WO2011081484A2 - 3족 질화물 반도체 발광소자 - Google Patents

3족 질화물 반도체 발광소자 Download PDF

Info

Publication number
WO2011081484A2
WO2011081484A2 PCT/KR2010/009583 KR2010009583W WO2011081484A2 WO 2011081484 A2 WO2011081484 A2 WO 2011081484A2 KR 2010009583 W KR2010009583 W KR 2010009583W WO 2011081484 A2 WO2011081484 A2 WO 2011081484A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor layer
layer
nitride semiconductor
group iii
Prior art date
Application number
PCT/KR2010/009583
Other languages
English (en)
French (fr)
Other versions
WO2011081484A3 (ko
Inventor
김창태
서재원
정영록
Original Assignee
주식회사 에피밸리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에피밸리 filed Critical 주식회사 에피밸리
Publication of WO2011081484A2 publication Critical patent/WO2011081484A2/ko
Publication of WO2011081484A3 publication Critical patent/WO2011081484A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present disclosure generally relates to a group III nitride semiconductor light emitting device, and more particularly, to a group III nitride semiconductor light emitting device capable of increasing light extraction efficiency to the outside of the light emitting device.
  • the group III nitride semiconductor light emitting element is a group III nitride of Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • Means a light emitting device such as a light emitting diode including a semiconductor layer, and additionally excludes the inclusion of a material consisting of elements of other groups such as SiC, SiN, SiCN, CN or a semiconductor layer made of these materials. no.
  • FIG. 1 is a view illustrating an example of a conventional Group III nitride semiconductor light emitting device, wherein the Group III nitride semiconductor light emitting device is grown on the substrate 100, the buffer layer 200 grown on the substrate 100, and the buffer layer 200.
  • the p-side electrode 600 formed on the group nitride semiconductor layer 500, the p-side bonding pad 700 formed on the p-side electrode 600, the p-type group III nitride semiconductor layer 500 and the active layer 400 are formed.
  • the n-side electrode 800 and the passivation layer 900 are formed on the n-type group III nitride semiconductor layer 300 exposed by mesa etching.
  • a GaN-based substrate is used as the homogeneous substrate, and a sapphire substrate, a SiC substrate, or a Si substrate is used as the heterogeneous substrate. Any substrate may be used as long as the group III nitride semiconductor layer can be grown.
  • the n-side electrode 800 may be formed on the SiC substrate side.
  • Group III nitride semiconductor layers grown on the substrate 100 are mainly grown by MOCVD (organic metal vapor growth method).
  • the buffer layer 200 is intended to overcome the difference in lattice constant and thermal expansion coefficient between the dissimilar substrate 100 and the group III nitride semiconductor, and US Pat.
  • a technique for growing an AlN buffer layer having a thickness of US Pat. No. 5,290,393 describes Al (x) Ga (1-x) N having a thickness of 10 kPa to 5000 kPa at a temperature of 200 to 900 C on a sapphire substrate. (0 ⁇ x ⁇ 1)
  • a technique for growing a buffer layer is described, and US Patent Publication No. 2006/154454 discloses growing a SiC buffer layer (seed layer) at a temperature of 600 ° C.
  • the undoped GaN layer is grown prior to the growth of the n-type Group III nitride semiconductor layer 300, which may be viewed as part of the buffer layer 200 or as part of the n-type Group III nitride semiconductor layer 300. .
  • n-type contact layer In the n-type group III nitride semiconductor layer 300, at least a region (n-type contact layer) in which the n-side electrode 800 is formed is doped with impurities, and the n-type contact layer is preferably made of GaN and doped with Si. .
  • U. S. Patent No. 5,733, 796 describes a technique for doping an n-type contact layer to a desired doping concentration by controlling the mixing ratio of Si and other source materials.
  • the active layer 400 is a layer that generates light through recombination of electrons and holes, and is mainly composed of In (x) Ga (1-x) N (0 ⁇ x ⁇ 1), and has a single quantum well layer. well) or multiple quantum wells.
  • the p-type III-nitride semiconductor layer 500 is doped with an appropriate impurity such as Mg, and has an p-type conductivity through an activation process.
  • U.S. Patent No. 5,247,533 describes a technique for activating a p-type group III nitride semiconductor layer by electron beam irradiation, and U.S. Patent No. 5,306,662 annealing at a temperature of 400 DEG C or higher to A technique for activating is described, and US Patent Publication No.
  • 2006/157714 discloses a p-type III-nitride semiconductor layer without an activation process by using ammonia and a hydrazine-based source material together as a nitrogen precursor for growing the p-type III-nitride semiconductor layer. Techniques for having this p-type conductivity have been described.
  • the p-side electrode 600 is provided to supply a good current to the entire p-type group III nitride semiconductor layer 500.
  • US Patent No. 5,563,422 is formed over almost the entire surface of the p-type group III nitride semiconductor layer.
  • a light-transmitting electrode made of Ni and Au in ohmic contact with the p-type III-nitride semiconductor layer 500 is described.
  • US Pat. No. 6,515,306 discloses n on the p-type III-nitride semiconductor layer. A technique is described in which a type superlattice layer is formed and then a translucent electrode made of indium tin oxide (ITO) is formed thereon.
  • ITO indium tin oxide
  • the p-side electrode 600 may be formed to have a thick thickness so as not to transmit light, that is, to reflect the light toward the substrate side, this technique is referred to as flip chip (flip chip) technology.
  • U. S. Patent No. 6,194, 743 describes a technique relating to an electrode structure including an Ag layer having a thickness of 20 nm or more, a diffusion barrier layer covering the Ag layer, and a bonding layer made of Au and Al covering the diffusion barrier layer.
  • the p-side bonding pad 700 and the n-side electrode 800 are for supplying current and wire bonding to the outside, and US Patent No. 5,563,422 describes a technique in which the n-side electrode is composed of Ti and Al.
  • the passivation layer 900 is formed of a material such as silicon dioxide and may be omitted.
  • the n-type III-nitride semiconductor layer 300 or the p-type III-nitride semiconductor layer 500 may be composed of a single layer or a plurality of layers, and recently, the substrate 100 may be formed by laser or wet etching. A technique for manufacturing a vertical light emitting device by separating from group III nitride semiconductor layers has been introduced.
  • FIG. 2 to 4 are views showing examples of the light emitting device described in US Patent Publication No. US2006 / 0192247
  • FIG. 2 shows that the light generated in the light emitting device A is extinguished without exiting the light emitting device.
  • 3 indicates that the inclined surface 120 is formed on the side of the light emitting device, and the light generated in the light emitting device A exits the light emitting device.
  • FIG. 4 is a plan view of the light emitting device, and since light generated in the light emitting device A is incident on the p-side electrode 101 and the n-side electrode 103, most of the light is absorbed.
  • an according to one aspect of the present disclosure includes: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and a first semiconductor layer; A plurality of semiconductor layers positioned between the second semiconductor layers and having an active layer generating light through recombination of electrons and holes; An insulator formed in contact with the semiconductor layer at least in part on the second semiconductor layer; A first electrode formed on the insulator; And a translucent electrode formed to cover at least a part of the insulator between the insulator and the first electrode and electrically connected to the second semiconductor layer.
  • FIG. 1 is a view showing an example of a conventional group III nitride semiconductor light emitting device
  • FIG. 2 is a view showing an example of a light emitting device described in US Patent Publication No. 2006-0192247,
  • FIG. 3 is a view showing another example of a light emitting device disclosed in US Patent Publication No. 2006-0192247,
  • FIG. 4 is a view showing another example of a light emitting device disclosed in US Patent Publication No. 2006-0192247,
  • FIG. 5 is a diagram illustrating an example of semiconductor light emission according to the present disclosure.
  • FIG. 6 illustrates another example of semiconductor light emission according to the present disclosure
  • FIG. 7 is a near field image of a semiconductor light emitting device according to the present disclosure.
  • FIG. 5 is a view illustrating an example of a group III nitride semiconductor light emitting device according to the present disclosure, wherein the semiconductor light emitting device includes a substrate 10, a buffer layer 11, a first group III nitride semiconductor layer 12, and an active layer 13. And a second group III nitride semiconductor layer 14, an insulator 15, a light transmissive electrode 16, a first electrode 17, and a second electrode 18.
  • a GaN-based substrate is used as the homogeneous substrate, and a sapphire substrate, a SiC substrate, or a Si substrate is used as the heterogeneous substrate. Any substrate may be used as long as the group III nitride semiconductor layer can be grown.
  • the first group III nitride semiconductor layer 12, the second group III nitride semiconductor layer 14, and the active layer 13 may be formed of a group III-V compound semiconductor, hereinafter referred to as Al (x) Ga (y) In.
  • group III-V compound semiconductor hereinafter referred to as Al (x) Ga (y) In.
  • the first group III nitride semiconductor layer 12 and the second group III nitride semiconductor layer 14 are provided to have different conductivity.
  • the first group III nitride semiconductor layer 12 is formed of a p-type semiconductor layer
  • the second group III nitride semiconductor layer 14 is formed of an n-type semiconductor layer.
  • the insulator 15 may be formed of a material having a lower refractive index than the first and second group III nitride semiconductor layers 12 and 14, respectively.
  • the insulator 15 may be formed of silicon dioxide (SiO 2 ).
  • SiO 2 is deposited using LPCVD (Low Pressure Chemical Vapor Deposition) on the entire surface of the wafer where the Mesa region is etched by Inductively Coupled Plasma (ICP).
  • ICP Inductively Coupled Plasma
  • SiO 2 formation temperature was set to 470 °C and gas injection amount was set to SiH 4 25sccm and O 2 40sccm.
  • SiO 2 is deposited in a region where an electrode is to be formed through a photo process, and SiO 2 in another region is removed by wet etching with a buffered oxide etchant (BOE).
  • BOE buffered oxide etchant
  • the light transmissive electrode 16 is laminated to cover the second group III nitride semiconductor layer 14 and the insulator 15, and then the first electrode 17 is formed on the portion where the insulator 15 is formed. As described above, the current supplied to the first electrode 17 is smoothly diffused into the second group III nitride semiconductor layer 14 by the translucent electrode 16 formed to cover the insulator 15.
  • the width of the insulator 15 is excessively wide, the light generated and incident on the active layer is reflected back to the substrate more than necessary. If the width is narrow, the insulator 15 cannot effectively reflect the light incident on the first electrode 17.
  • the width of 15 is preferably equal to or slightly wider than the width of the first electrode 17.
  • the first semiconductor layer 12 is an n-type semiconductor layer, and the current supplied to the second pad 19 has good electrical conductivity. Since it is smoothly diffused through the first semiconductor layer 12, the second pad 19 covers the insulator 18 to electrically contact the first semiconductor layer 12 without forming a translucent electrode as shown in FIG. 5. What is necessary is just to form.
  • FIG. 6 is a view illustrating another example of a semiconductor light emitting device according to the present disclosure.
  • An insulator 20 is formed on a first semiconductor layer and a second semiconductor layer adjacent to side surfaces and side surfaces of a semiconductor layer etched and exposed in a mesa shape. .
  • the method of forming the SiO 2 of the insulator 20 will not be described, so as defined above.
  • ITO which is a light transmissive electrode, is deposited on the entire surface of the wafer, and then wet etching is used to remove the ITO except for the p-type semiconductor layer.
  • FIG. 7 is a near field image of a semiconductor light emitting device according to the present disclosure.
  • the current applied to the left and the right is the same, but the picture on the right shows the extraction efficiency of the light emitting device in which the insulator is formed on the lower part of the electrode.
  • a group III nitride semiconductor light emitting element characterized in that the width of the insulator is equal to or wider than the width of the electrode.
  • a group III nitride semiconductor light-emitting device wherein at least a portion of the plurality of semiconductor layers are etched in a mesa (MESA) form so that the first semiconductor layer is exposed, and an insulator is formed on the side of the mesa before formation of the light transmissive electrode.
  • MEA mesa
  • An insulator is a group III nitride semiconductor light emitting element, characterized in that it is made of SiO 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 개시는, 제1 전도성을 가지는 제1 반도체층; 제1 반도체층 위에 위치되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층; 활성층 위에 위치되며 제1 전도성과 다른 제2 전도성을 가지는 제2 반도체층; 제2 반도체층의 상면에 구비되는 제1 절연체층; 제1 절연체층 위에 위치되는 제1 전극; 및 제1 전극 및 제2 반도체층과 전기적으로 연결되며 제2 반도체층의 상면에 구비되는 투광성 전극;을 포함하는 3족 질화물 반도체 발광소자에 관한 것이다. 본 개시에 따른 3족 질화물 반도체 발광소자에 의하면, 광추출효율(Extraction efficiency)가 크게 향상되는 이점을 가진다.

Description

3족 질화물 반도체 발광소자
본 개시는 전체적으로 3족 질화물 반도체 발광소자에 관한 것으로서, 특히 발광소자 외부로의 광추출효율을 높일 수 있는 3족 질화물 반도체 발광소자에 관한 것이다.
여기서, 3족 질화물 반도체 발광소자는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 3족 질화물 반도체층을 포함하는 발광다이오드와 같은 발광소자를 의미하며, 추가적으로 SiC, SiN, SiCN, CN와 같은 다른 족(group)의 원소들로 이루어진 물질이나 이들 물질로 된 반도체층을 포함하는 것을 배제하는 것은 아니다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 종래의 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 버퍼층(200), 버퍼층(200) 위에 성장되는 n형 3족 질화물 반도체층(300), n형 3족 질화물 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 3족 질화물 반도체층(500), p형 3족 질화물 반도체층(500) 위에 형성되는 p측 전극(600), p측 전극(600) 위에 형성되는 p측 본딩 패드(700), p형 3족 질화물 반도체층(500)과 활성층(400)이 메사 식각되어 노출된 n형 3족 질화물 반도체층(300) 위에 형성되는 n측 전극(800), 그리고 보호막(900)을 포함한다.
기판(100)은 동종기판으로 GaN계 기판이 이용되며, 이종기판으로 사파이어 기판, SiC 기판 또는 Si 기판 등이 이용되지만, 3족 질화물 반도체층이 성장될 수 있는 기판이라면 어떠한 형태이어도 좋다. SiC 기판이 사용될 경우에 n측 전극(800)은 SiC 기판 측에 형성될 수 있다.
기판(100) 위에 성장되는 3족 질화물 반도체층들은 주로 MOCVD(유기금속기상성장법)에 의해 성장된다.
버퍼층(200)은 이종기판(100)과 3족 질화물 반도체 사이의 격자상수 및 열팽창계수의 차이를 극복하기 위한 것이며, 미국특허 제5,122,845호에는 사파이어 기판 위에 380℃에서 800℃의 온도에서 100Å에서 500Å의 두께를 가지는 AlN 버퍼층을 성장시키는 기술이 기재되어 있으며, 미국특허 제5,290,393호에는 사파이어 기판 위에 200℃에서 900℃의 온도에서 10Å에서 5000Å의 두께를 가지는 Al(x)Ga(1-x)N (0≤x<1) 버퍼층을 성장시키는 기술이 기재되어 있고, 미국공개특허공보 제2006/154454호에는 600℃에서 990℃의 온도에서 SiC 버퍼층(씨앗층)을 성장시킨 다음 그 위에 In(x)Ga(1-x)N (0<x≤1) 층을 성장시키는 기술이 기재되어 있다. 바람직하게는 n형 3족 질화물 반도체층(300)의 성장에 앞서 도핑되지 않는 GaN층이 성장되며, 이는 버퍼층(200)의 일부로 보아도 좋고, n형 3족 질화물 반도체층(300)의 일부로 보아도 좋다.
n형 3족 질화물 반도체층(300)은 적어도 n측 전극(800)이 형성된 영역(n형 컨택층)이 불순물로 도핑되며, n형 컨택층은 바람직하게는 GaN로 이루어지고, Si으로 도핑된다. 미국특허 제5,733,796호에는 Si과 다른 소스 물질의 혼합비를 조절함으로써 원하는 도핑농도로 n형 컨택층을 도핑하는 기술이 기재되어 있다.
활성층(400)은 전자와 정공의 재결합을 통해 빛을 생성하는 층으로서, 주로 In(x)Ga(1-x)N (0<x≤1)로 이루어지고, 하나의 양자우물층(single quantum well)이나 복수개의 양자우물층들(multi quantum wells)로 구성된다.
p형 3족 질화물 반도체층(500)은 Mg과 같은 적절한 불순물을 이용해 도핑되며, 활성화(activation) 공정을 거쳐 p형 전도성을 가진다. 미국특허 제5,247,533호에는 전자빔 조사에 의해 p형 3족 질화물 반도체층을 활성화시키는 기술이 기재되어 있으며, 미국특허 제5,306,662호에는 400℃ 이상의 온도에서 열처리(annealing)함으로써 p형 3족 질화물 반도체층을 활성화시키는 기술이 기재되어 있고, 미국공개특허공보 제2006/157714호에는 p형 3족 질화물 반도체층 성장의 질소전구체로서 암모니아와 하이드라진계 소스 물질을 함께 사용함으로써 활성화 공정없이 p형 3족 질화물 반도체층이 p형 전도성을 가지게 하는 기술이 기재되어 있다.
p측 전극(600)은 p형 3족 질화물 반도체층(500) 전체로 전류가 잘 공급되도록 하기 위해 구비되는 것이며, 미국특허 제5,563,422호에는 p형 3족 질화물 반도체층의 거의 전면에 걸쳐서 형성되며 p형 3족 질화물 반도체층(500)과 오믹접촉하고 Ni과 Au로 이루어진 투광성 전극(light-transmitting electrode)에 관한 기술이 기재되어 있으며, 미국특허 제6,515,306호에는 p형 3족 질화물 반도체층 위에 n형 초격자층을 형성한 다음 그 위에 ITO(Indium Tin Oxide)로 이루어진 투광성 전극을 형성한 기술이 기재되어 있다.
한편, p측 전극(600)이 빛을 투과시키지 못하도록, 즉 빛을 기판 측으로 반사하도록 두꺼운 두께를 가지게 형성할 수 있는데, 이러한 기술을 플립칩(flip chip) 기술이라 한다. 미국특허 제6,194,743호에는 20nm 이상의 두께를 가지는 Ag 층, Ag 층을 덮는 확산 방지층, 그리고 확산 방지층을 덮는 Au와 Al으로 이루어진 본딩 층을 포함하는 전극 구조에 관한 기술이 기재되어 있다.
p측 본딩 패드(700)와 n측 전극(800)은 전류의 공급과 외부로의 와이어 본딩을 위한 것이며, 미국특허 제5,563,422호에는 n측 전극을 Ti과 Al으로 구성한 기술이 기재되어 있다.
보호막(900)은 이산화규소와 같은 물질로 형성되며, 생략될 수도 있다.
한편, n형 3족 질화물 반도체층(300)이나 p형 3족 질화물 반도체층(500)은 단일의 층이나 복수개의 층으로 구성될 수 있으며, 최근에는 레이저 또는 습식 식각을 통해 기판(100)을 3족 질화물 반도체층들로부터 분리하여 수직형 발광소자를 제조하는 기술이 도입되고 있다.
도 2 내지 도 4는 미국특허공개 US2006/0192247호에 기재된 발광소자의 예들을 나타내는 도면으로서, 도 2는 발광소자 내부(A)에서 발생한 빛이 발광소자 외부로 빠져나오지 못하고 소멸되는 것을 나타내고, 도 3은 발광소자 측면에 경사면(120)이 형성되어, 발광소자 내부(A)에서 발생한 빛이 발광소자 외부로 빠져나오는 것을 나타낸다. 도 4는 발광소자의 평면도로서 발광소자 내부(A)에서 발생한 빛이 p측 전극(101)과 n측 전극(103)에 입사되면 대부분 흡수되므로 광추출효율은 개선의 여지가 있다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 제1 전도성을 지니는 제1 반도체층, 제1 전도성과 다른 제2 전도성을 지니는 제2 반도체층, 그리고 제1 반도체층과 제2 반도체층 사이에 위치하며, 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하는 복수개의 반도체층; 제2 반도체층 위의 적어도 일부에서 반도체층과 접하도록 형성되는 절연체; 절연체의 상부에 형성되는 제1 전극; 그리고, 절연체와 제1 전극 사이에서 절연체의 적어도 일부를 덮도록 형성되며 제2 반도체층과 전기적으로 연결되는 투광성 전극;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 발광소자가 제공된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 종래의 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 2는 미국공개특허공보 제2006-0192247에 기재된 발광소자의 일 예를 나타내는 도면,
도 3은 미국공개특허공보 제2006-0192247에 기재된 발광소자의 다른 예를 나타내는 도면,
도 4는 미국공개특허공보 제2006-0192247에 기재된 발광소자의 다른 예를 나타내는 도면,
도 5는 본 개시에 따른 반도체 발광조사의 일 예를 나타내는 도면,
도 6는 본 개시에 따른 반도체 발광조사의 다른 예를 나타내는 도면,
도 7은 본 개시에 따른 반도체 발광소자의 니어 필드 이미지(near field image).
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 5는 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타낸 도면으로서, 반도체 발광소자는 기판(10), 버퍼층(11), 제1 3족 질화물 반도체층(12), 활성층(13), 제2 3족 질화물 반도체층(14), 절연체(15), 투광성 전극(16), 제1 전극(17) 및 제2 전극(18)을 포함한다.
기판(10)은 동종기판으로 GaN계 기판이 이용되며, 이종기판으로 사파이어 기판, SiC 기판 또는 Si 기판 등이 이용되지만, 3족 질화물 반도체층이 성장될 수 있는 기판이라면 어떠한 형태이어도 좋다.
제1 3족 질화물 반도체층(12), 제2 3족 질화물 반도체층(14) 및 활성층(13)은 III-V족 화합물 반도체로 구비될 수 있으며, 이하에서는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)으로 표현되는 3족 질화물 반도체로 구비되는 경우를 예로 하여 설명한다.
제1 3족 질화물 반도체층(12)과 제2 3족 질화물 반도체층(14)은 서로 다른 도전성을 갖도록 구비된다. 본 개시에서는 제1 3족 질화물 반도체층(12)은 p형 반도체층, 제2 3족 질화물 반도체층(14)은 n형 반도체층으로 형성한다.
절연체(15)는 각각 제1, 제2 3족 질화물 반도체층(12, 14)보다 굴절률이 낮은 물질로 형성하는 것이 바람직하며, 예를 들어 이산화규소(SiO2)로 형성될 수 있다.
이하 절연체(15)의 형성과정에 대해서 기술한다. 먼저 Mesa 영역이 ICP (Inductively Coupled Plasma)로 식각된 칩의 웨이퍼 전면에 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 SiO2를 증착한다. SiO2 형성온도는 470℃로 설정하였고 가스 주입량은 SiH4 25sccm과 O2 40sccm으로 설정하였다. SiO2는 포토 공정을 통하여 전극이 형성될 영역에 증착되고 다른 영역의 SiO2는 BOE(Buffered Oxide Etchant)로 습식식각을 통해 제거된다.
이후, 제2 3족 질화물 반도체층(14) 및 절연체(15)를 덮도록 투광성 전극(16)을 적층한 후, 절연체(15)가 형성된 부분의 위에 제1 전극(17)을 형성한다. 상기와 같이 절연체(15)를 덮도록 형성된 투광성 전극(16)에 의하여 제1 전극(17)에 공급된 전류가 제2 3족 질화물 반도체층(14)에 원활하게 확산된다.
또한 절연체(15)의 폭이 과도하게 넓으면 활성층에서 생성되어 입사된 빛이 필요이상으로 기판 쪽으로 재반사되고, 폭이 좁으면 제1 전극(17)으로 입사하는 빛을 효과적으로 반사하지 못하게 되므로 절연체(15)의 폭은 제1 전극(17)의 폭과 같거나 약간 넓게 형성하는 것이 바람직하다. 상기 과정을 통해 형성된 반도체 발광소자는 활성층에서 형성된 빛이 전극 측으로 입사된 경우 절연체인 SiO2에 의하여 전극에 흡수되지 않고 기판쪽으로 재반사되므로 광추출효율이 향상된다.
그리고 본 실시예에서 절연체(18)를 제1 반도체층(12) 위에도 형성할 경우, 제1 반도체층(12)은 n형 반도체층으로 제2 패드(19)에 공급된 전류가 전기 전도성이 좋은 제1 반도체층(12)을 통해 원활히 확산되므로, 도 5에 도시된 바와 같이 투광성 전극을 형성하지 않고 제2 패드(19)가 절연체(18)를 덮어서 제1 반도체층(12)에 전기적으로 접촉되도록 형성하면 된다.
도 6은 본 개시에 따른 반도체 발광소자의 다른 예를 나타낸 도면으로서, 절연체(20)를 식각되어 mesa형태로 노출된 반도체층의 측면과 측면에 인접한 제1 반도체층 및 제2 반도체층에 형성한다. 절연체(20)인 SiO2의 형성방법은 상기와 동일하므로 그 설명을 생략한다. 종래 반도체 발광소자에서 투광성 전극인 ITO를 웨이퍼 전면에 증착한 후, 습식식각을 통해 p형 반도체층을 제외한 부분의 ITO를 제거하는데 이때 제거되지 않은 ITO 파티클이 mesa영역에 잔류하게 되면 VR, IR에 영향을 주게 되므로 이를 방지하기 위해 mesa영역에 SiO2를 형성한 후 ITO를 증착한다. ITO를 습식식각한 후에 mesa영역의 SiO2는 잔류되거나 제거되어도 무방하다.
도 7은 본 개시에 따른 반도체 발광소자의 니어 필드 이미지(near field image)이다. 좌, 우측에 인가되는 전류는 동일하나 우측의 사진은 전극의 하부에 절연체가 형성된 발광소자의 추출효율을 나타낸 사진으로 좌측에 비해 높은 추출 효율을 보이고 있음을 알 수 있다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1)절연체의 폭은 전극의 폭과 같거나 넓은 것을 특징으로 하는 3족 질화물 반도체 발광소자.
(2)제1 반도체층 위의 적어도 일부에서 반도체층과 접하도록 형성되는 절연체; 그리고, 절연체를 덮도록 형성되며 제1 반도체층과 전기적으로 접하도록 형성되는 제2 전극;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
(3)제1 전극 및 제2 전극은 Cr/Ni/Au 중의 적어도 하나로 이루어진 것을 특징으로 하는 3족 질화물 반도체 발광소자.
(4)제1 반도체층이 노출되도록 복수개의 반도체층의 적어도 일부가 메사(MESA) 형태로 식각되고 투광성 전극의 형성 전에 메사 측면에 절연체가 형성되는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
(5)절연체는 SiO2로 이루어진 것을 특징으로 하는 3족 질화물 반도체 발광소자.
본 개시에 따른 3족 질화물 반도체 발광소자에 의하면, 추출과정에서 전극에 의해 흡수되는 빛이 최소화되어 광추출효율(Extraction efficiency)가 크게 향상되는 이점을 가진다.

Claims (11)

  1. 제1 전도성을 가지는 제1 반도체층;
    제1 반도체층 위에 위치되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층;
    활성층 위에 위치되며 제1 전도성과 다른 제2 전도성을 가지는 제2 반도체층;
    제2 반도체층의 상면에 구비되는 제1 절연체층;
    제1 절연체층 위에 위치되는 제1 전극; 및
    제1 전극 및 제2 반도체층과 전기적으로 연결되며 제2 반도체층의 상면에 구비되는 투광성 전극;을 포함하는 3족 질화물 반도체 발광소자.
  2. 청구항 1에 있어서,
    제1 절연체층은, 제2 반도체층의 상면에 접하는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
  3. 청구항 1에 있어서,
    제1 절연체층은, 제1 전극의 하면이 제2 반도체층에 접하지 않도록 제1 전극의 폭 보다 큰 폭을 가지는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
  4. 청구항 1에 있어서,
    제1 절연체층은, SiO2로 구비되는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
  5. 청구항 1에 있어서,
    제1 전극은, 와이어 본딩을 위한 본딩 패드부와, 본딩 패드부로부터 연장되는 가지전극부를 포함하는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
  6. 청구항 1에 있어서,
    제1 전극은, Cr, Ni, Au가 순차적으로 적층된 것을 특징으로 하는 3족 질화물 반도체 발광소자.
  7. 청구항 1에 있어서,
    제1 절연체층은, 제1 전극의 형상과 대응되는 형상으로 구비되는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
  8. 청구항 1에 있어서,
    제1 반도체층에 전기적으로 접속되는 제2 전극; 및
    제2 전극과 제1 반도체층 사이에 구비되는 제2 절연체층;을 더 포함하는 3족 질화물 반도체 발광소자.
  9. 청구항 8에 있어서,
    제2 절연체층은, SiO2로 구비되는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
  10. 청구항 8에 있어서,
    제2 전극은, 메사(Mesa) 구조로 식각되어 노출된 제1 반도체층의 상면과 전기적으로 접속되도록 구비되며,
    메사 구조의 측면에는 제3 절연체층이 구비되는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
  11. 제1 전도성을 지니는 제1 3족 질화물 반도체층, 제1 전도성과 다른 제2 전도성을 지니는 제2 3족 질화물 반도체층, 그리고 제1,2 3족 질화물 반도체층 사이에 위치하며, 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하는 복수개의 반도체층;
    제2 3족 질화물 반도체층 위의 적어도 일부에서 제2 3족 질화물 반도체층과 접하도록 형성되는 제1 절연체층;
    제1 절연체층의 상부에 형성되는 제1 전극;
    제1 절연체층와 제1 전극 사이에서 제1 절연체층의 적어도 일부를 덮도록 형성되며 제2 3족 질화물 반도체층과 전기적으로 연결되는 투광성 전극;
    제1 3족 질화물 반도체층 위의 적어도 일부에서 제1 3족 질화물 반도체층과 접하도록 형성되는 제2 절연체층; 그리고,
    제2 절연체층을 덮도록 형성되며 제1 3족 질화물 반도체층과 전기적으로 접하도록 형성되는 제2 전극;을 포함하고,
    제1 절연체층의 폭은 제1 전극의 폭과 같거나 넓게 형성되며,
    제1 전극 및 제2 전극은 Cr,Ni,Au가 순차로 적층되어 구비되는 것을 특징으로 하는 3족 질화물 반도체 발광소자.
PCT/KR2010/009583 2009-12-30 2010-12-30 3족 질화물 반도체 발광소자 WO2011081484A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0133917 2009-12-30
KR1020090133917A KR20110077363A (ko) 2009-12-30 2009-12-30 3족 질화물 반도체 발광소자

Publications (2)

Publication Number Publication Date
WO2011081484A2 true WO2011081484A2 (ko) 2011-07-07
WO2011081484A3 WO2011081484A3 (ko) 2011-10-27

Family

ID=44227068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009583 WO2011081484A2 (ko) 2009-12-30 2010-12-30 3족 질화물 반도체 발광소자

Country Status (2)

Country Link
KR (1) KR20110077363A (ko)
WO (1) WO2011081484A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403630B1 (ko) * 2012-09-05 2014-06-05 주식회사 세미콘라이트 반도체 발광소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029464A (ko) * 2000-10-13 2002-04-19 김효근 반사막이 삽입된 p형 전극구조를 가지는 질화물계발광다이오드 및 그 제조방법
JP2004172189A (ja) * 2002-11-18 2004-06-17 Shiro Sakai 窒化物系半導体装置及びその製造方法
JP2006041403A (ja) * 2004-07-29 2006-02-09 Nichia Chem Ind Ltd 半導体発光素子
JP2008300719A (ja) * 2007-06-01 2008-12-11 Nichia Corp 半導体発光素子およびその製造方法
KR20090060216A (ko) * 2006-05-19 2009-06-11 브리지럭스 인코포레이티드 광손실이 적은 발광다이오드용 전극 구조체와 그 형성 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308533A (ja) * 1997-05-09 1998-11-17 Toshiba Corp 窒化ガリウム系化合物半導体発光素子およびその製造方法ならびに発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029464A (ko) * 2000-10-13 2002-04-19 김효근 반사막이 삽입된 p형 전극구조를 가지는 질화물계발광다이오드 및 그 제조방법
JP2004172189A (ja) * 2002-11-18 2004-06-17 Shiro Sakai 窒化物系半導体装置及びその製造方法
JP2006041403A (ja) * 2004-07-29 2006-02-09 Nichia Chem Ind Ltd 半導体発光素子
KR20090060216A (ko) * 2006-05-19 2009-06-11 브리지럭스 인코포레이티드 광손실이 적은 발광다이오드용 전극 구조체와 그 형성 방법
JP2008300719A (ja) * 2007-06-01 2008-12-11 Nichia Corp 半導体発光素子およびその製造方法

Also Published As

Publication number Publication date
WO2011081484A3 (ko) 2011-10-27
KR20110077363A (ko) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2011031098A2 (ko) 반도체 발광소자
JP4860330B2 (ja) 窒化物系半導体発光素子及びその製造方法
US7807521B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
WO2010044561A2 (ko) 3족 질화물 반도체 발광소자
WO2010064872A2 (ko) 반도체 발광소자
WO2013100619A1 (ko) 탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자
WO2011008038A2 (ko) 3족 질화물 반도체 발광소자
WO2011021872A2 (ko) 3족 질화물 반도체 발광소자 및 그 제조방법
WO2011087310A2 (ko) 3족 질화물 반도체 발광소자
KR100960277B1 (ko) 3족 질화물 반도체 발광소자를 제조하는 방법
WO2012067428A2 (ko) 3족 질화물 반도체 발광소자
KR101032987B1 (ko) 반도체 발광소자
US7868337B2 (en) Light emitting diode and method for manufacturing the same
WO2010064870A2 (ko) 반도체 발광소자
KR20180079031A (ko) 3족 질화물 반도체 발광소자
WO2010030106A2 (ko) 3족 질화물 반도체 발광소자
US20100289036A1 (en) Iii-nitride semiconductor light emitting device and method for manufacturing the same
WO2010064848A2 (ko) 3족 질화물 반도체 발광소자
WO2011081484A2 (ko) 3족 질화물 반도체 발광소자
KR100803246B1 (ko) 질화물 반도체 소자
KR101124470B1 (ko) 반도체 발광소자
KR101063286B1 (ko) 확산방지층을 갖는 발광다이오드
WO2011010881A2 (ko) 3족 질화물 반도체 발광소자
WO2010064869A2 (ko) 반도체 발광소자
WO2010047482A2 (ko) 3족 질화물 반도체 발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10841316

Country of ref document: EP

Kind code of ref document: A2