 본딩 패드; 복수개의 반도체층에 펼쳐지는 제1 전극; 그리고, 본딩 패드로부터 제1 전극으로 연장되며, 본딩 패드와 제1 전극을 전기적으로 접속시키는 제2 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자에 관한 것이다.

Description

반도체 발광소자
본 개시(Disclosure)는 전체적으로 반도체 발광소자에 관한 것으로, 특히 와이어 본딩이 되는 패드가 떨어져 나가는 것을 개선하기 위한 반도체 발광소자에 관한 것이다.
여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides backgound information related to the present disclosure which is not necessarily prior art).
도 1은 종래의 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 버퍼층(200), 버퍼층(200) 위에 성장되는 n형 3족 질화물 반도체층(300), n형 3족 질화물 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 3족 질화물 반도체층(500), p형 3족 질화물 반도체층(500) 위에 형성되는 p측 전극(600), p측 전극(600) 위에 형성되는 p측 본딩 패드(700), p형 3족 질화물 반도체층(500)과 활성층(400)이 메사 식각되어 노출된 n형 3족 질화물 반도체층(300) 위에 형성되는 n측 전극(800), 그리고 보호막(900)을 포함한다.
기판(100)은 동종기판으로 GaN계 기판이 이용되며, 이종기판으로 사파이어 기판, SiC 기판 또는 Si 기판 등이 이용되지만, 3족 질화물 반도체층이 성장될 수 있는 기판이라면 어떠한 형태이어도 좋다. SiC 기판이 사용될 경우에 n측 전극(800)은 SiC 기판 측에 형성될 수 있다.
기판(100) 위에 성장되는 3족 질화물 반도체층들은 주로 MOCVD(유기금속기상성장법)에 의해 성장된다.
버퍼층(200)은 이종기판(100)과 3족 질화물 반도체 사이의 격자상수 및 열팽창계수의 차이를 극복하기 위한 것이며, 미국특허 제5,122,845호에는 사파이어 기판 위에 380℃에서 800℃의 온도에서 100Å에서 500Å의 두께를 가지는 AlN 버퍼층을 성장시키는 기술이 기재되어 있으며, 미국특허 제5,290,393호에는 사파이어 기판 위에 200℃에서 900℃의 온도에서 10Å에서 5000Å의 두께를 가지는 Al(x)Ga(1-x)N (0≤x<1) 버퍼층을 성장시키는 기술이 기재되어 있고, 미국공개특허공보 제2006/154454호에는 600℃에서 990℃의 온도에서 SiC 버퍼층(씨앗층)을 성장시킨 다음 그 위에 In(x)Ga(1-x)N (0<x≤1) 층을 성장시키는 기술이 기재되어 있다. 바람직하게는 n형 3족 질화물 반도체층(300)의 성장에 앞서 도핑되지 않는 GaN층이 성장되며, 이는 버퍼층(200)의 일부로 보아도 좋고, n형 3족 질화물 반도체층(300)의 일부로 보아도 좋다.
n형 3족 질화물 반도체층(300)은 적어도 n측 전극(800)이 형성된 영역(n형 컨택층)이 불순물로 도핑되며, n형 컨택층은 바람직하게는 GaN로 이루어지고, Si으로 도핑된다. 미국특허 제5,733,796호에는 Si과 다른 소스 물질의 혼합비를 조절함으로써 원하는 도핑농도로 n형 컨택층을 도핑하는 기술이 기재되어 있다.
활성층(400)은 전자와 정공의 재결합을 통해 광자(빛)를 생성하는 층으로서, 주로 In(x)Ga(1-x)N (0<x≤1)로 이루어지고, 하나의 양자우물층(single quantum well)이나 복수개의 양자우물층들(multi quantum wells)로 구성된다.
p형 3족 질화물 반도체층(500)은 Mg과 같은 적절한 불순물을 이용해 도핑되며, 활성화(activation) 공정을 거쳐 p형 전도성을 가진다. 미국특허 제5,247,533호에는 전자빔 조사에 의해 p형 3족 질화물 반도체층을 활성화시키는 기술이 기재되어 있으며, 미국특허 제5,306,662호에는 400℃ 이상의 온도에서 열처리(annealing)함으로써 p형 3족 질화물 반도체층을 활성화시키는 기술이 기재되어 있고, 미국공개특허공보 제2006/157714호에는 p형 3족 질화물 반도체층 성장의 질소전구체로서 암모니아와 하이드라진계 소스 물질을 함께 사용함으로써 활성화 공정없이 p형 3족 질화물 반도체층이 p형 전도성을 가지게 하는 기술이 기재되어 있다.
p측 전극(600)은 p형 3족 질화물 반도체층(500) 전체로 전류가 잘 공급되도록 하기 위해 구비되는 것이며, 미국특허 제5,563,422호에는 p형 3족 질화물 반도체층의 거의 전면에 걸쳐서 형성되며 p형 3족 질화물 반도체층(500)과 오믹접촉하고 Ni과 Au로 이루어진 투광성 전극(light-transmitting electrode)에 관한 기술이 기재되어 있으며, 미국특허 제6,515,306호에는 p형 3족 질화물 반도체층 위에 n형 초격자층을 형성한 다음 그 위에 ITO(Indium Tin Oxide)로 이루어진 투광성 전극을 형성한 기술이 기재되어 있다.
한편, p측 전극(600)이 빛을 투과시키지 못하도록, 즉 빛을 기판 측으로 반사하도록 두꺼운 두께를 가지게 형성할 수 있는데, 이러한 기술을 플립칩(flip chip) 기술이라 한다. 미국특허 제6,194,743호에는 20nm 이상의 두께를 가지는 Ag 층, Ag 층을 덮는 확산 방지층, 그리고 확산 방지층을 덮는 Au와 Al으로 이루어진 본딩 층을 포함하는 전극 구조에 관한 기술이 기재되어 있다.
p측 본딩 패드(700)와 n측 전극(800)은 전류의 공급과 외부로의 와이어 본딩을 위한 것이며, 미국특허 제5,563,422호에는 n측 전극을 Ti과 Al으로 구성한 기술이 기재되어 있다.
보호막(900)은 이산화규소와 같은 물질로 형성되며, 생략될 수도 있다.
한편, n형 3족 질화물 반도체층(300)이나 p형 3족 질화물 반도체층(500)은 단일의 층이나 복수개의 층으로 구성될 수 있으며, 최근에는 레이저 또는 습식 식각을 통해 기판(100)을 3족 질화물 반도체층들로부터 분리하여 수직형 발광소자를 제조하는 기술이 도입되고 있다.
그러나, 이러한 발광소자는 p측 본딩 패드(700)에 와이어 본딩을 할 때, p측 본딩 패드(700)가 발광소자로부터 떨어져 나가는(peeling off) 문제가 발생할 수 있다.
도 2는 미국특허 5,563,422호에 기재된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 발광소자는 기판(110), 기판(110) 위에 형성되는 n형 3족 질화물 반도체층(210), n형 3족 질화물 반도체층(210) 위에 형성되는 p형 3족 질화물 반도체층(310), p형 3족 질화물 반도체층(310) 위에 형성되며, 절결부(412; cut-out portion)를 구비하는 p측 전극(410), 식각되어 노출된 n형 3족 질화물 반도체층(210) 위에 형성되는 n측 전극(610) 그리고 p측 전극(410) 위에 형성되며, 절결부(412)를 통해 p형 3족 질화물 반도체층(310)과 접착하는 p측 본딩 패드(510)를 구비하여, p측 본딩 패드(510)가 p형 3족 질화물 반도체층(310)에 직접 접착되어 p측 본딩 패드(510)에 와이어 본딩을 할 때, p측 본딩 패드(510)가 발광소자로부터 떨어져 나가는 문제를 개선하고자 하는 발광소자에 관한 기술이 기재되어 있다.
그러나, 이러한 발광소자 또한 p측 본딩 패드(510; 예를 들어, Cr, Au 등의 금속)와 p측 전극(410; 예를 들어, ITO 등의 전도성 산화막) 간의 접착력이 좋지 않아, p측 본딩 패드(510)에 와이어 본딩을 할 때, p측 본딩 패드(510)가 발광소자로부터 떨어져 나가는 문제가 발생할 수 있다.
또한, p측 본딩 패드(510)와 p측 전극(410)의 전기적 접촉을 확실히 하기 위해, p측 본딩 패드(510)와 p측 전극(410)이 겹치는 부분이 일정 이상 존재해야 하며, 이는 발광소자의 발광효율 손실로 이어진다.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 제1 전도성을 지니는 제1 반도체층, 제1 전도성과 다른 제2 전도성을 지니는 제2 반도체층, 그리고 제1 반도체층과 제2 반도체층 사이에 위치하며, 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하는 복수개의 반도체층; 복수개의 반도체층과 전기적으로 연결되는 본딩 패드; 복수개의 반도체층에 펼쳐지는 제1 전극; 그리고, 본딩 패드로부터 제1 전극으로 연장되며, 본딩 패드와 제1 전극을 전기적으로 접속시키는 제2 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 본딩 패드가 와이어 본딩 시 발광소자로부터 떨어져 나가는 것을 개선할 수 있다.
본 개시에 따른 다른 반도체 발광소자에 의하면, 본딩 패드의 견고한 접착이 가능하며, 발광소자에 전류가 원활하게 공급될 수 있다.
도 1은 종래의 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 2는 미국특허 5,563,422호에 기재된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 3은 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 4는 본 개시에 따른 3족 질화물 반도체 발광소자 단면의 일 예를 나타내는 도면,
도 5는 본 개시에 따른 3족 질화물 반도체 발광소자의 제조방법의 일 예를 나타내는 도면,
도 6은 본 개시에 따른 3족 질화물 반도체 발광소자가 전류변화에 따라 빛을 내는 사진.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 3 및 4는 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 도 4는 도 3의 A-A'라인을 따른 단면도이다. 발광소자는 기판(10), 기판(10) 위에 성장되는 버퍼층(20), 버퍼층(20) 위에 성장되는 n형 3족 질화물 반도체층(30), n형 3족 질화물 반도체층(30) 위에 성장되는 활성층(40), 활성층(40) 위에 성장되는 p형 3족 질화물 반도체층(50), 적어도 p형 3족 질화물 반도체층(50) 및 활성층(40)이 식각되어 노출되는 n형 3족 질화물 반도체층(30) 위에 형성되는 n측 전극(80), p측 본딩 패드(70), p측 전극(60), 그리고 가지전극들(72,82)을 포함한다.
p측 본딩 패드(70)는 p형 3족 질화물 반도체층(50) 위에 형성되고, 발광소자에 전기를 공급하기 위한 와이어가 본딩 된다. p측 본딩 패드(70)는 와이어 본딩을 할 때, 또는 와이어 본딩이 이루어진 후, 와이어에 의해 당겨지더라도 p형 3족 질화물 반도체층(50)과 접착을 유지하기 위해서 p형 3족 질화물 반도체층(50)과 접착력이 높은 재질로 이루어지는데, 예를 들어 1.5㎛ 정도의 두께로 Cr/Ni/Au 이 적층되어 형성될 수 있다.
p측 전극(60)은 p형 3족 질화물 반도체층(50) 전체로 전류를 원활하게 공급하기 위한 것으로, p형 3족 질화물 반도체층(50) 위에 형성된다. p측 전극(60)은 전도성 산화막으로 이루어질 수 있다. 이때, p측 전극(60)은, p측 본딩 패드(70)와 낮은 접착력으로 인하여, 외력에 의해 p측 본딩 패드(70)가 p형 3족 질화물 반도체층(50)으로부터 떨어져 나가는 것을 방지하기 위한 절결부(65)가 형성되어 p측 전극(60)과 이격된다. 예를 들어, p측 전극(60)은 ITO(Indium Tin Oxide)로 이루어질 수 있으며, 1750Å 정도의 두께로 형성될 수 있다.
가지 전극(72)은 p측 본딩 패드(70)와 접촉하며, p측 전극(60)과 접촉한다. 이는, p측 본딩 패드(70)로 공급되는 전류가 p측 전극(60)으로 가지 전극(72)을 통하여 공급됨으로써, p측 본딩 패드(70)와 p형 3족 질화물 반도체층(50)간에 강한 접착을 유지하면서, p형 3족 질화물 반도체층(50) 전체에 걸쳐 원활한 전류를 공급하기 위함이다. 이를 위해, 가지 전극(72)은 p측 본딩 패드(70)로부터 연장되어 p측 전극(60) 위를 뻗어나가며 형성되어 있다. 예를 들어, 가지 전극(72)은 1.5㎛ 정도의 두께로 Cr/Ni/Au 이 적층되어 형성될 수 있다.
이하에서, 본 개시에 따른 3족 질화물 반도체 발광소자의 제조방법의 일 예를 설명한다.
도 5는 본 개시에 따른 3족 질화물 반도체 발광소자의 제조방법의 일 예를 나타내는 도면이다.
먼저, 기판(10) 위에 버퍼층(20), n형 3족 질화물 반도체층(30), 활성층(40), 그리고 p형 3족 질화물 반도체층(50)을 성장시킨다(도 5의 (a)참조).
다음으로, n측 전극(80) 형성을 위한 n형 3족 질화물 반도체층(30)을 노출시키기 위해서 p형 3족 질화물 반도체층(50) 및 활성층(40)을 식각한다(도 5의 (b)참조).
다음으로, 절결부(65)를 구비하는 p측 전극(60)의 형성은 포토리소그래피에 의해 이루어질 수 있는데, p측 전극(60)이 형성될 부분을 제외한 p형 3족 질화물 반도체층(50) 위에 포토 레시스트(90)를 형성하고(도 5의 (b)참조), p측 전극(60)을 p형 3족 질화물 반도체층(50) 위에 증착시킨후(도 5의 (c)참조), 포토 레시스트(90)를 제거함으로써 이루어질 수 있다(도 5의 (d)참조). p측 전극(60)은 n형 3족 질화물 반도체층(30)을 노출시키기 위한 식각 전에 형성될 수도 있다.
한편, 절결부(65)를 구비하는 p측 전극(60)을 형성하기 위해, p측 전극(60)을 p형 3족 질화물 반도체층(50)위에 형성하고, 절결부(65)가 형성되어야 하는 위치가 노출되도록 p측 전극(60) 위에 식각 마스크(미도시)를 형성하고, 습식식각을 통해 식각 마스크(미도시)에 의해 노출되는 p측 전극(60)을 제거하여 절결부(65)를 형성할 수도 있다. 예를 들어 습식식각은, p측 전극(60)이 ITO로 이루어지는 경우, HCl을 포함하는 용액에 45℃ 정도에서, 30초 정도 담가둠으로써 이루어질 수 있다.
다음으로, 절결부(65)에 의해 노출된 p형 3족 질화물 반도체층(50) 위에 p측 본딩 패드(70)를 형성한다(도 5의 (e)참조). 이때, 가지 전극(72)도 동시에 형성되는데, 별도의 공정을 통해 형성될 수도 있다. 예를 들어, p측 본딩 패드(70)는 전자빔증착법을 이용하여 Cr, Ni, Au층들이 순차적으로 적층되어 1.5㎛ 정도의 두께로 형성될 수 있다. n측 전극(80) 및 가지 전극(82)도 동일하게 형성될 수 있다.
도 6은 본 개시에 따른 3족 질화물 반도체 발광소자가 전류변화에 따라 빛을 내는 사진으로서, 가지 전극(72; 도 3 참조)이 p측 본딩 패드(70; 도 3 참조) 및 p측 전극(60; 도 3 참조)과 연결되는 구성에서 p측 전극(60; 도 3 참조)으로 전류가 원활하게 확산되어, 발광소자 전체에서 고르게 빛이 나오는 것을 볼 수 있다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) p측 본딩 패드와 p측 전극이 이격되도록 p측 전극에 절결부를 구비하는 반도체 발광소자. 이에 의해, p측 본딩 패드가, p측 전극과의 낮은 접착력으로 인해 와이어 본딩시 외력에 의해, 발광소자로부터 떨어져 나가는 것을 개선할 수 있다. 여기서, p측 본딩 패드로부터 가지 전극이 형성되는 부분에서 p측 본딩 패드와 p측 전극이 일부 겹치는 것을 배제하는 것은 아니다.
(2) p측 본딩 패드로부터 연장되어, p측 전극에 접촉하는 가지 전극을 구비하는 반도체 발광소자. 이에 의해, p측 본딩 패드에서 p측 전극으로 전류를 공급할 수 있다.

Claims (5)

  1. 제1 전도성을 지니는 제1 반도체층, 제1 전도성과 다른 제2 전도성을 지니는 제2 반도체층, 그리고 제1 반도체층과 제2 반도체층 사이에 위치하며, 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하는 복수개의 반도체층;
    복수개의 반도체층과 전기적으로 연결되는 본딩 패드;
    복수개의 반도체층에 펼쳐지는 제1 전극; 그리고,
    본딩 패드로부터 제1 전극으로 연장되며, 본딩 패드와 제1 전극을 전기적으로 접속시키는 제2 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.
  2. 청구항 1에서,
    제1 전극은 본딩 패드와 이격되는 것을 특징으로 하는 반도체 발광소자.
  3. 청구항 1에서,
    적어도 제2 반도체층 및 활성층이 식각되어 노출되는 제1 반도체층 위에 형성되는 제3 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.
  4. 청구항 1에서,
    본딩 패드는 제2 반도체층 위에 형성되고,
    제1 전극은 본딩 패드와 이격되어 제2 반도체층 위에 형성되며,
    적어도 제2 반도체층 및 활성층이 식각되어 노출되는 제1 반도체층 위에 형성되는 제3 전극; 그리고,
    제3 전극으로부터 연장되는 제4 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.
  5. 청구항 1에서,
    발광소자는 3족 질화물 반도체 발광소자인 것을 특징으로 하는 반도체 발광소자.
PCT/KR2009/007241 2008-12-04 2009-12-04 반도체 발광소자 WO2010064872A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/132,854 US20110233603A1 (en) 2008-12-04 2009-12-04 Semiconductor light-emitting device
CN2009801488452A CN102239576A (zh) 2008-12-04 2009-12-04 半导体发光器件
JP2011539452A JP2012511249A (ja) 2008-12-04 2009-12-04 半導体発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080122470A KR101000276B1 (ko) 2008-12-04 2008-12-04 반도체 발광소자
KR10-2008-0122470 2008-12-04

Publications (2)

Publication Number Publication Date
WO2010064872A2 true WO2010064872A2 (ko) 2010-06-10
WO2010064872A3 WO2010064872A3 (ko) 2010-08-26

Family

ID=42233756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007241 WO2010064872A2 (ko) 2008-12-04 2009-12-04 반도체 발광소자

Country Status (5)

Country Link
US (1) US20110233603A1 (ko)
JP (1) JP2012511249A (ko)
KR (1) KR101000276B1 (ko)
CN (1) CN102239576A (ko)
WO (1) WO2010064872A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243954A (ja) * 2011-05-19 2012-12-10 Nichia Chem Ind Ltd 窒化物半導体発光素子の製造方法
JP2018029217A (ja) * 2009-10-20 2018-02-22 晶元光電股▲ふん▼有限公司Epistar Corporation 光電素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209163B1 (ko) * 2011-04-19 2012-12-06 주식회사 세미콘라이트 반도체 발광소자
KR101978968B1 (ko) 2012-08-14 2019-05-16 삼성전자주식회사 반도체 발광소자 및 발광장치
KR102647673B1 (ko) * 2016-09-27 2024-03-14 서울바이오시스 주식회사 발광 다이오드
US10153401B2 (en) * 2016-12-16 2018-12-11 Intel Corporation Passivated micro LED structures suitable for energy efficient displays
US20190189850A1 (en) * 2017-12-19 2019-06-20 Epistar Corporation Light-emitting device
CN108875598B (zh) 2018-05-30 2021-08-17 京东方科技集团股份有限公司 一种指纹识别组件及其制作方法、电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647018B1 (ko) * 2005-09-26 2006-11-23 삼성전기주식회사 질화물계 반도체 발광소자
KR100730082B1 (ko) * 2005-10-17 2007-06-19 삼성전기주식회사 질화물계 반도체 발광소자
KR20070111091A (ko) * 2006-05-16 2007-11-21 삼성전기주식회사 질화물계 반도체 발광다이오드

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026087B2 (ja) * 1989-03-01 2000-03-27 豊田合成株式会社 窒化ガリウム系化合物半導体の気相成長方法
CA2037198C (en) * 1990-02-28 1996-04-23 Katsuhide Manabe Light-emitting semiconductor device using gallium nitride group compound
JP3160914B2 (ja) * 1990-12-26 2001-04-25 豊田合成株式会社 窒化ガリウム系化合物半導体レーザダイオード
US5290393A (en) * 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US5306662A (en) * 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
KR100286699B1 (ko) * 1993-01-28 2001-04-16 오가와 에이지 질화갈륨계 3-5족 화합물 반도체 발광디바이스 및 그 제조방법
KR100225612B1 (en) * 1993-04-28 1999-10-15 Nichia Kagaku Kogyo Kk Gallium nitride-based iii-v group compound semiconductor
EP1928034A3 (en) * 1997-12-15 2008-06-18 Philips Lumileds Lighting Company LLC Light emitting device
TW488088B (en) * 2001-01-19 2002-05-21 South Epitaxy Corp Light emitting diode structure
JP4547933B2 (ja) 2003-02-19 2010-09-22 日亜化学工業株式会社 窒化物半導体素子
WO2005008795A1 (en) * 2003-07-18 2005-01-27 Epivalley Co., Ltd. Nitride semiconductor light emitting device
KR100448352B1 (ko) * 2003-11-28 2004-09-10 삼성전기주식회사 GaN 기반 질화막의 형성방법
KR100616693B1 (ko) * 2005-08-09 2006-08-28 삼성전기주식회사 질화물 반도체 발광 소자
WO2008038842A1 (en) * 2006-09-25 2008-04-03 Seoul Opto Device Co., Ltd. Light emitting diode having extensions of electrodes for current spreading
JP2008218440A (ja) * 2007-02-09 2008-09-18 Mitsubishi Chemicals Corp GaN系LED素子および発光装置
CN101315964B (zh) * 2008-06-10 2011-01-26 武汉华灿光电有限公司 氮化镓基发光二极管芯片

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647018B1 (ko) * 2005-09-26 2006-11-23 삼성전기주식회사 질화물계 반도체 발광소자
KR100730082B1 (ko) * 2005-10-17 2007-06-19 삼성전기주식회사 질화물계 반도체 발광소자
KR20070111091A (ko) * 2006-05-16 2007-11-21 삼성전기주식회사 질화물계 반도체 발광다이오드

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018029217A (ja) * 2009-10-20 2018-02-22 晶元光電股▲ふん▼有限公司Epistar Corporation 光電素子
JP2012243954A (ja) * 2011-05-19 2012-12-10 Nichia Chem Ind Ltd 窒化物半導体発光素子の製造方法

Also Published As

Publication number Publication date
CN102239576A (zh) 2011-11-09
WO2010064872A3 (ko) 2010-08-26
KR101000276B1 (ko) 2010-12-10
US20110233603A1 (en) 2011-09-29
KR20100064052A (ko) 2010-06-14
JP2012511249A (ja) 2012-05-17

Similar Documents

Publication Publication Date Title
WO2010064872A2 (ko) 반도체 발광소자
EP2120273A2 (en) Semiconductor light emitting device
US20100140656A1 (en) Semiconductor Light-Emitting Device
JP2000091637A (ja) 半導体発光素子の製法
WO2011087310A2 (ko) 3족 질화물 반도체 발광소자
US8101965B2 (en) III-nitride semiconductor light emitting device having a multilayered pad
KR101069362B1 (ko) 반도체 발광소자
KR100960277B1 (ko) 3족 질화물 반도체 발광소자를 제조하는 방법
KR101032987B1 (ko) 반도체 발광소자
WO2010064870A2 (ko) 반도체 발광소자
WO2012067428A2 (ko) 3족 질화물 반도체 발광소자
WO2010064848A2 (ko) 3족 질화물 반도체 발광소자
CN102044605B (zh) 半导体发光设备及其制造方法
KR101124470B1 (ko) 반도체 발광소자
KR101090178B1 (ko) 반도체 발광소자
KR100743468B1 (ko) 3족 질화물 반도체 발광소자
WO2011081484A2 (ko) 3족 질화물 반도체 발광소자
KR101084641B1 (ko) 3족 질화물 반도체 발광소자
WO2010064869A2 (ko) 반도체 발광소자
KR100985720B1 (ko) 발광소자 패키지의 제조 방법
JP3638413B2 (ja) 半導体発光装置とその製造方法
KR101147715B1 (ko) 반도체 발광소자
JPH10173229A (ja) 3族窒化物半導体発光素子の製造方法
KR101124474B1 (ko) 반도체 발광소자를 제조하는 방법
WO2009154409A2 (ko) 반도체 발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148845.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830610

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011539452

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13132854

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830610

Country of ref document: EP

Kind code of ref document: A2