WO2013100619A1 - 탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자 - Google Patents

탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자 Download PDF

Info

Publication number
WO2013100619A1
WO2013100619A1 PCT/KR2012/011546 KR2012011546W WO2013100619A1 WO 2013100619 A1 WO2013100619 A1 WO 2013100619A1 KR 2012011546 W KR2012011546 W KR 2012011546W WO 2013100619 A1 WO2013100619 A1 WO 2013100619A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride layer
type nitride
light emitting
type
Prior art date
Application number
PCT/KR2012/011546
Other languages
English (en)
French (fr)
Inventor
박정원
최원진
이성학
권태완
Original Assignee
일진엘이디(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진엘이디(주) filed Critical 일진엘이디(주)
Priority to US14/367,587 priority Critical patent/US20140339598A1/en
Publication of WO2013100619A1 publication Critical patent/WO2013100619A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body

Definitions

  • the present invention relates to a nitride semiconductor light emitting device doped with carbon in a p-type nitride layer and a method of manufacturing the same. More specifically, the concentration of free holes is increased by auto-doping carbon by controlling the flow rate of an ammonia source.
  • the present invention relates to a nitride semiconductor light emitting device including a p-type nitride layer formed of high nitride and a method of manufacturing the same.
  • the nitride semiconductor light emitting device of the present invention may be applied to a BLUE LED, UV LED and the like.
  • Conventional nitride semiconductor devices include, for example, GaN-based nitride semiconductor devices, which include high-speed switching and high-output devices such as blue or green LED light emitting devices, MESFETs and HEMTs, etc. It is applied to the back.
  • GaN-based nitride semiconductor devices which include high-speed switching and high-output devices such as blue or green LED light emitting devices, MESFETs and HEMTs, etc. It is applied to the back.
  • Such a conventional GaN-based nitride semiconductor light emitting device may be a nitride semiconductor light emitting device having an active layer of a multi-quantum well structure.
  • Conventional nitride semiconductor light emitting devices include a sapphire substrate, an n-type nitride layer, an active layer and a p-type nitride layer.
  • the transparent electrode layer and the p-side electrode are sequentially formed on the upper surface of the p-type nitride layer, and the n-side electrode is sequentially formed on the exposed surface of the n-type nitride semiconductor layer.
  • Such a conventional GaN-based nitride semiconductor light emitting device injects electrons and holes into the active layer and emits light by the combination of the electrons and holes, in order to improve the luminous efficiency of the active layer
  • Korean Patent Publication No. 2010-0027410 (2010.03.11)
  • a method of increasing the content of the n-type dopant of the n-type nitride layer or the p-type dopant of the p-type nitride layer to increase the inflow of electrons or holes into the active layer has been implemented.
  • the conventional nitride semiconductor device having such high content of n-type dopant of n-type nitride layer or p-type dopant of p-type nitride layer has large luminous efficiency due to uneven current spreading and low hole injection efficiency. Degrades.
  • Mg magnesium
  • the hole in the Mg level receives the heat energy to go up to the valence band (Valence band) to act as a free hole to conduct electricity.
  • the activation energy of Mg can be calculated as 0.17 eV
  • the hole is activated is shown in Figure 1 the principle of acting as a free hole.
  • the free hole concentration should be increased to decrease the resistance of p-GaN.
  • the free hole concentration starts to decrease and the resistance increases. This is thought to be due to self-compensation by the nitrogen vacancy, electrons generated by the Mg and nitrogen vacancy complex.
  • the free hole concentration is only about 5 X 10 16 / cm 3 , which is close to an insulator, and has n-type characteristics due to contamination of unwanted impurities.
  • the present inventors have conducted research and efforts to develop a nitride semiconductor light emitting device having improved resistance to free holes to reduce resistance and increase light efficiency.
  • ammonia, trimethylaluminum (TMAl) and Bis Minimize the pre-reaction of (cyclopentadienyl) magnesium (Cp2Mg) source, auto-doping carbon into the nitride layer and increasing free hole concentration as co-doping of p-type dopant and carbon The present invention has been completed by confirming that it can be increased.
  • an object of the present invention is to provide a nitride semiconductor light emitting device having a high free hole concentration and a method of manufacturing the same.
  • the nitride light emitting device of the present invention for achieving the above object is an n-type nitride layer; An active layer formed on the n-type nitride layer; And a p-type nitride layer formed on the active layer, wherein the p-type nitride layer is formed of a nitride doped with a p-type dopant and carbon (C).
  • the method of manufacturing a nitride light emitting device of the present invention comprises the steps of forming an n-type nitride layer on the substrate; Forming an active layer on the n-type nitride layer; And forming a p-type nitride layer on the active layer, and when the p-type nitride layer is formed, the p-type dopant and carbon (C) are supplied by supplying a nitrogen source at a lower flow rate than when forming the n-type nitride layer. It is characterized in that it is doped together.
  • the nitride semiconductor light emitting device of the present invention can derive a high free hole concentration, which is difficult to realize with a single p-type dopant, it is possible to lower the resistance and increase the light efficiency of the light emitting device.
  • the p-type nitride layer having a molar ratio of Al in Group 3 of 20% or more in the light emitting device of the present invention showed that the free hole concentration exceeded 1 X 10 18 / cm 3 . This is expected to be applicable to a variety of devices such as UV-LED.
  • FIG. 1 is an energy band diagram showing that holes in the Mg acceptor level are activated and act as free holes in the Mg doped GaN layer.
  • 2 is a graph showing the amount of change in free hole concentration according to the amount of Mg doping.
  • FIG 3 is a cross-sectional view of a horizontal nitride semiconductor light emitting device according to a first embodiment of the present invention.
  • FIG. 4 is an energy band diagram showing the activation path of holes in a Mg and carbon doped GaN layer.
  • FIG. 5 is a cross-sectional view of a vertical nitride semiconductor light emitting device according to a second embodiment of the present invention.
  • 6A through 6D are cross-sectional views illustrating a method of manufacturing the horizontal nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 7 is a graph showing the profile of magnesium and carbon in the nitride semiconductor light emitting device of the following embodiment.
  • buffer layer 130 n-type nitride layer
  • active layer 150 p-type nitride layer
  • n-side electrode 200 p-side electrode support layer
  • reflective layer 220 ohmic contact layer
  • p-type nitride layer 240 active layer
  • n-type nitride layer 260 n-side electrode
  • the horizontal nitride semiconductor light emitting device 100 has a buffer layer 120, an n-type nitride layer 130, and an active layer in an upper direction of the substrate 110. 140), a p-type nitride layer 150, a transparent electrode layer 160, a p-side electrode 170, and an n-side electrode 180.
  • the buffer layer 120 may be selectively formed to solve the lattice mismatch between the substrate 110 and the n-type nitride layer 130, and may be formed of, for example, AlN or GaN.
  • the n-type nitride layer 130 is formed on the upper surface of the substrate 110 or the buffer layer 120 and is formed of a nitride doped with the n-type dopant.
  • the n-type dopant may be silicon (Si), germanium (Ge), tin (Sn), or the like.
  • the n-type nitride layer 130 is a laminated structure in which a first layer made of n-type AlGaN or undoped AlGaN doped with Si and a second layer made of n-type GaN doped with undoped or Si are formed. Can be.
  • n-type nitride layer 130 may be grown as a single n-type nitride layer, but may be formed as a laminated structure of the first layer and the second layer to act as a carrier limiting layer having good crystallinity without cracks. .
  • the active layer 140 may be formed of a single quantum well structure or a multi-quantum well structure between the n-type nitride layer 130 and the p-type nitride layer 150, and electrons flowing through the n-type nitride layer 130, p As holes flowing through the nitride layer 150 are re-combined, light is generated.
  • the active layer 140 having a structure in which the quantum barrier layer and the quantum well layer are repeatedly formed may suppress spontaneous polarization due to stress and deformation generated.
  • the p-type nitride layer 150 is formed of a nitride in which a p-type dopant and carbon (C) are co-doped together.
  • a GaN or AlGaN layer may be used, but the type thereof is not limited. It may be formed in a laminated structure of the second layer.
  • the p-type dopant may be one or two or more selected from magnesium (Mg), zinc (Zn), and cadmium (Cd), but preferably magnesium (Mg) is used.
  • FIG. 4 illustrates an energy band diagram and activation paths of holes in a GaN thin film in the case of co-doping magnesium and carbon as a p-type dopant.
  • the hole can be activated according to three paths, and the magnesium (Mg) level promotes ionization of holes in the carbon level, thereby realizing a p-type nitride layer having a high free hole concentration. .
  • the concentration of the doped carbon is preferably 1 X 10 17 ⁇ 1 X 10 19 atoms / cm 3 . If the concentration of carbon is less than the limited range, there is a problem that the degree of nitrogen vacancy substitution is insignificant and the nitride layer exhibits the n-type character. If the carbon concentration is exceeded, the crystallinity decreases and the concentration of free holes decreases. There is.
  • the present invention is characterized in that the p-type dopant and carbon (C) is doped on the c-plane of the nitride.
  • C carbon
  • the c-plane surface of GaN ends with a Ga plane. .
  • the nitrogen source was supplied at a low flow rate when forming the p-type nitride layer, and the free hole concentration was increased by autodoping carbon by controlling the growth temperature, the growth pressure, and the V / III ratio.
  • Doping on c-plane of carbon was made possible.
  • Mg is well-substituted at the Ga site, thereby increasing the probability that C is also substituted at the N site, thereby increasing the hole concentration.
  • the free hole concentration of the p-type nitride layer is greatly increased through the carbon doping, and may exist in the range of 1 ⁇ 10 18 to 1 ⁇ 10 19 / cm 3 .
  • the transparent electrode layer 160 is a layer provided on the upper surface of the p-type nitride layer 150, the transparent electrode layer 160 is made of a transparent conductive oxide, the material is In, Sn, Al, Zn, Ga, etc. It includes an element of, and may be formed of any one of, for example, ITO, CIO, ZnO, NiO, In 2 O 3 .
  • FIG. 5 is a cross-sectional view of a vertical nitride semiconductor light emitting device according to a second exemplary embodiment of the present invention.
  • the detailed description thereof will be omitted.
  • the vertical nitride light emitting device includes a reflective layer 210, an ohmic contact layer 220, and a p-type nitride in an upper surface direction of the p-side electrode support layer 200.
  • the layer 230, the active layer 240, the n-type nitride layer 250, and the n-side electrode 260 are included.
  • the p-side electrode support layer 200 should serve as a p-side electrode as a conductive support member to sufficiently dissipate heat generated during operation of the light emitting device.
  • the p-side electrode support layer 200 has mechanical strength and must support the layers in the upper surface direction during the manufacturing process including a scribing process or a breaking process.
  • the p-side electrode support layer 200 may be formed of a metal having good thermal conductivity such as gold (Au), copper (Cu), silver (Ag), and aluminum (Al).
  • the p-side electrode support layer 200 may be formed of an alloy material having mechanical strength while minimizing the generation of internal stress during alloying since the metals have similar crystal structures and crystal lattice constants.
  • the alloy containing light metals such as nickel (Ni), cobalt (Co), platinum (Pt), and palladium (Pd).
  • the reflective layer 210 may be selectively formed on the upper surface of the p-side electrode support layer 200, and may be formed of a metal material having a high reflectance for reflecting light emitted from the active layer 240 in an upward direction.
  • the ohmic contact layer 220 is formed of a metal made of nickel (Ni) or gold (Au) or a nitride containing such a metal on the upper surface of the reflective layer 210, thereby making ohmic contact having a low resistance. ).
  • the ohmic contact layer 220 may perform a reflection function, and thus the reflective layer 210 needs to be formed. none.
  • the p-type nitride layer 230, the active layer 240, the n-type nitride layer 250, and the n-side electrode 260 are sequentially formed.
  • FIGS. 6A to 6E a method of manufacturing the nitride semiconductor light emitting device 100 according to the first embodiment of the present invention will be specifically described with reference to FIGS. 6A to 6E.
  • a buffer layer 120 and an n-type nitride layer 130 are formed on an upper surface of the substrate 110. Form sequentially.
  • the buffer layer 120 may be selectively formed on the upper surface of the substrate 110 to eliminate the lattice mismatch between the substrate 110 and the n-type nitride layer 130.
  • the buffer layer 120 may be formed using, for example, AlN or GaN.
  • the n-type nitride layer 130 may be formed of an n-GaN layer.
  • the n-type nitride layer 130 may be formed by supplying a silane gas containing an n-type dopant such as NH 3 , trimetalgallium (TMG), and Si to convert the n-GaN layer into an n-type nitride layer. You can grow.
  • the active layer 140 may have a single quantum well structure or a multi-quantum well structure in which a plurality of quantum well layers and a quantum barrier layer are alternately stacked.
  • the active layer 150 is made of a multi-quantum well structure
  • the p-type nitride layer 150 is formed as a nitride in which the p-type dopant and carbon (C) are co-doped together.
  • the p-type dopant and the carbon-doped nitride layer include atomic layer epitaxy (ALE), atmospheric pressure chemical vapor deposition (APCVD), plasma enhanced chemical vapor deposition (PECVD), rapid thermal chemical vapor deposition (RTCVD), and ultrahigh vacuum chemical (UHVCVD). It may be formed using a gas phase epitaxy growth method such as vapor deposition, low pressure chemical vapor deposition (LPCVD), metal organic chemical vapor deposition (MOCVD).
  • ALE atomic layer epitaxy
  • APCVD atmospheric pressure chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • RTCVD rapid thermal chemical vapor deposition
  • UHVCVD ultrahigh vacuum chemical
  • It may be formed using a gas phase epitaxy growth method such as vapor deposition, low
  • carbon may be auto-doped (auto-doping), for example, by MOCVD method NH 3, trimethyl aluminum (TMAl), trimethyl gallium (TMG), Bis (cyclopentadienyl) magnesium (Cp2Mg) Mg and C doped AlGaN layer can be prepared.
  • TMAl trimethyl aluminum
  • TMG trimethyl gallium
  • Cp2Mg Bis (cyclopentadienyl) magnesium
  • the flow rate of the ammonia source in the formation of the p-type nitride layer is supplied at a lower flow rate than when forming the n-type nitride layer, more preferably 1 to 15 L / min, most preferably 5 to 10 L / It is preferable to supply at a flow rate of min. If the flow rate of the ammonia source is less than the above range, there is a problem of thin film abnormal growth, and if it exceeds the above range, there is a problem of less carbon auto doping.
  • the p-type nitride layer is preferably grown under process conditions of a growth temperature of 1,000 to 1,500 ° C., a growth pressure of 10 to 200 mbar, and a V / III ratio of 100 to 1,500.
  • a growth temperature of 1,000 to 1,500 ° C. a growth pressure of 10 to 200 mbar
  • a V / III ratio 100 to 1,500.
  • the molar ratio of Al in Group 3 is 20% or more, it is advantageous to grow at a process temperature of 1200 to 1400 ° C., a growth pressure of 30 to 100 mbar, and a V / III ratio of 300 to 1,200.
  • the p-type nitride layer may be grown at a process temperature of 900 to 1,200 ° C., a growth pressure of 100 to 1013 mbar, and a V / III ratio of 100 to 3,000.
  • the crystallinity deteriorates and the hole concentration is lowered. If the growth temperature and the growth pressure exceeds the above range, gallium is released and the crystal quality is lowered. In addition, when the V / III ratio is less than the above range, there is a shortage of nitrogen source such as ammonia, so that the crystallinity is weakened.
  • the p-type nitride layer may be doped by an in-situ process, but is not limited thereto.
  • the transparent electrode layer 160 is formed on the upper surface of the p-type nitride layer 160, and the transparent electrode layer 160 is made of a transparent conductive oxide.
  • lithography etching is performed from the transparent electrode layer 160 to one region of the n-type nitride layer 130, thereby forming the n-type nitride layer 130. One area may be exposed.
  • a p-side electrode 170 is formed on an upper surface of the transparent electrode layer 160, and the n-side electrode 180 is exposed. It is formed in one region of the type nitride layer 130.
  • the vertical nitride semiconductor light emitting device of the second embodiment may be manufactured by a general method of manufacturing a vertical nitride semiconductor light emitting device.
  • the p-type nitride layer 230 may be formed of p-type dopant and carbon (C) as described above. ) Is formed as a nitride that is co-doped together.
  • AlGaN (including 20 mol% aluminum) was applied to each layer to form a nitride-based light emitting device.
  • the growth pressure was 60 mbar
  • the growth temperature was 1100 ° C.
  • the V / III ratio was 1100
  • the Cp2Mg flow rate was 100 sccm.
  • AlGaN (including 20 mol% aluminum) was applied to each layer to form a nitride-based light emitting device.
  • the growth pressure was 150 mbar
  • the growth temperature was 1100 ° C.
  • the V / III ratio was 3000
  • the Cp2Mg flow rate was 100 sccm. Doped at this time the flow rate of NH 3 was supplied at 20 L / min.
  • the light emitting device of Example was doped to a high concentration of carbon in the p-AlGaN layer, it was confirmed that exhibits about 30% better light output than the light emitting device of the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명은 p형 질화물층에 탄소가 도핑된 질화물 반도체 발광소자 및 이의 제조방법에 관한 것으로, 보다 구체적으로는 질소 소스의 유량을 조절함에 따라 탄소가 오토 도핑(auto-doping)됨으로써 자유 정공의 농도가 높은 질화물로 형성된 p형 질화물층이 포함된 질화물 반도체 발광소자 및 이의 제조방법에 관한 것이다. 본 발명의 질화물 반도체 발광소자는 종래 단일 p형 도펀트로서는 구현하기 어려운 높은 자유 정공 농도를 이끌어낼 수 있으므로, 발광소자의 저항을 낮추고 광효율을 높일 수 있다.

Description

탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자
본 발명은 p형 질화물층에 탄소가 도핑된 질화물 반도체 발광소자 및 이의 제조방법에 관한 것으로, 보다 구체적으로는 암모니아 소스의 유량을 조절함에 따라 탄소가 오토 도핑(auto-doping)됨으로써 자유 정공의 농도가 높은 질화물로 형성된 p형 질화물층이 포함된 질화물 반도체 발광소자 및 이의 제조방법에 관한 것이다. 상기 본 발명의 질화물 반도체 발광소자는 BLUE LED, UV LED 등에 적용될 수 있다.
종래의 질화물 반도체 소자에는 예를 들어 GaN계 질화물 반도체 소자를 들 수 있고, 이 GaN계 질화물 반도체 발광소자는 그 응용분야에 있어서 청색 또는 녹색 LED의 발광소자, MESFET과 HEMT 등의 고속 스위칭과 고출력 소자 등에 응용되고 있다.
이와 같은 종래의 GaN계 질화물 반도체 발광소자는 다중양자우물구조의 활성층을 가진 질화물 반도체 발광 소자를 예로 들 수 있다. 종래의 질화물 반도체 발광 소자는 사파이어 기판, n형 질화물층, 활성층 및 p형 질화물층을 포함한다. p형 질화물층의 상부면에는 투명 전극층과 p측 전극이 순차적으로 형성되며, n형 질화물 반도체층의 노출된 면에는 n측 전극이 차례로 형성된다.
이러한 종래의 GaN계 질화물 반도체 발광소자는 활성층에 전자와 정공을 주입하고 이 전자와 정공들의 결합으로 발광하게 되는데, 이러한 활성층의 발광효율을 향상시키기 위해서 국내공개특허공보 제 2010-0027410(2010.03.11)호에 기재된 바와 같이 n형 질화물층의 n형 도펀트 또는 p형 질화물층의 p형 도펀트의 함유량을 높여 활성층으로 전자 또는 정공의 유입량을 높이는 방안이 실행되고 있다.
그러나, 이렇게 n형 질화물층의 n형 도펀트 또는 p형 질화물층의 p형 도펀트의 함유량을 높인 종래의 질화물 반도체 소자는 균일하지 못한 전류 확산(current spreading)과 낮은 정공 주입 효율에 의해 발광 효율이 크게 저하된다.
특히 p형 도펀트로서 마그네슘(Mg)을 사용하는 것이 일반적이며, Mg 준위에 있는 정공이 열에너지를 받아 가전자대(Valence band)로 올라가 자유 정공으로 활동하면서 전기 전도를 하게 된다. 이 때, Mg의 활성화 에너지를 0.17 eV로 산정할 수 있으며, 정공이 활성화되어 자유 정공으로 활동하는 원리를 도 1에 나타내었다.
p형 도펀트의 함유량을 증가시키는 경우 이상적으로는 도 2에서의 점선에서와 같이 자유 정공 농도가 증가하여 p-GaN의 저항이 줄어들어야 한다. 그러나 실제로는 실선과 같이 Mg 도핑량이 일정 수준 이상이 되면 자유 정공 농도가 감소하기 시작하여 저항이 증가하는 것을 확인할 수 있다. 이는 질소 공공(Nitrogen vacancy), Mg과 질소 공공 복합체에 의하여 생성된 전자들에 의한 self-compensation로 인한 것으로 판단된다.
또한 Mg이 도핑된 p-AlGaN의 경우에는 자유 정공 농도가 약 5 X 1016 /cm3 에 불과하여 부도체에 가까운 성질을 나타내고, 원치 않은 불순물의 오염으로 인하여 n형 특성을 나타내기도 한다.
따라서, 종래의 Mg 도핑을 통하여는 일정 수준 이상의 자유 정공 농도를 얻을 수 없으며, 자유 정공 농도를 반도체 발광 소자의 저항을 낮출 수 있는 기술의 개발이 요구되는 실정이다.
이에 본 발명자들은, 자유 정공 농도를 보다 개선하여 저항을 감소시키고 광효율을 높인 질화물 반도체 발광소자를 개발하기 위하여 연구, 노력한 결과 특정 조건에서 암모니아 소스의 유량을 조절하면 암모니아와 트리메틸알루미늄(TMAl) 및 Bis(cyclopentadienyl)magnesium(Cp2Mg) 소스의 전반응(pre-reaction)을 최소화하여 탄소가 질화물층에 오토 도핑되고, p형 도펀트와 탄소가 함께 코-도핑(co-doping)됨에 따라 자유 정공 농도를 크게 높일 수 있음을 확인함으로써 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 높은 자유 정공 농도를 가지는 질화물 반도체 발광 소자 및 이를 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 질화물 발광소자는 n형 질화물층; 상기 n형 질화물층 상에 형성된 활성층; 및 상기 활성층 상에 형성된 p형 질화물층을 포함하고, 상기 p형 질화물층은 p형 도펀트와 탄소(C)가 함께 도핑된 질화물로 형성되는 것을 특징으로 한다.
또한 본 발명의 질화물 발광소자의 제조방법은 기판 상에 n형 질화물층을 형성하는 단계; 상기 n형 질화물층 상에 활성층을 형성하는 단계; 및 상기 활성층 상에 p형 질화물층을 형성하는 단계를 포함하고, p형 질화물층의 형성 시 n 형 질화물 층을 형성할 때 보다 질소 소스를 적은 유량으로 공급하여 p형 도펀트와 탄소(C)가 함께 도핑되는 것을 특징으로 한다.
본 발명의 질화물 반도체 발광소자는 종래 단일 p형 도펀트로서는 구현하기 어려운 높은 자유 정공 농도를 이끌어낼 수 있으므로, 발광소자의 저항을 낮추고 광효율을 높일 수 있다.
특히 본 발명의 발광소자에서 3족 내 Al의 몰 비율이 20% 이상인 p형 질화물층의 경우 자유 정공 농도가 1 X 1018 /cm3 를 초과하는 것으로 나타나는 바, 우수한 발광 특성을 나타내는 것으로 확인되었으며, 이는 UV-LED 등의 소자로 다양하게 적용될 수 있을 것으로 기대된다.
도 1은 Mg 도핑된 GaN 층에서 Mg 억셉터 준위에 있는 정공이 활성화되어 자유 정공으로 활동하는 것을 나타낸 에너지 밴드 다이어그램이다.
도 2는 Mg 도핑량에 따른 자유 정공 농도의 변화량을 나타낸 그래프이다.
도 3은 본 발명의 제 1 실시예에 따른 수평형 질화물 반도체 발광소자의 단면도이다.
도 4는 Mg와 탄소가 도핑된 GaN 층에서 정공들의 활성화 경로를 나타낸 에너지 밴드 다이어그램이다.
도 5는 본 발명의 제 2 실시예에 따른 수직형 질화물 반도체 발광소자의 단면도이다.
도 6a 내지 6d는 본 발명의 제 1 실시예에 따른 수평형 질화물 반도체 발광소자의 제조방법을 설명하기 위한 공정 단면도이다.
도 7은 하기 실시예의 질화물 반도체 발광소자에서 마그네슘 및 탄소의 프로파일을 나타낸 그래프이다.
도 8은 하기 비교예의 질화물 반도체 발광소자에서 마그네슘 및 탄소의 프로파일을 나타낸 그래프이다.
[부호의 설명]
100 : 반도체 발광소자 110 : 기판
120 : 버퍼층 130 : n형 질화물층
140 : 활성층 150 : p형 질화물층
160 : 투명 전극층 170 : p측 전극
180 : n측 전극 200 : p측 전극 지지층
210 : 반사층 220 : 오믹 컨택층
230 : p형 질화물층 240 : 활성층
250 : n형 질화물층 260 : n측 전극
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 자유 정공 농도가 증가된 질화물계 발광소자에 관하여 상세히 설명하면 다음과 같다.
질화물계 발광소자
도 3에 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 수평형 질화물 반도체 발광소자(100)는 기판(110)의 상부 방향으로 버퍼층(120), n형 질화물층(130), 활성층(140), p형 질화물층(150), 투명 전극층(160), p측 전극(170) 및 n측 전극(180)을 포함한다.
버퍼층(120)은 기판(110)과 n형 질화물층(130) 사이의 격자 부정합을 해소하기 위해 선택적으로 형성될 수 있고, 예컨대 AlN 또는 GaN으로 형성할 수 있다.
n형 질화물층(130)은 기판(110) 또는 버퍼층(120)의 상부면에 형성되고, n형 도펀트가 도핑되어 있는 질화물로 형성된다. 상기 n형 도펀트로는 실리콘(Si), 게르마늄(Ge), 주석(Sn) 등이 될 수 있다. 여기서, n형 질화물층(130)은 Si을 도핑한 n형 AlGaN 또는 언도우프 AlGaN으로 이루어진 제 1 층, 및 언도우프 또는 Si을 도핑한 n형 GaN로 이루어진 제 2 층이 번갈아가며 형성된 적층 구조일 수 있다. 물론, n형 질화물층(130)은 단층의 n형 질화물층으로 성장시키는 것도 가능하나, 제 1 층과 제 2 층의 적층 구조로 형성하여 크랙이 없는 결정성이 좋은 캐리어 제한층으로 작용할 수 있다.
활성층(140)은 n형 질화물층(130)과 p형 질화물층(150) 사이에서 단일양자우물구조 또는 다중양자우물구조로 이루어질 수 있으며, n형 질화물층(130)을 통하여 흐르는 전자와, p형 질화물층(150)을 통하여 흐르는 정공이 재결합(re-combination)되면서, 광이 발생된다. 여기서, 활성층(140)은 다중양자우물구조로서, 양자장벽층과 양자우물층은 각각 AlxGayInzN(이 때, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1)으로 이루어질 수 있다. 이러한 양자장벽층과 양자우물층이 반복되어 형성된 구조의 활성층(140)은 발생하는 응력과 변형에 의한 자발적인 분극을 억제할 수 있다.
p형 질화물층(150)은 p형 도펀트와 탄소(C)가 함께 도핑(co-doping)되어 있는 질화물로 이루어지며, GaN 또는 AlGaN 층이 사용될 수 있으나 그 종류는 제한되지 않으며, 제 1 층과 제 2 층의 적층 구조로 형성될 수도 있다.
상기 p형 도펀트는 마그네슘(Mg), 아연(Zn) 및 카드뮴(Cd) 중에서 선택된 1종 또는 2종 이상이 될 수 있으나, 바람직하게는 마그네슘(Mg)을 사용하는 것이 좋다.
한편 질화물 내 마그네슘과 같은 p형 도펀트의 함량이 증가하면 질소 공공(Nitrogen vacancy)의 농도가 증가하게 되는데 이 때, 함께 도핑되는 탄소가 질소 공공의 자리에 치환되어 질소 공공의 농도를 낮추게 된다. 도 4는 p형 도펀트로서 마그네슘과 탄소가 도핑(co-doping)된 경우의 GaN 박막 내 에너지 밴드 다이어그램과 정공들의 활성화 경로를 나타낸 것이다. 상기 도 4 에서 보는 바와 같이 정공은 3가지 경로에 따라 활성화가 가능하며, 마그네슘(Mg) 준위는 탄소 준위에 있는 정공의 이온화를 촉진하여 높은 자유 정공 농도를 가지는 p형 질화물층의 구현이 가능하다.
상기 도핑된 탄소의 농도는 1 X 1017 ~ 1 X 1019 atoms/cm3 인 것이 바람직하다. 상기 탄소의 농도가 한정된 범위 미만이면, 질소 공공 치환 정도가 미미하고 질화물층이 n형의 성격을 나타내는 문제가 있으며, 한정된 범위를 초과하여 사용되면 결정성이 저하되어 자유 정공의 농도가 감소하는 문제가 있다.
그리고 본 발명은 p형 도펀트와 탄소(C)는 질화물의 c-평면 상에 도핑되는 것을 특징으로 한다. 대표적인 질화물인 GaN에 탄소가 도핑되어 억셉터(acceptor)로 작용하기 위해서는 질소 자리에 치환되어 들어가야 하나, GaN의 c-평면의 표면은 Ga 평면으로 끝나게 되는 바, 탄소가 질소 자리로 치환되기 매우 어렵다. 결국 탄소는 Ga 자리에 더 잘 들어가게 되고, 이 경우 도너(donor)로서 작용하므로 탄소 억셉터(carbon acceptor)에 의한 정공을 없애며, 이에 따라 전도성이 사라지는 문제가 있다. 그러나 본 발명에서는 후술하는 바와 같이, p형 질화물층의 형성 시 질소 소스를 적은 유량으로 공급하고, 성장온도, 성장압력 및 V/III 비율을 조절함으로써 탄소를 오토 도핑시켜 자유 정공 농도를 증가시켰으며, 탄소의 c-평면 상의 도핑이 가능하도록 하였다. 특히 C가 오토 도핑되면 Mg가 Ga 자리에 치환이 잘 되고, 이로 인하여 확률적으로 C도 N 자리에 치환될 가능성이 높아져 정공 농도를 높일 수 있게 된다.
상기 탄소 도핑을 통하여 p형 질화물층의 자유 정공 농도는 크게 증가하며, 1 X 1018 ~ 1 X 1019 /cm3 의 범위로 존재할 수 있다.
한편 투명 전극층(160)은 p형 질화물층(150)의 상부면에 구비된 층으로, 이러한 투명 전극층(160)은 투명 전도성 산화물로 이루어지고, 그 재질은 In, Sn, Al, Zn, Ga 등의 원소를 포함하며, 예컨대 ITO, CIO, ZnO, NiO, In2O3 중 어느 하나로 형성될 수 있다.
이하, 본 발명의 제 2 실시예에 따른 수직형 질화물 반도체 발광 소자를 도 5를 참조하여 설명한다. 도 5는 본 발명의 제 2 실시예에 따른 수직형 질화물 반도체 발광 소자의 단면을 나타낸 단면도이다. 여기서, 수직형 질화물 반도체 발광 소자의 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에 그 상세한 설명은 생략한다.
도 5에 도시된 바와 같이, 본 발명의 제 2 실시예에 따른 수직형 질화물 발광 소자는 p측 전극 지지층(200)의 상부면 방향으로 반사층(210), 오믹 컨택층(220), p형 질화물층(230), 활성층(240), n형 질화물층(250) 및 n측 전극(260)을 포함한다.
p측 전극 지지층(200)은 전도성 지지부재로서 p측 전극의 역할을 하면서 발광 소자 작동시 발생하는 열을 충분히 발산시켜야 한다. 특히, p측 전극 지지층(200)은 기계적 강도를 가지고, 스크라이빙(scribing) 공정 또는 브레이킹(breaking) 공정을 포함한 제조 과정 중 상부면 방향의 층들을 지지해야 한다.
따라서, p측 전극 지지층(200)은 금(Au), 구리(Cu), 은(Ag) 및 알루미늄(Al)등의 열전도도가 좋은 금속으로 형성할 수 있다. 또는, p측 전극 지지층(200)은 이런 금속들과 결정 구조 및 결정 격자 상수가 유사하여 합금시 내부 응력 발생을 최소화할 수 있으면서 기계적 강도가 있는 합금 재질로 형성할 수 있다. 예를 들어, 니켈(Ni), 코발트(Co), 백금(Pt) 및 팔라듐(Pd) 등의 경금속을 포함한 합금으로 형성하는 것이 바람직하다.
반사층(210)은 p측 전극 지지층(200)의 상부면에 선택적으로 형성될 수 있고, 활성층(240)으로부터 발산하는 광을 상부 방향으로 반사시키는 반사율이 높은 금속 재질로 형성될 수 있다.
오믹 컨택층(220)은 반사층(210)의 상부면에 니켈(Ni) 또는 금(Au)의 금속, 또는 이런 금속을 함유한 질화물로 이루어진 층으로 형성되어, 낮은 저항을 갖는 오믹 컨택(Ohmic Contact)을 형성한다. 여기서, 니켈(Ni) 또는 금(Au)의 금속을 이용하여 오믹 컨택층(220)을 형성하는 경우, 오믹 컨택층(220)이 반사 기능을 수행할 수 있으므로 반사층(210)을 형성할 필요가 없다.
다음 p형 질화물층(230), 활성층(240), n형 질화물층(250) 및 n측 전극(260)이 차례로 형성된다.
질화물계 발광소자의 제조방법
이하, 구체적으로 본 발명의 제 1 실시예에 따른 질화물 반도체 발광 소자(100)의 제조 방법을 도 6a 내지 6e를 참조하여 설명한다.
도 6a에 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 질화물 반도체 발광소자(100)의 제조 방법은 먼저 기판(110)의 상부면에 버퍼층(120)과 n형 질화물층(130)을 순차적으로 형성시킨다.
버퍼층(120)은 기판(110)과 n형 질화물층(130) 사이에 격자 부정합을 해소하기 위해 기판(110)의 상부면에 선택적으로 형성될 수도 있다. 여기서, 버퍼층(120)은 예를 들어 AlN 또는 GaN을 이용하여 형성될 수도 있다.
n형 질화물층(130)은 n-GaN층으로 형성될 수 있다. n형 질화물층(130)의 형성 방법은 예를 들어, NH3, 트리메탈갈륨(TMG), 및 Si과 같은 n형 도펀트를 포함한 실란 가스를 공급하여, n-GaN층을 n형 질화물층으로 성장할 수 있다.
도 6b와 같이, 활성층(140)은 단일양자우물구조 또는 양자우물층과 양자장벽층이 교대로 다수 적층된 다중양자우물구조로 구비될 수 있다. 여기서, 활성층(150)은 다중양자우물구조로 이루어지되, 양자장벽층과 양자우물층은 각각 AlxGayInzN(이 때, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1)으로 이루어질 수 있다.
다음 p형 질화물층(150)은 p형 도펀트와 탄소(C)가 함께 도핑(co-doping)된 질화물로서 형성된다. p형 도펀트와 탄소가 도핑된 질화물층은 ALE(atomic layer epitaxy), APCVD(atmospheric pressure chemical vapour deposition), PECVD(Plasma Enhanced Chemical Vapor Deposition), RTCVD(rapid thermal chemical vapor deposition), UHVCVD(ultrahigh vacuum chemical vapor deposition), LPCVD(low pressure chemical vapor deposition), MOCVD(Metal organic Chemical Vapor Deposition) 등의 기상 에피택시 성장 방법을 이용하여 형성될 수 있다.
이 때, 별도의 탄소 소스를 사용하지 아니하고 질소 소스로 사용되는 암모니아 가스의 유량을 감소시키면, 알루미늄 소스 또는 마그네숨 소스와 질소 소스로 사용되는 암모니아의 전반응(pre-reaction)을 최소화하여 별도의 탄소 소스가 주입될 필요 없이 탄소가 오토 도핑(auto-doping)될 수 있으며, 예를 들어 MOCVD 방법으로 NH3, 트리메틸알루미늄(TMAl), 트리메틸갈륨(TMG), Bis(cyclopentadienyl)magnesium(Cp2Mg)를 이용하여 Mg와 C가 도핑된 AlGaN 층을 제조할 수 있다.
이 때, p형 질화물층의 형성 시 암모니아 소스의 유량은 n 형 질화물 층을 형성할 때 보다 적은 유량으로 공급되며, 보다 바람직하게는 1 ~ 15 ℓ/min, 가장 바람직하게는 5 ~ 10 ℓ/min의 유량으로 공급되는 것이 좋다. 암모니아 소스의 유량이 상기 범위 미만이면 박막 이상 성장의 문제가 있으며, 상기 범위를 초과하면 탄소 오토 도핑이 적어지는 문제가 있다.
상기 p형 질화물층은 Al을 포함하는 경우, 1,000 ~ 1,500 ℃의 성장온도, 10 ~ 200 mbar의 성장압력 및 100 ~ 1,500 의 V/III 비율의 공정 조건에서 성장되는 것이 바람직하다. 특히 3족 내 Al의 몰 비율이 20% 이상인 경우에는 1200 ~ 1400 ℃의 성장온도, 30 ~ 100 mbar의 성장압력 및 300 ~ 1,200 의 V/III 비율의 공정 조건에서 성장되는 것이 유리하다. 단, 상기 p형 질화물층이 Al을 포함하지 않는 경우에는 900 ~ 1,200 ℃의 성장온도, 100 ~ 1013 mbar의 성장압력 및 100 ~ 3,000 의 V/III 비율의 공정 조건에서 성장될 수 있다.
성장온도 및 성장압력이 상기 범위 미만이면, 결정성이 악화되어 정공 농도가 낮아지게 되며, 성장온도 및 성장압력이 상기 범위를 초과하면 갈륨이 떨어져 나가게 되어 결정 품질이 낮아지는 문제가 있다. 또한 V/III 비율이 상기 범위 미만이면 암모니아와 같은 질소원이 부족하게 되어 결정성이 약화되며, 상기 범위를 초과하면 질소원이 과다 존재하게 되어 탄소의 도핑이 충분이 이루어지지 못하는 문제가 있다.
상기 p형 질화물층은 인시츄(in-situ) 공정으로 도핑이 이루어질 수 있으나 이에 한정되지 않는다.
그리고 투명 전극층(160)은 p형 질화물층(160)의 상부면에 형성시키며, 이러한 투명 전극층(160)은 투명 전도성 산화물로 이루어진다.
이렇게 투명 전극층(160)까지 형성된 후, 도 6c에 도시된 바와 같이 투명 전극층(160)으로부터 n형 질화물층(130)의 일영역까지 노광 에칭(lithography etching)하여, n형 질화물층(130)의 일영역이 노출될 수 있다.
n형 질화물층(130)의 일영역이 노출되면, 도 6d에 도시된 바와 같이 p측 전극(170)이 투명 전극층(160)의 상부면에 형성되고, n측 전극(180)이 노출된 n형 질화물층(130)의 일 영역에 형성된다.
한편 상기 제 2 실시예의 수직형 질화물 반도체 발광소자는 일반적인 수직형 질화물 반도체 발광소자의 제조방법으로 제조될 수 있으나, 이 때 p형 질화물 층(230)은 상기 설명한 바와 같이 p형 도펀트와 탄소(C)가 함께 도핑(co-doping)되어 있는 질화물로서 형성된다.
이하, 본 발명의 하기 실험예를 통하여 본 발명의 질화물 반도체 발광소자에 대하여 보다 구체적으로 설명하기로 한다.
실시예
질화물계 발광소자를 구성하기 위한 각 층으로 AlGaN(20몰% 알루미늄 포함)을 적용하였으며, 성장 압력은 60 mbar, 성장 온도는 1100 ℃, V/III ratio는 1100, Cp2Mg 유량은 100 sccm의 조건으로 도핑하였고, 이 때 NH3의 유량은 10 ℓ/min로 공급하였다.
비교예
질화물계 발광소자를 구성하기 위한 각 층으로 AlGaN(20몰% 알루미늄 포함)을 적용하였으며, 성장 압력은 150 mbar, 성장 온도는 1100 ℃, V/III ratio는 3000, Cp2Mg 유량은 100 sccm의 조건으로 도핑하였고, 이 때 NH3의 유량은 20 ℓ/min로 공급하였다.
실험예 : p-AlGaN 층의 탄소 농도 및 소자의 광출력 비교
상기 실시예 및 비교예의 발광소자에서 마그네슘(Mg) 및 탄소(C)의 프로파일을 각각 도 7 및 8에 나타내었다.
또한 p-AlGaN 층에서의 마그네슘 및 탄소의 농도, 그리고 20 mA 구동시 250㎛ X 600㎛ 칩의 광출력을 측정하여 하기 표 1에 나타내었다.
표 1
Mg 도핑량(atoms/cm3) C 도핑량(atoms/cm3) 광출력(mW)
실시예 5.0 X 1019 1.0 X 1018 27
비교예 7.0 X 1019 6.0 X 1016 21
상기 표 1에서 보는 바와 같이, 실시예의 발광소자는 p-AlGaN층에서 탄소가 높은 농도로 도핑되어, 비교예의 발광소자에 비하여 약 30% 정도 우수한 광출력을 나타내는 것을 확인할 있었다.
이상에서는 본 발명의 실시예를 중심으로 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 기술자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 이하에 기재되는 특허청구범위에 의해서 판단되어야 할 것이다.

Claims (14)

  1. n형 질화물층;
    상기 n형 질화물층 상에 형성된 활성층; 및
    상기 활성층 상에 형성된 p형 질화물층
    을 포함하고,
    상기 p형 질화물층은 p형 도펀트와 탄소(C)가 함께 도핑된 질화물로 형성되는 것을 특징으로 하는 질화물 반도체 발광소자.
  2. 제 1 항에 있어서,
    상기 p형 질화물층의 탄소 농도가 상기 활성층 또는 n형 질화물 층의 탄소 농도보다 높은 것을 특징으로 하는 질화물 반도체 발광소자.
  3. 제 1 항에 있어서,
    상기 도핑된 탄소의 농도는 1 X 1017 ~ 1 X 1019 atoms/cm3 인 것을 특징으로 하는 질화물 반도체 발광소자.
  4. 제 1 항에 있어서,
    상기 p형 도펀트는 마그네슘(Mg), 아연(Zn) 및 카드뮴(Cd) 중에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 질화물 반도체 발광소자.
  5. 제 1 항에 있어서,
    상기 p형 도펀트와 탄소(C)는 질화물의 c-평면 상에 도핑되는 것을 특징으로 하는 질화물 반도체 발광소자.
  6. 제 1 항에 있어서,
    상기 p형 질화물층의 자유 정공 농도는 1 X 1018 ~ 1 X 1019 /cm3 인 것을 특징으로 하는 질화물 반도체 발광소자.
  7. 제 1 항에 있어서,
    상기 p형 질화물층은 3족 내 Al의 몰 비율이 20% 이상인 질화물로 이루어지는 것을 특징으로 하는 질화물 반도체 발광소자.
  8. 제 1 항에 있어서,
    상기 n형 질화물층의 하부에 형성된 버퍼층; 및
    상기 버퍼층의 하부에 구비된 기판;
    을 더 포함하는 것을 특징으로 하는 질화물 반도체 발광소자.
  9. 기판 상에 n형 질화물층을 형성하는 단계;
    상기 n형 질화물층 상에 활성층을 형성하는 단계; 및
    상기 활성층 상에 p형 질화물층을 형성하는 단계를 포함하고,
    상기 p형 질화물층의 형성 시 n 형 질화물 층을 형성할 때 보다 질소 소스를 적은 유량으로 공급하여 p형 도펀트와 탄소(C)가 함께 도핑되는 것을 특징으로 하는 질화물 반도체 발광소자의 제조방법.
  10. 제 9 항에 있어서,
    상기 p형 질화물층의 형성 시 공급되는 질소 소스는 1 ~ 15 ℓ/min 으로 공급되는 것을 특징으로 하는 질화물 반도체 발광소자의 제조방법.
  11. 제 9 항 또는 제 10 항에 있어서, 상기 질소 소스는 NH3인 것을 특징으로 하는 질화물 반도체 발광소자의 제조방법.
  12. 제 9 항에 있어서,
    Al을 포함하는 p형 질화물층은 1,000 ~ 1,500 ℃의 성장온도, 10 ~ 200 mbar의 성장압력 및 100 ~ 1,500 의 V/III 비율의 공정 조건에서 성장시키는 것을 특징으로 하는 질화물 반도체 발광소자의 제조방법.
  13. 제 12 항에 있어서,
    상기 p형 질화물층은 3족 내 Al의 몰 비율이 20% 이상인 질화물을 포함하는 것을 특징으로 하는 질화물 반도체 발광소자의 제조방법.
  14. 제 9 항에 있어서,
    Al을 포함하지 않는 p형 질화물층은 900 ~ 1,200 ℃의 성장온도, 100 ~ 1013 mbar의 성장압력 및 100 ~ 3,000 의 V/III 비율의 공정 조건에서 성장시키는 것을 특징으로 하는 질화물 반도체 발광소자의 제조방법.
PCT/KR2012/011546 2011-12-30 2012-12-27 탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자 WO2013100619A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/367,587 US20140339598A1 (en) 2011-12-30 2012-12-27 Nitride-based light-emitting element comprising a carbon-doped p-type nitride layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110147241A KR101262726B1 (ko) 2011-12-30 2011-12-30 탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자 제조 방법
KR10-2011-0147241 2011-12-30

Publications (1)

Publication Number Publication Date
WO2013100619A1 true WO2013100619A1 (ko) 2013-07-04

Family

ID=48665871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011546 WO2013100619A1 (ko) 2011-12-30 2012-12-27 탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자

Country Status (4)

Country Link
US (1) US20140339598A1 (ko)
KR (1) KR101262726B1 (ko)
TW (1) TW201327903A (ko)
WO (1) WO2013100619A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140138726A1 (en) * 2012-11-19 2014-05-22 Stanley Electric Co., Ltd. Semiconductor light-emitting element and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705032B2 (en) * 2011-09-22 2017-07-11 Sensor Electronic Technology, Inc. Deep ultraviolet light emitting diode
TWI597862B (zh) * 2013-08-30 2017-09-01 晶元光電股份有限公司 具阻障層的光電半導體元件
JP6249868B2 (ja) * 2014-04-18 2017-12-20 サンケン電気株式会社 半導体基板及び半導体素子
US9608103B2 (en) * 2014-10-02 2017-03-28 Toshiba Corporation High electron mobility transistor with periodically carbon doped gallium nitride
JP6478685B2 (ja) * 2015-02-12 2019-03-06 ウシオ電機株式会社 半導体発光素子
CN110164757A (zh) * 2019-05-31 2019-08-23 中国科学院半导体研究所 化合物半导体及其外延方法
TWI816186B (zh) * 2021-09-28 2023-09-21 晶元光電股份有限公司 發光元件及其製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269344B2 (ja) * 1995-08-21 2002-03-25 松下電器産業株式会社 結晶成長方法および半導体発光素子
KR20080065326A (ko) * 2007-01-09 2008-07-14 삼성전기주식회사 질화물 반도체 발광소자의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740192A (en) * 1994-12-19 1998-04-14 Kabushiki Kaisha Toshiba Semiconductor laser
US7186302B2 (en) * 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
KR100616516B1 (ko) 2003-12-18 2006-08-29 삼성전기주식회사 질화갈륨계 반도체 발광소자 및 그 제조방법
CN102138227A (zh) * 2008-08-29 2011-07-27 株式会社东芝 半导体装置
JP2010245435A (ja) 2009-04-09 2010-10-28 Hitachi Cable Ltd 発光素子用エピタキシャルウェハおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269344B2 (ja) * 1995-08-21 2002-03-25 松下電器産業株式会社 結晶成長方法および半導体発光素子
KR20080065326A (ko) * 2007-01-09 2008-07-14 삼성전기주식회사 질화물 반도체 발광소자의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOANNA MCKITTRICK: "Improving the Efficiency of Solid State Light Sources", REPORT OF U.S. GOVERNMENT SUBJECT (DE-FC26-01NT41202), 23 June 2003 (2003-06-23), pages 1 - 26, XP055074347 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140138726A1 (en) * 2012-11-19 2014-05-22 Stanley Electric Co., Ltd. Semiconductor light-emitting element and manufacturing method thereof
US9306119B2 (en) * 2012-11-19 2016-04-05 Stanley Electric Co., Ltd. Semiconductor light-emitting element and manufacturing method thereof

Also Published As

Publication number Publication date
TW201327903A (zh) 2013-07-01
US20140339598A1 (en) 2014-11-20
KR101262726B1 (ko) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2013100619A1 (ko) 탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자
CN110718612B (zh) 发光二极管外延片及其制造方法
CN109119515B (zh) 一种发光二极管外延片及其制造方法
WO2013022227A2 (ko) 전류 확산 효과가 우수한 질화물 반도체 발광소자 및 그 제조 방법
WO2014168339A1 (ko) 자외선 발광 소자
CN109950368A (zh) 氮化镓基发光二极管外延片及其制造方法
CN109346583B (zh) 一种发光二极管外延片及其制备方法
WO2011021872A2 (ko) 3족 질화물 반도체 발광소자 및 그 제조방법
CN108281519B (zh) 一种发光二极管外延片及其制造方法
US8659041B2 (en) Nitride semiconductor light emitting diode
CN112366256B (zh) 发光二极管外延片及其制造方法
CN114823999B (zh) 一种具有氮极性接触层的led外延结构及其制备方法
KR100998234B1 (ko) 질화물 반도체 발광 소자 및 그 제조 방법
KR101232031B1 (ko) 질화갈륨계 화합물 반도체 발광소자
JP5379703B2 (ja) 紫外半導体発光素子
JP2009076864A (ja) 窒化物系発光素子
KR100881053B1 (ko) 질화물계 발광소자
KR20130094451A (ko) 질화물 반도체 발광소자 및 그 제조방법
CN114497306B (zh) 一种GaN基LED外延片、外延生长方法及LED芯片
KR102224109B1 (ko) 발광소자, 발광소자 제조방법 및 조명시스템
KR101387543B1 (ko) 질화물 반도체 발광 소자
US20240120440A1 (en) Semiconductor structure
JP2011096893A (ja) 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
WO2011081484A2 (ko) 3족 질화물 반도체 발광소자
JP2004193498A (ja) 半導体発光素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14367587

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862725

Country of ref document: EP

Kind code of ref document: A1