WO2010064392A1 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
WO2010064392A1
WO2010064392A1 PCT/JP2009/006417 JP2009006417W WO2010064392A1 WO 2010064392 A1 WO2010064392 A1 WO 2010064392A1 JP 2009006417 W JP2009006417 W JP 2009006417W WO 2010064392 A1 WO2010064392 A1 WO 2010064392A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
electrode group
battery
charge
battery pack
Prior art date
Application number
PCT/JP2009/006417
Other languages
English (en)
French (fr)
Inventor
木下昌洋
宇賀治正弥
山本泰右
平岡樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/936,353 priority Critical patent/US20110033735A1/en
Priority to CN2009801196990A priority patent/CN102047493A/zh
Priority to JP2010541215A priority patent/JPWO2010064392A1/ja
Publication of WO2010064392A1 publication Critical patent/WO2010064392A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery pack. More specifically, the present invention relates to an improvement in a battery replacement time determination method and cycle deterioration determination method for a non-aqueous electrolyte secondary battery using an alloy-based active material as a negative electrode active material.
  • Non-aqueous electrolyte secondary batteries are widely used as power sources for electronic devices because they have high capacity and high energy density, and are easy to reduce in size and weight.
  • Electronic devices include mobile phones, personal digital assistants, computers, video cameras, game machines, and the like.
  • a typical nonaqueous electrolyte secondary battery includes a positive electrode containing a lithium cobalt composite oxide, a negative electrode containing graphite, and a polyolefin porous membrane.
  • Alloy-based active materials are known as negative electrode active materials other than carbon materials.
  • Typical alloy-based active materials include silicon-based active materials such as silicon and silicon oxide.
  • the alloy-based active material has a high discharge capacity.
  • the theoretical discharge capacity of silicon is about 11 times the theoretical discharge capacity of graphite. Therefore, the capacity and performance of nonaqueous electrolyte secondary batteries are increased by using alloy-based active materials.
  • a non-aqueous electrolyte secondary battery containing an alloy-based active material (hereinafter sometimes referred to as “alloy-based secondary battery”) has excellent battery performance, but has several hundred charge / discharge cycles. In some cases, significant cycle deterioration (capacity deterioration) may occur suddenly. Sudden cycle deterioration of a battery may prevent normal operation of a device that uses the battery as a power source. It is expected that the operation of the computer will suddenly stop and the data being created will be lost. In an electric vehicle, it is predicted that the drive motor may suddenly stop during traveling, which may cause some trouble in traveling.
  • Patent Document 1 calculates a secondary battery, a voltage change amount of the secondary battery, a comparison unit that compares the calculated voltage change amount and a set value, and opens and closes a circuit according to a command from the comparison unit.
  • a battery pack including the means.
  • a nonaqueous electrolyte secondary battery that includes a positive electrode, a negative electrode, and a nonaqueous electrolyte, the positive electrode contains at least two active materials having different operating potentials, and the negative electrode is made of Li or a Li alloy is used. . Based on the fact that the positive electrode contains active materials having different operating voltages, the remaining capacity is predicted from the voltage change amount of the battery. However, the remaining capacity is a reference value for performing the next charge, and is not a reference value for notifying the replacement time of the battery.
  • the battery replacement time is predicted from the proportional relationship between the discharge capacity and the number of charge / discharge cycles.
  • the proportional relationship is only established between the number of charge / discharge cycles up to about 200 cycles and the discharge capacity.
  • the battery does not deteriorate after about 200 cycles, it is difficult to accurately predict the battery replacement time from the proportional relationship.
  • Patent Document 2 discloses a battery capacity prediction device that calculates battery capacity from the relationship between the state of charge (SOC) of a nonaqueous electrolyte secondary battery and temperature.
  • SOC state of charge
  • FIG. 1 of Patent Document 2 shows that the battery temperature and the battery capacity deterioration rate show a linear relationship for each SOC value in the semilogarithmic graph. The battery capacity is calculated based on this graph.
  • the battery user does not charge the battery so that the SOC is constant. In many cases, charging is stopped halfway. Further charging may be performed at a stage where charging is not required. Therefore, if the replacement time of the secondary battery is predicted based on the graph shown in FIG. 1 of Patent Document 2, a large error may occur.
  • Patent Document 3 discloses a battery pack including a flat battery, a label wound around the battery, and swelling detection means.
  • the swelling detection means is a cut groove formed on the label surface.
  • An object of the present invention is to provide a battery pack provided with a determination mechanism capable of accurately determining the replacement time of the alloy secondary battery or the presence or absence of cycle deterioration together with the alloy secondary battery.
  • the battery pack of the present invention includes a non-aqueous electrolyte secondary battery, thickness detection means, cycle number detection means, and determination means.
  • the nonaqueous electrolyte secondary battery includes an electrode group, a lithium ion conductive nonaqueous electrolyte, and a battery case.
  • the electrode group includes a positive electrode containing a positive electrode active material capable of inserting and extracting lithium, a negative electrode containing an alloy-based active material, and an insulating layer disposed so as to be interposed between the positive electrode and the negative electrode.
  • the battery case contains an electrode group and a lithium ion conductive nonaqueous electrolyte.
  • the thickness detection means detects the thickness of the electrode group.
  • the cycle number detection means detects the number of charge / discharge cycles of the nonaqueous electrolyte secondary battery.
  • the determination means determines the replacement timing of the nonaqueous electrolyte secondary battery or the presence or absence of cycle deterioration according to the detection result by the thickness detection means and the detection result by the cycle number detection means.
  • the battery pack of the present invention has a high capacity and a high output by including an alloy-based secondary battery.
  • the replacement time of the alloy-based secondary battery and the presence or absence of cycle deterioration can be almost accurately determined without significant design change and a significant increase in dimensions compared to the conventional battery pack. Predictable. Therefore, the sudden stop of the electric and electronic equipment using the battery pack of the present invention as a power source is suppressed.
  • the battery pack of the present invention does not increase significantly in size, it can easily cope with the reduction in size and thickness of electronic devices.
  • FIG. 1 It is a block diagram which shows typically the structure of the battery pack which is 1st Embodiment of this invention. It is a longitudinal cross-sectional view which shows typically the structure of the nonaqueous electrolyte secondary battery with which the battery pack shown in FIG. 1 is equipped.
  • 3 is a flowchart showing an embodiment of a method for determining replacement time of the nonaqueous electrolyte secondary battery shown in FIG. 2. It is a graph which shows roughly the relationship between the frequency
  • FIG. 1 It is a block diagram which shows typically the structure of the battery pack which is 3rd Embodiment of this invention. It is a flowchart which shows one Embodiment of the cycle deterioration determination method of the nonaqueous electrolyte secondary battery shown in FIG. It is a perspective view which shows typically the structure of the negative electrode collector of another form. It is a longitudinal cross-sectional view which shows typically the structure of the negative electrode of another form containing the negative electrode collector shown in FIG. It is a longitudinal cross-sectional view which shows typically the structure of the columnar body contained in the negative electrode active material layer of the negative electrode shown in FIG. It is a side view which shows typically the structure of an electron beam vapor deposition apparatus. It is a side view which shows typically the structure of the electron beam type vapor deposition apparatus of another form.
  • FIG. 1 is a block diagram schematically showing the configuration of the battery pack 1 according to the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing the configuration of the nonaqueous electrolyte secondary battery 10 provided in the battery pack 1 shown in FIG.
  • FIG. 3 is a flowchart showing an embodiment of a method for determining the replacement time of the nonaqueous electrolyte secondary battery 10 shown in FIG.
  • FIG. 4 is a graph schematically showing the relationship between the number of charge / discharge cycles and the thickness of the electrode group in the nonaqueous electrolyte secondary battery 10 shown in FIG.
  • the battery pack 1 includes a non-aqueous electrolyte secondary battery 10, a thickness detection unit 11, a cycle number detection unit 12, a first determination unit 13, a replacement time notification unit 14, and an exterior body (not shown).
  • Nonaqueous electrolyte secondary battery 10 includes a flat-type lithium ion secondary battery including a stacked electrode group 20 stacked with a separator 23 interposed between a positive electrode 21 and a negative electrode 22. It is.
  • the stacked electrode group 20 is accommodated in the battery case 27 together with a lithium ion conductive non-aqueous electrolyte (hereinafter sometimes simply referred to as “non-aqueous electrolyte”) (not shown).
  • a separator 23 is used as an insulating layer.
  • One end of the positive electrode lead 24 is connected to the positive electrode current collector 21a, and the other end is led out from one opening 27a of the battery case 27 and connected to the external connection terminal 15a.
  • One end of the negative electrode lead 25 is connected to the negative electrode current collector 22a, and the other end is led out from the other opening 27b of the battery case 27 and connected to the external connection terminal 15b.
  • the battery case 27 of the present embodiment is a laminate film container having openings 27a and 27b at both ends. After the stacked electrode group 20 and the nonaqueous electrolyte are stored in the battery case 27, the battery 10 is obtained by putting the gasket 26 into the openings 27a and 27b and welding them in a decompressed state inside the battery case 27. Further, the openings 27a and 27b may be directly welded without using the gasket 26.
  • the stacked electrode group 20 (hereinafter referred to as “electrode group 20”) includes a positive electrode 21, a negative electrode 22, and a separator 23, and is disposed such that the separator 23 is interposed between the positive electrode 21 and the negative electrode 22.
  • the positive electrode 21 includes a positive electrode current collector 21a and a positive electrode active material layer 21b.
  • a conductive substrate such as a porous conductive substrate or a non-porous conductive substrate can be used.
  • the material of the conductive substrate is a metal material such as stainless steel, titanium, aluminum, aluminum alloy, or a conductive resin.
  • Examples of porous conductive substrates include mesh bodies, net bodies, punching sheets, lath bodies, porous bodies, foams, and nonwoven fabrics.
  • Non-porous conductive substrates include foils, sheets, films, and the like.
  • the thickness of the conductive substrate is usually 1 to 500 ⁇ m, preferably 5 to 100 ⁇ m, and more preferably 8 to 50 ⁇ m.
  • the positive electrode active material layer 21b of the present embodiment is provided on one surface in the thickness direction of the positive electrode current collector 21a, but may be provided on both surfaces in the thickness direction.
  • the positive electrode active material layer 21b includes a positive electrode active material, and may further include a conductive agent, a binder, and the like.
  • the positive electrode active material those commonly used in the field of non-aqueous electrolyte secondary batteries can be used, and among these, lithium-containing composite oxides, olivine-type lithium phosphate, and the like are preferable.
  • the lithium-containing composite oxide is a metal oxide containing lithium and a transition metal element or a metal oxide in which a part of the transition metal element in the metal oxide is substituted with a different element.
  • the transition metal element include Sc, Y, Mn, Fe, Co, Ni, Cu, and Cr, and Mn, Co, Ni, and the like are preferable.
  • different elements include Na, Mg, Zn, Al, Pb, Sb, and B, and Mg, Al, and the like are preferable.
  • a transition metal element and a different element can be used individually by 1 type or in combination of 2 or more types, respectively.
  • Lithium-containing composite oxides include Li 1 CoO 2 , Li l NiO 2 , Li l MnO 2 , Li l Com m Ni 1-m O 2 , Li l Com m M 1-m O n , Li l Ni 1 1-. m M m O n, Li l Mn 2 O 4, Li l Mn 2-m M m O 4 ( in each of the formulas above, M is Sc, Y, Mn, Fe, Co, Ni, Cu, Cr, Na, Mg And at least one element selected from the group consisting of Zn, Al, Pb, Sb and B. 0 ⁇ l ⁇ 1.2, 0 ⁇ m ⁇ 0.9, 2.0 ⁇ n ⁇ 2.3), etc. Is mentioned. Among these, Li l Co m M 1- m O n is preferred.
  • Examples of the olivine type lithium phosphate include LiXPO 4 and Li 2 XPO 4 F (wherein X represents at least one element selected from the group consisting of Co, Ni, Mn and Fe).
  • the number of moles of lithium is a value immediately after the production of the positive electrode active material, and increases or decreases due to charge / discharge.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • conductive agent those commonly used in the field of non-aqueous electrolyte secondary batteries can be used. Natural graphite, graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black Carbon blacks such as carbon fibers, conductive fibers such as carbon fibers and metal fibers, metal powders such as aluminum, and carbon fluoride.
  • a conductive agent can be used individually by 1 type or in combination of 2 or more types.
  • ⁇ A polymer material can be used for the binder.
  • Polymer materials include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polymethyl acrylate, polyethyl acrylate, polyacrylic acid Resin materials such as hexyl, polymethacrylic acid, polymethyl methacrylate, polyethyl methacrylate, polyhexyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, polyhexafluoropropylene, styrene butadiene rubber, modified There are rubber materials such as acrylic rubber and water-soluble polymer materials such as carboxymethylcellulose.
  • a copolymer containing two or more types of monomer compounds may be used as the polymer material.
  • the monomer compound include tetrafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene.
  • a binder can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode active material layer 21b can be formed by applying a positive electrode mixture slurry on the surface of the positive electrode current collector 21a, and drying and rolling the obtained coating film.
  • the positive electrode mixture slurry can be prepared by dissolving or dispersing a positive electrode active material and, if necessary, a conductive agent and a binder in an organic solvent.
  • organic solvent dimethylformamide, dimethylacetamide, methylformamide, N-methyl-2-pyrrolidone, dimethylamine, acetone, cyclohexanone and the like can be used.
  • the negative electrode 22 includes a negative electrode current collector 22a and a negative electrode active material layer 22b.
  • a non-porous conductive substrate is used for the negative electrode current collector 22a.
  • the material of the conductive substrate is a metal material such as stainless steel, titanium, nickel, copper, or copper alloy.
  • Non-porous conductive substrates include foils and films.
  • the thickness of the conductive substrate is not particularly limited, but is usually 1 to 500 ⁇ m, preferably 5 to 100 ⁇ m, and more preferably 8 to 50 ⁇ m.
  • the negative electrode active material layer 22b of the present embodiment is provided on one surface in the thickness direction of the negative electrode current collector 22a, but may be provided on both surfaces in the thickness direction.
  • the negative electrode active material layer 22b contains an alloy-based active material, and may further include known negative-electrode active materials, additives, and the like other than the alloy-based active material as long as the characteristics thereof are not impaired.
  • the negative electrode active material layer 22b is preferably an amorphous or low crystalline thin film containing an alloy-based active material and having a thickness of 1 to 20 ⁇ m.
  • the alloy-based active material occludes lithium by alloying with lithium, and reversibly occludes and releases lithium under a negative electrode potential.
  • the alloy-based active material includes a silicon-based active material and a tin-based active material.
  • An alloy active material can be used individually by 1 type or in combination of 2 or more types.
  • Silicon-based active materials include silicon, silicon compounds, partial substitutes thereof, and solid solutions thereof.
  • Silicon compounds include silicon oxides represented by the formula SiO a (0.05 ⁇ a ⁇ 1.95), silicon carbides represented by the formula SiC b (0 ⁇ b ⁇ 1), and formula SiN c (0 ⁇
  • the silicon alloy is an alloy of silicon and a different element (A).
  • the different element (A) is at least one element selected from the group consisting of Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti.
  • the partially substituted body is a compound in which a part of silicon atoms contained in silicon and the silicon compound is substituted with a different element (B).
  • the different element (B) is selected from the group consisting of B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn. At least one element. Among these, silicon and silicon compounds are preferable, and silicon oxide is more preferable.
  • tin-based active materials include tin, tin compounds, tin oxides represented by the formula SnO d (0 ⁇ d ⁇ 2), tin dioxide (SnO 2 ), tin nitride, Ni—Sn alloys, Mg—Sn alloys , Fe—Sn alloy, Cu—Sn alloy, Ti—Sn alloy and other tin alloys, SnSiO 3 , Ni 2 Sn 4 , Mg 2 Sn and other tin compounds, and solid solutions thereof.
  • tin-based active materials tin oxide, tin alloy, tin compound, and the like are preferable.
  • the alloy-based active materials silicon, silicon oxide, tin oxide and the like are preferable, and silicon oxide is more preferable.
  • the negative electrode active material layer 22b is formed by a vapor phase method.
  • the vapor phase method include a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a chemical vapor deposition (CVD) method, a plasma chemical vapor deposition method, and a thermal spraying method.
  • the vacuum evaporation method is preferable.
  • the negative electrode current collector 22a is disposed above the silicon target in the vertical direction.
  • the silicon target is irradiated with an electron beam to generate silicon vapor, and this silicon vapor is deposited on the surface of the negative electrode current collector 22a.
  • the negative electrode active material layer 22b made of silicon is formed on the surface of the negative electrode current collector 22a.
  • oxygen or nitrogen is supplied into the electron beam vacuum deposition apparatus, the negative electrode active material layer 22b containing silicon oxide or silicon nitride is formed.
  • the negative electrode active material layer 22b of the present embodiment is formed as a thin solid film, but is not limited thereto, and may be formed into a pattern shape such as a lattice by a vapor phase method, and includes a plurality of columnar bodies. You may form as follows. Each of the plurality of columnar bodies contains an alloy-based active material, extends outward from the surface of the negative electrode current collector, and is formed such that there are voids between a pair of adjacent columnar bodies.
  • the convex portions are regularly formed, the arrangement of the convex portions on the surface of the negative electrode current collector includes a grid arrangement, a lattice arrangement, a houndstooth arrangement, a close-packed arrangement, and the like. Further, the convex portion is formed on one surface or both surfaces in the thickness direction of the negative electrode current collector.
  • the height of the columnar body is preferably 3 ⁇ m to 30 ⁇ m.
  • the separator 23 is a lithium ion permeable insulating layer disposed so as to be interposed between the positive electrode 21 and the negative electrode 22.
  • the separator 23 may have lithium ion conductivity.
  • a porous film having pores can be used as the separator 23, a porous film having pores can be used. Examples of the porous film include a microporous film, a woven fabric, and a non-woven fabric.
  • the microporous film is a single layer film or a multilayer film (composite film). Further, two or more microporous membranes, woven fabrics, nonwoven fabrics, etc. may be laminated and used as the separator 23.
  • the thickness of the separator 23 is usually 5 to 300 ⁇ m, preferably 8 to 40 ⁇ m, and more preferably 10 to 30 ⁇ m.
  • the porosity of the separator 23 is preferably 30 to 70%, more preferably 35 to 60%. The porosity is a percentage of the total volume of pores existing in the separator 23 in the volume of the separator 23.
  • the electrode group 20 and the separator 23 are impregnated with a non-aqueous electrolyte having lithium ion conductivity.
  • the non-aqueous electrolyte of this embodiment is a liquid non-aqueous electrolyte.
  • the liquid non-aqueous electrolyte contains a solute (supporting salt) and a non-aqueous solvent, and may further contain various additives.
  • Solutes include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, Examples include LiI, LiBCl 4 , borate salts, and imide salts. Solutes can be used singly or in combination of two or more. The dissolved amount of the solute is preferably 0.5 to 2 mol with respect to 1 liter of the nonaqueous solvent.
  • Non-aqueous solvents include cyclic carbonates, chain carbonates, and cyclic carboxylic acid esters.
  • cyclic carbonate include propylene carbonate and ethylene carbonate.
  • chain carbonate include diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate and the like.
  • cyclic carboxylic acid esters include ⁇ -butyrolactone and ⁇ -valerolactone.
  • a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types.
  • Additives include vinylene carbonate compounds that improve charge / discharge efficiency, benzene compounds that inactivate batteries, and the like.
  • Examples of the vinylene carbonate compound include vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, and the like.
  • Examples of the benzene compound include cyclohexylbenzene, biphenyl, diphenyl ether and the like.
  • a gel-like non-aqueous electrolyte may be used instead of the liquid non-aqueous electrolyte.
  • the gel-like nonaqueous electrolyte contains a liquid nonaqueous electrolyte and a polymer material.
  • the polymer material polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, or the like can be used.
  • the separator 23 is used as the insulating layer, but a porous heat-resistant layer may be used instead of the separator 23. Moreover, you may use together the separator 23 and a porous heat-resistant layer.
  • the porous heat-resistant layer is formed on at least one surface of the positive electrode active material layer 21b and the negative electrode active material layer 22b.
  • the porous heat-resistant layer contains an inorganic oxide and a binder.
  • Inorganic oxides include alumina, titania, silica, magnesia, calcia and the like.
  • Various polymer materials can be used for the binder.
  • the content of the inorganic oxide in the porous heat-resistant layer is preferably 90 to 99.5% by weight of the total amount of the porous heat-resistant layer, and the balance is the binder.
  • the porous heat-resistant layer can be formed in the same manner as the positive electrode active material layer 21b.
  • An inorganic oxide and a binder are dissolved or dispersed in an organic solvent to prepare a slurry, and this slurry is applied to the surface of the positive electrode active material layer 21b and / or the negative electrode active material layer 22b and dried to make porous.
  • a heat-resistant layer can be formed.
  • the thickness of the porous heat-resistant layer is preferably 1 to 10 ⁇ m.
  • a solid electrolyte layer may be used as an insulating layer instead of the separator 23 and the liquid nonaqueous electrolyte.
  • the solid electrolyte layer contains a solid electrolyte such as an inorganic solid electrolyte or an organic solid electrolyte.
  • inorganic solid electrolytes include sulfide-based inorganic solid electrolytes, oxide-based inorganic solid electrolytes, other lithium-based inorganic solid electrolytes, and glass ceramics on which crystals of these inorganic solid electrolytes are deposited.
  • the sulfide-based inorganic solid electrolyte includes (Li 3 PO 4 ) x- (Li 2 S) y- (SiS 2 ) z glass, (Li 2 S) x- (SiS 2 ) y , (Li 2 S) x -(P 2 S 5 ) y , Li 2 S—P 2 S 5 , thio-LISICON, etc.
  • oxide-based inorganic solid electrolyte include NASICON type such as LiTi 2 (PO 4 ) 3 , LiZr 2 (PO 4 ) 3 , LiGe 2 (PO 4 ) 3 , (La 0.5 + x Li 0.5-3x ) TiO 2.
  • lithium-based inorganic solid electrolytes include LiPON, LiNbO 3 , LiTaO 3 , Li 3 PO 4 , LiPO 4 ⁇ x N x (x is 0 ⁇ x ⁇ 1), LiN, LiI, LISICON, and the like.
  • organic solid electrolyte examples include ion conductive polymers and polymer electrolytes.
  • Ion conductive polymers include low phase transition temperature (Tg) polyethers, amorphous vinylidene fluoride copolymers, mixtures of different polymers, and the like.
  • the polymer electrolyte includes a polymer electrolyte containing a matrix polymer and a lithium salt.
  • the matrix polymer include polyethylene oxide, polypropylene oxide, a copolymer of ethylene oxide and propylene oxide, a polymer having an ethylene oxide unit and / or a propylene oxide unit, and a polycarbonate.
  • the same lithium salt as the solute of the liquid nonaqueous electrolyte can be used.
  • the material of the positive electrode lead 24 is aluminum or the like.
  • the material of the negative electrode lead 25 is nickel, copper, copper alloy, or the like.
  • the material of the gasket 26 is polyolefin, fluorine resin, or the like.
  • the battery case 27 is a rectangular bag-shaped container made of a laminate film and having openings 27a and 27b at both ends in the longitudinal direction.
  • Laminate film includes acid-modified polypropylene / polyethylene terephthalate (PET) / Al foil / PET laminate film, acid-modified polyethylene / polyamide / Al foil / PET laminate film, ionomer resin / Ni foil / polyethylene / PET laminate film,
  • metal foils and resin films such as ethylene vinyl acetate / polyethylene / Al foil / PET laminate films and ionomer resin / PET / Al foil / PET laminate films.
  • the material of the battery case 27 of the present embodiment is a laminate film, but is not limited thereto, and may be a metal material, a resin material, or the like.
  • the metal material include aluminum, magnesium, titanium, iron, stainless steel, and alloys thereof.
  • Resin materials include fluororesin, ABS resin, polycarbonate, polyethylene terephthalate, and the like.
  • the battery 10 of the present embodiment is a laminated film pack battery including the electrode group 20, but is not limited thereto, a cylindrical battery including a wound electrode group, and a flat type in which the wound electrode group is formed into a flat shape.
  • a square battery including an electrode group, a coin battery including a stacked electrode group, and the like may be used.
  • the thickness detection unit 11 detects the thickness of the electrode group 20 in the battery 10.
  • the thickness detection means 11 is connected to the first determination means 13 so that information can be exchanged. Specific examples include electrical connection and optical connection.
  • the thickness detector 11 detects the internal pressure (thickness information) of the electrode group 20 of the battery 10 and calculates the thickness of the electrode group 20.
  • the thickness detection unit 11 outputs the detection result (calculation result) to the first determination unit 13.
  • the thickness detection unit 11 is disposed in the vicinity of the battery 10 and includes a pressure detection unit, a voltage detection unit, a first storage unit, a first calculation unit, and a first control unit, which are not shown. It is preferable to arrange the pressure detection means and the voltage detection means in the vicinity of the battery 10.
  • the pressure detection means detects the internal pressure of the electrode group 20 in the battery 10.
  • the internal pressure of the electrode group 20 is detected by bringing the pressure detection means into contact with the central portion of the flat portion of the battery 10.
  • the flat portion of the battery 10 is a portion in which the electrode group 20 in the battery case 27 is accommodated.
  • the electrode group 20 is preferably a stacked electrode group or a flat electrode group.
  • the central part of the battery 10 is a part facing the center of the electrode group 20 through the battery case 27 in the thickness direction of the battery case 27.
  • the shape of these viewed from the upper side in the vertical direction (upper side in FIG. 2) is a square.
  • the intersection of the diagonal lines in this square is the center of the electrode group 20.
  • the central portion of the battery 10 does not need to coincide with the center of the electrode group 20 accurately, and the internal pressure of the electrode group 20 can be detected almost accurately even in the vicinity of the center of the electrode group 20.
  • the portion near the center of the electrode group 20 is, for example, a circular region having a radius of 5 to 10 mm from the center of the electrode group 20.
  • the dimensions of the battery case 27 correspond to the dimensions of the electrode group 20.
  • the dimensions of the electrode group 20 correspond to the dimensions of the battery case 27.
  • the thickness of the internal space of the battery case 27 and the thickness of the electrode group 20 are preferably designed to be substantially the same.
  • the material of the battery case 27 is preferably a laminate film, a flexible synthetic resin material, a metal material that is relatively easily deformed by an external stress, or the like.
  • a pressure sensor can be used as the pressure detection means.
  • limit especially as a pressure sensor
  • a small pressure sensor is preferable.
  • Many small pressure sensors are commercially available, such as HSPC series (trade name, manufactured by Alps Electric Co., Ltd.), PS-A pressure sensor (trade name, manufactured by Panasonic Electric Works Co., Ltd.), and the like.
  • the voltage detection means measures the OCV value of the battery 10.
  • the voltage detection means first detects the OCV value at the start of discharging of the battery 10 and outputs the detection result to the first storage means. Further, the voltage detection means measures the OCV value of the battery 10 at a predetermined interval, and outputs the detection result to the first storage means. Various voltmeters can be used for the voltage detection means.
  • the first control means compares the OCV value at the start of discharge with the newly input OCV value each time a new detection result by the voltage detection means is input to the first storage means, and the newly input OCV value is It is determined whether it is 50% or less at the start of discharge.
  • the OCV value at the start of discharge is used as a reference unless the battery 10 is charged. Judgment is made. Each time the battery 10 is charged and then the OCV value at the start of discharge is measured, the OCV value at the start of discharge in the first storage means is updated to a new value.
  • the data relating to the battery 10 is input to the first storage means.
  • the data include, for example, the initial thickness of the negative electrode active material layer 22b, the initial thickness of the electrode group 20, the number of stacked layers of the electrode group 20, or the number of defects.
  • the first storage means has a relationship between the internal pressure and the thickness of the electrode group 20 based on the initial thickness of the negative electrode active material layer 22b, the initial thickness of the electrode group 20, and the number of stacked layers of the electrode group 20 or the number of wrinkles.
  • the first data table shown is input. The first data table is created in advance by experiments.
  • the proportionality constant ⁇ it is necessary to determine the number of stacked electrode groups 20 or the number of turns.
  • the number of stacked electrode groups 20 or the number of wrinkles is determined when a new battery 10 is attached to the battery pack 1.
  • the new battery 10 is normally attached to the battery pack 1 in a state where it is not fully charged, and initial charging is performed to fully charge the battery 10. After the first charge, the OCV value at the start of discharge is detected by the voltage detection means.
  • the detection result by the voltage detection means is input to the first storage means.
  • a second data table indicating the relationship between the number of stacked electrode groups 20 or the number of soot and the OCV value at the start of discharge after the first charge is input to the first storage means.
  • the stepwise numerical value width similar to the first data table is set for the number of stacked electrode groups 20 or the number of wrinkles.
  • the first calculation means compares the detection result (OCV value at the start of discharge after the first charge) by the voltage detection means and the second data table, determines the number of stacks or the number of times the electrode group 20 is stacked in the battery 10, Output to the first storage means.
  • the first calculation means calculates the thickness of the electrode group 20 based on the detection result (internal pressure value of the electrode group 20) by the pressure detection means, the number of stacked layers or the number of wrinkles of the electrode group 20, and the first data table.
  • a program for calculating the thickness of the electrode group 20 from the first data table based on the detection result by the pressure detection means is input to the first storage means.
  • the calculation method of the thickness of the electrode group 20 is as described above.
  • This program is executed in the first calculation means.
  • a detection result by the pressure detection unit is input to the first storage unit. This detection result is rewritten every time a new detection result is input.
  • the first calculation means takes out the detection result and the first data table from the first storage means every time the detection result by the pressure detection means is newly input to the first storage means, and calculates the thickness of the electrode group 20. To do.
  • the first calculation means outputs the calculation result to the first determination means 13.
  • the first control means controls the voltage detection means so as to measure the OCV value at the start of discharge after the battery 10 is charged and then measure the OCV value at a predetermined time interval. Further, the first control means outputs a control signal to the pressure detection means according to a determination result by the first calculation means that “the OCV value is 50% or less of the OCV value at the start of discharge”. The internal pressure of the electrode group 20 is detected by the means. The first control means outputs a control signal to the second control means of the cycle number detection means 12 at the same time as outputting the control signal to the pressure detection means, and causes the cycle number detection means 12 to execute the cycle number detection. .
  • the first storage unit, the first calculation unit, and the first control unit are configured as a processing circuit including a microcomputer, an interface, a memory, a timer, and the like.
  • Various memories that are commonly used in this field can be used as the first storage means, and examples thereof include a read only memory (ROM), a random access memory (RAM), a semiconductor memory, and a nonvolatile flash memory.
  • Cycle number detection means 12 detects the cumulative number of charge / discharge cycles of the battery 10 at the time when the thickness detection means 11 detects the internal pressure of the electrode group 20. In the present embodiment, one charging / discharging cycle means a case where the battery 10 is fully charged and then discharged until the next charging is necessary.
  • the cycle number detection means 12 is electrically or optically connected to the first determination means 13 and outputs the detection result to the first determination means 13.
  • the cycle number detection means 12 includes a voltage detection means, a second storage means, a second calculation means, and a second control means, not shown.
  • the voltage detection means periodically detects the OCV value when the battery 10 is discharged and charged. In addition, the detection of the OCV value by the voltage detection means is performed at a predetermined interval shorter than when one charge / discharge cycle is performed.
  • the voltage detection means for example, a voltmeter or the like can be used.
  • the detection result by the voltage detection unit is input to the second storage unit over time.
  • the cycle number detection means 12 performs the first determination on the determination result when the second calculation means determines that the OCV value at the time of discharging the battery 10 is 50% or less of the OCV value immediately after charging (at the start of discharging). Output to means 13. Thereby, the internal pressure detection of the electrode group 20 by the thickness detection means 11 is started.
  • One voltage detection means may be shared by both the thickness detection means 11 and the cycle number detection means 12.
  • the detection result by the voltage detection means is input to the second storage means over time.
  • the determination result (number of charge / discharge cycles) determined by the second calculation means is input to the second storage means according to the detection result by the voltage detection means.
  • the second storage means adds and stores the determination result to the latest determination result.
  • a third data table indicating the relationship between the OCV value and the number of stacked electrode groups 20 or the number of wrinkles is input to the second storage means.
  • the third data table can be obtained in advance by experiments or the like.
  • the number of stacked electrode groups 20 or the number of wrinkles is described in stages, for example, 1 to 5, 6 to 10, and 11 to 15. This is the same as the data table input to the first storage means of the thickness detection means 11.
  • the second storage means stores the number of stacked electrode groups 20 of the battery 10 based on the program of the method for determining the number of charge / discharge cycles by the second calculating means, the detection result by the voltage detecting means, and the third data table. A program for determining the number of times is input.
  • the second calculation means takes out the OCV value detection result over time from the second storage means, and is more satisfactory than the previous determination. It is determined whether or not the number of discharge cycles has increased by one. If it is determined that the number of charge / discharge cycles has increased by 1, the determination result is output to the second storage means.
  • the second storage means adds “+1” to the most recent charge / discharge cycle number based on the newly input determination result.
  • the second control unit causes the second calculation unit to determine the number of charge / discharge cycles in synchronization with the start of the internal pressure detection by the thickness detection unit 11.
  • the cycle number detection means 12 detects the number of charge / discharge cycles at the same time as the detection by the thickness detection means 11 is started, and obtains the latest determination result (number of charge / discharge cycles) by the second calculation means. It outputs to the 1st determination means 13 as a detection result.
  • the second calculation means determines the number of stacked electrodes or the number of times the electrode group 20 of the battery 10 is based on the detection result of the voltage detection means and the third data table.
  • the second calculation means outputs this determination result to the first determination means 13.
  • This determination result is used, for example, in the first determination unit 13 to determine the set value (reference value) of the minimum value of the electrode group 20 thickness in the battery 10.
  • the first calculation means, and the first control means, the second storage means, the second calculation means, and the second control means are configured as a processing circuit including a microcomputer, an interface, a memory, a timer, and the like.
  • the Various memories similar to the first storage means can be used for the second storage means.
  • One processing circuit can include a first storage unit, a first calculation unit and a first control unit, and a second storage unit, a second calculation unit and a second control unit.
  • the first determination unit 13 calculates the battery replacement time according to the detection result (calculation result) by the thickness detection unit 11 and the detection result (determination result) by the cycle number detection unit 12. More specifically, the first determination unit 13 determines the thickness of the electrode group 20 detected by the thickness detection unit 11 according to the detection result by the thickness detection unit 11 and the detection result by the cycle number detection unit 12. It is determined whether or not it is minimum, and the battery replacement time is calculated according to the determination result that the thickness of the electrode group 20 is minimum.
  • the first determination unit 13 compares the detection result of the thickness detection unit 11 with the set value (reference value) of the minimum thickness of the electrode group 20, thereby determining the thickness of the first detection unit 13. It is determined whether or not the detection result is the minimum thickness of the electrode group 20.
  • the detection result by the thickness detecting means 11 is preferably the set value ⁇ 0.90 to the set value ⁇ 1.10, more preferably the set value ⁇ 0.95 to the set value ⁇ 1.05.
  • the internal pressure and thickness of the electrode group 20 may slightly change from the set values depending on the material, shape, dimensions, and the like of the battery case 27. Therefore, when determining whether or not the thickness of the electrode group 20 is minimum, it is possible to determine a more accurate replacement time by giving the setting value a little width.
  • the first determination means 13 may be used in place of the first control means and the second control means without providing the first control means of the thickness detection means 11 and the second control means of the cycle number detection means 12. it can.
  • the OCV value at the time of discharging the battery 10 from the voltage detection means included in the thickness detection means 11 or the cycle number detection means 12 is 50% or less of the OCV value immediately after charging.
  • the input of the determination result is received.
  • the first determination unit 13 outputs a control signal to the thickness detection unit 11 and the cycle number detection unit 12, and the thickness detection unit 12 detects the thickness of the battery 10 and the cycle number detection unit 12. The detection of the number of charge / discharge cycles of the battery 10 is performed.
  • the first determination unit 13 includes, for example, a third storage unit, a third calculation unit, and a third control unit.
  • a fourth data table and a fifth data table are input in advance in the third storage means.
  • a 4th data table shows the relationship between the minimum thickness of the electrode group 20, and the charging / discharging cycle number by which the electrode group 20 becomes the minimum thickness for every lamination
  • the number of stacked electrodes or the number of wrinkles of the electrode group 20 are shown in stages such as 1 to 5, 6 to 10, and 11 to 15, for example.
  • the number of stacked electrode groups 20 or the number of wrinkles can be determined from the detection of the OCV value by the voltage detecting means.
  • the determination result of the number of stacked electrode groups 20 or the number of wrinkles is input from the thickness detection means 11 or the cycle number detection means 12 to the third storage means of the first determination means 13.
  • the third calculation means determines whether the detection result by the thickness detection means 11 is the minimum thickness of the electrode group 20 from the fourth data table and the determination result of the number of stacked layers or the number of wrinkles. judge. In this case, the third calculation means also refers to the detection result by the cycle number detection means 12.
  • the detection result by the cycle number detection means 12 is smaller than the number of charge / discharge cycles corresponding to the minimum thickness of the electrode group 20 in the fourth data table, it is not determined that the electrode group 20 has reached the minimum thickness. Then, a control signal is output to the first control unit, and the thickness detection unit 11 is caused to execute detection again. If it is determined that the electrode group thickness is minimum even in the second detection, it is determined that the electrode group thickness is minimum even if the number of charge / discharge cycles does not match.
  • the fifth data table shows the relationship between the number Z of charge / discharge cycles and the thickness T of the electrode group 20 after the electrode group 20 reaches the minimum thickness in the battery 10. This relationship is obtained in advance by experiments. Moreover, this relationship is calculated
  • the present inventors have found that in the battery 10 using the alloy-based active material, the number of charge / discharge cycles and the thickness of the electrode group 20 show a special relationship. That is, as shown in FIG. 4, the thickness of the electrode group 20 and the number of charge / discharge cycles have a substantially negative proportional relationship from the use start point N 0 of the battery 10 to the predetermined number of charge / discharge cycles N 1. is doing. Until the charge-discharge cycle number N 1, the thickness of the electrode group 20 is gradually decreased, the thickness of the electrode group 20 is minimized in the charge-discharge cycle number N 1. Therefore, the minimum thickness of the electrode group 20 can be obtained in advance by experiments.
  • the thickness of the electrode group 20 is gradually increased.
  • the phenomenon that the thickness of the electrode group 20 changes is not recognized in the nonaqueous electrolyte secondary battery using the negative electrode active material other than the alloy-based active material.
  • the thickness of the particles increases in the C-axis direction.
  • the number of cycles may be inversely proportional. Therefore, it is preferable to prepare the electrode group 20 in advance and grasp the change in the thickness of the electrode group 20 as the number of charge / discharge cycles increases.
  • the thickness of the electrode group 20 is increased because the optimization of the particle shape of the alloy-based active material particles is completed at the number of charge / discharge cycles N 1 . Presumed to be.
  • the present inventors have found that in the battery 10 having the characteristics as described above, the minimum thickness of the electrode group 20, if the charge-discharge cycle number N 1 at that time is known, it can be almost accurately predict time for replacement of the battery 10 I found. Specifically, after the electrode group 20 reaches the minimum thickness, the present inventors have a highly reproducible correlation between the electrode group thickness T and the number of charge / discharge cycles Z. It was found that it was established. Therefore, if the relationship between the electrode group thickness T after the electrode group 20 reaches the minimum thickness and the charge / discharge cycle number Z is measured and converted into data, the electrode after the charge / discharge cycle is performed Z times It becomes possible to know the group thickness T almost accurately.
  • the replacement time of the battery 10 is determined by the thickness of the electrode group 20 in the battery 10.
  • the thickness of the electrode group 20 at the time of replacement is, for example, the thickness of the electrode group 20 at which the capacity of the battery 10 is 50% or less of the initial capacity (capacity at the start of use).
  • the replacement time thickness of the electrode group 20 is input to the third storage means together with the fifth data table. That is, in the battery pack 1, when it is determined that the electrode group 20 has reached the minimum thickness, the number of charge / discharge cycles until the battery 10 is replaced can be predicted almost accurately.
  • the first The determination means 13 determines the number of charge / discharge cycles at that time as the replacement time of the battery 10.
  • the third calculation means determines the minimum thickness of the electrode group 20 according to the number of stacked layers or the number of times of wrinkling in the electrode group 20, and the detection result by the thickness detection means 11 is the minimum electrode group thickness according to the determination result. It is determined whether or not. When the detection result by the thickness detection means 11 matches the minimum electrode group thickness, the number of charge / discharge cycles and the fifth data table at that time are taken out from the third storage means, and the number of charge / discharge cycles until the battery 10 is replaced. And the calculation result is output to the third storage means.
  • the detection result by the thickness detection unit 11 When the detection result by the thickness detection unit 11 does not reach the minimum electrode group thickness, the detection result that the OCV value by the voltage detection unit is 50% or less of the OCV value at the end of charging is input. Each time, the detection result is output to the control means.
  • the third control means outputs control signals to the thickness detection means 11 and the cycle number detection means 12 to detect the electrode group thickness and the number of charge / discharge cycles. Further, the third control means outputs a control signal to the replacement time notifying means 14 after the number of charge / discharge cycles until the replacement time of the battery 10 is determined, and displays the number of charge / discharge cycles.
  • the third storage means, the third calculation means, and the third control means are the same as the first to second storage means, the first to second calculation means, and the first to second control means. It is configured as a processing circuit including the like. Various memories similar to the first and second storage units can be used for the third storage unit.
  • the storage unit, the calculation unit, the control unit, and the like are individually provided for each of the thickness detection unit 11, the cycle number detection unit 12, and the first determination unit 13.
  • Storage means, calculation means, and control means may be provided.
  • a central processing unit CPU
  • CPU central processing unit
  • a processing circuit including a microcomputer, an interface, a memory, a timer, and the like.
  • Replacement time notification means 14 displays the number of charge / discharge cycles up to the replacement time of the battery 10. The displayed number of charge / discharge cycles decreases as the number of charge / discharge cycles of the battery 10 further increases. Further, when the number of charge / discharge cycles until the replacement time falls below, for example, 10 times or 5 times, the number of times may be displayed in a conspicuous color such as red or blinking.
  • the replacement time notification means 14 for example, a liquid crystal, an indicator lamp or the like is used.
  • the replacement time notification means 14 is used, but the present invention is not limited to this, and a replacement time notification means for notifying the battery replacement time calculated by the first determination means 13 by sound may be provided. Furthermore, a charging / discharging control unit that stops charging / discharging of the battery 10 according to the battery replacement time calculated by the first determination unit 13 may be provided. The function of the charge / discharge control means may be added to the first determination means 13.
  • step S1 the OCV value immediately after charging of the battery 10 is detected by the voltage detection means included in the thickness detection means 11 or the cycle number detection means 12, and the OCV value of the battery 10 is periodically detected.
  • step S ⁇ b> 2 the cycle number detection unit 12 determines whether the detection result by the voltage detection unit is 50% or less of the OCV value immediately after the battery 10 is charged. When it is 50% or less, the process proceeds to step S3. If it is not less than 50%, the process returns to step S1.
  • step S3 the determination result that the detection result by the voltage detection means is 50% or less of the OCV value immediately after charging of the battery 10 is input to the first control means of the thickness detection means 11.
  • the first control means outputs a control signal to the pressure detection means, and causes the pressure detection means to detect the internal pressure of the electrode group 20.
  • the thickness detection unit 11 calculates based on the internal pressure detection result of the electrode group 20 by the pressure detection unit, and detects the thickness of the electrode group 20.
  • the detection result of the thickness of the electrode group 20 is input to the first determination unit 13.
  • step S4 the first control unit of the thickness detection unit 11 sends a control signal to the second control unit of the cycle number detection unit 12 in synchronization with the output of the control signal to the pressure detection unit of the thickness detection unit 11. Output.
  • the number of charge / discharge cycles at the time when the thickness of the electrode group 20 is detected by the thickness detection unit 11 is detected.
  • the detection result of the number of charge / discharge cycles is input to the first determination unit 13.
  • step S5 in the first determination means 13, whether or not the detection result of the thickness of the electrode group 20 by the thickness detection means 11 coincides with the minimum thickness of the electrode group 20 (from the minimum thickness of the electrode group 20). Is also larger). If they match, the process proceeds to step S6, and if they do not match, the process returns to step S1.
  • the first determination unit 13 uses the thickness detection unit 11 to detect the thickness of the electrode group 20 and the cycle number detection unit 12 to detect the number of charge / discharge cycles. Calculate the number of times.
  • step S7 the number of charge / discharge cycles up to the battery replacement time calculated in step S6 is displayed on the replacement time notification means 14. In this manner, the operation for obtaining the number of charge / discharge cycles until the battery replacement time in the battery pack 1 of the present invention is completed.
  • FIG. 5 is a block diagram schematically showing the configuration of the battery pack 2 according to the second embodiment of the present invention.
  • the battery pack 2 is similar to the battery pack 1, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the battery pack 2 includes a first determination unit 13a instead of the first determination unit 13, and does not include the cycle number detection unit 12.
  • the other configuration is the same as that of the battery pack 1.
  • the first determination means 13 a has a cycle number detection means different from the cycle number detection means 12 in addition to the first determination means 13.
  • This cycle number detection means detects that the charging voltage is applied to the battery 10 for a certain length or more, and detects this as the number of charge / discharge cycles: one time. Further, since the battery pack 2 does not have a voltage detection unit, the number of stacked electrode groups 20 or the number of wrinkles cannot be determined in the same manner as the battery pack 1. Therefore, the 1st determination means 13a is comprised so that input of the number of lamination
  • the battery pack 2 is provided with a USB input terminal (not shown). Then, by connecting the battery pack 2 and the personal computer via the USB cable, the number of stacked electrode groups 20 or the number of turns can be input to the first determination unit 13a. The number of stacked electrode groups 20 or the number of wrinkles is displayed on the battery 10.
  • the standard of the battery 10 suitable for the battery pack 2 is specified. Therefore, the user can easily select the battery 10 suitable for the battery pack 2. Also in the battery pack 2, as in the battery pack 1, the number of charge / discharge cycles from when the electrode group 20 reaches the minimum thickness to when the battery is replaced can be calculated almost accurately.
  • FIG. 6 is a block diagram schematically showing the configuration of the battery pack 3 according to the third embodiment of the present invention.
  • FIG. 7 is a flowchart showing an embodiment of a method for determining cycle deterioration of the nonaqueous electrolyte secondary battery 10 shown in FIG.
  • the present inventors have found that the swelling characteristics of an alloy-based secondary battery are different from the swelling characteristics of a conventional nonaqueous electrolyte secondary battery containing graphite (hereinafter referred to as “conventional battery”). I found it.
  • the swelling of the battery is mainly caused by the swelling of the electrode group accommodated in the battery case. In the conventional battery, the swelling of the electrode group gradually increases as the number of charge / discharge cycles increases.
  • the thickness of the electrode group gradually decreases in the initial use, and after the electrode group thickness reaches the minimum, the thickness of the electrode group is reduced.
  • the inventors have found that they have a gradually increasing blister characteristic.
  • the present inventors show that there is a correlation (proportional relationship having a predetermined proportionality constant) between the number of charge / discharge cycles and the thickness of the electrode group after the thickness of the electrode group starts to increase. I found. However, the presence or absence of sudden cycle deterioration cannot be determined only by this correlation.
  • the inventor conducted further research on the correlation between the number of charge / discharge cycles and the thickness of the electrode group in an alloy secondary battery. As a result, it was found that in an alloy secondary battery in which significant cycle deterioration occurs suddenly, the rate of increase in the thickness of the electrode group changes abruptly before the cycle deterioration occurs. That is, the number of charging / discharging cycles and the thickness of the electrode group are in a proportional relationship, but it has been found that before the significant cycle deterioration suddenly occurs, the proportionality constant in the proportional relationship changes.
  • the present inventors have conceived a configuration for determining the presence or absence of cycle deterioration from the change in the correlation between the number of charge / discharge cycles and the thickness of the electrode group, before significant cycle deterioration suddenly occurs. It came to do. Then, according to this configuration, it has been found that the presence or absence of cycle deterioration can be determined almost accurately before significant cycle deterioration suddenly occurs.
  • the presence or absence of significant cycle deterioration of the alloy secondary battery can be determined almost accurately. More specifically, in the battery, it can be known that significant cycle deterioration starts to occur in the battery before the significant cycle deterioration suddenly occurs. As a result, it is possible to replace the battery pack in anticipation of significant cycle deterioration and the accompanying occurrence of large battery swelling. For this reason, it is possible to prevent the generation data from being lost or the drive motor from being stopped from running in various electronic devices or electric vehicles that use the battery pack as a power source. Also, even if the battery has a factor that greatly expands, it can be almost certainly prevented.
  • the battery pack 3 of the present embodiment includes a mechanism for realizing a method for determining the presence or absence of cycle deterioration of the nonaqueous electrolyte secondary battery together with the nonaqueous electrolyte secondary battery containing the alloy-based active material. For this reason, it becomes possible to replace the battery pack 3 before significant cycle deterioration suddenly occurs.
  • the battery pack 3 of the present embodiment has high long-term reliability, and is effective as a power source for various electronic devices, a main power source and an auxiliary power source for an electric vehicle, and the like.
  • the battery pack 3 includes a battery 10, a thickness detection unit 16 that detects the thickness of the electrode group 20 included in the battery 10, a cycle number detection unit 17 that detects the number of charge / discharge cycles of the battery 10, and a thickness detection unit. Based on the detection result by the means 16 and the detection result by the cycle number detection means 17, the second determination means 18 for determining the presence or absence of cycle deterioration of the battery 10 and the determination result of the presence of cycle deterioration by the second determination means 18 are displayed.
  • the cycle deterioration notification means 19 external connection terminals 15 a and 15 b connected to connection terminals of an external device, and an exterior body (not shown) are included.
  • the battery 10 the thickness detection means 16, the cycle number detection means 17 and the second determination means 18 are accommodated inside the exterior body.
  • the cycle deterioration notification means 19 is disposed so as to be exposed on the exterior body surface.
  • the external connection terminals 15a and 15b are respectively mounted at predetermined positions on the exterior body.
  • the battery 10 is the battery 10 shown in FIG.
  • the thickness detector 16 detects thickness information of the electrode group 20 included in the battery 10.
  • the thickness detection unit 16 detects the internal pressure of the electrode group 20 as the thickness information of the electrode group 20, and calculates the thickness of the electrode group 20 from the detection result.
  • the thickness detection unit 16 outputs the calculation result to the second determination unit 18.
  • the thickness detection means 16 and the second determination means 18 are connected so as to be able to exchange information. Specifically, there are electrical connection and optical connection.
  • the information exchangeable connection means a connection capable of inputting and outputting detection results and control signals.
  • the thickness detection means 16 of this embodiment includes a pressure sensor, a fourth storage means, a fourth calculation means, and a fourth control means (all not shown), and at least the pressure sensor is a non-aqueous electrolyte secondary battery. 10 is arranged in the vicinity.
  • the pressure sensor, the fourth storage means, the fourth calculation means, and the fourth control means are connected so as to be able to exchange information.
  • the pressure sensor detects the internal pressure of the electrode group 20.
  • the electrode group 20 is a laminated type and has a flat shape, its internal pressure can be accurately detected by the pressure sensor. From the viewpoint of accurately detecting the internal pressure by the pressure sensor, a flat electrode group may be used instead of the electrode group 20.
  • the pressure sensor is preferably brought into contact with the center of the flat portion of the battery 10. Thereby, the internal pressure of the electrode group 20 can be detected more accurately.
  • the flat portion of the battery 10 is the outer surface of the battery case 27 corresponding to the thickness direction surface of the electrode group 20.
  • the central portion of the flat portion is a position corresponding to the center of the surface in the thickness direction of the electrode group 20 on the outer surface of the battery case 27.
  • the electrode group 20 is a laminated type, and the shape of the surface in the thickness direction when viewed from above in the vertical direction is a rectangle such as a rectangle or a square. The intersection of the diagonal lines in the square is the center of the surface of the electrode group 20 in the thickness direction.
  • the central portion of the battery 10 does not need to coincide with the center of the electrode group 20 accurately, and the internal pressure of the electrode group 20 can be detected almost accurately even in the vicinity of the center of the electrode group 20.
  • a portion near the center of the electrode group 20 is a circular region having a radius of about 5 mm to 10 mm from the center of the electrode group 20. Since the shape of the flat electrode group viewed from above in the vertical direction is a square shape like the stacked electrode group 20, the center thereof can be defined in the same manner as the center of the electrode group 20.
  • the pressure sensor detects the internal pressure of the electrode group 20 immediately after the cycle number detection means 17 updates the number of charge / discharge cycles. From the internal pressure of the electrode group 20, the thickness of the electrode group 20 can be known almost accurately. The point that the cycle number detection means 17 updates the number of charge / discharge cycles will be described in the item of the cycle number detection means 17.
  • a sensor conventionally known as a pressure sensor can be used.
  • HSPC series (trade name, manufactured by Alps Electric Co., Ltd.)
  • PS-A pressure sensor (trade name, manufactured by Panasonic Electric Works Co., Ltd.)
  • a small pressure sensor such as) is preferable.
  • the pressure sensor outputs the detection result to the fourth storage means.
  • the detection result by the pressure sensor is input to the fourth storage means. This detection result is rewritten every time a new detection result is input. Based on the detection result, the thickness of the electrode group 20 is calculated and input to the fourth storage means. A sixth data table indicating the relationship between the internal pressure when the electrode group 20 is fully charged and the thickness of the electrode group 20 is input to the fourth storage unit.
  • the sixth data table shows the internal pressure at the time of full charge of the electrode group 20 in a predetermined standard (the number of unit electrodes stacked, the initial thickness of the electrode group 20 and the initial thickness of the negative electrode active material layer 22b). The relationship with the thickness of the electrode group 20 is shown.
  • the sixth data table is created in advance by experiments.
  • the unit electrode is one in which one separator 23 is interposed between one positive electrode 21 and one negative electrode 22.
  • a stacked electrode group in which a plurality of unit electrodes are stacked can be manufactured.
  • the number of stacked electrode groups 20 means the number of stacked unit electrodes. In the battery 10 shown in FIG. 2, the number of stacked electrode groups 20 is one.
  • the number of stacked electrode groups 20 may be set continuously as 1, 2, 3,..., For example, 1-5, 6-10, 11-15,. It is preferable to set a numerical value width to, and obtain the proportionality constant ⁇ for each numerical value width. In order to obtain the proportional constants ⁇ 1 to 5 in the numerical range of the number of layers 1 to 5, the proportional constants ⁇ 1 to ⁇ 5 for each number of layers 1 to 5 are obtained, and the average value is set as the proportional constant ⁇ 1 to 5. That's fine.
  • the proportionality constant ⁇ is determined in the same manner as in the case of the number of stacks except that the number of times of wrinkles is used instead of the number of stacks.
  • a program for calculating the thickness of the electrode group 20 from the sixth data table based on the detection result by the pressure sensor is input to the fourth storage means.
  • the calculation method of the thickness of the electrode group 20 is as described above. This program is executed in the fourth calculation means.
  • the fourth computing means calculates the thickness of the electrode group 20 based on the detection result by the pressure sensor (internal pressure value of the electrode group 20), the number of stacked electrode groups 20, and the sixth data table. Since the number of stacked electrode groups 20 is determined when the battery pack 3 is designed, it is previously input to the fourth storage means together with the sixth data table.
  • the fourth calculation means takes out the detection result and the sixth data table from the fourth storage means and calculates the thickness of the electrode group 20 each time the detection result by the pressure sensor is newly input to the fourth storage means. To do.
  • the fourth calculation means outputs the calculation result to the fourth storage means.
  • the fourth control means controls the pressure sensor and the fourth calculation means according to a control signal indicating that the number of charge / discharge cycles by the cycle number detection means 17 has been updated. More specifically, the fourth control unit controls the internal pressure detection of the electrode group 20 by the pressure-sensitive sensor and the calculation of the thickness of the electrode group 20 by the fourth calculation unit when the battery 10 is fully charged. The fourth control means takes out the calculation result by the fourth calculation means from the fourth storage means and outputs it to the second determination means 18.
  • the fourth storage unit, the fourth calculation unit, and the fourth control unit are configured as a processing circuit including a microcomputer, an interface, a memory, a timer, and the like.
  • Various memories that are commonly used in this field can be used as the fourth storage means, and examples thereof include a read only memory (ROM), a random access memory (RAM), a semiconductor memory, and a nonvolatile flash memory.
  • ROM read only memory
  • RAM random access memory
  • semiconductor memory a nonvolatile flash memory.
  • an external device to which the battery pack 3 is attached or a CPU (central information processing device) of the second determination unit 18 may be used.
  • Cycle number detection means 17 detects the number of charge / discharge cycles of the battery 10. In the present embodiment, a cycle in which the fully charged battery 10 is discharged to be completely discharged and charged and the battery 10 is again fully charged is defined as one charge / discharge cycle.
  • the fully charged state is preferably SOC: 90% or more.
  • the cycle number detection means 17 and the second determination means 18 are connected so that information can be exchanged at the electric signal level, and the cycle number detection means 17 outputs the detection result to the second determination means 18.
  • the cycle number detection means 17 of the present embodiment includes a voltage detection means (not shown), a fifth storage means, a fifth calculation means, and a fifth control means.
  • the voltage detection means is controlled by the fifth control means so as to detect an open circuit voltage (hereinafter referred to as “OCV”) of the battery 10 at a predetermined time interval.
  • OCV open circuit voltage
  • the OCV value of the battery 10 has the following characteristics. At the start of charging of the battery 10, its OCV value becomes the lowest. Thereafter, the OCV value rises stably and becomes maximum by charging. The OCV value gradually decreases and becomes the lowest value due to the discharge after the end of charging. The cycle from when the OCV value becomes maximum, then decreases and then becomes maximum again is one charge / discharge cycle. By detecting the OCV value of the battery 10 over time, the number of charge / discharge cycles of the battery 10 can be accurately detected.
  • the OCV detection by the voltage detection means may be performed, for example, at intervals of 0.1 second to 1000 seconds, preferably 1 second to 60 seconds.
  • a voltmeter can be used as the voltage detection means.
  • the detection results by the voltage detection means are input to the fifth storage means side by side over time.
  • the number of charge / discharge cycles is input to the fifth storage means. The number of charge / discharge cycles is rewritten each time a new value is input.
  • the fifth calculation means takes out the detection result, and determines the cycle in which the OCV value, which is the detection result, becomes the highest and becomes the highest again. It is determined that the number of times is one.
  • the fifth computing means recognizes that one charge / discharge cycle has been completed, it adds “1” to the numerical value of the number of charge / discharge cycles input to the fifth storage means, and stores it in the fifth storage means as a new numerical value. Output.
  • the fifth control unit controls the detection of the OCV value by the voltage detection unit. In addition, when the number of charge / discharge cycles input to the fifth storage unit is rewritten with a new value, the fifth control unit outputs the new value to the second determination unit 18.
  • the fifth storage means, the fifth arithmetic means, and the fifth control means are configured as a processing circuit including a microcomputer, an interface, a memory, a timer, and the like.
  • various memories commonly used in this field can be used, and examples thereof include a read only memory, a random access memory, a semiconductor memory, and a nonvolatile flash memory.
  • a CPU central information processing device
  • an external device to which the battery pack 3 is attached may be used.
  • the number of charge / discharge cycles is detected by detecting the OCV value.
  • the present invention is not limited to this.
  • the number of charge / discharge cycles may be detected by detecting the closed circuit terminal voltage (CCV).
  • CCV closed circuit terminal voltage
  • the current rate to be measured is preferably 0.2 C or less. As a result, the value of the detected CCV is not easily affected by the current rate, and more accurate detection is possible.
  • the current rate may be controlled by the fifth control means.
  • CcCCV detection may be affected by environmental temperature. Specifically, when the environmental temperature is less than 20 ° C., the detected CCV value may be inaccurate even if the current rate is 0.2 C or less. Therefore, it is preferable to perform CCV detection while detecting the temperature of the battery 10 by the temperature detection means.
  • the relationship between the temperature of the battery 10, the current rate, and the CCV value is obtained in advance by experiment, and is input to the fifth storage means as a seventh data table.
  • the fifth computing means corrects the detected CCV value based on the seventh data table, the current rate, and the detected temperature, and obtains an accurate CCV value.
  • the temperature detection means a commercially available compact temperature sensor used for temperature detection in electronic devices, semiconductor products, and the like can be used.
  • CCV detection may be affected by the depth of discharge. Specifically, if the depth of discharge at the time of CCV detection is different, even if the current rate is 0.2 C or less, there is a possibility that the detected CCV value varies and the number of charge / discharge cycles cannot be detected accurately. Therefore, it is preferable to perform CCV detection while detecting the depth of discharge.
  • the relationship between the depth of discharge, the current rate, and the CCV value is obtained in advance by experiment and is input to the fifth storage means as an eighth data table.
  • the fifth computing means corrects the detected CCV value based on the eighth data table, the current rate, and the discharge depth, and obtains an accurate CCV value.
  • the depth of discharge can be calculated from the rated capacity of the battery 10 and the amount of discharge electricity.
  • the amount of discharge electricity can be calculated as the sum of numerical values obtained by multiplying the discharge current value by the discharge time after one charge / discharge cycle is completed.
  • the depth-of-discharge calculation program is input to the fifth storage unit in advance. Also, CCV detection may be performed by controlling the discharge depth to be constant.
  • Second determination means 18 The second determination unit 18 determines whether or not cycle deterioration has occurred according to the detection result (thickness of the electrode group 20) by the thickness detection unit 16 and the detection result (number of charge / discharge cycles) by the cycle number detection unit 17. To do. More specifically, the second determination unit 18 obtains a correlation between the thickness of the electrode group 20 and the number of charge / discharge cycles from the detection result by the thickness detection unit 16 and the detection result by the cycle number detection unit 17, The presence or absence of cycle deterioration is determined by detecting a change in correlation.
  • the present inventors have found that in the battery 10, the thickness of the electrode group 20 and the number of charge / discharge cycles have a different correlation from the conventional battery.
  • the correlation between the thickness of the electrode group 20 and the number of charge / discharge cycles will be described in more detail with reference to FIG.
  • the electrode group 20 has an initial thickness t 0 . Thereafter, when the charge-discharge cycle number is increased, the thickness of the electrode group 20 is gradually decreased, the thickness of the electrode group 20 at the time of N 1 is minimized. From N 0 to N 1 , the thickness of the electrode group 20 and the number of charge / discharge cycles are negatively proportional or inversely proportional. When the charge-discharge cycle number from the time of N 1 increases, the gradual increase the thickness of the electrode group 20. After the time of N 1 has a positive proportional relation between the thickness and charge-discharge cycle number of the electrode assembly 20.
  • the thickness of the electrode group 20 gradually increases as the negative electrode active material layer 22b gradually expands.
  • the amount of by-products generated by the reaction between the alloy-based active material and the non-aqueous electrolyte increases in the negative electrode active material layer 22b.
  • the expansion ratio of the negative electrode active material layer 22b is increased, and it is presumed that the proportional constant increases at the time of N 2 .
  • the present inventors have found that the by-product becomes one factor of cycle deterioration.
  • the number of charge / discharge cycles at the time N 1 and the time N 2 are, for example, the number of stacked electrode groups 20 (the number of defects in the case of a flat electrode group), the type of alloy-based active material, the thickness of the negative electrode active material layer 22b, It varies depending on various configurations such as the material of the negative electrode current collector 22a. However, regardless of which configuration is adopted, the change that the proportionality constant in the proportional relationship between the thickness of the electrode group 20 and the number of charge / discharge cycles increases in the middle of the increase in the thickness of the electrode group 20 is common. is there.
  • the thickness of the electrode group 20 has been shown to increase gradually after the point of N 1.
  • the increase in the thickness of the electrode group 20 up to N 2 is in the micron order, and such an increase does not impair the battery performance of the battery 10, the safety to the user, and the like.
  • the second determination unit 18 includes a sixth storage unit, a sixth calculation unit, and a sixth control unit.
  • a detection result (thickness of the electrode group 20) by the thickness detection unit 16 and a detection result (number of charge / discharge cycles) by the cycle number detection unit 17 are input to the sixth storage unit.
  • a program for obtaining a proportional constant in the relationship between the thickness of the electrode group 20 and the number of charge / discharge cycles from the detection result by the thickness detection unit 16 and the detection result by the cycle number detection unit 17 is input to the sixth storage unit. Yes.
  • proportionality constant determination program An example of a proportionality constant determination program is given. From the time of N 1 after a lapse of charge-discharge cycle 50 times, plotting the charge-discharge cycle number 50 times the detection result of the charge-discharge cycle number 50 times due to the thickness detecting means 16 detection result and cycle number detecting means 17 Then, the proportionality constant (reference proportionality constant) is obtained by the method of least squares. The reference proportionality constant is input to the sixth storage means.
  • the number of charge / discharge cycles for obtaining the reference proportionality constant can be appropriately selected from the range of, for example, 5 to 200 times, preferably 10 to 100 times.
  • the average proportionality constant is obtained every 5 charge / discharge cycles. At this time, an average proportionality constant between the latest charge / discharge cycle number 1 and the immediately preceding charge / discharge cycle number 4 is obtained. This average proportionality constant is updated each time a charge / discharge cycle is completed. In this embodiment, when the average proportionality constant exceeds the reference proportionality constant by 1 to 3%, and preferably by 1 to 2%, it is determined that the time point N 2 has been reached.
  • the ratio of the average proportionality constant to the reference proportionality constant is selected according to, for example, the number of unit electrodes stacked, the thickness of the negative electrode active material layer 22b, the type of alloy-based active material, and the like.
  • the sixth storage means the thickness of the electrode group 20 is also input N 1 determination program determines the time of N 1 to turn from decreasing to increasing.
  • N 1 determination program determines the time of N 1 to turn from decreasing to increasing.
  • the sixth calculation means performs calculation based on the detection result by the thickness detection means 16, the detection result by the cycle number detection means 17 and the various programs input to the sixth storage means, and determines whether there is cycle deterioration. judge.
  • the sixth control unit receives the detection result from the cycle number detection unit 17 and controls the detection of the thickness of the electrode group 20 by the thickness detection unit 16.
  • the sixth control means outputs a control signal to the cycle deterioration notifying means 19 in response to the determination by the sixth computing means that the cycle deterioration is present, and the cycle deterioration notifying means 19 is activated to cause significant cycle deterioration. To the device user.
  • the sixth storage means, the sixth calculation means, and the sixth control means are configured as a processing circuit including a microcomputer, an interface, a memory, a timer, a CPU, and the like.
  • Various memories similar to the fourth to fifth storage units can be used for the sixth storage unit.
  • a CPU of an external device that uses the battery pack 3 as a power source may be used.
  • storage means, calculation means, control means, etc. are individually provided for each of the thickness detection means 16, the cycle number detection means 17, and the second determination means 18, but these are integrated into one unit.
  • Storage means, calculation means, and control means may be provided.
  • a central processing unit CPU
  • the battery pack 3 can further include charge / discharge control means for stopping the charge / discharge of the battery 10 in accordance with the determination result that the second determination means 18 indicates that there is cycle deterioration. Further, the function of the charge / discharge control means may be added to the second determination means 18.
  • Cycle deterioration notification means 19 receives the control signal from the second determination means 18 and notifies the user that there is cycle deterioration.
  • the cycle deterioration notification means 19 performs display or sound notification.
  • the battery pack 3 may include a second replacement time determination unit.
  • the second replacement time determination means uses the detection result by the thickness detection means 16 used to obtain the determination result and the cycle number detection means 17 according to the determination result by the second determination means 18 that there is cycle deterioration.
  • the replacement time of the battery 10 is determined from the detection result.
  • the second determination means 18 or the second replacement time determination means capable of controlling charging / discharging, loss of production data due to sudden occurrence of significant cycle deterioration can be prevented.
  • the second replacement time determination means for example, is conspicuous from the ninth data table created in advance by experiments based on the thickness of the electrode group 20 and the number of charge / discharge cycles when it is determined that significant cycle deterioration occurs. The number of charge / discharge cycles until cycle deterioration occurs is determined, and the replacement time is determined.
  • variable elements other than the thickness of the electrode group 20 and the number of charge / discharge cycles in the ninth data table include the reference proportionality constant, the ratio of the average proportionality constant to the reference proportionality constant at the time of the determination, and the number of stacked electrode groups 20 ( ⁇ In the case of a revolving electrode group or a flat electrode group).
  • An experiment is performed by changing the numerical values of these variable elements, and a ninth data table indicating the number of usable charge / discharge cycles of a battery determined to have significant cycle deterioration is created.
  • the ninth data table it is preferable to indicate the number of stacked electrode groups 20 (or the number of times of plating) in stages such as 1 to 5, 6 to 10, and 11 to 15.
  • the number of stacked electrode groups 20 (or the number of turns) can be configured, for example, such that the battery pack 3 is provided with a connection terminal with a computer and input from a computer terminal.
  • the ninth data table may be input to the sixth storage unit of the second determination unit 18 and the replacement time may be determined by the sixth calculation unit.
  • step S ⁇ b> 11 the cycle number detection unit 17 detects the OCV value of the battery 10. Then, the cycle in which the OCV value reaches the highest level once and the OCV value reaches the highest level again after charging is detected as the number of charge / discharge cycles: 1 and “1” is added to the number of charge / discharge cycles detected last time.
  • the second determination means 18 receives a new charge / discharge cycle count and outputs a control signal to the thickness detection means 16. Thereby, the thickness detection means 16 starts the operation of detecting the thickness of the electrode group 20.
  • step S ⁇ b> 12 the thickness detection unit 16 detects the thickness of the electrode group 20 and outputs the detection result to the second determination unit 18.
  • the second determination means 18 determines the thickness of the electrode group 20 obtained in step S12 (hereinafter referred to as “thickness in step S12”) and the thickness of the electrode group 20 obtained previously (hereinafter referred to as “previous time”). "Thickness”).
  • the thickness of the step S12 is the last greater than thickness: determines "Yes thickness of the electrode group 20 has passed the point of N 1 to a minimum", the process proceeds to step S14. If the thickness of the step S12 is smaller than the previous thickness: determines "No not passed the point of N 1", the flow returns to step S11. At this time, the previous thickness is rewritten to the thickness of step S12.
  • step S14 as in step S11, the cycle number detection means 17 updates the number of charge / discharge cycles and outputs the value to the second determination means 18.
  • step S15 as in step S12, the cycle number detection means 17 detects the thickness of the electrode group 20, and outputs the detection result to the second determination means 18.
  • step S16 the second determination means 18 uses the horizontal axis: the number of charge / discharge cycles and the vertical axis: the thickness 20 of the electrode group to determine the thickness of the electrode group 20 for the number of charge / discharge cycles of 50 after the time N 1 has elapsed. Plot and obtain the reference proportionality constant by the method of least squares. The reference proportionality constant is input to the sixth storage means of the second determination means 18.
  • step S17 the second determination means 18 obtains a reference proportionality constant, and then obtains an average proportionality constant for five charge / discharge cycles.
  • the cycle number detection means 17 Each time the number of charge / discharge cycles is updated by the cycle number detection means 17, the thickness of the electrode group 20 detected in the last four charge / discharge cycles and the thickness of the electrode group 20 detected in the latest charge / discharge cycle are updated. From this, the average proportionality constant is obtained.
  • the average proportionality constant can be obtained in the same manner as the reference proportionality constant.
  • the average proportionality constant is input to the sixth storage means of the second determination means 18.
  • step S18 the second determination means 18 compares the reference proportionality constant with the average proportionality constant. If the ratio of the average proportional constant to the reference proportional constant is 1 to 3%, preferably 1 to 2% larger, it is determined that “Yes: significant cycle deterioration has occurred”, and the process proceeds to step S19. To do. If the ratio of the average proportionality constant to the reference proportionality constant is greater than 1%, it is determined that “No: no significant cycle deterioration has occurred”, and the process returns to step S17.
  • the ratio of the average proportionality constant to the reference proportionality constant described above is a value when the number of stacked electrode groups 20 is 1.
  • the ratio of the average proportionality constant to the reference proportionality constant can be appropriately selected according to the number of stacked electrode groups 20 and the like. This ratio can be obtained in advance by experiments.
  • step S19 the determination result is displayed on the surface of the battery pack 3 or the external device using the battery pack 3 as a power source according to the determination result of the occurrence of significant cycle deterioration by the second determination means 18. As a result, a series of operations for determining cycle deterioration is completed.
  • the battery pack 3 of the present embodiment has a battery 10, a thickness detection unit 16, an exterior body in which the cycle deterioration notification unit 19 is arranged on the surface and the external connection terminals 15 a and 15 b are attached to both ends in the longitudinal direction.
  • the cycle number detection means 17 and the second determination means 18 can be produced by connecting and accommodating and sealing.
  • the thickness of the electrode group 20 is calculated from the internal pressure value of the electrode group 20, the relationship between the number of charge / discharge cycles and the electrode group 20 is obtained, and the presence or absence of sudden occurrence of significant cycle deterioration is determined. Yes.
  • the present invention is not limited to this method, and for example, the presence or absence of sudden occurrence of significant cycle deterioration may be determined from the internal pressure value of the electrode group 20. That is, in another embodiment, it is possible to determine whether or not there is a sudden occurrence of significant cycle deterioration without calculating the thickness of the electrode group 20 from the detection result by the pressure sensor.
  • the number of charge / discharge cycles and the internal pressure of the electrode group 20 are in a proportional relationship, similar to the number of charge / discharge cycles and the thickness of the electrode group 20. That is, in the graph shown in FIG. 4, after the thickness of the electrode group 20 is minimized, the number of charge / discharge cycles and the internal pressure of the electrode group 20 have a positive proportional relationship.
  • the proportionality constant in the proportionality increases immediately before significant cycle deterioration suddenly occurs. Based on this relationship, the presence or absence of a sudden occurrence of significant cycle deterioration can be determined.
  • the accuracy of determining the presence or absence of sudden occurrence of significant cycle deterioration is further increased.
  • the battery case 27 is made of metal and is thin
  • expansion of the electrode group 20 may be suppressed by the battery case 27.
  • the electrode group 20 is in a pressurized state.
  • the measured value of the internal pressure of the electrode group 20 may be different from the actual value.
  • the relationship between the number of charge / discharge cycles and the internal pressure of the electrode group 20 is measured to create a tenth data table.
  • the tenth data table is a criterion for deterioration determination.
  • an eleventh data table is prepared by measuring the relationship between the number of charge / discharge cycles and the internal pressure of the electrode group 20 while suppressing the expansion of the electrode group 20.
  • the eleventh data table is created using the number of stacked electrode groups 20 and the material and thickness of the battery case 27 as variables.
  • the tenth data table and the eleventh data table are input in advance to the sixth storage means of the second determination means 18.
  • the second determination unit 18 Based on the detection result (number of charge / discharge cycles) by the cycle number detection unit 17 and the detection result (internal pressure value of the electrode group 20) by the pressure sensor, the second determination unit 18 uses the tenth data table and the eleventh data table. Then, it is determined whether the electrode group 20 is in a pressurized state or a non-pressurized state. This determination is performed by the sixth calculation means of the second determination means 18, and a control signal is issued from the sixth control means in accordance with the determination result by the sixth calculation means, as in the battery pack 3.
  • the second determination means 18 determines that the electrode group 20 is in a pressurized state, it corrects the internal pressure value based on the number of charge / discharge cycles and the eleventh data table, and further, a significant cycle based on the tenth data table. Determine whether there is a sudden occurrence of deterioration.
  • the second determination unit 18 determines whether or not there is a sudden occurrence of significant cycle deterioration based on the tenth data table without correcting the internal pressure value. Thereby, the presence or absence of sudden occurrence of significant cycle deterioration can be determined more accurately without being influenced by variables such as the number of stacked electrode groups 20 and the material and thickness of the battery case 27.
  • the second determination unit 18 the presence or absence of significant cycle deterioration occurs and a charge-discharge cycle number N 1 determining operation and reference proportionality constant thickness is minimized electrode group 20 and the average proportionality constant
  • the determination operation is performed in the same manner as the operation shown in FIG. That is, the number of charge / discharge cycles N 1 is determined from the number of charge / discharge cycles and the internal pressure of the electrode group 20.
  • the battery pack of this embodiment has the same configuration as that of the battery pack 3 except that the second determination unit 18 adopts the configuration described above.
  • the electrode group 20 is used.
  • a flat electrode group may be used.
  • the flat electrode group is obtained by pressing a wound electrode group obtained by winding a band-shaped insulating layer between the band-shaped positive electrode and the band-shaped negative electrode and winding them.
  • the flat electrode group can also be produced by interposing a band-shaped insulating layer between the band-shaped positive electrode and the band-shaped negative electrode and attaching them to a plate.
  • the number of laminated flat electrode groups is the number of times of wrinkles ⁇ 2.
  • the negative electrode active material layer 22b of the battery 10 is a thin film in which an alloy-based active material is laminated by a vapor phase method, but is not limited thereto, and may be a thin film including a plurality of columnar bodies, for example.
  • the columnar body contains an alloy-based active material and extends from the surface of the negative electrode current collector toward the outside of the negative electrode current collector.
  • the plurality of columnar bodies are preferably formed to extend in the same direction. In addition, a gap exists between a pair of adjacent columnar bodies.
  • a thin film including a plurality of columnar bodies has high adhesion to the negative electrode active material layer.
  • the columnar body is preferably formed on the surface of the convex portion by providing a plurality of convex portions on the surface of the negative electrode current collector.
  • FIG. 8 is a perspective view schematically showing the configuration of another form of negative electrode current collector 31.
  • FIG. 9 is a longitudinal sectional view schematically showing a configuration of another form of negative electrode 30 including the negative electrode current collector 31 shown in FIG. 8.
  • FIG. 10 is a longitudinal sectional view schematically showing the configuration of the columnar body 34 included in the negative electrode active material layer 33 of the negative electrode 30 shown in FIG.
  • FIG. 11 is a side view schematically showing the configuration of the electron beam evaporation apparatus 40.
  • the negative electrode 30 includes a negative electrode current collector 31 and a negative electrode active material layer 33.
  • the negative electrode current collector 31 is characterized in that a plurality of convex portions 32 are provided on one surface in the thickness direction, and the other configuration is the same as that of the negative electrode current collector 22a. have.
  • the plurality of convex portions 32 are provided on one surface in the thickness direction, but are not limited thereto, and may be provided on both surfaces in the thickness direction.
  • the convex portion 32 is a protrusion that extends from the surface 31 a in the thickness direction of the negative electrode current collector 31 (hereinafter simply referred to as “surface 31 a”) toward the outside of the negative electrode current collector 31.
  • the height of the convex portion 32 is not particularly limited, but the average height is preferably about 3 to 10 ⁇ m.
  • the height of the convex portion 32 is defined in the cross section of the convex portion 32 in the thickness direction of the negative electrode current collector 31.
  • the cross section of the convex portion 32 is a cross section including the most distal point in the extending direction of the convex portion 32.
  • the height of the convex portion 32 is the length of a perpendicular line dropped from the most distal point in the extending direction of the convex portion 32 to the surface 31a.
  • the average height of the convex portions 32 is obtained by, for example, observing a cross section in the thickness direction of the negative electrode current collector 31 with a scanning electron microscope (SEM) and measuring the height of 100 convex portions 32, for example. It can be obtained by calculating an average value from the measured values.
  • SEM scanning electron microscope
  • the cross-sectional diameter of the convex portion 32 is not particularly limited, but is, for example, 1 to 50 ⁇ m.
  • the cross-sectional diameter of the convex portion 32 is the width of the convex portion 32 in the direction parallel to the surface 31 a in the cross section of the convex portion 32 for obtaining the height of the convex portion 32.
  • the cross-sectional diameter of the convex portion 32 can be obtained as an average value of measured values by measuring the widths of 100 convex portions 32. It is not necessary to form the plurality of convex portions 32 all at the same height or the same cross-sectional diameter.
  • the shape of the convex part 32 is circular in this embodiment.
  • the shape of the convex part 32 is the shape of the orthographic view of the convex part 32 when the negative electrode current collector 31 is arranged so that the surface 31a of the negative electrode current collector 31 coincides with the horizontal plane and viewed from above in the vertical direction.
  • the shape of the convex part 32 is not limited to a circle, For example, a polygon, an ellipse, a parallelogram, a trapezoid, a rhombus, etc. may be sufficient.
  • the polygon is preferably a triangle to an octagon, and particularly preferably a regular triangle to an octagon, in view of manufacturing costs and the like.
  • the convex portion 32 has a substantially planar top at the tip portion in the extending direction. Since the convex portion 32 has a flat top at the tip portion, the bonding property between the convex portion 32 and the columnar body 34 is improved. In order to increase the bonding strength, it is more preferable that the plane of the tip portion is substantially parallel to the surface 31a.
  • the number of the protrusions 32, the interval between the protrusions 32, and the like are not particularly limited, depending on the size (height, cross-sectional diameter, etc.) of the protrusions 32, the size of the columnar body 34 provided on the surface of the protrusions 32, and the like. Are appropriately selected.
  • An example of the number of convex portions 32 is about 10,000 to 10 million pieces / cm 2 . Further, it is preferable to form the convex portions 32 so that the distance between the axes of the adjacent convex portions 32 is about 2 to 100 ⁇ m.
  • the convex portions 32 are regularly or irregularly arranged. Examples of the regular arrangement include a staggered arrangement, a lattice arrangement, and a hexagonal close-packed arrangement.
  • the protrusion 32 may form a projection (not shown) on the surface thereof. Thereby, for example, the bondability between the convex portion 32 and the columnar body 34 is further improved, and peeling of the columnar body 34 from the convex portion 32, propagation of separation, and the like are more reliably prevented.
  • the protrusion is provided so as to protrude from the surface of the protrusion 32 to the outside of the protrusion 32. A plurality of protrusions having a smaller dimension than the protrusion 32 may be formed.
  • the protrusion may be formed on the side surface of the convex portion 32 so as to extend in the circumferential direction and / or the growth direction of the convex portion 32.
  • the convex part 32 has a planar top part in the front-end
  • 1 or several protrusion smaller than the convex part 32 may be formed in a top part, and also 1 or several protrusion extended in one direction May be formed on the top.
  • the negative electrode current collector 31 can be manufactured using, for example, a technique for forming irregularities on a metal sheet. Specifically, for example, a method using a roller having concave portions formed on the surface (hereinafter referred to as “roller processing method”), a photoresist method, and the like can be given. Among these methods, the roller processing method is preferable in consideration of the bonding strength between the negative electrode current collector 31 and the convex portion 32 and the like.
  • a metal foil, a metal plate, or the like can be used for the metal sheet.
  • the material of the metal sheet is, for example, a metal material such as stainless steel, titanium, nickel, copper, or copper alloy.
  • a metal sheet is mechanically pressed using a roller having a recess formed on the surface (hereinafter referred to as a “convex roller”).
  • the concave portion on the surface of the convex roller is formed corresponding to the size and arrangement of the convex portion 32. Further, the shape of the internal space of the concave portion corresponds to the shape of the convex portion 32.
  • the convex portions 32 are formed on both surfaces in the thickness direction by pressing the two convex rollers so that their respective axes are parallel to each other and passing the metal sheet through the pressure contact portion and applying pressure.
  • the negative electrode current collector 31 thus obtained is obtained.
  • the convex roller and the roller having a smooth surface are pressed against each other so that their respective axes are parallel, and the metal sheet is passed through the pressed portion to pressurize, thereby projecting on one surface in the thickness direction.
  • the negative electrode current collector 31 in which the part 32 is formed is obtained.
  • the pressure contact pressure of the roller is appropriately selected according to the material and thickness of the metal sheet, the shape and size of the convex portion 32, the set value of the thickness of the negative electrode current collector 31 obtained after pressure molding, and the like.
  • the convex roller can be produced, for example, by forming a concave portion at a predetermined position on the surface of the ceramic roller.
  • the ceramic roller includes, for example, a core roller and a sprayed layer.
  • a core roller for example, a roller made of iron, stainless steel or the like can be used.
  • the thermal spray layer is formed by uniformly spraying a ceramic material such as chromium oxide on the surface of the core roller.
  • a recess is formed in the sprayed layer.
  • a general laser used for forming a ceramic material or the like can be used.
  • Another type of convex roller includes a core roller, an undercoat layer and a sprayed layer.
  • the core roller is the same as the core roller of the ceramic roller.
  • the underlayer is a resin layer formed on the surface of the core roller, and a recess is formed on the underlayer surface.
  • synthetic resin constituting the underlayer those having high mechanical strength are preferable, for example, thermosetting resins such as unsaturated polyester, thermosetting polyimide, epoxy resin and fluororesin, polyamide, polyether ketone, polyether ether. Examples thereof include thermoplastic resins such as ketones.
  • a resin sheet having a recess on one side is molded, and the surface of the resin sheet opposite to the surface on which the recess is formed is wound around the core roller surface and bonded.
  • the sprayed layer is formed by spraying a ceramic material such as chromium oxide along the irregularities of the surface of the underlayer. Therefore, it is preferable that the concave portion formed in the base layer is formed larger than the design dimension of the convex portion 32 by the layer thickness of the sprayed layer.
  • the convex roller includes a core roller and a cemented carbide layer.
  • the core roller is the same as the core roller of the ceramic roller.
  • the cemented carbide layer is formed on the surface of the core roller and includes a cemented carbide such as tungsten carbide.
  • the cemented carbide layer can be formed by shrink-fitting or cold-fitting a cylindrical cemented carbide to the core roller.
  • the shrink fitting of the cemented carbide layer is to heat and expand the cylindrical cemented carbide and fit it to the core roller.
  • the cold fitting of the cemented carbide layer means that the core roller is cooled and contracted and inserted into a cemented carbide cylinder.
  • a recess is formed on the surface of the cemented carbide layer by, for example, laser processing.
  • convex roller is one in which a concave portion is formed on the surface of a hard iron roller by, for example, laser processing.
  • a hard iron-type roller is used for rolling manufacture of metal foil, for example.
  • the hard iron-based roller include a roller made of high-speed steel, forged steel, or the like.
  • High-speed steel is an iron-based material that has been hardened by adding a metal such as molybdenum, tungsten, or vanadium and heat-treating it.
  • Forged steel is a steel ingot made by casting a steel in a mold or a steel slab produced from the steel ingot. It is an iron-based material manufactured by heat treatment.
  • the negative electrode current collector 31 can be produced by forming a resist pattern on the surface of a metal sheet and further performing metal plating.
  • protrusions for protrusions larger than the design dimensions of the protrusions 32 are formed by a photoresist method.
  • a protrusion 32 having protrusions on the surface is formed.
  • protrusion on the surface is also formed by plating on the surface of the convex part 32.
  • the negative electrode active material layer 33 includes a plurality of columnar bodies 34 extending from the surface of the convex portion 32 toward the outside of the negative electrode current collector 31.
  • the columnar body 34 extends in a direction perpendicular to the surface 31 a of the negative electrode current collector 31 or with an inclination with respect to the perpendicular direction.
  • the plurality of columnar bodies 34 have a gap between adjacent columnar bodies 34 and are separated from each other, stress due to expansion and contraction during charge / discharge is relieved. As a result, the negative electrode active material layer 33 is difficult to peel off from the convex portion 32, and the negative electrode current collector 31 and thus the negative electrode 30 are hardly deformed.
  • the columnar body 34 is preferably formed as a laminate of two or more columnar chunks.
  • the columnar body 34 is formed as a stacked body of eight columnar chunks 34a, 34b, 34c, 34d, 34e, 34f, 34g, and 34h, as shown in FIG. More specifically, the columnar body 34 is formed as follows. First, the columnar block 34a is formed so as to cover the top of the convex portion 32 and a part of the side surface following the top. Next, the columnar chunk 34b is formed so as to cover the remaining side surface of the convex portion 32 and a part of the top surface of the columnar chunk 34a.
  • the columnar chunk 34 a is formed at one end including the top of the convex portion 32, and the columnar chunk 34 b partially overlaps the columnar chunk 34 a, but the remaining portion is the other of the convex portions 32. Formed at the end.
  • the columnar chunk 34c is formed so as to cover the rest of the top surface of the columnar chunk 34a and a part of the top surface of the columnar chunk 34b. That is, the columnar chunk 34c is formed mainly in contact with the columnar chunk 34a.
  • the columnar chunk 34d is formed so as to mainly contact the columnar chunk 34b.
  • the columnar body 34 is formed by alternately stacking the columnar chunks 34e, 34f, 34g, and 34h.
  • the columnar body 34 can be formed by, for example, an electron beam evaporation apparatus 40 shown in FIG. In FIG. 11, each member inside the vapor deposition apparatus 40 is also indicated by a solid line.
  • the vapor deposition apparatus 40 includes a chamber 41, a first pipe 42, a fixed base 43, a nozzle 44, a target 45, an electron beam generator (not shown), a power supply 46, and a second pipe (not shown).
  • the chamber 41 is a pressure-resistant container, and the first pipe 42, the fixing base 43, the nozzle 44 and the target 45 are accommodated therein.
  • the first pipe 42 has one end connected to the nozzle 44 and the other end extending outward from the chamber 41 and connected to a source gas cylinder or source gas production apparatus (not shown) via a mass flow controller (not shown). Examples of the source gas include oxygen and nitrogen.
  • the first pipe 42 supplies the source gas to the nozzle 44.
  • the fixing base 43 is a plate-like member, is rotatably supported, and can fix the negative electrode current collector 31 on one surface in the thickness direction.
  • the fixed base 43 rotates between a position indicated by a solid line and a position indicated by a dashed line in FIG. In the position indicated by the solid line, the surface of the fixed base 43 on the side where the negative electrode current collector 31 is fixed faces the nozzle 44 in the vertical direction, and the angle formed by the fixed base 43 and the horizontal straight line is ⁇ °. Position.
  • the position indicated by the one-dot broken line is such that the surface of the fixed base 43 on the side where the negative electrode current collector 31 is fixed faces the nozzle 44 vertically below, and the angle formed by the fixed base 43 and the horizontal straight line is (180 ⁇ ⁇ ) is a position that is °.
  • the angle ⁇ ° can be appropriately selected according to the design dimension of the columnar body 34 and the like.
  • the nozzle 44 is provided between the fixed base 43 and the target 45 in the vertical direction, and one end of the first pipe 42 is connected thereto.
  • the nozzle 44 mixes the vapor of the alloy-based active material rising upward in the vertical direction from the target 45 and the raw material gas supplied from the first pipe 42, and is fixed to the surface of the fixed base 43. 31 is supplied to the surface.
  • the target 45 accommodates an alloy-based active material or its raw material.
  • the electron beam generator irradiates and heats an alloy-based active material or its raw material accommodated in the target 45 to generate these vapors.
  • the power source 46 is provided outside the chamber 41, is electrically connected to the electron beam generator, and applies a voltage for generating the electron beam to the electron beam generator.
  • the second pipe introduces a gas that becomes the atmosphere in the chamber 41.
  • An electron beam vapor deposition apparatus having the same configuration as the vapor deposition apparatus 40 is commercially available from ULVAC, Inc., for example.
  • the negative electrode current collector 31 is fixed to the fixing base 43, and oxygen gas is introduced into the chamber 41.
  • the alloy-based active material or its raw material is irradiated with an electron beam and heated to generate its vapor.
  • silicon is used as the alloy-based active material.
  • the generated steam rises in the vertical direction, and when it passes through the nozzle 44, it is mixed with the raw material gas, and then rises and is supplied to the surface of the negative electrode current collector 31 fixed to the fixing base 43.
  • a layer containing silicon and oxygen is formed on the surface of the convex portion 32 not to be formed.
  • the columnar block 34a shown in FIG. 10 is formed on the surface of the convex portion by arranging the fixing base 43 at the position of the solid line.
  • the fixed base 43 is rotated to the position indicated by the one-dot broken line to form the columnar block 34b shown in FIG.
  • a plurality of columnar bodies 34 which are a laminate of the eight columnar chunks 34a, 34b, 34c, 34d, 34e, 34f, 34g, 34h shown in FIG.
  • the negative electrode active material layer 33 is obtained at the same time on the surface of the convex portion 32.
  • the columnar body 34 has a concentration gradient of oxygen in the thickness direction of the columnar body 34. May be formed. Specifically, the oxygen content is increased in a portion adjacent to the negative electrode current collector 31, and the oxygen content is reduced as the distance from the negative electrode current collector 31 increases. Thereby, the bondability between the convex portion 32 and the columnar body 34 can be further improved.
  • the columnar body 34 mainly composed of silicon or tin is formed.
  • the negative electrode active material layer 22b can be formed.
  • FIG. 12 is a side view schematically showing a configuration of an electron beam evaporation apparatus 50 according to another embodiment.
  • the vapor deposition apparatus 50 includes a chamber 51, a transport unit 52, a gas supply unit 58, a plasma generation unit 59, silicon targets 60a and 60b, a shielding plate 61, and an electron beam generation unit (not shown).
  • the chamber 51 is a pressure-resistant container having an internal space that can be depressurized.
  • a transport means 52, a gas supply means 58, a plasma generating means 59, silicon targets 60a and 60b, a shielding plate 61, and an electron beam generating means are provided. Accommodate.
  • the conveying means 52 includes an unwinding roller 53, a can 54, a take-up roller 55, and conveying rollers 56 and 57.
  • the unwinding roller 53, the can 54, and the conveying rollers 56 and 57 are provided so as to be rotatable around the axis.
  • a long negative electrode current collector 22 a is wound around the unwinding roller 53.
  • the can 54 has a larger diameter than the other rollers, and has a cooling means (not shown) therein.
  • the negative electrode current collector 22a is conveyed on the surface of the can 54, the negative electrode current collector 22a is also cooled. Thereby, the vapor of the alloy-based active material is cooled and deposited, and the negative electrode active material layer 22b is formed.
  • the take-up roller 55 is provided so as to be rotatable around its axis by a driving means (not shown).
  • One end of the negative electrode current collector 22 a is fixed to the take-up roller 55, and when the take-up roller 55 rotates, the negative electrode current collector 22 a passes from the take-out roller 53 through the transport roller 56, the can 54, and the transport roller 57. Are transported. Then, the negative electrode 22 having the negative electrode active material layer 22 b formed on the surface thereof is taken up by the take-up roller 55.
  • the gas supply means 58 supplies a source gas such as oxygen or nitrogen into the chamber 51 when forming a thin film mainly composed of silicon or tin oxide, nitride or the like.
  • the plasma generating means 59 converts the raw material gas supplied by the gas supply means 58 into plasma.
  • the silicon targets 60a and 60b are used when forming a thin film containing silicon.
  • the shielding plate 61 is provided to be movable in the horizontal direction below the can 54 in the vertical direction and above the silicon targets 60a and 60b in the vertical direction. The position of the shielding plate 61 in the horizontal direction is appropriately adjusted according to the formation status of the negative electrode active material layer 22b on the surface of the negative electrode current collector 22a.
  • the electron beam generating means irradiates and heats the silicon targets 60a and 60b with an electron beam to generate silicon vapor.
  • a thin-film negative electrode active material layer made of an alloy-based active material can be formed.
  • the pressure in the chamber 51, the winding speed of the negative electrode current collector 22a by the winding roller 55, the presence / absence of source gas supply by the gas supply means 58, the types of targets 60a and 60b (alloy-based active material source), electrons The acceleration voltage of the beam, the emission of the electron beam, etc. are appropriately selected.
  • the battery pack of the present invention can be used for the same applications as conventional non-aqueous electrolyte secondary batteries, and particularly for personal computers, mobile phones, mobile devices, personal digital assistants (PDAs), portable game devices, video cameras, etc. It is useful as a power source for portable electronic devices. In addition, it is expected to be used as a secondary battery for assisting an electric motor, a power tool, a cleaner, a power source for driving a robot, a power source for a plug-in HEV, etc. in a hybrid electric vehicle, a fuel cell vehicle and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 電池パック1が、電池10、厚さ検知手段11、サイクル数検知手段12及び第1判定手段13を備えるように構成する。電池10は、正極と合金系活物質を含有する負極と絶縁層とを備える電極群20を含む合金系二次電池である。厚さ検知手段11は、電池10の電極群20の厚さを検知する。サイクル数検知手段12は、電池10の充放電サイクル回数を検知する。第1判定手段13は、厚さ検知手段11及びサイクル数検知手段12による検知結果に応じて、電池10の交換時期を判定する。この構成により、合金系二次電池を備える電池パックにおいて、前記合金系二次電池の交換時期をほぼ正確に予測し、電池パックの利便性を向上させる。

Description

電池パック
 本発明は、電池パックに関する。さらに詳しくは、本発明は、負極活物質として合金系活物質を用いる非水電解質二次電池の電池交換時期の判定方法及びサイクル劣化の判定方法の改良に関する。
 非水電解質二次電池は、高容量および高エネルギー密度を有し、小型化および軽量化が容易なことから、電子機器の電源として広く利用されている。電子機器には、携帯電話、携帯情報端末、コンピュータ、ビデオカメラ、ゲーム機などがある。また、非水電解質二次電池を電気自動車の電源として用いる研究が盛んに行われ、一部実用化されつつある。代表的な非水電解質二次電池は、リチウムコバルト複合酸化物を含有する正極、黒鉛を含有する負極およびポリオレフィン製多孔質膜を含む。
 炭素材料以外の負極活物質として、合金系活物質が知られている。代表的な合金系活物質には、珪素、珪素酸化物などの珪素系活物質がある。合金系活物質は、高い放電容量を有している。珪素の理論放電容量は、黒鉛の理論放電容量の約11倍である。したがって、合金系活物質を用いることにより、非水電解質二次電池の高容量化および高性能化が図られている。
 合金系活物質を含有する非水電解質二次電池(以下「合金系二次電池」と呼ぶことがある)は優れた電池性能を有しているが、充放電サイクル回数が数百回に及ぶと、顕著なサイクル劣化(容量劣化)が突然発生することがある。電池の突然のサイクル劣化は、前記電池を電源とする機器の正常な動作を妨げる場合がある。コンピュータの動作が突然停止し、作成中のデータが失われることが予測される。電気自動車では、走行中に駆動モータが突然停止し、走行に何らかの支障をきたすおそれがあることが予測される。
 また、顕著なサイクル劣化の突然の発生からあまり時間を経ずに、電池の大きな膨れが発生することが多い。したがって、突然のサイクル劣化は、電池および前記電池を電源とする機器の安全性にも影響を及ぼすおそれがある。前記したように、合金系二次電池の顕著なサイクル劣化は突然に起こる。このため、顕著なサイクル劣化が起る可能性の有無を、事前に判定するのは非常に困難である。
 従来から、二次電池の充放電時における電圧変化、電圧変化に要する時間、電圧変化時の温度等を検知し、二次電池の残容量を予測し、それを表示することが行なわれている。特許文献1は、二次電池と、前記二次電池の電圧変化量を算出し、算出された電圧変化量と設定値とを比較する比較手段と、前記比較手段からの指令により回路を開閉する手段とを含む電池パックを開示している。
 特許文献1では、正極、負極及び非水電解質を含み、正極が作動電位の異なる少なくとも2つの活物質を含有し、かつ負極がLi又はLi合金からなる非水電解質二次電池が用いられている。そして、正極が作動電圧の異なる活物質を含有することに基づいて、電池の電圧変化量から残容量を予測している。しかしながら、前記残容量は、次回の充電を行うための基準値であり、電池の交換時期を知らせる基準値ではない。
 また、特許文献1では、放電容量と充放電サイクル回数との比例関係から、電池の交換時期を予測している。しかしながら、前記比例関係は、200サイクル程度までの充放電サイクル回数と放電容量との間に成立しているに過ぎない。一般に、200サイクル程度では電池の劣化は進まないので、前記比例関係から、電池の交換時期を正確に予測することは困難である。
 特許文献2は、非水電解質二次電池の充電状態(SOC)と温度との関係から、電池容量を算出する電池容量予測装置を開示する。特許文献2の図1には、片対数グラフにおいてSOCの値ごとに電池温度と電池容量劣化速度とが直線関係を示すことが示されている。このグラフに基づいて、電池容量が算出されている。
 しかしながら、電池の使用者が、SOCが一定になるように電池を充電することはない。充電を途中で止めることも多い。充電を必要としない段階で、さらに充電を行うこともある。したがって、特許文献2の図1に示すグラフに基づいて二次電池の交換時期を予測すると、大きな誤差が生じるおそれがある。
 特許文献3は、扁平型電池と、前記電池の周囲に巻かれたラベルと、膨れ検出手段と、を含む電池パックを開示する。膨れ検知手段は、ラベル表面に形成される切り込み溝である。電池のサイクル劣化に伴って電池の膨れが発生すると、電池の膨れる応力により、切り込み溝に沿ってスリット状の裂け目が発生する。この裂け目を目視観察することにより、電池の劣化を判定する。
 しかしながら、合金系二次電池では、突然のサイクル劣化が起った後に、電池の膨れが大きくなることが多い。もちろん、サイクル劣化が起る前でも電池は多少膨れるが、ラベルにスリット状の裂け目を発生させるほどの膨れは発生し難い。したがって、特許文献3の技術では、合金系二次電池の顕著なサイクル劣化を、事前に判定することはできない
特開平6-290779号公報 特開2000-228227号公報 特開2009-009734号公報
 本発明の目的は、合金系二次電池とともに、前記合金系二次電池の交換時期またはサイクル劣化の有無を正確に判定できる判定機構を備えた電池パックを提供することである。
 本発明の電池パックは、非水電解質二次電池、厚さ検知手段、サイクル数検知手段及び判定手段を備える。
 本発明の電池パックにおいて、非水電解質二次電池は、電極群、リチウムイオン伝導性非水電解質及び電池ケースを備えている。電極群は、リチウムを吸蔵及び放出可能な正極活物質を含有する正極、合金系活物質を含有する負極、並びに、正極と負極との間に介在するように配置される絶縁層を備えている。電池ケースは、電極群及びリチウムイオン伝導性非水電解質を収容する。
 本発明の電池パックにおいて、厚さ検知手段は、電極群の厚さを検知する。サイクル数検知手段は、非水電解質二次電池の充放電サイクル回数を検知する。判定手段は、厚さ検知手段による検知結果及びサイクル数検知手段による検知結果に応じて、非水電解質二次電池の交換時期またはサイクル劣化の有無を判定する。
 本発明の電池パックは、合金系二次電池を含むことにより、高容量及び高出力である。また、本発明の電池パックによれば、従来の電池パックに比べて大幅な設計変更及び寸法の大幅な増加を伴うことなく、合金系二次電池の交換時期およびサイクル劣化の有無をほぼ正確に予測できる。したがって、本発明の電池パックを電源とする電気電子機器の突然の停止が抑制される。また、本発明の電池パックは、寸法の大幅な増加がないので、電子機器の小型化及び薄型化にも容易に対応できる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の第1実施形態である電池パックの構成を模式的に示すブロック図である。 図1に示す電池パックに備わる非水電解質二次電池の構成を模式的に示す縦断面図である。 図2に示す非水電解質二次電池の交換時期判定方法の一実施形態を示すフローチャートである。 図2に示す非水電解質二次電池における充放電サイクルの回数と電極群の厚さとの関係を概略的に示すグラフである。 本発明の第2実施形態である電池パックの構成を模式的に示すブロック図である。 本発明の第3実施形態である電池パックの構成を模式的に示すブロック図である。 図2に示す非水電解質二次電池のサイクル劣化判定方法の一実施形態を示すフローチャートである。 別形態の負極集電体の構成を模式的に示す斜視図である。 図8に示す負極集電体を含む別形態の負極の構成を模式的に示す縦断面図である。 図9に示す負極の負極活物質層に含まれる柱状体の構成を模式的に示す縦断面図である。 電子ビーム式蒸着装置の構成を模式的に示す側面図である。 別形態の電子ビーム式蒸着装置の構成を模式的に示す側面図である。
[第1実施形態]
 本発明者らは、上記課題を解決するための研究過程で、正極と、合金系活物質を含有する負極と、の間に絶縁層を介在させて捲回又は積層した電極群について着目した。そして、合金系活物質を含有する電極群においては、電極群厚さと充放電サイクル回数との間に相関関係が存在することを見出した。本発明者らは、この知見に基づいてさらに研究を重ねた結果、電極群の厚さの変化を検知することにより、電池の交換時期をほぼ正確に予測できることを見出し、本発明を完成するに至った。
 図1は、本発明の第1実施形態である電池パック1の構成を模式的に示すブロック図である。図2は、図1に示す電池パック1に備わる非水電解質二次電池10の構成を模式的に示す縦断面図である。図3は、図2に示す非水電解質二次電池10の交換時期判定方法の一実施形態を示すフローチャートである。図4は、図2に示す非水電解質二次電池10における充放電サイクル回数と電極群の厚さとの関係を概略的に示すグラフである。
 電池パック1は、非水電解質二次電池10、厚さ検知手段11、サイクル数検知手段12、第1判定手段13、交換時期通知手段14及び図示しない外装体を含む。
(1)非水電解質二次電池10
 非水電解質二次電池10(以下「電池10」と略記する)は、正極21と負極22との間にセパレータ23を介在させて積層した積層型電極群20を含む扁平型リチウムイオン二次電池である。積層型電極群20は、図示しないリチウムイオン伝導性非水電解質(以下単に「非水電解質」とすることがある)とともに電池ケース27内に収容される。電池10では、絶縁層として、セパレータ23を使用する。
 正極リード24は、一端が正極集電体21aに接続され、他端が電池ケース27の一方の開口27aから外部に導出され、外部接続端子15aに接続されている。負極リード25は、一端が負極集電体22aに接続され、他端が電池ケース27の他方の開口27bから外部に導出され、外部接続端子15bに接続されている。
 本実施形態の電池ケース27は、両端に開口27a、27bを有するラミネートフィルム製容器である。電池ケース27に積層型電極群20及び非水電解質を収納した後、電池ケース27内部を減圧状態にし、開口27a、27bにそれぞれガスケット26を装着して溶着することにより、電池10が得られる。また、ガスケット26を用いずに、開口27a、27bを直接溶着してもよい。
 積層型電極群20(以下「電極群20」とする)は、正極21、負極22及びセパレータ23を備え、正極21と負極22との間にセパレータ23が介在するように配置される。
 正極21は、正極集電体21aと正極活物質層21bとを備える。
 正極集電体21aには、多孔性導電性基板、無孔の導電性基板等の導電性基板を使用できる。導電性基板の材質は、ステンレス鋼、チタン、アルミニウム、アルミニウム合金等の金属材料、導電性樹脂等である。多孔性導電性基板には、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、不織布等がある。無孔の導電性基板には、箔、シート、フィルム等がある。導電性基板の厚さは、通常は1~500μm、好ましくは5~100μm、さらに好ましくは8~50μmである。
 本実施形態の正極活物質層21bは、正極集電体21aの厚さ方向の片方の表面に設けられているが、厚さ方向の両方の表面に設けられてもよい。正極活物質層21bは正極活物質を含み、さらに導電剤、結着剤等を含んでもよい。
 正極活物質としては、非水電解質二次電池の分野で常用されるものを使用でき、その中でも、リチウム含有複合酸化物、オリビン型リン酸リチウム等が好ましい。
 リチウム含有複合酸化物は、リチウムと遷移金属元素とを含む金属酸化物又は前記金属酸化物中の遷移金属元素の一部が異種元素により置換された金属酸化物である。遷移金属元素には、Sc、Y、Mn、Fe、Co、Ni、Cu、Cr等があり、Mn、Co、Ni等が好ましい。異種元素には、Na、Mg、Zn、Al、Pb、Sb、B等があり、Mg、Al等が好ましい。遷移金属元素及び異種元素は、それぞれ1種を単独で又は2種以上を組み合わせて使用できる。
 リチウム含有複合酸化物には、LiCoO、LiNiO、LiMnO、LiCoNi1-m、LiCo1-m、LiNi1-m、LiMn、LiMn2-m(前記各式中、MはSc、Y、Mn、Fe、Co、Ni、Cu、Cr、Na、Mg、Zn、Al、Pb、Sb及びBよりなる群から選ばれる少なくとも1つの元素を示す。0<l≦1.2、0≦m≦0.9、2.0≦n≦2.3)等が挙げられる。これらの中でも、LiCo1-mが好ましい。
 オリビン型リン酸リチウムには、LiXPO、LiXPOF(前記各式中、XはCo、Ni、Mn及びFeよりなる群から選ばれる少なくとも1つの元素を示す。)等がある。リチウム含有複合酸化物及びオリビン型リン酸リチウムを示す前記各式において、リチウムのモル数は正極活物質作製直後の値であり、充放電により増減する。
 正極活物質は1種を単独で又は2種以上を組み合わせて使用できる。
 導電剤には、非水電解質二次電池の分野で常用されるものを使用でき、天然黒鉛、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維等の導電性繊維、アルミニウム等の金属粉末、フッ化カーボン等が挙げられる。導電剤は1種を単独で又は2種以上を組み合わせて使用できる。
 結着剤には、高分子材料を使用できる。高分子材料には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ヘキシル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ヘキシル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ポリヘキサフルオロプロピレン等の樹脂材料、スチレンブタジエンゴム、変性アクリルゴム等のゴム材料、カルボキシメチルセルロース等の水溶性高分子材料等がある。
 高分子材料として、2種類以上のモノマー化合物を含有する共重合体を使用してもよい。モノマー化合物には、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエン等がある。
 結着剤は1種を単独で又は2種以上を組み合わせて使用できる。
 正極活物質層21bは、正極合剤スラリーを正極集電体21a表面に塗布し、得られた塗膜を乾燥及び圧延することにより形成できる。正極合剤スラリーは、正極活物質及び必要に応じて導電剤、結着剤等を有機溶媒に溶解又は分散させることにより調製できる。有機溶媒には、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、N-メチル-2-ピロリドン、ジメチルアミン、アセトン、シクロヘキサノン等を使用できる。
 負極22は、負極集電体22aと負極活物質層22bとを備える。
 負極集電体22aには、無孔の導電性基板を使用する。導電性基板の材質は、ステンレス鋼、チタン、ニッケル、銅、銅合金等の金属材料である。無孔の導電性基板には、箔、フィルム等がある。導電性基板の厚さは特に制限されないが、通常1~500μm、好ましくは5~100μm、さらに好ましくは8~50μmである。
 本実施形態の負極活物質層22bは、負極集電体22aの厚さ方向の片方の表面に設けられているが、厚さ方向の両方の表面に設けられてもよい。負極活物質層22bは、合金系活物質を含有し、さらにその特性を損なわない範囲で、合金系活物質以外の公知の負極活物質、添加剤等を含んでいてもよい。負極活物質層22bは、合金系活物質を含有しかつ膜厚が1~20μmである非晶質又は低結晶性の薄膜であることが好ましい。
 合金系活物質は、リチウムと合金化することによりリチウムを吸蔵し、負極電位下でリチウムを可逆的に吸蔵及び放出する。合金系活物質には、珪素系活物質、錫系活物質等がある。合金活物質は、1種を単独で又は2種以上を組み合わせて使用できる。
 珪素系活物質には、珪素、珪素化合物、これらの部分置換体、これらの固溶体等がある。珪素化合物には、式SiO(0.05<a<1.95)で表される珪素酸化物、式SiC(0<b<1)で表される珪素炭化物、式SiN(0<c<4/3)で表される珪素窒化物、珪素合金等がある。珪素合金は、珪素と異種元素(A)との合金である。異種元素(A)は、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Sn及びTiよりなる群から選ばれる少なくとも1つの元素である。
 部分置換体は、珪素及び珪素化合物に含まれる珪素原子の一部が、異種元素(B)で置換された化合物である。異種元素(B)は、B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N及びSnよりなる群から選ばれる少なくとも1つの元素である。これらの中でも、珪素及び珪素化合物が好ましく、珪素酸化物が更に好ましい。
 錫系活物質には、錫、錫化合物、式SnO(0<d<2)で表される錫酸化物、二酸化錫(SnO)、錫窒化物、Ni-Sn合金、Mg-Sn合金、Fe-Sn合金、Cu-Sn合金、Ti-Sn合金等の錫合金、SnSiO、NiSn、MgSn等の錫化合物、これらの固溶体等がある。錫系活物質の中では、錫酸化物、錫合金、錫化合物等が好ましい。合金系活物質の中でも、珪素、珪素酸化物、錫酸化物等が好ましく、珪素酸化物がさらに好ましい。
 負極活物質層22bは気相法により形成される。気相法には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、化学気相成長(CVD)法、プラズマ化学気相成長法、溶射法等がある。これらの中でも、真空蒸着法が好ましい。
 例えば、電子ビーム式真空蒸着装置において、シリコンターゲットの鉛直方向上方に負極集電体22aを配置する。シリコンターゲットに電子ビームを照射してシリコン蒸気を発生させ、このシリコン蒸気を負極集電体22aの表面に析出させる。これにより、珪素からなる負極活物質層22bが負極集電体22aの表面に形成される。このとき、電子ビーム式真空蒸着装置内に酸素又は窒素を供給すると、珪素酸化物又は珪素窒化物を含有する負極活物質層22bが形成される。
 本実施形態の負極活物質層22bは、薄膜状のベタ膜として形成されるが、それに限定されず、気相法により、格子等のパターン形状に形成してもよく、複数の柱状体を含むように形成してもよい。複数の柱状体は、それぞれが合金系活物質を含有し、負極集電体表面から外方に延び、かつ、隣り合う一対の柱状体間に空隙が存在するように形成される。
 この場合、負極集電体の表面に複数の凸部を規則的に又は不規則に形成し、1つの凸部の表面に1つの柱状体を形成するのが好ましい。凸部の鉛直方向上方からの正投影図における形状には、菱形、円形、楕円形、三角形~八角形などがある。凸部を規則的に形成する場合、凸部の負極集電体表面での配置には、碁盤目配置、格子配置、千鳥格子配置、最密充填配置等がある。また、凸部は、負極集電体の厚さ方向の一方の表面又は両方の表面に形成される。また、柱状体の高さは好ましくは3μm~30μmである。
 セパレータ23は、正極21と負極22との間に介在するように配置されるリチウムイオン透過性絶縁層である。セパレータ23は、リチウムイオン伝導性を有していてもよい。セパレータ23には、細孔を有する多孔質フィルムを使用できる。前記多孔質フィルムには、微多孔膜、織布、不織布などがある。微多孔膜は、単層膜又は多層膜(複合膜)である。また、微多孔膜、織布、不織布等を2層以上積層して、セパレータ23として用いてもよい。
 セパレータ23の材料には各種樹脂材料を使用できるが、耐久性、シャットダウン機能、電池の安全性等を考慮すると、ポリエチレン、ポリプロピレン等のポリオレフィンが好ましい。セパレータ23の厚さは、通常5~300μm、好ましくは8~40μm、さらに好ましくは10~30μmである。セパレータ23の空孔率は、好ましくは30~70%、さらに好ましくは35~60%である。空孔率とは、セパレータ23の体積に占める、セパレータ23中に存在する細孔の総容積の百分率である。
 電極群20及びセパレータ23には、リチウムイオン伝導性を有する非水電解質が含浸される。本実施形態の非水電解質は、液状非水電解質である。液状非水電解質は、溶質(支持塩)と非水溶媒とを含み、さらに各種添加剤を含んでいてもよい。
 溶質には、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、LiBCl、ホウ酸塩類、イミド塩類等がある。溶質は1種を単独で又は2種以上を組み合わせて使用できる。溶質の溶解量は、好ましくは、非水溶媒1リットルに対し、0.5~2モルである。
 非水溶媒には、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル等がある。環状炭酸エステルには、プロピレンカーボネート、エチレンカーボネート等がある。鎖状炭酸エステルには、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等がある。環状カルボン酸エステルには、γ-ブチロラクトン、γ-バレロラクトン等がある。非水溶媒は1種を単独で又は2種以上を組み合わせて使用できる。
 添加剤には、充放電効率を向上させるビニレンカーボネート化合物、電池を不活性化するベンゼン化合物等がある。前記ビニレンカーボネート化合物には、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート等がある。前記ベンゼン化合物には、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル等がある。
 液状非水電解質に代えて、ゲル状非水電解質を使用してもよい。ゲル状非水電解質は、液状非水電解質と高分子材料とを含有する。高分子材料には、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート等を使用できる。
 本実施形態の電池10では、絶縁層としてセパレータ23を用いているが、セパレータ23に代えて多孔質耐熱層を用いてもよい。また、セパレータ23と多孔質耐熱層とを併用してもよい。多孔質耐熱層は、例えば、正極活物質層21b及び負極活物質層22bの少なくとも一方の表面に形成される。
 多孔質耐熱層は、無機酸化物及び結着剤を含有する。無機酸化物には、アルミナ、チタニア、シリカ、マグネシア、カルシア等がある。結着剤には各種高分子材料を使用できる。多孔質耐熱層における無機酸化物の含有量は、好ましくは多孔質耐熱層全量の90~99.5重量%であり、残部が結着剤である。
 多孔質耐熱層は、正極活物質層21bと同様にして形成できる。無機酸化物及び結着剤を有機溶媒に溶解又は分散させてスラリーを調製し、このスラリーを正極活物質層21b及び/又は負極活物質層22bの表面に塗布し、乾燥させることにより、多孔質耐熱層を形成できる。多孔質耐熱層の厚さは、好ましくは1~10μmである。
 また、本実施形態の電池10では、セパレータ23及び液状非水電解質に代えて、固体電解質層を絶縁層として用いても良い。固体電解質層は、無機固体電解質、有機固体電解質等の固体電解質を含有する。無機固体電解質には、硫化物系無機固体電解質、酸化物系無機固体電解質、その他のリチウム系無機固体電解質、これらの無機固体電解質の結晶を析出させたガラスセラミックス等がある。
 硫化物系無機固体電解質には、(LiPO-(LiS)-(SiSガラス、(LiS)-(SiS、(LiS)-(P、LiS-P、thio―LISICON等がある。酸化物系無機固体電解質には、LiTi(PO、LiZr(PO、LiGe(PO等のNASICON型、(La0.5+xLi0.5-3x)TiO等のペロブスカイト型等がある。その他のリチウム系無機固体電解質には、LiPON、LiNbO、LiTaO、LiPO、LiPO4-x(xは0<x≦1)、LiN、LiI、LISICON等がある。
 有機固体電解質には、イオン伝導性ポリマー類、ポリマー電解質等がある。
 イオン伝導性ポリマー類には、低相転移温度(Tg)のポリエーテル、無定形フッ化ビニリデンコポリマー、異種ポリマーの混合物等がある。
 ポリマー電解質には、マトリックスポリマーとリチウム塩とを含有するポリマー電解質がある。マトリックスポリマーには、ポリエチレンオキサイド、ポリプロピレンオキサイド、エチレンオキサイドとプロピレンオキサイドとの共重合体、エチレンオキサイド単位及び/又はプロピレンオキサイド単位を有するポリマー、ポリカーボネート等がある。リチウム塩は、液状非水電解質の溶質と同じものを使用できる。
 ここで、電池10の各構成要素の説明に戻る。正極リード24の材質は、アルミニウム等である。負極リード25の材質は、ニッケル、銅、銅合金等である。ガスケット26の材質は、ポリオレフィン、フッ素樹脂等である。
 電池ケース27は、ラミネートフィルムからなり、長手方向の両端部に開口27a、27bを有する方形の袋状容器である。ラミネートフィルムには、酸変性ポリプロピレン/ポリエチレンテレフタレート(PET)/Al箔/PETのラミネートフィルム、酸変性ポリエチレン/ポリアミド/Al箔/PETのラミネートフィルム、アイオノマー樹脂/Ni箔/ポリエチレン/PETのラミネートフィルム、エチレンビニルアセテート/ポリエチレン/Al箔/PETのラミネートフィルム、アイオノマー樹脂/PET/Al箔/PETのラミネートフィルム等の、金属箔と樹脂フィルムとの積層体がある。
 本実施形態の電池ケース27の材質は、ラミネートフィルムであるが、それに限定されず、金属材料、樹脂材料等でもよい。金属材料には、アルミニウム、マグネシウム、チタン、鉄、ステンレス鋼、これらの合金等がある。樹脂材料には、フッ素樹脂、ABS樹脂、ポリカーボネート、ポリエチレンテレフタレート等がある。
 本実施形態の電池10は、電極群20を含むラミネートフィルムパック電池であるが、それに限定されず、捲回型電極群を含む円筒型電池、捲回型電極群を扁平状に成形した扁平型電極群を含む角型電池、積層型電極群を含むコイン型電池等でもよい。
(2)厚さ検知手段11
 厚さ検知手段11は、電池10における電極群20の厚さを検知する。厚さ検知手段11は、第1判定手段13に情報交換可能に接続されている。具体的には、電気的な接続、光学的な接続等が挙げられる。厚さ検知手段11は、電池10の電極群20の内圧(厚さ情報)を検知し、電極群20の厚さを算出する。また、厚さ検知手段11は、その検知結果(計算結果)を第1判定手段13に出力する。厚さ検知手段11は、例えば、電池10の近傍に配置され、図示しない、圧力検知手段、電圧検知手段、第1記憶手段、第1演算手段及び第1制御手段を含む。圧力検知手段及び電圧検知手段を、電池10の近傍に配置するのが好ましい。
 圧力検知手段は、電池10内の電極群20の内圧を検知する。本実施形態では、圧力検知手段を電池10の扁平部分の中央部に接触させることにより、電極群20の内圧を検知する。電池10の扁平部分とは、電池ケース27における電極群20が収容された部分である。圧力検知手段により電極群20の内圧を正確に検知するためには、電極群20は積層型電極群又は扁平型電極群であることが好ましい。
 電池10の中央部は、電池ケース27の厚さ方向において、電池ケース27を介して電極群20の中心と対向する部分である。電極群20が積層型電極群又は扁平型電極群である場合、これらを鉛直方向上方(図2の上方)から見た形状は方形である。この方形における対角線の交点が、電極群20の中心である。電池10の中央部は、電極群20の中心と正確に一致している必要はなく、電極群20の中心の近傍部分でも、電極群20の内圧をほぼ正確に検知できる。電極群20の中心の近傍部分とは、例えば、電極群20の中心から半径5~10mmの円領域である。
 また、電池ケース27を介して電極群20の内圧を検知するという観点から、電池ケース27の寸法は、電極群20の寸法に対応させるのが好ましい。又は、電極群20の寸法を電池ケース27の寸法に対応させるのが好ましい。特に電池ケース27の内部空間の厚さと、電極群20の厚さとをほぼ同じに設計するのが好ましい。また、電池ケース27の材質は、ラミネートフィルム、可撓性を有する合成樹脂材料、外部応力による変形が比較的容易な金属材料等が好ましい。
 圧力検知手段は、例えば、電池10の放電時の開回路電圧(Open circuit voltage、以下「OCV」とする)が、充電直後(放電開始時)のOCV値の50%以下になった時点で、電極群20の内圧を検知する。圧力検知手段には、例えば、圧力センサを使用できる。圧力センサとしては特に制限されないが、電池パック1において使用する観点から、小型の圧力センサが好ましい。小型の圧力センサは多数市販されており、例えば、HSPCシリーズ(商品名、アルプス電気(株)製)、PS-Aプレッシャーセンサ(商品名、パナソニック電工(株)製)等が挙げられる。
 電圧検知手段は、電池10のOCV値を測定する。電圧検知手段は、まず、電池10の放電開始時のOCV値を検知し、その検知結果を第1記憶手段に出力する。さらに、電圧検知手段は、所定の間隔で電池10のOCV値を測定し、その検知結果を第1記憶手段に出力する。電圧検知手段には、各種電圧計を使用できる。第1制御手段は、電圧検知手段による新しい検知結果が第1記憶手段に入力されるたびに、放電開始時のOCV値と新しく入力されたOCV値とを比較し、新しく入力されたOCV値が放電開始時の50%以下になっているか否かを判定する。
 なお、OCV値が放電開始時のOCV値の50%以下にならない状態で、電池10の放電が一端停止しても、電池10の充電が実施されない限り、前記放電開始時のOCV値を基準にして判定が行われる。電池10の充電が実施され、その後に放電開始時のOCV値が測定されるたびに、第1の記憶手段における放電開始時のOCV値は新しい値に更新される。
 第1記憶手段には、電池10に関するデータが入力されている。データの具体例としては、例えば、負極活物質層22bの初期厚さ、電極群20の初期厚さ、電極群20の積層数又は捲回数等である。また、第1記憶手段には、負極活物質層22bの初期厚さ、電極群20の初期厚さ及び電極群20の積層数又は捲回数に基づく、電極群20の内圧と厚さとの関係を示す第1データテーブルが入力されている。第1データテーブルは、実験により予め作成される。
 より具体的には、負極活物質として合金系活物質を含有する電極群20において、電極群20の内圧X、電極群20の厚さY及び電極群20の初期厚さTの間には、Y=αX+Tの関係式が成立する。したがって、前記関係式において、電極群20の積層数又は捲回数に応じて、比例定数αを求め、第1データテーブルとして第1記憶手段に予め入力しておく。この場合、電極群20の積層数又は捲回数は、1、2、3・・・と連続的に設定するのではなく、例えば、1~5、6~10、11~15、・・・と段階的に数値幅を設定し、数値幅ごとに比例定数αを求めるのが好ましい。1~5という数値幅における比例定数α1~5を求めるには、1~5の各数値における比例定数α~αを求め、その平均値を比例定数α1~5とすればよい。
 なお、比例定数αを決定するには、電極群20の積層数又は捲回数を決定することが必要である。電極群20の積層数又は捲回数は、新しい電池10を電池パック1に装着した時に決定される。新しい電池10は、通常、満充電ではない状態で電池パック1に装着され、電池10を満充電にするための最初の充電が行われる。最初の充電後において、放電開始時のOCV値を電圧検知手段により検知する。
 電圧検知手段による検知結果は、第1記憶手段に入力される。また、第1記憶手段には、第1データテーブルとは別に、電極群20の積層数又は捲回数と、初回充電後の放電開始時のOCV値との関係を示す第2データテーブルが入力されている。第2データテーブルにおいても、電極群20の積層数又は捲回数については、第1データテーブルと同様の、段階的な数値幅が設定されている。第1演算手段は、電圧検知手段による検知結果(初回充電後の放電開始時のOCV値)と第2データテーブルとを比較し、電池10における電極群20の積層数又は捲回数を決定し、第1記憶手段に出力する。なお、積層数又は捲回数を第1記憶手段に予め入力するように構成してもよい。
 第1演算手段は、圧力検知手段による検知結果(電極群20の内圧値)、電極群20の積層数又は捲回数及び第1データテーブルに基づいて、電極群20の厚さを算出する。
 さらに、第1記憶手段には、圧力検知手段による検知結果に基づいて、第1データテーブルから電極群20の厚さを算出するプログラムが入力されている。電極群20の厚さの算出方法は、上記に示したとおりである。このプログラムは、第1演算手段において実行される。また、第1記憶手段には、圧力検知手段による検知結果が入力される。この検知結果は、新しい検知結果が入力されるたびに書き換えられる。
 第1演算手段は、圧力検知手段による検知結果が第1記憶手段に新たに入力されるたびに、第1記憶手段から前記検知結果及び第1データテーブルを取り出し、電極群20の厚さを算出する。第1演算手段は、算出結果を第1判定手段13に出力する。
 第1制御手段は、電池10が充電された後に、放電開始時のOCV値を測定し、その後所定の時間間隔でOCV値を測定するように電圧検知手段を制御する。また、第1制御手段は、第1演算手段による、「OCV値が放電開始時のOCV値の50%以下である」との判定結果に応じて圧力検知手段に制御信号を出力し、圧力検知手段により電極群20の内圧を検知させる。また、第1制御手段は、圧力検知手段に制御信号を出力するのと同時に、サイクル数検知手段12の第2制御手段に制御信号を出力し、サイクル数検知手段12によるサイクル数検知を実行させる。
 本実施形態では、第1記憶手段、第1演算手段及び第1制御手段は、マイクロコンピュータ、インターフェイス、メモリ、タイマー等を含む処理回路として構成される。第1記憶手段には、この分野で常用される各種メモリを使用でき、例えば、リードオンリィメモリ(ROM)、ランダムアクセスメモリ(RAM)、半導体メモリ、不揮発性フラッシュメモリ等が挙げられる。
(3)サイクル数検知手段12
 サイクル数検知手段12は、厚さ検知手段11が電極群20の内圧を検知した時点での、電池10の充放電サイクルの累積回数を検知する。本実施形態では、充放電サイクル回数の1回とは、電池10を満充電した後、次の充電が必要になるまで放電させた場合を意味する。サイクル数検知手段12は第1判定手段13に電気的又は光学的に接続され、その検知結果を第1判定手段13に出力する。本実施形態では、サイクル数検知手段12は、図示しない、電圧検知手段、第2記憶手段、第2演算手段及び第2制御手段を含む。
 電圧検知手段は、電池10の放電時及び充電時のOCV値を定期的に検知する。なお、電圧検知手段によるOCV値の検知は、1回の充放電サイクルが実施されるよりも短い所定の間隔で実施される。電圧検知手段には、例えば、電圧計等を使用できる。電圧検知手段による検知結果は、第2記憶手段に経時的に入力される。サイクル数検知手段12は、電池10の放電時のOCV値が充電直後(放電開始時)のOCV値の50%以下になったと第2演算手段が判定した時点で、その判定結果を第1判定手段13に出力する。これにより、厚さ検知手段11による電極群20の内圧検知が開始される。なお、1つの電圧検知手段を、厚さ検知手段11及びサイクル数検知手段12の両方において共用してもよい。
 第2記憶手段には、電圧検知手段による検知結果が経時的に入力されている。また、第2記憶手段には、電圧検知手段による検知結果に応じて、第2演算手段が判定した判定結果(充放電サイクル回数)が入力されている。第2記憶手段は、充放電サイクル回数が増加するたびに、その判定結果を直近の判定結果に積算して保存する。また、第2記憶手段には、OCV値と電極群20の積層数又は捲回数との関係を示す第3データテーブルが入力されている。第3データテーブルは、予め実験等により求めることができる。第3データテーブルにおいて、電極群20の積層数又は捲回数は、例えば、1~5、6~10、11~15というように、段階的に記載されている。これは、厚さ検知手段11の第1記憶手段に入力されているデータテーブルと同じものである。
 さらに、第2記憶手段には、第2演算手段による充放電サイクル回数の判定方法のプログラム、電圧検知手段による検知結果及び第3データテーブルに基づいて、電池10の電極群20の積層数又は捲回数を判定するプログラム等が入力されている。
 第2演算手段は、電圧検知手段によるOCV値の検知結果が第2記憶手段に入力されるたびに、第2記憶手段からOCV値の経時的な検知結果を取り出し、前回の判定時よりも充放電サイクル回数が1回増加した否かを判定する。充放電サイクル回数が1回増加したと判定すると、その判定結果を第2記憶手段に出力する。第2記憶手段は、新たに入力された判定結果に基づいて、その直近の充放電サイクル数に「+1」を積算する。
 電池10のOCV値を経時的に検知すると、電池10の充電開始から、充電終了を経て再度の充電が必要になる充放電サイクルを容易に判定できる。充電開始時の電池10のOCV値は最低になり、その後充電によりOCV値が安定的に上昇し、充電終了後の放電によりOCV値が徐々に低下し、さらに最低になることにより、充放電サイクルが1回増加したか否かを判定できる。
 第2制御手段は、厚さ検知手段11による内圧検知が開始されるのに同期して、第2演算手段に充放電サイクル回数の判定を実施させる。
 サイクル数検知手段12は、厚さ検知手段11による検知が開始されるのと同時に充放電回サイクル数の検知を実施し、第2演算手段による最も新しい判定結果(充放電サイクル回数)を、その検知結果として第1判定手段13に出力する。
 第2演算手段は、電圧検知手段による検知結果及び第3データテーブルに基づいて、電池10の電極群20の積層数又は捲回数を判定する。第2演算手段は、この判定結果を第1判定手段13に出力する。この判定結果は、例えば、第1判定手段13において、電池10における電極群20厚さの最小値の設定値(基準値)を決定するのに利用される。
 第2記憶手段、第2演算手段及び第2制御手段は、第1記憶手段、第1演算手段及び第1制御手段と同様に、マイクロコンピュータ、インターフェイス、メモリ、タイマー等を含む処理回路として構成される。第2記憶手段には、第1記憶手段と同様の各種メモリを使用できる。1つの処理回路に、第1記憶手段、第1演算手段及び第1制御手段と、第2記憶手段、第2演算手段及び第2制御手段とを含ませることができる。
(4)第1判定手段13
 第1判定手段13は、厚さ検知手段11による検知結果(算出結果)及びサイクル数検知手段12による検知結果(判定結果)に応じて、電池交換時期を算出する。より具体的には、第1判定手段13は、厚さ検知手段11による検知結果及びサイクル数検知手段12による検知結果に応じて、厚さ検知手段11により検知される電極群20の厚さが最小であるか否かを判定し、電極群20の厚さが最小であるとの判定結果に応じて、電池交換時期を算出する。
 より具体的には、第1判定手段13は、厚さ検知手段11による検知結果と、電極群20の最小厚さの設定値(基準値)とを比較することにより、厚さ検知手段11による検知結果が電極群20の最小厚さであるか否かを判定する。このとき、厚さ検知手段11による検知結果が、好ましくは前記設定値×0.90~前記設定値×1.10、さらに好ましくは前記設定値×0.95~前記設定値×1.05の範囲にある時に、電極群20の厚さが最小であると判定する。電池10では、例えば、電池ケース27の材質、形状、寸法等により、電極群20の内圧及び厚さが設定値とは多少変化することがある。したがって、電極群20の厚さが最小であるか否かを判定する場合、設定値に多少の幅を持たせた方がより正確な交換時期を判定できる。
 また、厚さ検知手段11の第1制御手段及びサイクル数検知手段12の第2制御手段を設けることなく、第1判定手段13を第1制御手段及び第2制御手段に代えて使用することもできる。この場合、第1判定手段13は、厚さ検知手段11又はサイクル数検知手段12に含まれる電圧検知手段からの、電池10の放電時OCV値が充電直後のOCV値の50%以下になったという判定結果の入力を受ける。この判定結果に応じて、第1判定手段13は、厚さ検知手段11及びサイクル数検知手段12に制御信号を出力し、厚さ検知手段11による電池10の厚さ検知及びサイクル数検知手段12による電池10の充放電サイクル回数の検知を実行させる。
 第1判定手段13は、例えば、第3記憶手段と、第3演算手段と、第3制御手段とを含む。第3記憶手段には、第4データテーブル及び第5データテーブルが予め入力されている。第4データテーブルは、電極群20の積層数又は捲回数ごとに、電極群20の最小厚さと電極群20が最小厚さになる充放電サイクル数との関係を示す。すなわち、電極群20の積層数又は捲回数ごとに、電極群20の最小厚さと充放電サイクル回数との関係が設定されている。電極群20の積層数又は捲回数は、例えば、1~5、6~10、11~15といった段階的に示されている。電極群20の積層数又は捲回数は、上記したように、電圧検知手段によるOCV値の検知から判定ができる。電極群20の積層数又は捲回数の判定結果は、厚さ検知手段11又はサイクル数検知手段12から第1判定手段13の第3記憶手段に入力される。
 したがって、第3演算手段は、第4データテーブルと電極群20の積層数又は捲回数の判定結果とから、厚さ検知手段11による検知結果が電極群20の最小厚さであるか否かを判定する。なお、この場合、第3演算手段は、サイクル数検知手段12による検知結果も参照する。サイクル数検知手段12による検知結果が、第4データテーブルにおける電極群20の最小厚さに対応する充放電サイクル数よりも少ない場合は、電極群20が最小厚さになったと判定しない。そして、第1制御手段に制御信号を出力し、厚さ検知手段11に再度検知を実行させる。2度目の検知でも電極群厚さが最小であると判定された場合は、充放電サイクル数が一致していなくても、電極群厚さが最小になったと判定する。
 第5データテーブルは、電池10において電極群20が最小厚さに達した後の、充放電サイクルの回数Zと電極群20の厚さTとの関係を示す。この関係は、予め実験により求められる。また、この関係は、電極群20の積層数又は捲回数ごとに求められる。第5テーブルにおいても、電極群20の積層数又は捲回数は、1~5、6~10、11~15・・・といった段階的な数値範囲として設定されている。
 本発明者らは、合金系活物質を利用する電池10において、充放電サイクルの回数と電極群20の厚さとが特殊な関係を示すことを見出した。すなわち、図4に示すように、電池10の使用開始時点Nから所定の充放電サイクル回数Nまでの間は、電極群20の厚さと充放電サイクル回数とはほぼ負の比例関係を有している。充放電サイクル回数Nになるまで、電極群20の厚さは徐々に減少し、充放電サイクル回数Nにおいて電極群20の厚さは最小になる。したがって、予め実験により、電極群20の最小厚さを求めることができる。一方、充放電サイクル回数がNよりも増加すると、電極群20の厚さは徐々に大きくなる。このように電極群20の厚さが変化する現象は、合金系活物質以外の負極活物質を利用する非水電解質二次電池には認められない。
 合金系活物質を用いる電池10において、上記現象が発生する理由は十分明らかではないが、負極活物質層22bにおける合金系活物質粒子の形状が、充放電サイクルの繰返しに伴う膨張及び収縮により、最適化されるためであると推測される。粒子形状の最適化とは、粒子形状が変化し、粒子同士の間隙の容積が最小になり、粒子集合体としての負極活物質層22bの体積が最小になることである。
 なお、前記した粒子形状の最適化とともに、充放電サイクルの繰返しに伴って合金系活物質粒子が劣化すると、該粒子のC軸方向の厚さが増加するため、電極群20の厚さと充放電サイクル回数とが反比例の関係を示すこともある。したがって、予め電極群20を作製し、充放電サイクル回数の増加に伴う電極群20の厚さの変化を把握しておくことが好ましい。
 また、充放電サイクル回数がNよりも増加すると、電極群20の厚さが増加するのは、充放電サイクル回数Nにおいて、合金系活物質粒子の粒子形状の最適化が終了するためであると推測される。
 さらに本発明者らは、前記のような特性を有する電池10において、電極群20の最小厚さと、その時の充放電サイクル回数Nとが判れば、電池10の交換時期をほぼ正確に予測できることを見出した。具体的には、本発明者らは、電極群20が最小厚さに達した後は、電極群厚さTと充放電サイクル回数Zとの間には、非常に再現性の高い相関関係が成立することを見出した。したがって、電極群20が最小厚さに達した後の電極群厚さTと充放電サイクル回数Zとの関係を実験により測定してデータ化すれば、充放電サイクルをZ回行った後の電極群厚さTをほぼ正確に知ることが可能になる。
 したがって、電極群厚さTに基づいて電池10の交換時期を設定すれば、電池10を交換するまでの充放電サイクルの回数をほぼ正確に予測できる。電池10の交換時期は、電池10における電極群20の厚さにより判定される。電極群20の交換時期の厚さは、例えば、電池10の容量が初期容量(使用開始時の容量)の50%以下になる電極群20の厚さである。電極群20の交換時期厚さは、第5データテーブルとともに第3記憶手段に入力されている。すなわち、電池パック1では、電極群20が最小厚さになったと判定された時点で、電池10を交換するまでの充放電サイクル回数をほぼ正確に予測できる。
 なお、第5データテーブルにおける充放電サイクル回数に対応する電極群厚さと、厚さ検知手段11による電極群厚さの検知結果との差が25%以上である場合は、異常とみなし、第1判定手段13はその時の充放電サイクル回数を電池10の交換時期として判定する。
 第3演算手段は、電極群20における積層数又は捲回数に応じて電極群20の最小厚さを判定し、その判定結果に応じて、厚さ検知手段11による検知結果が最小電極群厚さになっているか否かを判定する。厚さ検知手段11による検知結果が最小電極群厚さに一致する場合は、その時の充放電サイクル回数及び第5データテーブルを第3記憶手段から取り出し、電池10の交換時期までの充放電サイクル回数を算出し、算出結果を第3記憶手段に出力する。
 また、厚さ検知手段11による検知結果が、最小電極群厚さに達していない場合は、電圧検知手段によるOCV値が充電終了時のOCV値の50%以下であるとの検知結果が入力されるたびに、その検知結果を制御手段に出力する。第3制御手段は、厚さ検知手段11及びサイクル数検知手段12に制御信号を出力し、電極群厚さ及び充放電サイクル回数を検知させる。また、第3制御手段は、電池10の交換時期までの充放電サイクル回数が決定された後、交換時期通知手段14に制御信号を出力し、その充放電サイクル回数を表示する。
 第3記憶手段、第3演算手段及び第3制御手段は、第1~第2記憶手段、第1~第2演算手段及び第1~2制御手段と同様に、マイクロコンピュータ、インターフェイス、メモリ、タイマー等を含む処理回路として構成される。第3記憶手段には、第1~2記憶手段と同様の各種メモリを使用できる。
 本実施形態では、記憶手段、演算手段、制御手段等を、厚さ検知手段11、サイクル数検知手段12及び第1判定手段13ごとに個別に設けているが、これらを一体化して、1つの記憶手段、演算手段及び制御手段を設けてもよい。例えば、マイクロコンピュータ、インターフェイス、メモリ、タイマー等を含む処理回路として、中央演算装置(CPU)を設けてもよい。
(5)交換時期通知手段14
 交換時期通知手段14は、電池10の交換時期までの充放電サイクル回数を表示する。表示される充放電サイクル回数は、電池10の充放電サイクル回数がさらに増加するのに伴って減少する。また、交換時期までの充放電サイクル回数が、例えば、10回又は5回を下回った時点で、その回数を赤等の目立つ色で表示するか又は点滅表示してもよい。交換時期通知手段14には、例えば、液晶、表示灯等が使用される。
 また、本実施形態では交換時期通知手段14が使用されるが、それに限定されず、第1判定手段13により算出される電池交換時期を音で知らせる交換時期通知手段を設けてもよい。さらに、第1判定手段13により算出される電池交換時期に応じて、電池10の充放電を停止させる充放電制御手段を設けてもよい。第1判定手段13に、前記充放電制御手段の機能を付加してもよい。
 つぎに、図3に基づいて、本発明の電池パック1における判定動作を説明する。
 ステップS1では、厚さ検知手段11又はサイクル数検知手段12に含まれる電圧検知手段により、電池10の充電直後のOCV値が検知され、さらに電池10のOCV値が定期的に検知される。ステップS2では、サイクル数検知手段12において、電圧検知手段による検知結果が、電池10の充電直後のOCV値の50%以下であるか否かが判定される。50%以下である場合には、ステップS3に移る。50%以下でない場合には、ステップS1に戻る。
 ステップS3では、電圧検知手段による検知結果が電池10の充電直後のOCV値の50%以下であるとの判定結果が、厚さ検知手段11の第1制御手段に入力される。第1制御手段は、圧力検知手段に制御信号を出力し、圧力検知手段により電極群20の内圧を検知させる。厚さ検知手段11は、圧力検知手段による電極群20の内圧検知結果に基づいて演算を行い、電極群20の厚さを検知する。電極群20の厚さの検知結果は、第1判定手段13に入力される。
 ステップS4では、厚さ検知手段11の第1制御手段が、厚さ検知手段11の圧力検知手段への制御信号の出力に同期して、サイクル数検知手段12の第2制御手段に制御信号を出力する。これにより、厚さ検知手段11により電極群20の厚さが検知された時点での充放電サイクル回数を検知する。この充放電サイクル回数の検知結果は、第1判定手段13に入力される。
 ステップS5では、第1判定手段13において、厚さ検知手段11による電極群20の厚さの検知結果が、電極群20の最小厚さに一致するか又は否か(電極群20の最小厚さよりも大きいか否か)を判定する。一致する場合にはステップS6に移行し、一致しない場合はステップS1に戻る。ステップS6では、第1判定手段13において、厚さ検知手段11による電極群20の厚さの検知結果及びサイクル数検知手段12による充放電サイクル回数の検知結果から、電池交換時期までの充放電サイクル回数を算出する。
 ステップS7では、ステップS6で算出された電池交換時期までの充放電サイクル回数を、交換時期通知手段14に表示する。このようにして、本発明の電池パック1における、電池交換時期までの充放電サイクル回数を求める動作が完了する。
[第2実施形態]
 図5は、本発明の第2実施形態である電池パック2の構成を模式的に示すブロック図である。電池パック2は電池パック1に類似し、対応する部分については同一の参照符号を付して説明を省略する。電池パック2は、第1判定手段13に代えて第1判定手段13aを含み、かつサイクル数検知手段12を含まないことを特徴とし、それ以外の構成は電池パック1と同様である。
 第1判定手段13aは、第1判定手段13の他に、サイクル数検知手段12とは異なるサイクル数検知手段を有している。このサイクル数検知手段は、電池10に充電電圧が一定の長さ以上印加されるのを検知し、これを充放電サイクル回数:1回と検知する。また、電池パック2では、電圧検知手段を有していないので、電池パック1と同様にして電極群20の積層数又は捲回数を判定できない。したがって、第1判定手段13aは、電極群20の積層数又は捲回数を外部から入力可能に構成されている。
 具体的には、例えば、電池パック2に図示しないUSB入力端子が設けられている。そして、USBケーブルを介して電池パック2とパーソナルコンピュータとを接続することにより、電極群20の積層数又は捲回数を第1判定手段13aに入力できる。電極群20の積層数又は捲回数は、電池10に表示されている。また、電池パック2の説明書には、電池パック2に適する電池10の規格が明示されている。したがって、使用者は、電池パック2に適した電池10を容易に選択できる。電池パック2においても、電池パック1と同様に、電極群20が最小厚さに達してから電池交換までの充放電サイクル回数をほぼ正確に算出することができる。
[第3実施形態]
 図6は、本発明の第3実施形態である電池パック3の構成を模式的に示すブロック図である。図7は、図2に示す非水電解質二次電池10のサイクル劣化判定方法の一実施形態を示すフローチャートである。
 本発明者らは、前述のように、合金系二次電池の膨れ特性が、黒鉛を含む従来の非水電解質二次電池(以下「従来の電池」とする)の膨れ特性とは異なることを見出した。電池の膨れは、主に、電池ケース内に収容される電極群が膨れることに起因して発生する。従来の電池では、充放電サイクル回数の増加に伴って電極群の膨れが徐々に大きくなる。
 これに対し、合金系二次電池は、図4に示すように、使用初期は電極群の厚さが徐々に小さくなり、電極群の厚さが最小に達した後、電極群の厚さが徐々に増加する膨れ特性を有していることを本発明者らは見出した。さらに、本発明者らは、電極群の厚さが増加に転じた後は、充放電サイクル回数と電極群の厚さとの間に相関関係(所定の比例定数を有する比例関係)が存在することを見出した。しかしながら、この相関関係だけでは、突然のサイクル劣化の有無を判定できない。
 本発明者は、合金系二次電池における、充放電サイクル回数と電極群の厚さとの相関関係についてさらに研究を重ねた。その結果、顕著なサイクル劣化が突然に起る合金系二次電池では、そのサイクル劣化が起る前に、電極群の厚さの増加率が急激に変化することを見出した。すなわち、充放電サイクル回数と電極群の厚さとは比例関係にあるが、顕著なサイクル劣化が突然に起る前に、その比例関係における比例定数が大きくなるように変化することを見出した。
 この知見に基づき、本発明者らは、充放電サイクル回数と電極群の厚さとの相関関係の変化から、顕著なサイクル劣化が突然に起る前に、サイクル劣化の有無を判定する構成を想到するに至った。そして、この構成によれば、顕著なサイクル劣化が突然に起る前に、サイクル劣化の発生の有無をほぼ正確に判定できることを見出した。
 本発明によれば、合金系二次電池の顕著なサイクル劣化の発生の有無をほぼ正確に判定できる。より具体的には、前記電池において、顕著なサイクル劣化が突然に起る前に、前記電池に顕著なサイクル劣化が起り始めていることを知ることができる。その結果、顕著なサイクル劣化とそれに伴う電池の大きな膨れの発生を予測して、電池パックを交換することが可能になる。このため、前記電池パックを電源とする各種電子機器や電気自動車などにおいて、作成データの消失や走行中の駆動モータの停止などが発生するのを防止できる。また、万が一、電池が大きく膨れる要因を持つ場合でも、それをほぼ確実に防止できる。
 本実施形態の電池パック3は、合金系活物質を含む非水電解質二次電池とともに、非水電解質二次電池のサイクル劣化の有無の判定方法を実現する機構を含んでいる。このため、顕著なサイクル劣化が突然に起る前に、電池パック3を交換することが可能になる。本実施形態の電池パック3は長期的な信頼性が高く、各種電子機器の電源、電気自動車の主電源や補助電源などとして有効である。
 電池パック3は、電池10と、電池10に含まれる電極群20の厚さを検知する厚さ検知手段16と、電池10の充放電サイクル回数を検知するサイクル数検知手段17と、厚さ検知手段16による検知結果とサイクル数検知手段17による検知結果とから、電池10のサイクル劣化の有無を判定する第2判定手段18と、第2判定手段18によるサイクル劣化有りとの判定結果を表示するサイクル劣化通知手段19と、外部機器の接続端子に接続される外部接続端子15a、15bと、図示しない外装体とを含む。
 本実施形態では、電池10、厚さ検知手段16、サイクル数検知手段17および第2判定手段18は、外装体の内部に収容されている。サイクル劣化通知手段19は、外装体表面に露出するように配置されている。また、外部接続端子15a、15bは、それぞれ、外装体の所定の位置に装着されている。電池10は、図2に示す電池10である。
(1)厚さ検知手段16
 厚さ検知手段16は、電池10に含まれる電極群20の厚さ情報を検知する。本実施形態では、厚さ検知手段16は、電極群20の厚さ情報として電極群20の内圧を検知し、その検知結果から電極群20の厚さを算出する。厚さ検知手段16は、算出結果を第2判定手段18に出力する。厚さ検知手段16と第2判定手段18とは、情報交換可能に接続されている。具体的には、電気的な接続、光学的な接続などがある。情報交換可能な接続とは、検知結果、制御信号などの出入力が可能な接続を意味する。
 本実施形態の厚さ検知手段16は、感圧センサ、第4記憶手段、第4演算手段および第4制御手段(いずれも図示せず)を含み、少なくとも感圧センサが非水電解質二次電池10の近傍に配置される。感圧センサ、第4記憶手段、第4演算手段および第4制御手段は、情報交換可能に接続されている。
 感圧センサは、電極群20の内圧を検知する。本実施形態では、電極群20は積層型であり、扁平な形状を有しているので、感圧センサによりその内圧を正確に検知することができる。感圧センサにより内圧を正確に検知するという観点からは、電極群20に代えて、扁平型電極群を使用してもよい。
 感圧センサは、電池10の扁平部分の中央部に接触させることが好ましい。これにより、電極群20の内圧をより一層正確に検知できる。電池10の扁平部分とは、電極群20の厚さ方向表面に対応する電池ケース27の外側表面である。扁平部分の中央部とは、電池ケース27の外側表面において、電極群20の厚さ方向表面の中心に対応する位置である。
 電極群20は積層型であり、その厚さ方向の表面を鉛直方向上方から見た形状は、長方形、正方形などの方形である。方形における対角線の交点が、電極群20の厚さ方向表面の中心である。電池10の中央部は、電極群20の中心と正確に一致している必要はなく、電極群20の中心の近傍部分でも、電極群20の内圧をほぼ正確に検知できる。電極群20の中心の近傍部分は、電極群20の中心から半径5mm~10mm程度の円領域である。扁平型電極群の鉛直方向上方から見た形状は、積層型電極群20と同様に方形であるため、その中心は電極群20の中心と同様に定義できる。
 感圧センサは、サイクル数検知手段17が充放電サイクル回数を更新した直後に、電極群20の内圧を検知する。電極群20の内圧から、電極群20の厚さをほぼ正確に知ることができる。なお、サイクル数検知手段17が充放電サイクル回数を更新する点については、サイクル数検知手段17の項目で説明する。
 感圧センサには、従来から圧力センサとして知られているものを使用できるが、HSPCシリーズ(商品名、アルプス電気(株)製)、PS-Aプレッシャーセンサ(商品名、パナソニック電工(株)製)などの小型の圧力センサが好ましい。感圧センサは、その検知結果を第4記憶手段に出力する。
 第4記憶手段には、感圧センサによる検知結果が入力される。この検知結果は、新しい検知結果が入力されるたびに書き換えられる。この検知結果に基づいて、電極群20の厚さが算出され、第4記憶手段に入力される。第4記憶手段には、電極群20の満充電時の内圧と電極群20の厚さとの関係を示す第6データテーブルが入力されている。
 電極群20の満充電時の内圧と厚さとの関係は、単位電極の積層数、電極群20および負極活物質層22bの初期厚さなどに応じて変化する。したがって、第6データテーブルは、予め定められた規格(単位電極の積層数、電極群20の初期厚さおよび負極活物質層22bの初期厚さ)における、電極群20の満充電時の内圧と電極群20の厚さとの関係を示すものである。第6データテーブルは、実験により予め作成される。
 単位電極とは、1つの正極21と1つの負極22との間に1つのセパレータ23を介在させたものである。互いに隣り合う一組の単位電極の間にセパレータ23を介在させると、複数の単位電極を積層した積層型電極群を作製できる。本実施形態において、電極群20の積層数とは、単位電極の積層数を意味する。図2に示す電池10では、電極群20の積層数は1である。
 合金系活物質を含有する電極群20において、電極群20の満充電時の内圧Xと、電極群20の厚さYと、電極群20の初期厚さTとの間には、式(1):Y=αX+T(式中αは比例定数を示す)の関係が成立する。したがって、式(1)において、電極群20の積層数に応じて、比例定数αを求め、第6データテーブルとして第4記憶手段に予め入力する。
 この場合、電極群20の積層数は、1、2、3・・・と連続的に設定してもよいが、たとえば、1~5、6~10、11~15、・・・と段階的に数値幅を設定し、数値幅ごとに比例定数αを求めるのが好ましい。積層数1~5という数値幅における比例定数α1~5を求めるには、1~5の各積層数における比例定数α~αを求め、その平均値を比例定数α1~5とすればよい。電極群20が扁平型電極群である場合は、積層数に代えて捲回数を用いる以外は、積層数の場合と同様にして比例定数αを決定する。
 さらに、第4記憶手段には、感圧センサによる検知結果に基づいて、第6データテーブルから電極群20の厚さを算出するプログラムが入力されている。電極群20の厚さの算出方法は、上記に示したとおりである。このプログラムは、第4演算手段において実行される。
 第4演算手段は、感圧センサによる検知結果(電極群20の内圧値)、電極群20の積層数および第6データテーブルに基づいて、電極群20の厚さを算出する。電極群20の積層数は、電池パック3を設計する際に決められているので、第6データテーブルとともに予め第4記憶手段に入力されている。
 第4演算手段は、感圧センサによる検知結果が第4記憶手段に新たに入力されるたびに、第4記憶手段から前記検知結果および第6データテーブルを取り出し、電極群20の厚さを算出する。第4演算手段は、算出結果を第4記憶手段に出力する。
 第4制御手段は、サイクル数検知手段17による充放電サイクル回数を更新したとの制御信号に応じて感圧センサおよび第4演算手段を制御する。より具体的には、第4制御手段は、電池10の満充電時に、感圧センサによる電極群20の内圧検知、および第4演算手段による電極群20の厚さの算出を制御する。第4制御手段は、第4演算手段による算出結果を第4記憶手段から取り出し、第2判定手段18に出力する。
 第4記憶手段、第4演算手段および第4制御手段は、本実施形態では、マイクロコンピュータ、インターフェイス、メモリ、タイマーなどを含む処理回路として構成される。第4記憶手段には、この分野で常用される各種メモリを使用でき、たとえば、リードオンリィメモリ(ROM)、ランダムアクセスメモリ(RAM)、半導体メモリ、不揮発性フラッシュメモリなどが挙げられる。第4記憶手段、第4演算手段および第4制御手段の代りに、電池パック3が装着される外部機器または第2判定手段18のCPU(中央情報処理装置)などを利用してもよい。
(2)サイクル数検知手段17
 サイクル数検知手段17は、電池10の充放電サイクル回数を検知する。本実施形態では、満充電状態の電池10が放電して完全放電状態になり、充電が行われ、電池10が再び満充電状態になるサイクルを、充放電サイクル1回とする。満充電状態は、好ましくはSOC:90%以上である。サイクル数検知手段17と第2判定手段18とは、電気信号レベルでの情報交換が可能であるように接続され、サイクル数検知手段17はその検知結果を第2判定手段18に出力する。
 本実施形態のサイクル数検知手段17は、図示しない電圧検知手段と、第5記憶手段と、第5演算手段と、第5制御手段とを含む。
 電圧検知手段は、第5制御手段により、電池10の開回路電圧(Open circuit voltage、以下「OCV」とする)を所定の時間間隔で検知するように制御される。
 電池10のOCV値には、次のような特性がある。電池10の充電開始時に、そのOCV値は最低になる。その後充電によりOCV値が安定的に上昇し、最大になる。そして、充電終了後の放電により、OCV値は徐々に低下し、さらに最低値になる。OCV値が最大になり、その後低下し、再び最大になるまでのサイクルが、充放電サイクル1回になる。電池10のOCV値を経時的に検知することにより、電池10の充放電サイクルの回数を正確に検知できる。
 電圧検知手段によるOCVの検知は、たとえば、0.1秒~1000秒、好ましくは1秒~60秒の間隔で実施すればよい。電圧検知手段には、たとえば、電圧計などを使用できる。電圧検知手段による検知結果は、第5記憶手段に経時的に並べて入力される。
 第5記憶手段には、電圧検知手段による検知結果の他に、充放電サイクルの回数が入力される。充放電サイクルの回数は、新しい数値が入力されるたびに書き換えられる。
 第5演算手段は、電圧検知手段による検知結果が第5記憶手段に入力されると、その検知結果を取り出し、検知結果であるOCV値が最高になり、再び最高になるサイクルを、充放電サイクル回数1回と判定する。第5演算手段は、1回の充放電サイクルが終了したと認識すると、第5記憶手段に入力されている充放電サイクル回数の数値に「1」を加算し、新しい数値として第5記憶手段に出力する。
 第5制御手段は、電圧検知手段によるOCV値の検知を制御する。また、第5制御手段は、第5記憶手段に入力されている充放電サイクル回数が新しい数値に書き換えられると、その新しい数値を第2判定手段18に出力する。
 本実施形態では、第5記憶手段、第5演算手段および第5制御手段は、マイクロコンピュータ、インターフェイス、メモリ、タイマーなどを含む処理回路として構成される。第5記憶手段には、この分野で常用される各種メモリを使用でき、たとえば、リードオンリィメモリ、ランダムアクセスメモリ、半導体メモリ、不揮発性フラッシュメモリなどが挙げられる。第5記憶手段、第5演算手段および第5制御手段の代りに、電池パック3が装着される外部機器のCPU(中央情報処理装置)などを利用してもよい。
 本実施形態ではOCV値の検知により充放電サイクル回数を検知しているが、それに限定されず、たとえば、閉回路端子電圧(CCV)の検知により充放電サイクル回数を検知してもよい。なお、CCV検知を行う場合には、測定する電流レートを低くするのが好ましい。具体的には、測定する電流レートを0.2C以下にするのが好ましい。これにより、検知されるCCVの値が電流レートの影響を受け難くなり、さらに正確な検知が可能になる。電流レートは、第5制御手段により制御すればよい。
 CCV検知は、環境温度による影響を受ける場合がある。具体的には、環境温度が20℃未満では、電流レートを0.2C以下にしても、検知されるCCV値が不正確になるおそれがある。したがって、温度検知手段により電池10の温度を検知しつつ、CCV検知を行うのがよい。電池10の温度と、電流レートと、CCV値との関係を予め実験により求め、第7データテーブルとして第5記憶手段に入力する。第5演算手段は、検知されたCCV値を、第7データテーブルと電流レートと検知温度とに基づいて補正し、正確なCCV値を得る。温度検知手段には、電子機器、半導体製品などにおいて温度検知に用いられる市販の小型温度センサを使用できる。
 CCV検知は、放電深度により影響を受ける場合がある。具体的には、CCV検知時の放電深度が異なると、電流レートを0.2C以下にしても、検知されるCCV値にばらつきを生じ、充放電サイクル回数を正確に検知できないおそれがある。したがって、放電深度を検知しつつ、CCV検知を行うのがよい。放電深度と、電流レートと、CCV値との関係を予め実験により求め、第8データテーブルとして第5記憶手段に入力する。第5演算手段は、検知されたCCV値を、第8データテーブルと電流レートと放電深度とに基づいて補正し、正確なCCV値を得る。
 放電深度は、電池10の定格容量と、放電電気量とから算出できる。放電電気量は、充放電サイクルが1回終了した後の、放電電流値に放電時間を乗じた数値の合計として算出できる。放電深度の算出プログラムは、予め第5記憶手段に入力される。
 また、放電深度が一定になるように制御して、CCV検知を実施してもよい。
(3)第2判定手段18
 第2判定手段18は、厚さ検知手段16による検知結果(電極群20の厚さ)およびサイクル数検知手段17による検知結果(充放電サイクル回数)に応じて、サイクル劣化の発生の有無を判定する。より具体的には、第2判定手段18は、厚さ検知手段16による検知結果とサイクル数検知手段17による検知結果とから、電極群20の厚さと充放電サイクル回数との相関関係を求め、相関関係の変化を検知することにより、サイクル劣化の有無を判定する。
 本発明者らは、電池10において、電極群20の厚さと充放電サイクル回数との間に、従来の電池とは異なる相関関係があることを見出した。以下、図4に基づいて、電極群20の厚さと充放電サイクル回数との相関関係をさらに詳しく説明する。
 図4に示すように、充放電サイクル回数が0であるNの時点では、電極群20は初期厚さtを有している。その後、充放電サイクル回数が増加すると、電極群20の厚さは徐々に減少し、Nの時点で電極群20の厚さは最小になる。NからNまでは、電極群20の厚さと充放電サイクル回数とは負の比例関係または反比例の関係にある。Nの時点から充放電サイクル回数が増加すると、電極群20の厚さも徐々に増加する。Nの時点以降は、電極群20の厚さと充放電サイクル回数とは正の比例関係を有している。
 顕著なサイクル劣化が起る電池では、Nの時点からさらに充放電サイクル回数が増加したN以降で、電極群20の厚さと充放電サイクル回数との比例関係における比例定数が、NからNまでの比例定数よりも大きくなる。このような比例定数が大きくなる変化は、顕著なサイクル劣化が発生する直前に起る。したがって、比例定数が大きくなる変化を検知することにより、顕著なサイクル劣化の発生の有無をほぼ正確に判定できる。比例定数が大きくなる変化は、合金系活物質を含む電池10に特有の現象である。
 合金系活物質を含む電池10において、上記現象が発生する理由は十分明らかではないが、負極活物質層22bにおける合金系活物質粒子の形状が、充放電サイクルの繰返しに伴う膨張および収縮により、最適化されるためであると推測される。粒子形状の最適化とは、粒子形状が変化し、粒子同士の間隙の容積が最小になり、粒子集合体としての負極活物質層22bの体積が最小になることである。これにより、所定の充放電サイクル回数を経た後に、電極群20の厚さが最小になるものと推測される。
 粒子形状が最適化された後は、負極活物質層22bが徐々に膨張することにより、電極群20の厚さが徐々に大きくなるものと推測される。顕著なサイクル劣化が突然に起る電池では、負極活物質層22b内部において、合金系活物質と非水電解質との反応による副生物の生成量が多くなるものと推測される。その結果、負極活物質層22bの膨張の割合が大きくなり、Nの時点で比例定数が大きくなる変化を引き起こすものと推測される。本発明者らは、前記副生物がサイクル劣化の1つの要因になることを見出している。
 N時点およびN時点の充放電サイクル回数は、たとえば、電極群20の積層数(扁平型電極群であれば捲回数)、合金系活物質の種類、負極活物質層22bの厚さ、負極集電体22aの材質などの種々の構成により変化する。しかしながら、いずれの構成を採用しても、電極群20の厚さが徐々に大きくなる途中で、電極群20の厚さと充放電サイクル回数との比例関係における比例定数が大きくなるという変化は共通である。
 図4は、電極群20の厚さが、Nの時点以降徐々に増加することを示している。しかしながら、Nまでの、電極群20の厚さの増加はミクロンオーダーであり、このような増加は、電池10の電池性能、使用者に対する安全性などを損なうものではない。
 第2判定手段18は、第6記憶手段と、第6演算手段と、第6制御手段とを含む。
 第6記憶手段には、厚さ検知手段16による検知結果(電極群20の厚さ)およびサイクル数検知手段17による検知結果(充放電サイクル回数)が入力される。
 第6記憶手段には、厚さ検知手段16による検知結果とサイクル数検知手段17による検知結果とから、電極群20の厚さと充放電サイクル回数との関係における比例定数を求めるプログラムが入力されている。
 比例定数決定プログラムの一例を挙げる。Nの時点から充放電サイクル回数50回を経過した後に、厚さ検知手段16による充放電サイクル回数50回分の検知結果とサイクル数検知手段17による充放電サイクル回数50回分の検知結果とをプロットし、最小2乗法により比例定数(基準比例定数)を求める。基準比例定数は、第6記憶手段に入力される。なお、基準比例定数を求めるための充放電サイクル回数は、たとえば、5回~200回、好ましくは10回~100回の範囲から適宜選択できる。
 基準比例定数を求めた後、充放電サイクル数5回ごとに平均比例定数を求める。このとき、最新の充放電サイクル回数1回と、その直前の充放電サイクル回数4回との平均比例定数を求める。この平均比例定数は、充放電サイクルが1回終了するたびに更新される。本実施形態では、平均比例定数が基準比例定数を1~3%、好ましくは1~2%上回ったところで、Nの時点に達したと判定する。基準比例定数に対する平均比例定数の比率は、たとえば、単位電極の積層数、負極活物質層22bの厚さ、合金系活物質の種類などに応じて選択される。
 第6記憶手段には、電極群20の厚さが減少から増加に転じるNの時点を判定するN判定プログラムも入力されている。前回の電極群20の厚さと、新たに得られる電極群20の厚さとを比較し、新たに得られる電極群20の厚さが前回の電極群20の厚さよりも大きくなったときに、前回の電極群20の厚さが得られた充放電サイクル回数を、N時点と判定する。N判定プログラムによりN時点が決定すると、比例定数決定プログラムが動作する。さらに、第3記憶手段には、サイクル数検知手段17による検知結果の入力を受けて、厚さ検知手段16の動作を制御するプログラムが入力されている。
 第6演算手段は、第6記憶手段に入力されている、厚さ検知手段16による検知結果、サイクル数検知手段17による検知結果および上記各種プログラムに基づいて演算を実施し、サイクル劣化の有無を判定する。
 第6制御手段は、サイクル数検知手段17による検知結果の入力を受けて、厚さ検知手段16による電極群20の厚さの検知を制御する。第6制御手段は、第6演算手段によるサイクル劣化有りとの判定に応じて、サイクル劣化通知手段19に制御信号を出力し、サイクル劣化通知手段19を作動させて顕著なサイクル劣化が起ることを機器の使用者に通知する。
 第6記憶手段、第6演算手段および第6制御手段は、マイクロコンピュータ、インターフェイス、メモリ、タイマー、CPUなどを含む処理回路として構成される。第6記憶手段には、第4~5記憶手段と同様の各種メモリを使用できる。第6記憶手段、第6演算手段および第6制御手段に代えて、電池パック3を電源とする外部機器のCPUなどを用いてもよい。
 本実施形態では、記憶手段、演算手段、制御手段などを、厚さ検知手段16、サイクル数検知手段17および第2判定手段18ごとに個別に設けているが、これらを一体化して、1つの記憶手段、演算手段および制御手段を設けてもよい。たとえば、マイクロコンピュータ、インターフェイス、メモリ、タイマーなどを含む処理回路として、中央演算装置(CPU)を設けてもよい。
 さらに好ましい実施形態では、電池パック3は、第2判定手段18によるサイクル劣化有りとの判定結果に応じて、電池10の充放電を停止させ充放電制御手段をさらに含むことができる。また、第2判定手段18に、前記充放電制御手段の機能を付加してもよい。
(4)サイクル劣化通知手段19
 サイクル劣化通知手段19は、第2判定手段18から制御信号を受けて、サイクル劣化が有ることを使用者に通知する。サイクル劣化通知手段19は、表示または音による通知を行う。サイクル劣化通知手段19には、たとえば、液晶、ランプ、音声発信機などを使用できる。これにより、顕著なサイクル劣化が起る直前であることを、機器の使用者に確実に知らせることができる。
 電池パック3は、第2交換時期判定手段を含んでいてもよい。第2交換時期判定手段は、第2判定手段18によるサイクル劣化有りとの判定結果に応じて、この判定結果を得るのに用いられた厚さ検知手段16による検知結果とサイクル数検知手段17による検知結果とから、電池10の交換時期を判定する。充放電を制御可能な第2判定手段18または第2交換時期判定手段により、顕著なサイクル劣化が突然に発生することによる、作製データの損失などを防止することができる。
 第2交換時期判定手段は、たとえば、顕著なサイクル劣化が発生するとの判定時における電極群20の厚さおよび充放電サイクル回数に基づいて、予め実験により作成された第9データテーブルから、顕著なサイクル劣化が起るまでの充放電サイクル回数を求め、交換時期を判定する。
 第9データテーブルにおける、電極群20の厚さおよび充放電サイクル回数以外の変数要素には、基準比例定数、前記判定時の基準比例定数に対する平均比例定数の比率および電極群20の積層数(捲回型電極群または扁平型電極群の場合は捲回数)などがある。これらの変数要素の数値を変化させて実験を行い、顕著なサイクル劣化の発生有りと判定された電池の、使用可能な充放電サイクル回数を示す第9データテーブルを作成する。
 第9データテーブルでは、電極群20の積層数(または捲回数)は、1~5、6~10、11~15といった段階的に示すのが好ましい。電極群20の積層数(または捲回数)は、たとえば、電池パック3にコンピュータとの接続端子を設け、コンピュータの端末から入力するように構成できる。第9データテーブルを、たとえば、第2判定手段18の第6記憶手段に入力しておき、第6演算手段により交換時期の判定を実行させればよい。
 次に、図7に基づいて、本発明の電池パック3におけるサイクル劣化判定動作をさらに詳しく説明する。
 ステップS11では、サイクル数検知手段17が電池10のOCV値を検知する。そして、OCV値が一端最高になり、放電後、充電によりOCV値が再度最高になるサイクルを、充放電サイクル回数:1回と検知し、前回検知の充放電サイクル回数に「1」を加算して第2判定手段18に出力する。第2判定手段18は、新しい充放電サイクル回数の入力を受け、厚さ検知手段16に制御信号を出力する。これにより、厚さ検知手段16が電極群20の厚さを検知する動作を開始する。
 ステップS12では、厚さ検知手段16が電極群20の厚さを検知し、その検出結果を第2判定手段18に出力する。
 ステップS13では、第2判定手段18は、ステップS12で得られる電極群20の厚さ(以下「ステップS12の厚さ」とする)と、前回得られた電極群20の厚さ(以下「前回厚さ」とする)とを比較する。ステップS12の厚さが、前回厚さよりも大きい場合は、「Yes:電極群20の厚さが最小になるNの時点を過ぎた」と判定し、ステップS14に移行する。ステップS12の厚さが前回厚さよりも小さい場合は、「No:Nの時点を過ぎていない」と判定し、ステップS11に戻る。このとき、前回厚さは、ステップS12の厚さに書き換えられる。
 ステップS14では、ステップS11と同様にして、サイクル数検知手段17が充放電サイクル回数を更新し、その値を第2判定手段18に出力する。ステップS15では、ステップS12と同様に、サイクル数検知手段17が電極群20の厚さを検知し、検知結果を第2判定手段18に出力する。
 ステップS16では、第2判定手段18が、N時点経過後の充放電サイクル回数50回の電極群20の厚さを、横軸:充放電サイクル回数、縦軸:電極群の厚さ20でプロットし、最小2乗法により基準比例定数を求める。基準比例定数は、第2判定手段18の第6記憶手段に入力される。
 ステップS17では、第2判定手段18が、基準比例定数を求めた後、充放電サイクル回数:5回分の平均比例定数を求める。サイクル数検知手段17により充放電サイクル回数が更新されるたびに、直前の4回の充放電サイクルで検知された電極群20の厚さと、最新の充放電サイクルで検知された電極群20の厚さから平均比例定数を求める。平均比例定数は、基準比例定数と同様にして求めることができる。平均比例定数は、第2判定手段18の第6記憶手段に入力される。
 ステップS18では、第2判定手段18が、基準比例定数と平均比例定数とを比較する。そして、基準比例定数に対する平均比例定数の比率が1~3%、好ましくは1~2%大きくなっている場合には、「Yes:顕著なサイクル劣化の発生有り」と判定し、ステップS19に移行する。基準比例定数に対する平均比例定数の比率が大きくなっていても、1%未満である場合は、「No:顕著なサイクル劣化の発生無し」と判定し、ステップS17に戻る。なお、前記した、基準比例定数に対する平均比例定数の比率は、電極群20の積層数が1の場合の値である。基準比例定数に対する平均比例定数の比率は、電極群20の積層数などに応じて適宜選択できる。この比率は、予め実験により求めることができる。
 ステップS19では、第2判定手段18による顕著なサイクル劣化の発生有りとの判定結果に応じて、その判定結果を電池パック3表面または電池パック3を電源とする外部機器表面に表示する。これにより、サイクル劣化判定の一連の動作が終了する。
 本実施形態の電池パック3は、サイクル劣化通知手段19が表面に配置され、かつ長手方向の両端部に外部接続端子15a、15bが装着された外装体に、電池10、厚さ検知手段16、サイクル数検知手段17および第2判定手段18を結線して収容し、封口することにより作製できる。
 本実施形態では、電極群20の内圧値から電極群20の厚さを算出し、充放電サイクル回数と電極群20との関係を求め、顕著なサイクル劣化の突然の発生の有無を判定している。本発明では、この方法に限定されず、たとえば、電極群20の内圧値から、顕著なサイクル劣化の突然の発生の有無を判定してもよい。すなわち、別の実施形態では、感圧センサによる検知結果から電極群20の厚さを算出することなく、顕著なサイクル劣化の突然の発生の有無を判定できる。
 充放電サイクル回数と電極群20の内圧とは、充放電サイクル回数と電極群20の厚さと同様に、比例関係にある。すなわち、図4に示すグラフにおいて、電極群20の厚さが最小になった後では、充放電サイクル回数と、電極群20の内圧とは、正の比例関係を有している。そして、顕著なサイクル劣化が突然に起る直前に、前記比例関係における比例定数が増加する。この関係に基づいて、顕著なサイクル劣化の突然の発生の有無を判定することができる。
 電極群20の内圧検知による判定の場合には、顕著なサイクル劣化の突然の発生の有無を判定する精度がさらに高くなるという利点がある。たとえば、電池ケース27が金属製でありかつ厚さが薄い場合、電極群20の膨張が電池ケース27により抑制されることがある。このとき、電極群20は加圧状態になっている。電極群20の膨張が抑制されると、電極群20の内圧の測定値は、実際の値とは異なることがある。
 そこで、電極群20の膨張が抑制されない状態で、充放電サイクル回数と電極群20の内圧との関係を測定して第10データテーブルを作製する。第10データテーブルが、劣化判定の基準になる。また、電極群20の膨張を抑制しながら、充放電サイクル回数と電極群20の内圧との関係を測定して第11データテーブルを作製する。第11データテーブルは、電極群20の積層数、電池ケース27の材質および厚さを変数として作製される。第10データテーブルおよび第11データテーブルは、第2判定手段18の第6記憶手段に予め入力されている。
 第2判定手段18は、サイクル数検知手段17による検知結果(充放電サイクル回数)および感圧センサによる検知結果(電極群20の内圧値)に基づいて、第10データテーブルおよび第11データテーブルから、電極群20が加圧状態にあるかまたは非加圧状態になっているかを判定する。この判定は、第2判定手段18の第6演算手段で実施され、第6演算手段による判定結果に応じて第6制御手段から制御信号が発せられるのは、電池パック3と同様である。
 第2判定手段18は、電極群20が加圧状態にあると判定すると、充放電サイクル回数および第11データテーブルに基づいて、内圧値を補正し、さらに第10データテーブルに基づいて顕著なサイクル劣化の突然の発生の有無を判定する。第2判定手段18は、電極群20が非加圧状態にあると判定すると、内圧値を補正することなく、第10データテーブルに基づいて顕著なサイクル劣化の突然の発生の有無を判定する。これにより、電極群20の積層数、電池ケース27の材質および厚さといった変数に左右されることなく、顕著なサイクル劣化の突然の発生の有無を一層正確に判定することができる。
 本実施形態でも、第2判定手段18が、電極群20の厚さが最小になる充放電サイクル回数Nを判定する動作および基準比例定数と平均比例定数とから顕著なサイクル劣化発生の有無を判定する動作は、図7に示す動作と同様にして行われる。すなわち、充放電サイクル回数Nは、充放電サイクル回数と、電極群20の内圧とから判定される。顕著なサイクル劣化発生の有無は、充放電サイクル回数N後の、充放電サイクル回数と電極群20の内圧との関係から基準比例定数と平均比例定数と求め、これらを比較することにより判定される。
 本実施形態の電池パックは、第2判定手段18が前記した構成を採る以外は、電池パック3と同じ構成を有している。
 前述の各実施形態において、電極群20が用いられているが、それに限定されず、扁平型電極群を用いても良い。扁平型電極群は、帯状正極と帯状負極との間に帯状絶縁層を介在させて、これらを捲回して得られる捲回型電極群をプレス加工することにより得られる。扁平型電極群は、帯状正極と帯状負極との間に帯状絶縁層を介在させて、これらを板に捲き付けることによっても作製できる。扁平型電極群の積層数は、捲回数×2である。
 前述の各実施形態において、電池10の負極活物質層22bは、合金系活物質が気相法により積層された薄膜であるが、それに限定されず、例えば、複数の柱状体を含む薄膜でもよい。柱状体は、合金系活物質を含有し、負極集電体の表面から負極集電体の外方に向けて延びる。複数の柱状体は、同じ方向に延びるように形成されるのが好ましい。また、隣り合う一対の柱状体の間には、空隙が存在している。複数の柱状体を含む薄膜は、負極活物質層との密着性が高い。柱状体は、負極集電体表面に複数の凸部を設け、凸部表面に形成するのが好ましい。
 すなわち、本発明では、表面に複数の凸部を有する負極集電体と、複数の柱状体を含む負極活物質層とを含む別形態の負極を使用できる。図8は、別形態の負極集電体31の構成を模式的に示す斜視図である。図9は、図8に示す負極集電体31を含む別形態の負極30の構成を模式的に示す縦断面図である。図10は、図9に示す負極30の負極活物質層33に含まれる柱状体34の構成を模式的に示す縦断面図である。図11は、電子ビーム式蒸着装置40の構成を模式的に示す側面図である。
 負極30は、負極集電体31と、負極活物質層33とを含む。
 負極集電体31は、図8に示すように、厚さ方向の一方の表面に、複数の凸部32が設けられていることを特徴とし、それ以外は、負極集電体22aと同じ構成を有している。本実施形態の負極集電体31では、複数の凸部32は、厚さ方向の一方の表面に設けられているが、それに限定されず、厚さ方向の両方の表面に設けられてもよい。
 凸部32は、負極集電体31の厚さ方向の表面31a(以下単に「表面31a」とする)から、負極集電体31の外方に向けて延びる突起物である。
 凸部32の高さは特に制限されないが、平均高さとして、好ましくは3~10μm程度である。凸部32の高さは、負極集電体31の厚さ方向における凸部32の断面において定義される。凸部32の断面は、凸部32の延びる方向における最先端点を含む断面である。凸部32の断面において、凸部32の高さは、凸部32の延びる方向における最先端点から表面31aに降ろした垂線の長さである。凸部32の平均高さは、例えば、負極集電体31の厚さ方向における断面を走査型電子顕微鏡(SEM)で観察し、例えば、100個の凸部32の高さを測定し、得られた測定値から平均値を算出することによって求めることができる。
 凸部32の断面径は特に制限されないが、例えば、1~50μmである。凸部32の断面径は、凸部32の高さを求める凸部32の断面において、表面31aに平行な方向における凸部32の幅である。凸部32の断面径も、凸部32の高さと同様に、100個の凸部32の幅を測定し、測定値の平均値として求めることができる。
 複数の凸部32を、全て同じ高さ又は同じ断面径に形成する必要はない。
 凸部32の形状は、本実施形態では円形である。凸部32の形状は、負極集電体31の表面31aが水平面に一致するように負極集電体31を配置し、それを鉛直方向上方から見た凸部32の正投影図の形状である。なお、凸部32の形状は円形に限定されず、例えば、多角形、楕円形、平行四辺形、台形、菱形等でもよい。多角形は、製造コスト等を考慮すると、3角形~8角形が好ましく、正3角形~正8角形が特に好ましい。
 凸部32は、その延びる方向の先端部分にほぼ平面状の頂部を有する。凸部32が先端部分に平面状の頂部を有することによって、凸部32と柱状体34との接合性が向上する。この先端部分の平面は、表面31aに対してほぼ平行であることが接合強度を高める上ではさらに好ましい。
 凸部32の個数、凸部32同士の間隔等は特に制限されず、凸部32の大きさ(高さ、断面径等)、凸部32表面に設けられる柱状体34の大きさ等に応じて適宜選択される。凸部32の個数の一例を示せば、1万個~1000万個/cm程度である。また、隣り合う凸部32の軸線間距離が2~100μm程度になるように、凸部32を形成するのが好ましい。凸部32は、規則的又は不規則に配置される。規則的な配置としては、例えば、千鳥配置、格子配置、六方最密充填配置等が挙げられる。
 凸部32は、その表面に図示しない突起を形成してもよい。これによって、例えば、凸部32と柱状体34との接合性が一層向上し、柱状体34の凸部32からの剥離、剥離伝播等がより確実に防止される。突起は、凸部32表面から凸部32の外方に突出するように設けられる。突起は、凸部32よりも寸法の小さいものが複数形成されてもよい。また、突起は、凸部32の側面に、周方向及び/又は凸部32の成長方向に延びるように形成されてもよい。また、凸部32がその先端部分に平面状の頂部を有する場合は、1又は複数の、凸部32よりも小さな突起が頂部に形成されてもよく、さらに一方向に延びる1又は複数の突起が頂部に形成されてもよい。
 負極集電体31は、例えば、金属シートに凹凸を形成する技術を利用して製造できる。具体的には、例えば、表面に凹部が形成されたローラを利用する方法(以下「ローラ加工法」とする)、フォトレジスト法等が挙げられる。これらの方法の中でも、負極集電体31と凸部32との接合強度等を考慮すると、ローラ加工法が好ましい。金属シートには、例えば、金属箔、金属板等を使用できる。金属シートの材質は、例えば、ステンレス鋼、チタン、ニッケル、銅、銅合金等の金属材料である。
 ローラ加工法によれば、表面に凹部が形成されたローラ(以下「凸部用ローラ」とする)を用いて、金属シートを機械的にプレス加工する。凸部用ローラ表面の凹部は、凸部32の寸法及び配置に対応して形成されている。また、凹部の内部空間の形状は、凸部32の形状に対応している。凸部用ローラで金属シートをプレス加工することにより、金属シートの少なくとも一方の表面の主に表層部で金属の塑性変形が起こり、凸部32が形成され、負極集電体31を作製できる。
 このとき、2つの凸部用ローラをそれぞれの軸線が平行になるように圧接させ、金属シートをその圧接部に通過させて加圧することにより、厚さ方向の両方の表面に凸部32が形成された負極集電体31が得られる。また、凸部用ローラと表面が平滑のローラとをそれぞれの軸線が平行になるように圧接させ、金属シートをその圧接部に通過させて加圧することにより、厚さ方向の片方の表面に凸部32が形成された負極集電体31が得られる。ローラの圧接圧は金属シートの材質、厚さ、凸部32の形状、寸法、加圧成形後に得られる負極集電体31の厚さの設定値等に応じて適宜選択される。
 凸部用ローラは、例えば、セラミックローラの表面における所定位置に、凹部を形成することによって作製できる。セラミックローラは、例えば、芯用ローラと、溶射層とを含む。芯用ローラには、例えば、鉄、ステンレス鋼等からなるローラを使用できる。溶射層は、芯用ローラ表面に、酸化クロム等のセラミック材料を均一に溶射することによって形成される。溶射層に凹部が形成される。凹部の形成には、例えば、セラミックス材料等の成形加工に用いられる一般的なレーザーを使用できる。
 別形態の凸部用ローラは、芯用ローラ、下地層及び溶射層を含む。芯用ローラはセラミックローラの芯用ローラと同じものである。下地層は芯用ローラ表面に形成される樹脂層であり、下地層表面に凹部が形成される。下地層を構成する合成樹脂としては機械的強度の高いものが好ましく、例えば、不飽和ポリエステル、熱硬化性ポリイミド、エポキシ樹脂、フッ素樹脂等の熱硬化性樹脂、ポリアミド、ポリエーテルケトン、ポリエーテルエーテルケトン等の熱可塑性樹脂が挙げられる。
 下地層に凹部を形成するには、例えば、片面に凹部を有する樹脂シートを成形し、該樹脂シートの凹部が形成された面とは反対側の面を芯用ローラ表面に巻き付けて接着すればよい。溶射層は、酸化クロム等のセラミック材料を下地層表面の凹凸に沿うように溶射することによって形成される。したがって、下地層に形成される凹部は、凸部32の設計寸法よりも溶射層の層厚分だけ大きめに形成されるのが好ましい。
 別形態の凸部用ローラは、芯用ローラ及び超硬合金層を含む。芯用ローラはセラミックローラの芯用ローラと同じものである。超硬合金層は芯用ローラの表面に形成され、炭化タングステン等の超硬合金を含む。超硬合金層は、芯用ローラに、円筒状に形成した超硬合金を焼き嵌めするか又は冷やし嵌めすることによって形成できる。超硬合金層の焼き嵌めとは、円筒状の超硬合金を暖めて膨張させ、芯用ローラに嵌めることである。また、超硬合金層の冷やし嵌めとは、芯用ローラを冷却して収縮させ、超硬合金の円筒に挿入することである。超硬合金層の表面には、例えば、レーザー加工によって凹部が形成される。
 別形態の凸部用ローラは、硬質鉄系ローラの表面に、例えば、レーザー加工によって凹部が形成されたものである。硬質鉄系ローラは、例えば、金属箔の圧延製造に用いられる。硬質鉄系ローラとしては、例えば、ハイス鋼、鍛鋼等からなるローラが挙げられる。ハイス鋼は、モリブデン、タングステン、バナジウム等の金属を添加し、熱処理して硬度を高めた鉄系材料である。鍛鋼は、よう鋼を鋳型に鋳込んで造られた鋼塊又はその鋼塊から製造された鋼片を加熱し、プレス及びハンマーで鍛造し、又は圧延及び鍛造することにより鍛錬成形し、これを熱処理することによって製造される鉄系材料である。
 フォトレジスト法によれば、金属シートの表面にレジストパターンを形成し、さらに金属めっきを施すことによって、負極集電体31を作製できる。
 また、凸部32の表面に突起を形成する場合は、まず、フォトレジスト法により凸部32の設計寸法よりも大きい凸部用突起物を形成する。この凸部用突起物にエッチングを施すことによって、表面に突起を有する凸部32が形成される。また、凸部32の表面にめっきを施すことによっても、表面に突起を有する凸部32が形成される。
 負極活物質層33は、例えば、図9及び図10に示すように、凸部32表面から負極集電体31の外方に向けて延びる複数の柱状体34を含む。柱状体34は、負極集電体31の表面31aに対して垂直な方向又は前記垂直な方向に対して傾きを有して延びる。また、複数の柱状体34は、隣り合う柱状体34との間に間隙を有し、互いに離隔しているので、充放電の際の膨張及び収縮による応力が緩和される。その結果、負極活物質層33が凸部32から剥離し難くなり、負極集電体31ひいては負極30の変形も起こり難い。
 柱状体34は、2以上の柱状塊の積層体として形成されるのが好ましい。本実施形態では、柱状体34は、図10に示すように、8個の柱状塊34a、34b、34c、34d、34e、34f、34g、34hの積層体として形成される。柱状体34は、より具体的には、次のようにして形成される。まず、凸部32の頂部及びそれに続く側面の一部を被覆するように柱状塊34aを形成する。次に、凸部32の残りの側面及び柱状塊34aの頂部表面の一部を被覆するように柱状塊34bを形成する。
 すなわち、図10において、柱状塊34aは凸部32の頂部を含む一方の端部に形成され、柱状塊34bは部分的には柱状塊34aに重なるが、残りの部分は凸部32の他方の端部に形成される。さらに、柱状塊34aの頂部表面の残り及び柱状塊34bの頂部表面の一部を被覆するように柱状塊34cを形成する。すなわち、柱状塊34cを主に柱状塊34aに接するように形成する。さらに、柱状塊34dを主に柱状塊34bに接するように形成する。以下同様にして、柱状塊34e、34f、34g、34hを交互に積層することによって、柱状体34が形成される。
 柱状体34は、例えば、図11に示す電子ビーム式蒸着装置40によって形成できる。図11では、蒸着装置40内部の各部材も実線で示す。蒸着装置40は、チャンバー41、第1の配管42、固定台43、ノズル44、ターゲット45、図示しない電子ビーム発生装置、電源46及び図示しない第2の配管を含む。
 チャンバー41は耐圧性容器であり、その内部に第1の配管42、固定台43、ノズル44及びターゲット45を収容する。第1の配管42は、一端がノズル44に接続され、他端がチャンバー41の外方に延びて図示しないマスフローコントローラを介して図示しない原料ガスボンベ又は原料ガス製造装置に接続される。原料ガスとしては、例えば、酸素、窒素等が挙げられる。第1の配管42は、ノズル44に原料ガスを供給する。
 固定台43は板状部材であり、回転自在に支持され、その厚さ方向の一方の面に負極集電体31を固定できる。固定台43は、図11における実線で示す位置と一点破線で示す位置との間を回転する。実線で示す位置は、固定台43の負極集電体31を固定する側の面が鉛直方向下方のノズル44を臨み、固定台43と水平方向の直線とが成す角の角度がα°である位置である。一点破線で示す位置は、固定台43の負極集電体31を固定する側の面が鉛直方向下方のノズル44を臨み、固定台43と水平方向の直線とが成す角の角度が(180-α)°である位置である。角度α°は、柱状体34の設計寸法等に応じて適宜選択できる。
 ノズル44は、鉛直方向において固定台43とターゲット45との間に設けられ、第1の配管42の一端が接続されている。ノズル44は、ターゲット45から鉛直方向上方に上昇してくる合金系活物質の蒸気と第1の配管42から供給される原料ガスとを混合し、固定台43表面に固定される負極集電体31表面に供給する。ターゲット45は合金系活物質又はその原料を収容する。電子ビーム発生装置は、ターゲット45に収容される合金系活物質又はその原料に電子ビームを照射して加熱し、これらの蒸気を発生させる。
 電源46はチャンバー41の外部に設けられて、電子ビーム発生装置に電気的に接続され、電子ビームを発生させるための電圧を電子ビーム発生装置に印加する。第2の配管は、チャンバー41内の雰囲気になるガスを導入する。なお、蒸着装置40と同じ構成を有する電子ビーム式蒸着装置が、例えば、アルバック(株)から市販されている。
 電子ビーム式蒸着装置40によれば、まず、負極集電体31を固定台43に固定し、チャンバー41内部に酸素ガスを導入する。この状態で、ターゲット45において合金系活物質又はその原料に電子ビームを照射して加熱し、その蒸気を発生させる。本実施の形態では、合金系活物質として珪素を使用する。発生した蒸気は鉛直方向上方に上昇し、ノズル44を通過する際に、原料ガスと混合された後、さらに上昇し、固定台43に固定された負極集電体31の表面に供給され、図示しない凸部32表面に、珪素と酸素とを含む層が形成される。
 このとき、固定台43を実線の位置に配置することによって、凸部表面に図10に示す柱状塊34aを形成する。次に、固定台43を一点破線の位置に回転させ、図10に示す柱状塊34bを形成する。このように固定台43の位置を交互に回転させることによって、図10に示す8つの柱状塊34a、34b、34c、34d、34e、34f、34g、34hの積層体である柱状体34が、複数の凸部32の表面に同時に形成され、負極活物質層33が得られる。
 合金系活物質が例えばSiO(0.05<a<1.95)で表される珪素酸化物である場合、柱状体34の厚さ方向に酸素の濃度勾配が出来るように、柱状体34を形成してもよい。具体的には、負極集電体31に近接する部分で酸素の含有率を高くし、負極集電体31から離反するに従って、酸素含有量を減らすように構成する。これによって、凸部32と柱状体34との接合性をさらに向上させることができる。
 なお、ノズル44から原料ガスを供給しない場合は、珪素又は錫単体を主成分とする柱状体34が形成される。また、負極集電体31に代えて負極集電体22aを用い、かつ固定台43を回転させず、水平方向に固定すると、負極活物質層22bを形成できる。
 図12は、別形態の電子ビーム式蒸着装置50の構成を模式的に示す側面図である。蒸着装置50は、チャンバー51、搬送手段52、ガス供給手段58、プラズマ化手段59、シリコンターゲット60a、60b、遮蔽板61及び図示しない電子ビーム発生手段を含む。チャンバー51は減圧可能な内部空間を有する耐圧性容器であり、その内部空間に、搬送手段52、ガス供給手段58、プラズマ化手段59、シリコンターゲット60a、60b、遮蔽板61及び電子ビーム発生手段を収容する。
 搬送手段52は、巻き出しローラ53、キャン54、巻き取りローラ55及び搬送ローラ56、57を含む。巻き出しローラ53、キャン54及び搬送ローラ56、57は、それぞれ軸心回りに回転自在に設けられる。巻き出しローラ53には長尺状の負極集電体22aが捲回されている。キャン54は他のローラよりも大径であり、その内部に図示しない冷却手段を備えている。負極集電体22aがキャン54の表面を搬送される際に、負極集電体22aも冷却される。これによって、合金系活物質の蒸気が冷却されて析出し、負極活物質層22bが形成される。
 巻き取りローラ55は図示しない駆動手段によってその軸心回りに回転駆動可能に設けられている。巻き取りローラ55には負極集電体22aの一端が固定され、巻き取りローラ55が回転することによって、負極集電体22aが巻き出しローラ53から搬送ローラ56、キャン54及び搬送ローラ57を介して搬送される。そして、表面に負極活物質層22bが形成された負極22が巻き取りローラ55に巻き取られる。
 ガス供給手段58は、珪素又は錫の酸化物、窒化物等を主成分とする薄膜を形成する場合に、酸素、窒素等の原料ガスをチャンバー51内に供給する。プラズマ化手段59は、ガス供給手段58によって供給される原料ガスをプラズマ化する。シリコンターゲット60a、60bは、珪素を含む薄膜を形成する場合に用いられる。遮蔽板61は、キャン54の鉛直方向下方及びシリコンターゲット60a、60bの鉛直方向上方において、水平方向に移動可能に設けられている。遮蔽板61は、負極集電体22a表面の負極活物質層22bの形成状況に応じて、その水平方向の位置が適宜調整される。電子ビーム発生手段は、シリコンターゲット60a、60bに電子ビームを照射して加熱し、珪素の蒸気を発生させる。
 蒸着装置50によれば、合金系活物質からなる薄膜状の負極活物質層を形成できる。この場合、チャンバー51内の圧力、負極集電体22aの巻き取りローラ55による巻き取り速度、ガス供給手段58による原料ガス供給の有無、ターゲット60a、60b(合金系活物質原料)の種類、電子ビームの加速電圧、電子ビームのエミッション等が適宜選択される。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本発明の電池パックは、従来の非水電解質二次電池と同様の用途に使用でき、特に、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末(PDA)、携帯用ゲーム機器、ビデオカメラ等の携帯用電子機器の電源として有用である。また、ハイブリッド電気自動車、燃料電池自動車等において電気モーターを補助する二次電池、電動工具、掃除機、ロボット等の駆動用電源、プラグインHEVの動力源等としての利用も期待される。
 

Claims (13)

  1.  リチウムを吸蔵及び放出可能な正極活物質を含有する正極と、合金系活物質を含有する負極と、前記正極と前記負極との間に介在するように配置される絶縁層と、を備える電極群、リチウムイオン伝導性非水電解質、並びに、前記電極群及び前記非水電解質を収容する電池ケースを備える非水電解質二次電池と、
     前記電極群の厚さを検知する厚さ検知手段と、
     前記非水電解質二次電池の充放電サイクル回数を検知するサイクル数検知手段と、
     前記厚さ検知手段による検知結果及び前記サイクル数検知手段による検知結果に応じて、前記非水電解質二次電池の交換時期またはサイクル劣化の有無を判定する判定手段と、を備える電池パック。
  2.  前記判定手段は、前記厚さ検知手段による前記検知結果及び前記サイクル数検知手段による前記検知結果に応じて、前記厚さ検知手段により検知される前記電極群の厚さが最小であるか否かを判定し、前記電極群の厚さが最小であるとの判定結果に応じて、前記非水電解質二次電池の交換時期を算出する請求項1に記載の電池パック。
  3.  前記判定手段には前記電極群の最小厚さの設定値が予め入力され、
     前記判定手段は、前記厚さ検知手段による前記電極群の厚さが、前記設定値×0.9~前記設定値×1.1の範囲にある時に、前記電極群の厚さが最小であると判定する請求項2に記載の電池パック。
  4.  前記厚さ検知手段は、前記電極群の厚さ情報として、前記電極群の内圧を測定することにより、前記電極群の厚さを検知する請求項1~3のいずれか1つに記載の電池パック。
  5.  前記判定手段は、前記厚さ検知手段による検知結果及び前記サイクル数検知手段による検知結果に応じて、前記電極群の厚さと前記充放電サイクル回数との相関関係を算出し、前記相関関係の変化を検出して、前記非水電解質二次電池のサイクル劣化の有無を判定する請求項1に記載の電池パック。
  6.  前記相関関係の変化は、前記電極群の厚さの前記充放電サイクル回数に対する変化である請求項5に記載の電池パック。
  7.  前記相関関係は比例関係であり、前記相関関係の変化は、前記比例関係における比例定数の変化である請求項6に記載の電池パック。
  8.  前記比例定数の変化は、前記比例定数が所定値よりも大きくなる変化である請求項7に記載の電池パック。
  9.  前記非水電解質二次電池、前記厚さ検知手段、前記サイクル数検知手段および前記判定手段を収容する外装体を含み、
     前記非水電解質二次電池は、前記外装体の内面の少なくとも一部に固定され、
     前記厚さ検知手段は、前記電極群の内圧を検知する感圧センサを含み、前記感圧センサによる前記電極群の内圧の検知結果を前記電極群の厚さ情報として取得し、前記検知結果から前記電極群の厚さを算出する請求項5~8のいずれか1つに記載の電池パック。
  10.  交換時期の判定結果またはサイクル劣化有りとの判定結果に応じて、前記判定結果を表示するかまたは音で知らせる通知手段をさらに含む請求項1~9のいずれか1つに記載の電池パック。
  11.  交換時期の判定結果またはサイクル劣化有りとの判定結果に応じて、前記非水電解質二次電池の充放電を停止させる充放電制御手段をさらに含む請求項1~10のいずれか1つに記載の電池パック。
  12.  前記電極群は、積層型電極群又は扁平型電極群である請求項1~11のいずれか1つに記載の電池パック。
  13.  前記合金系活物質が、珪素系活物質および錫系活物質から選ばれる少なくとも1つである請求項1~12のいずれか1つに記載の電池パック。
PCT/JP2009/006417 2008-12-05 2009-11-27 電池パック WO2010064392A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/936,353 US20110033735A1 (en) 2008-12-05 2009-11-27 Battery pack
CN2009801196990A CN102047493A (zh) 2008-12-05 2009-11-27 电池包
JP2010541215A JPWO2010064392A1 (ja) 2008-12-05 2009-11-27 電池パック

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008310919 2008-12-05
JP2008-310919 2008-12-05
JP2009216576 2009-09-18
JP2009-216576 2009-09-18

Publications (1)

Publication Number Publication Date
WO2010064392A1 true WO2010064392A1 (ja) 2010-06-10

Family

ID=42233050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006417 WO2010064392A1 (ja) 2008-12-05 2009-11-27 電池パック

Country Status (5)

Country Link
US (1) US20110033735A1 (ja)
JP (1) JPWO2010064392A1 (ja)
KR (1) KR20110008101A (ja)
CN (1) CN102047493A (ja)
WO (1) WO2010064392A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110129A (ja) * 2010-11-17 2012-06-07 Toshiba Corp 電気車両制御装置
FR2972857A1 (fr) * 2011-03-18 2012-09-21 Commissariat Energie Atomique Procede de determination d'etat de fin de charge d'un accumulateur li-ion a electrode negative en alliage, accumulateur et assemblage d'accumulateurs associes
KR20140137181A (ko) * 2013-05-22 2014-12-02 삼성에스디아이 주식회사 배터리의 두께 예측 시스템 및 배터리의 두께 예측 방법
JP2018535514A (ja) * 2016-06-09 2018-11-29 エルジー・ケム・リミテッド 二次電池電極の厚さ変化の測定装置、及びそれを取り付けた二次電池
JP2020136149A (ja) * 2019-02-22 2020-08-31 ミツミ電機株式会社 電子機器及びその状態判定方法
WO2023031990A1 (ja) * 2021-08-30 2023-03-09 TeraWatt Technology株式会社 劣化状態推定装置、劣化状態推定方法、及びプログラム
WO2023188723A1 (ja) * 2022-03-28 2023-10-05 株式会社日立ハイテク 二次電池の状態診断方法および状態診断装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101240718B1 (ko) 2011-04-05 2013-03-11 삼성에스디아이 주식회사 이차 전지용 케이스 및 이를 구비한 이차 전지
DE102011077181A1 (de) * 2011-06-08 2012-12-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verschleißerkennung an einem Elektrofahrrad
JP5902287B2 (ja) * 2012-03-16 2016-04-13 株式会社東芝 リチウムイオン伝導性硫化物、固体電解質二次電池および電池パック
EP3657191B1 (en) * 2012-12-04 2022-11-09 LG Energy Solution, Ltd. Apparatus for estimating depth of discharge (dod) of secondary battery
JP6221237B2 (ja) * 2013-01-21 2017-11-01 株式会社豊田自動織機 充電率推定装置および充電率推定方法
JP5929778B2 (ja) * 2013-02-15 2016-06-08 株式会社豊田自動織機 充電率推定装置および充電率推定方法
US9476946B2 (en) * 2013-05-08 2016-10-25 GM Global Technology Operations LLC SOC determination by evaluation of effects invoked by dimensional changes of battery cells
KR101783923B1 (ko) * 2014-11-26 2017-10-10 주식회사 엘지화학 이차전지 셀의 두께 측정장치 및 방법
KR20170092344A (ko) 2016-02-03 2017-08-11 삼성전자주식회사 배터리 관리 장치 및 방법
TWI733775B (zh) 2016-03-16 2021-07-21 澳門商創科(澳門離岸商業服務)有限公司 具有無線通訊的電動工具蓄電池組
DE102016206671A1 (de) * 2016-04-20 2017-10-26 Robert Bosch Gmbh Längenausdehnungsüberwachung zur Bestimmung der Alterung einer Batteriezelle oder eines Batteriemoduls
CN106338692B (zh) * 2016-08-31 2024-01-12 湖州天丰电源有限公司 一种锂离子电池内阻测试设备
US10393821B2 (en) * 2017-03-29 2019-08-27 Amazon Technologies, Inc. Power supply monitoring system using optical estimation
JP6917872B2 (ja) 2017-11-22 2021-08-11 株式会社Gsユアサ 蓄電装置及びその使用方法
CN107748338A (zh) * 2017-12-07 2018-03-02 力信(江苏)能源科技有限责任公司 一种锂离子电池循环寿命的检测装置及评估方法
US11901527B2 (en) 2020-07-15 2024-02-13 Emerson Electric Co. Battery packs for battery-powered appliances and connection system for same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191436A (ja) * 1997-12-26 1999-07-13 Hitachi Ltd 蓄電保護器
JPH11271408A (ja) * 1998-01-19 1999-10-08 Matsushita Electric Ind Co Ltd 二次電池の劣化検出方法及び劣化検出機能を具備した充電器
JP2000123887A (ja) * 1998-10-19 2000-04-28 Nikkiso Co Ltd リチウムイオン二次電池における異常警告装置
JP2001015180A (ja) * 1999-06-30 2001-01-19 Nissan Motor Co Ltd 電池の寿命判定装置
JP2002313431A (ja) * 2001-04-11 2002-10-25 Mitsubishi Materials Corp 非水電解質二次電池
JP2005147815A (ja) * 2003-11-14 2005-06-09 Sony Corp バッテリーパック及びバッテリー残量算出方法
JP2008228492A (ja) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd リチウムイオン二次電池の充電方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306697B2 (ja) * 2006-06-16 2009-08-05 ソニー株式会社 二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191436A (ja) * 1997-12-26 1999-07-13 Hitachi Ltd 蓄電保護器
JPH11271408A (ja) * 1998-01-19 1999-10-08 Matsushita Electric Ind Co Ltd 二次電池の劣化検出方法及び劣化検出機能を具備した充電器
JP2000123887A (ja) * 1998-10-19 2000-04-28 Nikkiso Co Ltd リチウムイオン二次電池における異常警告装置
JP2001015180A (ja) * 1999-06-30 2001-01-19 Nissan Motor Co Ltd 電池の寿命判定装置
JP2002313431A (ja) * 2001-04-11 2002-10-25 Mitsubishi Materials Corp 非水電解質二次電池
JP2005147815A (ja) * 2003-11-14 2005-06-09 Sony Corp バッテリーパック及びバッテリー残量算出方法
JP2008228492A (ja) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd リチウムイオン二次電池の充電方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110129A (ja) * 2010-11-17 2012-06-07 Toshiba Corp 電気車両制御装置
FR2972857A1 (fr) * 2011-03-18 2012-09-21 Commissariat Energie Atomique Procede de determination d'etat de fin de charge d'un accumulateur li-ion a electrode negative en alliage, accumulateur et assemblage d'accumulateurs associes
WO2012126817A1 (fr) * 2011-03-18 2012-09-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de determination d'etat de fin de charge d'un accumulateur li-ion a electrode negative en alliage, accumulateur et assemblage d'accumulateurs associes
US9246198B2 (en) 2011-03-18 2016-01-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for determining when a Li-ion cell comprising a negative electrode made of an alloy is fully charged, associated cell and battery
KR20140137181A (ko) * 2013-05-22 2014-12-02 삼성에스디아이 주식회사 배터리의 두께 예측 시스템 및 배터리의 두께 예측 방법
KR102108279B1 (ko) 2013-05-22 2020-05-07 삼성에스디아이 주식회사 배터리의 두께 예측 시스템 및 배터리의 두께 예측 방법
JP2018535514A (ja) * 2016-06-09 2018-11-29 エルジー・ケム・リミテッド 二次電池電極の厚さ変化の測定装置、及びそれを取り付けた二次電池
JP2020136149A (ja) * 2019-02-22 2020-08-31 ミツミ電機株式会社 電子機器及びその状態判定方法
JP7244746B2 (ja) 2019-02-22 2023-03-23 ミツミ電機株式会社 電子機器及びその状態判定方法
WO2023031990A1 (ja) * 2021-08-30 2023-03-09 TeraWatt Technology株式会社 劣化状態推定装置、劣化状態推定方法、及びプログラム
WO2023188723A1 (ja) * 2022-03-28 2023-10-05 株式会社日立ハイテク 二次電池の状態診断方法および状態診断装置

Also Published As

Publication number Publication date
CN102047493A (zh) 2011-05-04
JPWO2010064392A1 (ja) 2012-05-10
US20110033735A1 (en) 2011-02-10
KR20110008101A (ko) 2011-01-25

Similar Documents

Publication Publication Date Title
WO2010064392A1 (ja) 電池パック
KR101177995B1 (ko) 비수 전해질 이차전지용 음극 및 비수 전해질 이차전지
KR101628638B1 (ko) 부극 및 이차 전지
US9461307B2 (en) Power supply system and motor car
JP5163466B2 (ja) リチウム二次電池の寿命推定方法と劣化抑制方法、寿命推定器と劣化抑制器、それを用いた電池パック、充電器
KR100697741B1 (ko) 축전 시스템, 회생 축전 시스템 및 자동차
JP2020534651A (ja) リチウムアノードデバイススタック製造
JP2010097843A (ja) リチウムイオン二次電池
WO2010092815A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2011161865A1 (ja) リチウムイオン二次電池の充電方法及び充電システム
JP2010073571A (ja) リチウムイオン二次電池およびその製造方法
JP2010250968A (ja) リチウムイオン二次電池
JP2009054577A (ja) リチウムイオン二次電池
EP1912274A1 (en) Lithium secondary battery
JP2009295289A (ja) リチウムイオン二次電池およびその製造方法
JP2009266737A (ja) リチウムイオン二次電池およびその製造方法
CN105409047B (zh) 锂二次电池及锂二次电池用电解液
JP5561774B2 (ja) 非水電解液二次電池の製造方法
JP2010049968A (ja) 固体電解質二次電池
US20230266397A1 (en) Battery system
JP5692605B2 (ja) 非水電解液二次電池
JPWO2012157120A1 (ja) 硫化物系固体電池モジュール
JP2015141882A (ja) 非水電解液二次電池
MENDOZA Electrochemical and Thermal Investigation of Li-ion Secondary Cells Using Electrochemical Impedance Spectroscopy and Accelerating Rate Calorimetry
KR20090103836A (ko) 부극 및 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119699.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010541215

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12936353

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107027861

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830162

Country of ref document: EP

Kind code of ref document: A1