WO2010061917A1 - 光学フィルムとその製造方法 - Google Patents

光学フィルムとその製造方法 Download PDF

Info

Publication number
WO2010061917A1
WO2010061917A1 PCT/JP2009/070038 JP2009070038W WO2010061917A1 WO 2010061917 A1 WO2010061917 A1 WO 2010061917A1 JP 2009070038 W JP2009070038 W JP 2009070038W WO 2010061917 A1 WO2010061917 A1 WO 2010061917A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
film
resin
particles
weight
Prior art date
Application number
PCT/JP2009/070038
Other languages
English (en)
French (fr)
Inventor
平間進
宇賀村忠慶
大西隆司
丹羽宏和
大石英樹
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2010540524A priority Critical patent/JP5587209B2/ja
Priority to CN200980144385.6A priority patent/CN102209749B/zh
Publication of WO2010061917A1 publication Critical patent/WO2010061917A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • C08F8/16Lactonisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to an optical film and a manufacturing method thereof.
  • an optical film typified by a retardation film and a polarizer protective film is used.
  • Optical films are required to have high transparency and optical homogeneity, and polarizer protective films and LCD film substrates are required to have lower birefringence.
  • a cellulose acetate (TAC) film has been widely used as a polarizer protective film based on its high light transmittance and good adhesion with a polarizer.
  • TAC cellulose acetate
  • the photoelastic coefficient of a TAC film is not necessarily small, and birefringence is likely to be exhibited by external stress applied to the film.
  • an acrylic resin represented by polymethyl methacrylate (PMMA) is used for the optical film.
  • PMMA polymethyl methacrylate
  • An acrylic resin has a high light transmittance and a low photoelastic coefficient, and is suitable as an optical film. Further, by introducing a ring structure into the main chain of the acrylic resin, it is possible to improve the heat resistance of the optical film using the resin (see JP-A-2006-96960).
  • the acrylic resin film has a high surface smoothness
  • the films are easily brought into close contact with each other and once peeled off, it becomes difficult to peel off.
  • This close contact state is generally called blocking.
  • the occurrence of blocking significantly reduces the manufacturability and handling properties of the film, and is particularly affected during mass production of optical films, which are generally produced as rolls.
  • a method is known in which particles such as silica particles are mixed into a resin to lower the smoothness of the film surface.
  • the mixed particles tend to cause a decrease in transparency of the film, and it is possible to obtain an acrylic resin film that has both sufficient transparency and anti-blocking properties as an optical film. difficult.
  • An object of the present invention is to provide an optical film mainly composed of an acrylic resin having a ring structure in the main chain, which has both sufficient transparency as an optical film and anti-blocking property, and a method for producing the same.
  • the optical film of the present invention includes, as a main component, an amorphous acrylic resin (A) having a ring structure in the main chain, and particles (B), and is formed by melt extrusion.
  • the following conditions (i) to (iii) are satisfied: (i) Total light transmittance measured in accordance with JIS K7361 is 90% or more, haze is 1% or less; (ii) Measured in accordance with JIS B0601 The surface ten-point average roughness Rz is 1.0 ⁇ m or more; (iii) The number of bending resistances (MIT times) measured in accordance with JIS P8115 is 100 times or more.
  • the optical film of the present invention (second optical film) viewed from another aspect includes an amorphous acrylic resin (A) having a ring structure in the main chain as a main component, and an average particle size of 0.1 to 1 ⁇ m particles (B), and is formed by melt extrusion after passing through a polymer filter in a molten state.
  • the total light transmittance measured in accordance with JIS K7361 is 90% or more and haze is 1
  • the surface ten-point average roughness Rz measured in accordance with JIS B0601 is 0.7 ⁇ m or more.
  • the method for producing an optical film of the present invention includes, as main components, an amorphous acrylic resin (A) having a ring structure in the main chain, and particles (B) having an average particle size of 0.1 to 1 ⁇ m.
  • an amorphous acrylic resin (A) having a ring structure in the main chain and particles (B) having an average particle size of 0.1 to 1 ⁇ m.
  • the resin composition By passing the resin composition through a polymer filter in a molten state and then melt-extruding it into a film, the total light transmittance measured in accordance with JIS K7361 is 90% or more and haze is 1% or less.
  • an optical film mainly composed of an acrylic resin having a ring structure in the main chain which has both sufficient transparency as an optical film and anti-blocking property.
  • a method in which a resin or a resin composition is formed into a film by melt extrusion molding is generally used.
  • a resin is used so that an optical defect does not occur in the obtained film.
  • a step of passing the (composition) through a polymer filter and removing foreign substances such as gel contained in the resin (composition) is essential.
  • An acrylic resin having a ring structure in the main chain has a high glass transition temperature (Tg) and a high melt extrusion molding temperature, so that a gel is easily formed, and the effect of passing through a polymer filter is particularly high.
  • Tg glass transition temperature
  • the threshold value of the diameter of foreign matter filtered by the polymer filter is not constant due to the structure of the filter.
  • a polymer filter having a filtration accuracy of 5 ⁇ m is designed to remove foreign matters having a particle size of 5 ⁇ m or more, but does not always pass particles having a particle size of less than 5 ⁇ m, and depending on the particle path in the polymer filter. Smaller particle size is also removed.
  • the particle path in the polymer filter is not constant, the particle size of the particles to be removed always varies.
  • the mixed particles are not always present in the resin (composition) as primary particles, and some of them are aggregated to form aggregates in many cases. For this reason, it is difficult to obtain an optical film having good antiblocking properties while ensuring sufficient transparency by melt extrusion molding through a polymer filter simply by mixing the particles into the resin.
  • the optical film of the present invention (second optical film) as seen from another aspect includes particles (B) having an average particle size of 0.1 to 1 ⁇ m.
  • This is an optical film obtained by melt extrusion molding with a polymer filter as the main component, and an acrylic resin having a ring structure in the main chain, and has both sufficient transparency and anti-blocking properties as an optical film. An optical film is obtained.
  • the production method of the present invention by using particles (B) having an average particle size of 0.1 to 1 ⁇ m, melt extrusion molding through a polymer filter mainly composed of an acrylic resin having a ring structure in the main chain.
  • a polymer filter mainly composed of an acrylic resin having a ring structure in the main chain.
  • an optical film having both transparency sufficient as an optical film and anti-blocking property can be obtained.
  • the production method of the present invention is a method for obtaining an optical film by melt extrusion molding through a polymer filter, and since the obtained film has good antiblocking properties, it is preferably applied to mass production of the film. it can.
  • the acrylic resin (A) is a resin having a (meth) acrylic acid ester unit and / or a (meth) acrylic acid unit as a structural unit, and is derived from a (meth) acrylic acid ester or a (meth) acrylic acid derivative. You may have a unit.
  • the total of the proportions of the structural units derived from the (meth) acrylic acid ester unit, the (meth) acrylic acid unit and the derivatives in all the structural units of the acrylic resin is usually 50 mol% or more, preferably 60 mol% or more. More preferably, it is 70 mol% or more.
  • (Meth) acrylate units are, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate , N-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate , 3-hydroxypropyl (meth) acrylate, 2,3,4,5,6-pentahydroxyhexyl (meth) acrylate, 2,3,4,5-tetrahydroxypentyl (meth) acrylate, 2- ( Formed by polymerization of monomers such as hydroxymethyl) methyl acrylate and 2- (hydroxyethyl) methyl acrylate It
  • the acrylic resin (A) may have two or more of these structural units as (meth) acrylic acid ester units.
  • the acrylic resin (A) preferably has a methyl (meth) acrylate unit. In this case, the thermal stability of the optical film of the present invention containing the acrylic resin (A) and the acrylic resin (A) as main components is improved. To do.
  • the “main component” in the present specification is a component having the maximum content in the optical film, and the content is usually 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more.
  • the acrylic resin (A) has a ring structure in the main chain.
  • the glass transition temperature (Tg) of an acrylic resin (A) is high, for example, is 110 degreeC or more.
  • the Tg of the acrylic resin (A) is 115 ° C. or higher, 120 ° C. or higher, 125 ° C. or higher, and further 130 ° C. or higher.
  • the type of the ring structure that the acrylic resin (A) has in the main chain is not particularly limited, but for example, at least one selected from a lactone ring structure, a glutaric anhydride structure, a glutarimide structure, an N-substituted maleimide structure, and a maleic anhydride structure It is a seed.
  • the ring structure is preferably at least one selected from a lactone ring structure, a glutarimide structure, and a glutaric anhydride structure.
  • the Tg of the acrylic resin (A) becomes higher, and an optical film that is further excellent in heat resistance can be obtained.
  • the ring structure is a lactone ring structure, since the structure does not contain a nitrogen atom, coloring (yellowing) is difficult to occur, transparency is high, there is no odor, and phase difference development and position
  • the optical film is excellent in phase difference stability.
  • the lactone ring structure tends to allow the optical film to exhibit positive birefringence (for example, positive retardation).
  • the ring structure is a glutarimide structure
  • the optical film is excellent in retardation development and retardation stability.
  • the ring structure is a glutaric anhydride structure, the optical film is hardly colored and has no odor.
  • the ring structure is a glutarimide structure and a glutaric anhydride structure
  • gels are more likely to occur during melt extrusion than other ring structures. For this reason, the effect (the effect of the manufacturing method of the 2nd optical film and the optical film of this invention) of this invention becomes more remarkable.
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group, and X 1 is an oxygen atom or a nitrogen atom.
  • R 3 does not exist, and when X 1 is a nitrogen atom, R 3 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, or a phenyl group. .
  • the ring structure represented by the formula (1) is a glutarimide structure.
  • the glutarimide structure can be formed, for example, by imidizing a (meth) acrylic acid ester polymer with an imidizing agent such as methylamine.
  • the ring structure represented by the formula (1) is a glutaric anhydride structure.
  • the glutaric anhydride structure can be formed, for example, by subjecting a copolymer of (meth) acrylic acid ester and (meth) acrylic acid to dealcoholization cyclocondensation within the molecule.
  • the following formula (2) shows an N-substituted maleimide structure and a maleic anhydride structure.
  • R 4 and R 5 are each independently a hydrogen atom or a methyl group
  • X 2 is an oxygen atom or a nitrogen atom.
  • R 6 does not exist
  • R 6 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, or a phenyl group.
  • the ring structure represented by the formula (2) is an N-substituted maleimide structure.
  • the acrylic resin having an N-substituted maleimide structure in the main chain can be formed, for example, by copolymerizing N-substituted maleimide and (meth) acrylic acid ester.
  • the N-substituted maleimide structure is, for example, a phenylmaleimide structure, a cyclohexylmaleimide structure, or a methylmaleimide structure.
  • the ring structure represented by the formula (2) is a maleic anhydride structure.
  • the acrylic resin having a maleic anhydride structure in the main chain can be formed, for example, by copolymerizing maleic anhydride and (meth) acrylic acid ester.
  • each method for forming a ring structure exemplified in the description of formulas (1) and (2) all the polymers used for forming each ring structure have (meth) acrylate units as constituent units.
  • the resin obtained by this method is an acrylic resin.
  • the lactone ring structure that the acrylic resin (A) may have in the main chain is not particularly limited.
  • it may be a 4- to 8-membered ring, but it is a 5-membered ring because of its excellent stability as a ring structure.
  • a 6-membered ring is preferable, and a 6-membered ring is more preferable.
  • the 6-membered lactone ring structure is, for example, the structure disclosed in Japanese Patent Application Laid-Open No. 2004-168882, but the precursor (the lactone ring structure is converted into the main chain by subjecting the precursor to a cyclization condensation reaction).
  • the polymerization yield of the acrylic resin (A) is high), the acrylic condensation resin (A) having a high lactone ring content is obtained by the cyclization condensation reaction of the precursor, and constitutes the methyl methacrylate unit.
  • a structure represented by the following formula (3) is preferable because a polymer having a unit can be used as a precursor.
  • R 7 , R 8 and R 9 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom.
  • the organic residue in the formula (3) is, for example, an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group or a propyl group; an ethenyl group, a propenyl group or the like having 1 to 20 carbon atoms.
  • the content of the ring structure (excluding the lactone ring structure) in the acrylic resin (A) is not particularly limited, but is, for example, 5 to 90% by weight, preferably 10 to 70% by weight, more preferably 10 to 60% by weight. More preferably, it is 10 to 50% by weight.
  • the content of the lactone ring structure in the resin is not particularly limited, but is, for example, 5 to 90% by weight, preferably 10 to 70% by weight, 60% by weight is more preferable, and 10 to 50% by weight is further preferable.
  • the content of the lactone ring structure in the acrylic resin (A) can be determined by the dynamic TG method as follows. First, a dynamic TG measurement is performed on the acrylic resin (A) having a lactone ring structure, a weight reduction rate between 150 ° C. and 300 ° C. is measured, and the obtained value is obtained as an actual weight reduction rate (X ).
  • 150 ° C. is a temperature at which a hydroxyl group and an ester group remaining in the acrylic resin (A) start a cyclization condensation reaction, and 300 ° C. is a temperature at which thermal decomposition of the acrylic resin (A) starts.
  • the rate of weight loss due to the reaction (ie, dealcoholization of the precursor)
  • the weight reduction rate (assuming that the condensation reaction rate was 100%) was calculated and used as the theoretical weight reduction rate (Y).
  • the theoretical weight reduction rate (Y) can be determined from the content of the structural unit having a hydroxyl group involved in the dealcoholization reaction in the precursor.
  • the composition of the precursor can be derived from the composition of the acrylic resin (A).
  • the dealcoholization reaction rate of the acrylic resin (A) is determined by the formula [1- (actually measured weight reduction rate (X) / theoretical weight reduction rate (Y))] ⁇ 100 (%).
  • the acrylic resin (A) it is considered that a lactone ring structure is formed as much as the determined dealcoholization reaction rate. Therefore, the lactone ring in the acrylic resin (A) is obtained by multiplying the content of the structural unit having a hydroxyl group involved in the dealcoholization reaction in the precursor by the obtained dealcoholization reaction rate and converting it to the weight of the lactone ring structure. The content of the structure can be determined.
  • the acrylic resin (A) may have a structural unit other than the (meth) acrylic acid ester unit and the (meth) acrylic acid unit.
  • a structural unit include styrene, vinyltoluene, ⁇ -methyl.
  • Aromatic vinyl monomers such as styrene; nitrile monomers such as acrylonitrile; vinyl esters such as vinyl acetate; 2- (hydroxyalkyl) acrylic esters such as methyl 2- (hydroxyethyl) acrylate; 2- (hydroxyalkyl) acrylic acid such as hydroxyethyl) acrylic acid; methyl vinyl ketone, ethylene, propylene, methallyl alcohol, allyl alcohol, 2-hydroxymethyl-1-butene, ⁇ -hydroxymethylstyrene, ⁇ -hydroxyethyl Structure formed by polymerization of monomers such as styrene It is a place.
  • the acrylic resin (A) may have two or more of these structural units.
  • the weight average molecular weight of the acrylic resin (A) is, for example, in the range of 1,000 to 2,000,000, preferably in the range of 5,000 to 1,000,000, more preferably in the range of 10,000 to 500,000, and still more preferably in the range of 50,000 to 500,000.
  • the hue of the acrylic resin (A) is preferably 10 or less, more preferably 5 or less in terms of the yellow index (YI) value.
  • the resin (A) When the acrylic resin (A) has a lactone ring structure in the main chain, the resin (A) preferably has a weight reduction rate of 1% or less in a temperature range of 150 to 300 ° C. in dynamic TG measurement. It is more preferably 5% or less, and further preferably 0.3% or less.
  • the 5% weight loss temperature measured by thermogravimetric analysis (TG) is preferably 280 ° C or higher, more preferably 290 ° C or higher, More preferably, it is 300 ° C. or higher.
  • the 5% weight loss temperature is an index for the thermal stability of the resin. When this value is less than 280 ° C., the resin may not have sufficient thermal stability.
  • the acrylic resin (A) having a ring structure in the main chain can be produced by a known method.
  • the acrylic resin (A) whose ring structure is a lactone ring structure is described in, for example, JP-A-2006-96960 (WO2006 / 025445), JP-A-2006-171464, or JP-A-2007-63541. It can be manufactured by a method.
  • the acrylic resin (A) whose ring structure is an N-substituted maleimide structure, a glutaric anhydride structure or a glutarimide structure is described in, for example, JP-A-2007-31537, WO2007 / 26659 or WO2005 / 108438. It can be manufactured by a method.
  • the acrylic resin (A) whose ring structure is a maleic anhydride structure can be produced, for example, by the method described in JP-A-57-153008.
  • the acrylic resin (A) having a lactone ring structure in the main chain is prepared by, for example, heating a polymer (precursor) (a) having a hydroxyl group and an ester group in the molecular chain in the presence of an arbitrary catalyst to remove alcohol. It can be formed by advancing the accompanying lactone cyclization condensation reaction.
  • the polymer (a) can be formed, for example, by polymerization of a monomer group including a monomer represented by the following formula (4).
  • R 10 and R 11 are each independently a hydrogen atom or a group similar to the organic residue in the formula (3).
  • Monomers represented by the formula (4) are, for example, methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, 2- (hydroxymethyl) Normal butyl acrylate, t-butyl 2- (hydroxymethyl) acrylate, and the like.
  • methyl 2- (hydroxymethyl) acrylate and ethyl 2- (hydroxymethyl) acrylate are preferred, and a thermoplastic resin body having high transparency and heat resistance can be obtained.
  • Methyl acid (MHMA) is particularly preferred.
  • the monomer group used for forming the polymer (a) may contain two or more monomers represented by the above formula (4).
  • the monomer group used for forming the polymer (a) may contain a monomer other than the monomer represented by the above formula (4).
  • This monomer is not particularly limited as long as it can be copolymerized with the monomer represented by the formula (4), and is, for example, (meth) acrylic acid ester.
  • the (meth) acrylic acid ester is a monomer other than the monomer represented by the formula (4).
  • the monomer group used for forming the polymer (a) may contain two or more of these (meth) acrylic acid esters.
  • the monomer group used for forming the polymer (a) is one or two other monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, and vinyl acetate. More than one species may be included.
  • the particles (B) have an action of imparting anti-blocking properties to the film by being contained in the optical film.
  • the type of particles (B) is not particularly limited, and examples thereof include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the organic particles are, for example, particles made of an organic crosslinked polymer such as a vinyl crosslinked polymer.
  • the particles (B) are organic crosslinked polymer particles or organic-inorganic composite particles, the refractive index and average diameter of the particles Is easy to control.
  • the particles (B) are inorganic particles, the heat resistance of the optical film of the present invention containing the particles is increased and the hardness of the particles (B) is high, so that the anti-blocking property of the optical film of the present invention is increased. Will improve.
  • the inorganic particles are, for example, glass particles, silica particles, and alumina particles.
  • the organic crosslinked polymer particles include, for example, a monofunctional monomer such as methyl methacrylate and a polyfunctional monomer such as trimethylolpropane tri (meth) acrylate, allyl (meth) acrylate, and ethylene glycol di (meth) acrylate.
  • (Meth) acrylic crosslinked particles obtained by suspension polymerization see Japanese Patent No. 4034157.
  • Styrene (meth) acrylic crosslinked particles obtained by further copolymerizing styrene monomers such as styrene, ⁇ -methylstyrene, divinylbenzene, etc. at the time of suspension polymerization may be used.
  • At least 1 sort (s) chosen from a (meth) acrylic acid monomer, a (meth) acrylic acid ester monomer, and a styrene-type monomer was obtained by carrying out emulsion polymerization, soap free emulsion polymerization, miniemulsion polymerization, dispersion polymerization, or seed polymerization ( It may be meth) acrylic crosslinked particles or styrene- (meth) acrylic crosslinked particles.
  • Organic-inorganic composite particles are composed of an organic part and an inorganic part.
  • the content of the inorganic part in the organic-inorganic composite particles is, for example, 0.5 to 90% by weight, preferably 1 to 70% by weight, more preferably 2 to 60% by weight in terms of inorganic oxide.
  • the content in terms of inorganic oxide specifically refers to the weight of the organic-inorganic composite particles when the particles are fired at a high temperature (eg, 1000 ° C. or higher) in an oxidizing atmosphere such as air. It is a numerical value represented by the ratio of the weight of the remaining inorganic oxide.
  • Specific organic-inorganic composite particles are not particularly limited.
  • Preferred examples include an organic polymer skeleton described in JP-A-8-81561 and a polysiloxane skeleton having organic silicon in which a silicon atom is directly chemically bonded to at least one carbon atom in the skeleton.
  • a content of SiO 2 constituting the polysiloxane skeleton of 25% by weight or more and polysiloxane particles having a (meth) acryloxy group described in JP-A-2003-183337 It is a particle comprising a vinyl polymer.
  • the average particle diameter of the particles (B) is preferably 0.01 to 30 ⁇ m, more preferably 0.05 to 10 ⁇ m, further preferably 0.1 to 5 ⁇ m, and more preferably 0.1 to Most preferred is 0.3 ⁇ m.
  • the average particle diameter of the particles (B) is less than 0.05 ⁇ m, it becomes difficult to obtain an optical film having antiblocking properties.
  • the average particle diameter of the particles (B) exceeds 30 ⁇ m, it becomes difficult to obtain an optical film having sufficient transparency as an optical film.
  • the average particle diameter of the particles (B) in the second optical film is 0.1 to 1 ⁇ m.
  • the main component was an acrylic resin having a ring structure in the main chain, and the melt was obtained by melt extrusion molding through a polymer filter. It is an optical film, and an optical film having both transparency sufficient as an optical film and anti-blocking property can be obtained.
  • the average particle diameter of the particles (B) in the second optical film is preferably 0.1 to 0.3 ⁇ m.
  • the coefficient of variation (CV value) of the particle diameter of the particles (B) is preferably 50% or less, and more preferably 45% or less for the first optical film. When the variation coefficient of the particle diameter of the particles (B) exceeds 50%, an optical film having anti-blocking properties cannot be obtained, or an optical film having sufficient transparency cannot be obtained.
  • the variation coefficient (CV value) of the particle size of the particles (B) in the second optical film is preferably 18% or less.
  • the average particle size of particle (B) and the coefficient of variation of particle size are determined by a laser diffraction / scattering particle size distribution measuring device (for example, LA-920 manufactured by Horiba, Ltd.) or a precision particle size distribution measuring device (for example, Beckman Coulter, Inc.). Manufactured by Coulter Multisizer III). From the viewpoint of measurement accuracy, it is preferable to select a measurement device according to the approximate particle size of the particle (B) to be measured. For example, when the particle size of the particle (B) is smaller than approximately 2 ⁇ m, laser diffraction / If the scattering type particle size distribution measuring device is larger than about 2 ⁇ m, it is preferable to use a precision particle size distribution measuring device.
  • the average particle diameter and the coefficient of variation of the particle diameter of the particles (B) contained in the film can be determined as follows, for example. First, a laser microscope image (for example, VK-9700, manufactured by Keyence Corporation) of the film is observed. The observation range is 94 ⁇ m ⁇ 70 ⁇ m, and the photographing magnification is preferably about 150 times. Next, the diameter (primary particle diameter) of the particles shown in the observed image is measured with a scale gauge attached to the laser microscope, and the arithmetic average value may be used as the average particle diameter of the particles.
  • the variation coefficient of the particle diameter can be obtained from the equation ( ⁇ / X) ⁇ 100 (%), where the square deviation of the unbiased dispersion with respect to the particle diameter measured by the scale gauge is the standard deviation ⁇ .
  • the shape of the particles (B) is not particularly limited, and may be any shape such as a spherical shape, a needle shape, a plate shape, a scale shape, a crushed shape, a bowl shape, a bowl shape, and a confetti shape.
  • the shape of the particles (B) is preferably spherical, and in this case, the anti-blocking uniformity in the obtained optical film becomes higher.
  • the refractive index of the particles (B) is 0.98 times or more and 1.02 times or less based on the refractive index of the acrylic resin (A). Is more preferable, and it is more preferable that they are 0.99 times or more and 1.01 times or less.
  • the first optical film contains an acrylic resin (A) having a ring structure in the main chain as a main component and particles (B).
  • the first optical film may contain only the acrylic resin (A) as a resin.
  • the first optical film has a structure in which the particles (B) are dispersed in the base made of the acrylic resin (A).
  • the first optical film may contain a resin other than the acrylic resin (A) as long as the effect of the present invention is obtained.
  • the resin other than the acrylic resin which may be included in the first optical film, has high compatibility with the acrylic resin (A) in order to obtain sufficient transparency as the optical film, and optically itself. It needs to be a transparent resin.
  • the resin is, for example, an acrylic resin other than a copolymer of vinyl cyanide monomer and aromatic vinyl monomer (for example, acrylonitrile-styrene copolymer), polyvinyl chloride, and acrylic resin (A). .
  • the first optical film may contain additives such as an ultraviolet absorber, an antioxidant, a lubricant, an antistatic agent, a plasticizer, a fluidizing agent, a colorant, a dye, a flame retardant, and a filler.
  • additives such as an ultraviolet absorber, an antioxidant, a lubricant, an antistatic agent, a plasticizer, a fluidizing agent, a colorant, a dye, a flame retardant, and a filler.
  • the content ratio of the particles (B) in the first optical film is, for example, 0.005 to 0.5% by weight, and preferably 0.008 to 0.1% by weight.
  • the first optical film has a total light transmittance of 90% or more and a haze of 1% or less as measured in accordance with JIS K7361.
  • the first optical film has a 10-point average roughness Rz of 1.0 ⁇ m or more as measured according to JIS B0601.
  • the first optical film has a number of bending resistances (MIT times) of 100 or more as measured in accordance with JIS P8115.
  • the first optical film preferably has a sliding property of 400 g or less measured according to JIS K7125.
  • the first optical film may be a stretched film.
  • the difference in the in-plane retardation Re of the film measured at two points 1 cm away from each other is preferably 2 nm or less.
  • a 1st optical film is a film formed by melt extrusion molding of the resin composition which contains an acrylic resin (A) and particle
  • the said resin composition Formed by melt extrusion.
  • a specific method of melt extrusion molding is not particularly limited, and a known method can be applied.
  • a resin composition containing an acrylic resin (A) and particles (B) using a melt extruder equipped with a T-shaped die or by an inflation method, and optionally containing other resins and / or additives. May be extruded into a film by heating and melting.
  • the resin composition containing the acrylic resin (A) and the particles (B) can be formed by a known method.
  • the resin composition can be formed, for example, by adding particles (B) to the acrylic resin (A), but the timing of adding the particles is not particularly limited.
  • Particles (B) may be added during the production of acrylic resin (A), such as during polymerization of acrylic resin (A), or after acrylic resin (A) is produced, acrylic resin (A) and particles (B ) And other components, if necessary, may be heated and melted simultaneously and kneaded. Further, the acrylic resin (A) and, if necessary, other components may be heated and melted, and the particles (B) may be added thereto and kneaded, or the acrylic resin (A) may be heated and melted. The particles (B) and other components as necessary may be further added and kneaded.
  • the second optical film contains, as a main component, an acrylic resin (A) having a ring structure in the main chain, and particles (B) having an average particle diameter of 0.1 to 1 ⁇ m.
  • the second optical film may contain only the acrylic resin (A) as the resin.
  • the second optical film has a structure in which the particles (B) are dispersed in the base made of the acrylic resin (A).
  • the second optical film may contain a resin other than the acrylic resin (A) as long as the effects of the present invention are obtained.
  • the resin other than the acrylic resin which may be contained in the second optical film, has high compatibility with the acrylic resin (A) in order to obtain sufficient transparency as the optical film, and optically itself. It needs to be a transparent resin.
  • the resin is, for example, an acrylic resin other than a copolymer of vinyl cyanide monomer and aromatic vinyl monomer (for example, acrylonitrile-styrene copolymer), polyvinyl chloride, and acrylic resin (A). .
  • the content of the particles (B) in the second optical film is, for example, preferably 0.005% by weight or more and less than 1% by weight, more preferably 0.005 to 0.5% by weight, and 0.008 to 0.1%. More preferred is weight percent.
  • the second optical film may contain additives such as an ultraviolet absorber, an antioxidant, a lubricant, an antistatic agent, a plasticizer, a fluidizing agent, a colorant, a dye, a flame retardant, and a filler.
  • additives such as an ultraviolet absorber, an antioxidant, a lubricant, an antistatic agent, a plasticizer, a fluidizing agent, a colorant, a dye, a flame retardant, and a filler.
  • the second optical film has a total light transmittance of 90% or more and a haze of 1% or less measured in accordance with JIS K7361.
  • the second optical film has a ten-point average roughness Rz of 0.7 ⁇ m or more, preferably 1 ⁇ m or more, measured according to JIS B0601.
  • the second optical film preferably has a slidability of 500 g or less, more preferably 400 g or less, measured according to JIS K7125.
  • the second optical film may be a stretched film.
  • the difference in the in-plane retardation Re of the film measured at two points 1 cm away from each other is preferably 2 nm or less.
  • the second optical film includes an acrylic resin (A) and particles (B) having an average particle diameter of 0.1 to 1 ⁇ m, and a resin composition containing the acrylic resin (A) as a main component in a molten state. It is a film formed by melt extrusion after passing through a polymer filter.
  • the thickness of the second optical film is typically 10 to 300 ⁇ m.
  • the film of the present invention may be a stretched film.
  • the stretched film can be formed by stretching a film obtained by melt extrusion molding.
  • the method for stretching the film is not particularly limited, and a known method can be applied.
  • a film obtained by melt extrusion unstretched film
  • a shrinkable film is adhered to one or both principal surfaces of a film obtained by melt extrusion molding to form a laminate, and the laminate thus formed is subjected to heat stretching treatment in a direction perpendicular to the stretching direction.
  • a stretching method may be employed in which a stretched film in which molecular groups oriented in each of the stretching direction and the thickness direction of the film are mixed is given to the film.
  • biaxial stretching is preferred because the bending resistance of the obtained stretched film, in particular, the bending resistance in any two directions perpendicular to each other in the plane of the film is improved.
  • the stretching apparatus is not particularly limited, and examples thereof include a roll stretching machine, an oven-type stretching machine, a tenter-type stretching machine, a tensile tester, a uniaxial stretching machine, a sequential biaxial stretching machine, and a simultaneous biaxial stretching machine.
  • biaxial stretching is performed sequentially in the flow direction (melt extrusion direction, X direction) and width direction (direction perpendicular to the melt extrusion direction in the film plane, Y direction) of the belt-like film.
  • the stretching is preferably performed by combining a roll stretching machine or an oven-type stretching machine and a tenter-type stretching machine.
  • the optical film (first and second optical films) of the present invention may be knurled.
  • the knurling process is a process of providing fine irregularities on the film surface, and the anti-blocking property of the film is further improved by the knurling process.
  • Knurling is also called knurling or embossing.
  • the knurling position that is, the position of the knurling portion is not particularly limited, but the end portion of the film is preferable because the optical properties of the film deteriorate in the knurling portion.
  • the position of the knurling portion is typically both end portions in the width direction of the film.
  • the knurling part is preferably located within 5% of the film width from the end of the film.
  • the shape of the projections and depressions in the knurling part is not particularly limited.
  • the shape of the protrusion when the film is viewed from the direction perpendicular to the main surface is a truncated cone, prism, trapezoid, prism, cone, pyramid, It may be a fixed form. Two or more types of protrusions may be mixed in one knurling portion.
  • the height of the unevenness in the knurling part (the height of the highest part when the film is viewed from the direction perpendicular to the main surface and the lowest part in the knurling part is used as a reference) is preferably 1 to 20 ⁇ m. When the said height is less than 1 micrometer, the anti-blocking improvement effect by knurling may not fully be acquired. When the height exceeds 20 ⁇ m, when the optical film of the present invention that is in the form of a belt is made into a roll, the difference between the diameter of the roll center and the diameter of both ends of the roll where the knurling part is located becomes large, causing a horse back failure. Failures such as deformation failures are likely to be induced.
  • the number of irregularities in the knurling portion is preferably about 3 to 100 per 1 cm 2 of film area as the number of protrusions when the film is viewed from a direction perpendicular to the main surface.
  • the width of the knurling portion is preferably about 0.3 to 5% of the width of the film per knurling portion.
  • the method of knurling is not particularly limited, and a known method can be applied. For example, what is necessary is just to press the surface of a film with the stamping roll in which the uneven
  • the knurling process may be performed at room temperature or in a state where the film is heated.
  • the functional coating layer is, for example, an antistatic layer, an adhesive / adhesive layer, an easy adhesion layer, an antiglare layer (non-glare) layer, an antifouling layer such as a photocatalyst layer, an antireflection layer, a hard coat layer, an ultraviolet shielding layer, They are a heat ray shielding layer, an electromagnetic wave shielding layer, and a gas barrier layer.
  • the use of the optical film (first and second optical films) of the present invention is not particularly limited.
  • a birefringent film, a retardation film used for an image display device such as a liquid crystal display, a plasma display, and an organic EL display.
  • the optical film of the present invention is particularly preferably used as a polarizer protective film, a birefringent film, a retardation film, a viewing angle compensation film, and a film substrate.
  • the second optical film can be produced, for example, by the method for producing an optical film of the present invention described below.
  • Method for producing optical film In the method for producing an optical film of the present invention, a resin composition containing an acrylic resin (A) and particles (B) having an average particle diameter of 0.1 to 1 ⁇ m, the main component of which is an acrylic resin (A) is melted. After passing through the polymer filter, the film is melt-extruded to obtain the second optical film described above.
  • the average particle size of the particles (B) is preferably 0.1 to 0.3 ⁇ m.
  • the content of the particles (B) in the resin composition is preferably 0.005% by weight or more and less than 1% by weight, more preferably 0.005 to 0.5% by weight, and further 0.008 to 0.1% by weight. preferable.
  • the formation method of the resin composition is as described above except that the average particle diameter of the particles (B) is 0.1 to 1 ⁇ m.
  • a method for passing a molten resin composition through a polymer filter and a method for melt-extruding a resin composition that has been passed through a polymer filter in a molten state into a film may be in accordance with known methods. From the viewpoint of preventing the deterioration of the resin composition, it is preferable that the molten resin composition is passed through a polymer filter and then melt-extruded into a film while the resin composition is melted.
  • This method can be realized, for example, by a melt extruder equipped with a polymer filter.
  • the polymer filter is not particularly limited, and is, for example, a leaf disk filter, a candle filter, a pack disk filter, or a cylindrical filter. Among these, a leaf disk filter having a high effective filtration area is preferable.
  • the filter medium is not particularly limited.
  • a nonwoven fabric or roving yarn wound body of various fibers such as polypropylene, cotton, polyester, viscose rayon, and glass fiber, a filter medium made of phenol resin-impregnated cellulose, a filter medium obtained by sintering a nonwoven fabric of metal fibers, or a metal powder.
  • Any filter medium such as a sintered filter medium, a filter medium in which a plurality of wire meshes are laminated, or a so-called hybrid filter medium in which these filter media are combined can be used.
  • a filter medium obtained by sintering a non-woven fabric of metal fibers is preferable because of excellent durability and pressure resistance.
  • the filtration accuracy of the polymer filter is preferably 5 to 10 ⁇ m in order to obtain an optical film having sufficient transparency, and more preferably 5 to 7 ⁇ m.
  • the glass transition temperature (Tg) of the resin composition containing an acrylic resin was determined according to ASTM-D-3418. Specifically, a differential scanning calorimeter (manufactured by Rigaku, DSC-8230) was used to raise a temperature of about 10 mg from room temperature to 200 ° C. under a nitrogen gas flow (50 ml / min) (temperature increase rate 10 ° C./min). ) was evaluated by the midpoint method from the DSC curve obtained.
  • lactone ring content The lactone ring content of the resin composition containing an acrylic resin was evaluated by the calculation method described above.
  • the pellet of the resin composition containing the produced acrylic resin was dissolved in tetrahydrofuran (THF), and then the resin was precipitated using excess hexane or methanol. Next, the precipitate is vacuum dried (pressure 1.33 hPa, 80 ° C., 3 hours or more) to remove volatile components, and the obtained white solid resin is subjected to dynamic TG measurement under the following measurement conditions.
  • THF tetrahydrofuran
  • the refractive index of the resin composition containing the prepared acrylic resin was determined as follows based on JIS K7142.
  • the produced resin pellets were formed into a film having a thickness of 100 ⁇ m by a melt press at 240 ° C.
  • the refractive index of the obtained film with respect to light having a wavelength of 589 nm was measured at 23 ° C. using a refractometer (manufactured by Atago Co., Ltd., Digital Abbe refractometer DR-M2).
  • the refractive index of the resin composition containing the prepared acrylic resin was used.
  • the refractive index of the particles used in the examples was determined using a refractive liquid in which a halogen-based high refractive index liquid and a low refractive index liquid such as methanol were mixed at various ratios.
  • a refractive liquid in which a halogen-based high refractive index liquid and a low refractive index liquid such as methanol were mixed at various ratios.
  • the average particle size and coefficient of variation of the particles were determined as follows using a laser diffraction / scattering particle size distribution measuring apparatus (Horiba, LA-920). First, 2.5 g of particles were placed in a screw tube having an internal volume of 20 mL, and 2.0 g of methanol was added thereto, and then vibration using an ultrasonic cleaner was added to the screw tube for 3 minutes. Next, 15 g of water was added, and then vibration using an ultrasonic cleaner was further added to the screw tube for 15 minutes to obtain a methanol / water dispersion of particles.
  • Horiba, LA-920 laser diffraction / scattering particle size distribution measuring apparatus
  • the volume average particle size X of the particles was determined by a laser diffraction / scattering particle size distribution measuring device.
  • the coefficient of variation of the particle diameter was calculated from the formula ( ⁇ / X) ⁇ 100 (%) by obtaining the standard deviation ⁇ of the particle diameter using the above apparatus.
  • the refractive index of the particles was input, the “distribution form” was monodispersed, and the “particle diameter standard” was the volume standard.
  • Total light transmittance, haze The total light transmittance and haze of the produced optical film were evaluated using a haze meter (Nippon Denshoku Industries Co., Ltd., NDH-1001DP) in accordance with JIS K7361.
  • the surface slipperiness of the produced optical film was evaluated as follows in accordance with JIS K7125. First, an optical film cut to a size of 80 mm ⁇ 100 mm was fixed on a stainless steel plate whose surface was kept horizontal. Next, an optical film cut to a size of 70 mm ⁇ 100 mm with an auxiliary plate attached to the short side is placed on the fixed film, and a buffer weight with a thickness of 2 mm is further placed thereon. (540 g, diameter 62 mm) was placed.
  • stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Co., Ltd.) was added to the resulting polymerization solution as a catalyst for the cyclization condensation reaction (cyclization catalyst).
  • the cyclization condensation reaction was allowed to proceed for 5 hours under reflux at ⁇ 110 ° C.
  • a vent type screw twin screw extruder having a barrel temperature of 250 ° C., a rotation speed of 150 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of
  • the main chain has a lactone ring structure by melt extrusion at a cylinder set temperature of 270 ° C.
  • Resin pellets (1A) comprising a resin composition containing an acrylic resin as a main component and further containing acrylonitrile-styrene resin were obtained.
  • the resin composition constituting the resin pellet (1A) had a weight average molecular weight of 132,000, a lactone ring content of 28.5% by weight, a Tg of 125 ° C., and a refractive index of 1.506.
  • Example 1 The resin pellet (1AB-1) produced in Production Example 2 was melt-extruded at 270 ° C. to obtain an unstretched film having a thickness of 150 ⁇ m. Next, the obtained unstretched film was sequentially biaxially stretched by a biaxial stretching apparatus (manufactured by Toyo Seiki Seisakusho Co., Ltd., TYPE X6-S, the same in the following examples and comparative examples), and the thickness was about 60 ⁇ m. A stretched film (1AB-1F) was obtained.
  • a biaxial stretching apparatus manufactured by Toyo Seiki Seisakusho Co., Ltd., TYPE X6-S, the same in the following examples and comparative examples
  • the first-stage stretching in the sequential biaxial stretching is performed in the longitudinal direction of the unstretched film (melt-extrusion direction) under a stretching temperature of 142 ° C., a stretching ratio of 2.0 times, a stretching speed of 1000% / min
  • the second-stage stretching was performed in the short direction (width direction) of the unstretched film under stretching conditions of a stretching temperature of 142 ° C., a stretching ratio of 1.5 times, and a stretching speed of 1000% / min.
  • the property evaluation results of the produced stretched film (1AB-1F) are as follows: Total light transmittance: 92.1% Haze: 0.7% Rz: 2.22 ⁇ m Number of MIT: 100 times or more Sliding property: 240 g In-plane retardation Re at two points 1 cm apart from each other on the film surface: 1.2 nm and 1.5 nm.
  • Example 2 A stretched film (1AB-2F) was obtained in the same manner as in Example 1 except that the resin pellet (1AB-2) produced in Production Example 3 was used instead of the resin pellet (1AB-1).
  • the property evaluation results of the produced stretched film (1AB-1F) are as follows: Total light transmittance: 92.5% Haze: 0.5% Rz: 1.23 ⁇ m Number of MIT: 100 times or more Sliding property: 280 g In-plane retardation Re at two points 1 cm apart from each other on the film surface: 0.2 nm and 0.4 nm.
  • the characteristic evaluation results of the produced stretched film (1A-F) are as follows: Total light transmittance: 92.4% Haze: 0.4% Rz: 0.17 ⁇ m Number of MIT: 100 times or more Sliding property: 1000 g or more (measurement is impossible because the upper limit of the scale of the spring is 1000 g) In-plane retardation Re at two points 1 cm apart from each other on the film surface: 0.5 nm and 0.4 nm.
  • the stretched film (1A-F) was excellent in transparency but was inferior in slipperiness.
  • the characteristic evaluation results of the produced stretched film (1AC-1F) are as follows: Total light transmittance: 92.6% Haze: 1.3% Rz: 8.50 ⁇ m Number of MIT: 100 times or more Sliding property: 230 g In-plane retardation Re of two points 1 cm apart from each other on the film surface: 3.3 nm, 3.8 nm.
  • the stretched film (1AC-1F) was excellent in slipperiness, it had high haze and was unsuitable as an optical film.
  • Example 3 A stretched film (1AD-1F) was obtained in the same manner as in Example 1 except that the resin pellet (1AD-1) produced in Production Example 5 was used instead of the resin pellet (1AB-1).
  • the characteristic evaluation results of the produced stretched film (1AD-1F) are as follows: Total light transmittance: 92.4% Haze: 1.0% Rz: 1.49 ⁇ m Number of MIT: 100 times or more Sliding property: 240 g In-plane retardation Re at two points 1 cm apart from each other on the film surface: 3.2 nm, 4.4 nm.
  • the stretched film (1AD-1F) has a slightly high haze, it is acceptable as an optical film. On the other hand, the slipperiness was excellent.
  • Example 4 The resin pellet (1AE-1) produced in Production Example 7 was melt-extruded into a sheet through a T die at a temperature of 270 ° C., and further touch-roll molded to form a strip-shaped unstretched film (thickness: 180 ⁇ m). Formed continuously. Next, the continuously formed unstretched film was continuously longitudinally stretched and laterally stretched, and then knurled to form a biaxially stretched film (1AE-1F). Longitudinal stretching (stretching in the melt-extrusion direction) was performed using the peripheral speed difference between the two sets of nip rolls.
  • the transverse stretching (stretching in the width direction) was performed by a tenter method, and the stretching conditions were a stretching temperature of 140 ° C. and a stretching ratio of 1.9 times for longitudinal stretching, and a stretching temperature of 140 ° C. and a stretching ratio of 2.2 times for lateral stretching. Note that the distance between the left and right two rows of clips when the stretched film was released from the clips was 920 mm.
  • the film coming out of the tenter was trimmed to a width of 500 mm, and a roll was formed using a winder. Next, while rolling the obtained roll, the film was continuously knurled to obtain a roll of a film with knurling.
  • the knurling part had a width of 10 mm, a concavo-convex height of 5 to 10 mm, a concavo-convex number of protrusions of 3 to 5 / cm 2 , and a center line of the knurling part of 20 mm from the end of the film.
  • the characteristic evaluation results of the produced stretched film (1AE-1F) are as follows: Total light transmittance: 92.4% Haze: 0.8% Rz: 2.20 ⁇ m Number of MIT: 100 times or more Sliding property: 250 g In-plane retardation Re at two points 1 cm apart from each other on the film surface: 1.3 nm and 1.5 nm.
  • stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Co., Ltd.) was added to the resulting polymerization solution as a catalyst for the cyclization condensation reaction (cyclization catalyst).
  • the cyclization condensation reaction was allowed to proceed for 5 hours under reflux at ⁇ 110 ° C.
  • a vent type screw twin screw extruder having a barrel temperature of 250 ° C., a rotation speed of 150 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of
  • the main chain has a lactone ring structure by melt extrusion at a cylinder set temperature of 270 ° C.
  • Resin pellets (2A) comprising a resin composition containing an acrylic resin as a main component and further containing acrylonitrile-styrene resin were obtained.
  • the resin composition constituting the resin pellet (2A) had a weight average molecular weight of 132,000, a lactone ring content of 28.5% by weight, a Tg of 125 ° C., and a refractive index of 1.506.
  • Production Example 14 Contains 2.04 parts by weight of the master batch (2AB) produced in Production Example 12 and 100 parts by weight of the resin pellet (2A) produced in Production Example 11, and melt-kneads at 260 ° C. to contain silica particles. Resin pellets (2AB-3) were prepared so that the rate was 0.01% by weight.
  • t-amylperoxyisononanoate manufactured by Atofina Yoshitomi, Luperox 570
  • 0.10 parts by weight of the above polymerization was performed. While the initiator was added dropwise over 3 hours, solution polymerization was allowed to proceed under reflux at about 105 to 110 ° C., and aging was further performed for 4 hours.
  • a separately prepared mixed solution of antioxidant / cyclization catalyst deactivator was charged at a rate of 0.68 kg / hour from the back of the first vent, and ion-exchanged water was charged at 0.22 kg / hour. The speed was added from behind the second and third vents, respectively.
  • 50 parts by weight of antioxidant manufactured by Ciba Specialty Chemicals, Irganox 1010
  • 35 parts by weight of zinc octylate Nippon Chemical Co., Ltd.
  • pellets of styrene-acrylonitrile resin (styrene / acrylonitrile content ratio is 73% by weight / 27% by weight, weight average molecular weight 220,000) were charged from the side feeder at a charging rate of 24.2 kg / hour.
  • the resin in the molten state remaining in the extruder is discharged from the tip of the extruder through a polymer filter, pelletized by a pelletizer, and an acrylic resin having a lactone ring structure in the main chain is mainly used.
  • resin pellets (2F) made of a resin composition further containing acrylonitrile-styrene resin (the content of the resin was 35% by weight) were obtained.
  • the resin composition constituting the resin pellet (2F) had a Tg of 120 ° C. and a weight average molecular weight of 163,000.
  • this resin composition when this resin composition is used as a stretched film, the film exhibits negative retardation characteristics.
  • silica particles reffractive index 1.43, average particle size 0.3 ⁇ m, manufactured by Nippon Shokubai Co., Ltd., Seahoster KE-P30
  • resin pellets (2F) 100 parts by weight are mixed with a screw biaxial.
  • melt kneading was performed at 260 ° C. to obtain a master batch (2AI) of resin pellets containing silica particles.
  • Production Example 26 In Production Example 11, an emulsion containing particles having a refractive index of 1.49 and an average particle size of 0.02 ⁇ m (Epester, manufactured by Nippon Shokubai Co., Ltd.) is used when further cyclization condensation reaction proceeds and devolatilizes with a twin-screw extruder. MX020W) was added to the extruder at an addition rate of 0.075 kg / hr in terms of particles, and was made of an acrylic resin having a lactone ring structure in the main chain as the main component and acrylonitrile-styrene in the same manner as in Production Example 11. A resin pellet (2AK) further containing a resin and the above particles was obtained.
  • Epester manufactured by Nippon Shokubai Co., Ltd.
  • Production Example 27 In Production Example 11, an emulsion containing particles having a refractive index of 1.49 and an average particle size of 0.15 ⁇ m (Epester, manufactured by Nippon Shokubai Co., Ltd.) was used for further cyclization condensation reaction and devolatilization with a twin-screw extruder. MX100W) was added into the extruder at a rate of addition of 0.075 kg / hr in terms of particles, and the main component was an acrylic resin having a lactone ring structure in the main chain, as in Production Example 11, and acrylonitrile-styrene. A resin pellet (2AL) further containing a resin and the above particles was obtained.
  • Epester manufactured by Nippon Shokubai Co., Ltd.
  • Example 11 The resin pellet (2AB-1) produced in Production Example 12 was passed through the polymer filter in a molten state using a melt extruder equipped with a leaf disk type polymer filter having a filtration accuracy of 5 ⁇ m and a filtration area of 0.74 m 2 . Later (passage 25 kg / hour), melt extrusion was performed at 270 ° C. while maintaining the molten state to obtain an unstretched film having a thickness of 150 ⁇ m.
  • the obtained unstretched film was sequentially biaxially stretched by a biaxial stretching apparatus (manufactured by Toyo Seiki Seisakusho Co., Ltd., TYPE X6-S, the same in the following examples and comparative examples), and the thickness was about 60 ⁇ m.
  • a stretched film (2AB-1F) was obtained.
  • the first-stage stretching in the sequential biaxial stretching is performed in the longitudinal direction of the unstretched film (melt-extrusion direction) under a stretching temperature of 142 ° C., a stretching ratio of 2.0 times, a stretching speed of 1000% / min
  • the second-stage stretching was performed in the short direction (width direction) of the unstretched film under stretching conditions of a stretching temperature of 142 ° C., a stretching ratio of 1.5 times, and a stretching speed of 1000% / min.
  • the characteristic evaluation results of the produced stretched film (2AB-1F) are as follows: Total light transmittance: 92.4% Haze: 1.0% Rz: 1.49 ⁇ m Sliding property: 240g In-plane retardation Re at two points 1 cm apart from each other on the film surface: 3.2 nm, 4.4 nm.
  • Example 12 A stretched film (2AB-3F) was obtained in the same manner as in Example 11 except that the resin pellet (2AB-3) produced in Production Example 14 was used instead of the resin pellet (2AB-1).
  • the property evaluation results of the produced stretched film (2A-F) are as follows: Total light transmittance: 92.4% Haze: 0.5% Rz: 0.17 ⁇ m Sliding property: 1000 g or more (cannot be measured because the upper limit of the scale of the spring was 1000 g) In-plane retardation Re at two points 1 cm apart from each other on the film surface: 0.5 nm and 0.4 nm.
  • the stretched film (2A-F) was excellent in transparency but was inferior in slipperiness.
  • the property evaluation results of the produced stretched film (2AB-4F) are as follows: Total light transmittance: 92.5% Haze: 0.5% Rz: 0.18 ⁇ m Sliding property: 1000 g or more (not measurable).
  • Example 13 A stretched film (2AC-1F) was obtained in the same manner as in Example 11 except that the resin pellet (2AC-1) produced in Production Example 17 was used instead of the resin pellet (2AB-1).
  • Example 14 A stretched film (2AC-2F) was obtained in the same manner as in Example 11 except that the resin pellet (2AC-2) produced in Production Example 18 was used instead of the resin pellet (2AB-1).
  • Example 15 A stretched film (2AD-1F) was obtained in the same manner as in Example 11 except that the resin pellet (2AD-1) produced in Production Example 19 was used instead of the resin pellet (2AB-1).
  • Example 16 A stretched film (2AE-1F) was obtained in the same manner as in Example 11 except that the resin pellet (2AE-1) produced in Production Example 20 was used instead of the resin pellet (2AB-1).
  • the property evaluation results of the produced stretched film (2AB-1F2) are as follows: Total light transmittance: 92.4% Haze: 2% Rz: 1.2 ⁇ m Sliding property: 350 g.
  • the stretched film (2AB-1F2) had high haze and was unsuitable as an optical film.
  • the property evaluation results of the produced stretched film (2AF-1F) are as follows: Total light transmittance: 92.5% Haze: 0.5% Rz: 0.20 ⁇ m Sliding property: 1000 g or more (not measurable).
  • Example 17 A stretched film (2AG-1F) was obtained in the same manner as in Example 11 except that the resin pellet (2AG-1) produced in Production Example 22 was used instead of the resin pellet (2AB-1).
  • Example 18 A stretched film (2AH-1F) was obtained in the same manner as in Example 11 except that the resin pellet (2AH-1) produced in Production Example 23 was used instead of the resin pellet (2AB-1).
  • Example 19 A stretched film (2AI-1F) was obtained in the same manner as in Example 11 except that the resin pellet (2AI-1) produced in Production Example 24 was used instead of the resin pellet (2AB-1).
  • Example 20 A stretched film (2AJ-1F) was obtained in the same manner as in Example 11 except that the resin pellet (2AJ-1) produced in Production Example 25 was used instead of the resin pellet (2AB-1).
  • the characteristic evaluation results of the produced stretched film (2AJ-1F) are as follows: Total light transmittance: 92.3% Haze: 0.6% Rz: 1.25 ⁇ m Sliding property: 220 g.
  • Example 21 The resin pellet (2AB-1) produced in Production Example 12 was passed through the polymer filter in a molten state using a melt extruder equipped with a leaf disk type polymer filter having a filtration accuracy of 5 ⁇ m and a filtration area of 0.74 m 2 . Later (passage 25 kg / hour), melt-extruded into a sheet form through a T-die at a temperature of 270 ° C. while maintaining the molten state, and further subjected to touch roll molding to form a strip-shaped unstretched film (thickness 180 ⁇ m) Formed continuously.
  • the continuously formed unstretched film was continuously stretched in the longitudinal and transverse directions, and then knurled to form a biaxially stretched film (2AB-1F3).
  • Longitudinal stretching (stretching in the melt-extrusion direction) was performed using the peripheral speed difference between the two sets of nip rolls.
  • the transverse stretching (stretching in the width direction) was performed by a tenter method, and the stretching conditions were a stretching temperature of 140 ° C. and a stretching ratio of 1.9 times for longitudinal stretching, and a stretching temperature of 140 ° C. and a stretching ratio of 2.2 times for lateral stretching.
  • the distance between two right and left rows of clips when the stretched film was released from the clips was 920 mm.
  • the knurling part had a width of 10 mm, a concavo-convex height of 5 to 10 mm, a concavo-convex number of protrusions of 3 to 5 / cm 2 , and a center line of the knurling part of 20 mm from the end of the film.
  • the characteristic evaluation results of the produced stretched film (2A-F1) are as follows: Total light transmittance: 92.5% Haze: 0.5% Rz: 0.17 ⁇ m Sliding property: 1000 g or more (not measurable).
  • the property evaluation results of the produced stretched film (2AK-1F) are as follows: Total light transmittance: 92.5% Haze: 0.5% Rz: 0.2 ⁇ m Sliding property: 1000 g or more (not measurable).
  • Example 22 A stretched film (2AL-1F) was obtained in the same manner as in Example 11 except that the resin pellet (2AL-1) produced in Production Example 27 was used instead of the resin pellet (2AB-1).
  • the characteristic evaluation results of the produced stretched film (2AL-1F) are as follows: Total light transmittance: 92.4% Haze: 0.6% Rz: 0.8 ⁇ m Sliding property: 500 g.
  • the characteristic evaluation results of the produced stretched film (2 AM-1F) are as follows: Total light transmittance: 92.5% Haze: 0.5% Rz: 0.4 ⁇ m Sliding property: 1000 g or more (not measurable).
  • the optical film of the present invention is an optical film that has both sufficient transparency and anti-blocking properties as an optical film, and is used as a retardation film, a polarizer protective film, etc. in an image display device using polarized light such as an LCD. It can be used suitably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 光学フィルムとして十分な透明性と、アンチブロッキング性とを両立させた、主鎖に環構造を有するアクリル樹脂を主成分とする光学フィルムとその製造方法を提供する。主成分として、主鎖に環構造を有する非晶性のアクリル樹脂(A)と、粒子(B)とを含み、溶融押出によって形成され、下記の条件(i)~(iii)を満たす光学フィルムとする:(i)JIS K7361に準拠して測定した全光線透過率が90%以上、ヘイズが1%以下;(ii)JIS B0601に準拠して測定した、表面の十点平均粗さRzが1.0μm以上;(iii)JIS P8115に準拠して測定した耐折り曲げ回数(MIT回数)が100回以上。

Description

光学フィルムとその製造方法
 本発明は、光学フィルムとその製造方法とに関する。
 液晶表示装置(LCD)など、偏光を利用した画像表示装置において、位相差フィルム、偏光子保護フィルムに代表される光学フィルムが使用されている。光学フィルムには、高い透明性、光学的な均質性が要求され、偏光子保護フィルムおよびLCD用フィルム基板では、さらに複屈折性が低いことが求められる。従来、セルロースアセテート(TAC)フィルムが、その高い光線透過率および偏光子との良好な接着性に基づいて、偏光子保護フィルムとして広く使用されている。しかし、TACフィルムの光弾性係数は必ずしも小さくなく、フィルムに加わる外部からの応力によって複屈折性を示しやすい。
 TACとは別に、ポリメタクリル酸メチル(PMMA)に代表されるアクリル樹脂が光学フィルムに使用されている。アクリル樹脂は、高い光線透過率を有するとともに光弾性係数が低く、光学フィルムとして好適である。また、アクリル樹脂の主鎖に環構造を導入することにより、当該樹脂を用いた光学フィルムの耐熱性向上を図ることができる(特開2006-96960号公報参照)。
 ところで、アクリル樹脂フィルムは表面の平滑性が高いため、重ね合わせによってフィルム同士が密着しやすく、一度密着すると引き剥がしが困難となる。この密着した状態を、一般にブロッキングと呼ぶ。ブロッキングの発生は、フィルムの製造性およびハンドリング性を著しく低下させ、特に、ロールとしての生産が一般的である光学フィルムの大量生産時に影響が大きい。ブロッキングの抑制(アンチブロッキング性の賦与)のために、シリカ粒子などの粒子を樹脂に混入してフィルム表面の平滑度を下げる方法が知られている。しかし、粒子の混入によるアンチブロッキング性の賦与では、混入した粒子によってフィルムの透明性低下が生じやすく、光学フィルムとして十分な透明性と、アンチブロッキング性とを両立させたアクリル樹脂フィルムを得ることは難しい。
特開2006-96960号公報
 本発明は、光学フィルムとして十分な透明性と、アンチブロッキング性とを両立させた、主鎖に環構造を有するアクリル樹脂を主成分とする光学フィルムとその製造方法の提供を目的とする。
 本発明の光学フィルム(第1の光学フィルム)は、主成分として、主鎖に環構造を有する非晶性のアクリル樹脂(A)と、粒子(B)と、を含み、溶融押出によって形成され、下記の条件(i)~(iii)を満たす:(i)JIS K7361に準拠して測定した全光線透過率が90%以上、ヘイズが1%以下;(ii)JIS B0601に準拠して測定した、表面の十点平均粗さRzが1.0μm以上;(iii)JIS P8115に準拠して測定した耐折り曲げ回数(MIT回数)が100回以上。
 別の側面から見た本発明の光学フィルム(第2の光学フィルム)は、主成分として、主鎖に環構造を有する非晶性のアクリル樹脂(A)と、平均粒径が0.1~1μmの粒子(B)と、を含み、溶融状態でポリマーフィルタを通過した後の溶融押出成形によって形成され、JIS K7361に準拠して測定した全光線透過率が90%以上であるとともにヘイズが1%以下であり、JIS B0601に準拠して測定した、表面の十点平均粗さRzが0.7μm以上である。
 本発明の光学フィルムの製造方法は、主成分として、主鎖に環構造を有する非晶性のアクリル樹脂(A)と、平均粒径が0.1~1μmの粒子(B)と、を含む樹脂組成物を、溶融状態でポリマーフィルタを通過させた後に、フィルムに溶融押出成形することで、JIS K7361に準拠して測定した全光線透過率が90%以上であるとともにヘイズが1%以下であり、JIS B0601に準拠して測定した、表面の十点平均粗さRzが0.7μm以上である光学フィルムを得る、方法である。
 本発明によれば、光学フィルムとして十分な透明性と、アンチブロッキング性とを両立させた、主鎖に環構造を有するアクリル樹脂を主成分とする光学フィルムが得られる。
 ところで、光学フィルムの大量生産法として、樹脂あるいは樹脂組成物を溶融押出成形によりフィルムとする方法が一般的であるが、その際、得られたフィルムに光学的な欠点が生じないように、樹脂(組成物)をポリマーフィルタに通し、当該樹脂(組成物)に含まれるゲルなどの異物を除去する工程が必須である。そして、主鎖に環構造を有するアクリル樹脂は、そのガラス転移温度(Tg)が高く、溶融押出成形の温度が高いためにゲルが生じやすく、ポリマーフィルタを通す効果が特に高い。しかし、ポリマーフィルタによって濾過される異物の径の閾値は、当該フィルタの構造上、一定ではない。例えば、濾過精度5μmのポリマーフィルタは、粒径5μm以上の異物を除去するように設計されているが、粒径5μm未満の粒子を常に通過させるわけではなく、ポリマーフィルタ内における粒子の経路によっては、より小さい粒径の粒子も除去される。そして、ポリマーフィルタ内における粒子の経路が一定でない以上、除去される粒子の粒径は常に変動する。また、混入した粒子は、常に一次粒子として樹脂(組成物)中に存在するとは限らず、その一部が凝集し、凝集体となっていることも多い。このため、粒子を単に樹脂に混入するだけでは、ポリマーフィルタを介した溶融押出成形により、十分な透明性を確保しながら、良好なアンチブロッキング性を有する光学フィルムを得ることが困難である。
 上記別の側面から見た本発明の光学フィルム(第2の光学フィルム)は、平均粒径が0.1~1μmの粒子(B)を含む。これにより、主鎖に環構造を有するアクリル樹脂を主成分とし、ポリマーフィルタを介した溶融押出成形によって得られた光学フィルムであって、光学フィルムとして十分な透明性と、アンチブロッキング性とを両立させた光学フィルムが得られる。
 本発明の製造方法によれば、平均粒径が0.1~1μmの粒子(B)を用いることによって、主鎖に環構造を有するアクリル樹脂を主成分とし、ポリマーフィルタを介した溶融押出成形により得られた光学フィルムであって、光学フィルムとして十分な透明性と、アンチブロッキング性とを両立させた光学フィルムが得られる。また、本発明の製造方法は、ポリマーフィルタを介した溶融押出成形によって光学フィルムを得る方法であり、得られたフィルムが良好なアンチブロッキング性を有することから、当該フィルムの大量生産にも好ましく適用できる。
 [アクリル樹脂(A)]
 アクリル樹脂(A)は、(メタ)アクリル酸エステル単位および/または(メタ)アクリル酸単位を構成単位として有する樹脂であり、(メタ)アクリル酸エステルまたは(メタ)アクリル酸の誘導体に由来する構成単位を有していてもよい。アクリル樹脂の全構成単位における、(メタ)アクリル酸エステル単位、(メタ)アクリル酸単位および上記誘導体に由来する構成単位の割合の合計は、通常50モル%以上であり、好ましくは60モル%以上、より好ましくは70モル%以上である。
 (メタ)アクリル酸エステル単位は、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシエチル)アクリル酸メチルなどの単量体の重合により形成される構成単位である。
 アクリル樹脂(A)は、(メタ)アクリル酸エステル単位として、これらの構成単位を2種以上有していてもよい。アクリル樹脂(A)は、(メタ)アクリル酸メチル単位を有することが好ましく、この場合、アクリル樹脂(A)ならびにアクリル樹脂(A)を主成分として含む本発明の光学フィルムの熱安定性が向上する。
 本明細書における「主成分」は、光学フィルムにおける含有率が最大の成分であり、その含有率は通常50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上である。
 アクリル樹脂(A)は主鎖に環構造を有する。これにより、アクリル樹脂(A)のガラス転移温度(Tg)は高く、例えば、110℃以上である。環構造の種類ならびにアクリル樹脂(A)における環構造の含有率によっては、アクリル樹脂(A)のTgは、115℃以上、120℃以上、125℃以上、さらには130℃以上となる。アクリル樹脂(A)が主鎖に環構造を有することによって、アクリル樹脂(A)を主成分として含む本発明の光学フィルムの耐熱性が向上し、例えば、画像表示装置における光源などの発熱部近傍への配置が容易となる。
 アクリル樹脂(A)が主鎖に有する環構造の種類は特に限定されないが、例えば、ラクトン環構造、無水グルタル酸構造、グルタルイミド構造、N-置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種である。
 環構造は、ラクトン環構造、グルタルイミド構造および無水グルタル酸構造から選ばれる少なくとも1種が好ましい。この場合、アクリル樹脂(A)のTgがより高くなり、耐熱性にさらに優れる光学フィルムが得られる。これに加えて、環構造がラクトン環構造である場合、当該構造内に窒素原子を含まないために着色(黄変)が生じにくく、透明性が高く、臭気がなく、位相差発現性および位相差安定性に優れる光学フィルムとなる。また、ラクトン環構造は、光学フィルムに正の複屈折性(例えば正の位相差)を発現させやすい。環構造がグルタルイミド構造である場合、位相差発現性および位相差安定性に優れる光学フィルムとなる。環構造が無水グルタル酸構造である場合、着色が生じにくく、臭気がない光学フィルムとなる。
 環構造がグルタルイミド構造および無水グルタル酸構造である場合、他の環構造に比べて、溶融押出成形の際にゲルが発生しやすい。このため、本発明の効果(第2の光学フィルムおよび本発明の光学フィルムの製造方法の効果)がより顕著となる。
 以下の式(1)に、グルタルイミド構造および無水グルタル酸構造を示す。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)におけるR1およびR2は、互いに独立して、水素原子またはメチル基であり、X1は、酸素原子または窒素原子である。X1が酸素原子のときR3は存在せず、X1が窒素原子のとき、R3は、水素原子、炭素数1~6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基またはフェニル基である。
 X1が窒素原子のとき、式(1)により示される環構造はグルタルイミド構造となる。グルタルイミド構造は、例えば、(メタ)アクリル酸エステル重合体をメチルアミンなどのイミド化剤によりイミド化して形成できる。
 X1が酸素原子のとき、式(1)により示される環構造は無水グルタル酸構造となる。無水グルタル酸構造は、例えば、(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体を、分子内で脱アルコール環化縮合させて形成できる。
 以下の式(2)に、N-置換マレイミド構造および無水マレイン酸構造を示す。
Figure JPOXMLDOC01-appb-C000002
 上記式(2)におけるR4およびR5は、互いに独立して、水素原子またはメチル基であり、X2は、酸素原子または窒素原子である。X2が酸素原子のときR6は存在せず、X2が窒素原子のとき、R6は、水素原子、炭素数1~6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基またはフェニル基である。
 X2が窒素原子のとき、式(2)により示される環構造はN-置換マレイミド構造となる。N-置換マレイミド構造を主鎖に有するアクリル樹脂は、例えば、N-置換マレイミドと(メタ)アクリル酸エステルとを共重合して形成できる。N-置換マレイミド構造は、例えば、フェニルマレイミド構造、シクロヘキシルマレイミド構造、メチルマレイミド構造である。
 X2が酸素原子のとき、式(2)により示される環構造は無水マレイン酸構造となる。無水マレイン酸構造を主鎖に有するアクリル樹脂は、例えば、無水マレイン酸と(メタ)アクリル酸エステルとを共重合して形成できる。
 なお、式(1)、(2)の説明において例示した、環構造を形成する各方法では、各々の環構造の形成に用いる重合体が全て(メタ)アクリル酸エステル単位を構成単位として有するため、当該方法により得た樹脂はアクリル樹脂となる。
 アクリル樹脂(A)が主鎖に有していてもよいラクトン環構造は特に限定されず、例えば4~8員環であってもよいが、環構造としての安定性に優れることから5員環または6員環であることが好ましく、6員環であることがより好ましい。6員環であるラクトン環構造は、例えば、特開2004-168882号公報に開示されている構造であるが、前駆体(前駆体を環化縮合反応させることで、ラクトン環構造を主鎖に有するアクリル樹脂(A)が得られる)の重合収率が高いこと、前駆体の環化縮合反応により、高いラクトン環含有率を有するアクリル樹脂(A)が得られること、メタクリル酸メチル単位を構成単位として有する重合体を前駆体にできること、などの理由から、以下の式(3)により示される構造が好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記式(3)において、R7、R8およびR9は、互いに独立して、水素原子または炭素数1~20の範囲の有機残基である。当該有機残基は酸素原子を含んでいてもよい。
 式(3)における有機残基は、例えば、メチル基、エチル基、プロピル基などの炭素数が1~20の範囲のアルキル基;エテニル基、プロペニル基などの炭素数が1~20の範囲の不飽和脂肪族炭化水素基;フェニル基、ナフチル基などの炭素数が1~20の範囲の芳香族炭化水素基;上記アルキル基、上記不飽和脂肪族炭化水素基および上記芳香族炭化水素基において、水素原子の一つ以上が、水酸基、カルボキシル基、エーテル基およびエステル基から選ばれる少なくとも1種の基により置換された基;である。
 アクリル樹脂(A)における上記環構造(ラクトン環構造を除く)の含有率は特に限定されないが、例えば5~90重量%であり、10~70重量%が好ましく、10~60重量%がより好ましく、10~50重量%がさらに好ましい。
 アクリル樹脂(A)が主鎖にラクトン環構造を有する場合、当該樹脂におけるラクトン環構造の含有率は特に限定されないが、例えば5~90重量%であり、10~70重量%が好ましく、10~60重量%がより好ましく、10~50重量%がさらに好ましい。
 アクリル樹脂(A)におけるラクトン環構造の含有率は、ダイナミックTG法により、以下のようにして求めることができる。最初に、ラクトン環構造を有するアクリル樹脂(A)に対してダイナミックTG測定を実施し、150℃から300℃の間の重量減少率を測定して、得られた値を実測重量減少率(X)とする。150℃は、アクリル樹脂(A)に残存する水酸基およびエステル基が環化縮合反応を開始する温度であり、300℃は、アクリル樹脂(A)の熱分解が始まる温度である。これとは別に、前駆体である重合体に含まれる全ての水酸基が脱アルコール反応を起こしてラクトン環が形成されたと仮定して、その反応による重量減少率(即ち、前駆体の脱アルコール環化縮合反応率が100%であったと仮定した重量減少率)を算出し、理論重量減少率(Y)とする。理論重量減少率(Y)は、前駆体における、脱アルコール反応に関与する水酸基を有する構成単位の含有率から求めることができる。なお、前駆体の組成は、アクリル樹脂(A)の組成から導くことが可能である。次に、式[1-(実測重量減少率(X)/理論重量減少率(Y))]×100(%)により、アクリル樹脂(A)の脱アルコール反応率を求める。アクリル樹脂(A)では、求めた脱アルコール反応率の分だけラクトン環構造が形成されていると考えられる。そこで、前駆体における、脱アルコール反応に関与する水酸基を有する構成単位の含有率に、求めた脱アルコール反応率を乗じ、ラクトン環構造の重量に換算することで、アクリル樹脂(A)におけるラクトン環構造の含有率を求めることができる。
 アクリル樹脂(A)は、(メタ)アクリル酸エステル単位および(メタ)アクリル酸単位以外の構成単位を有していてもよく、このような構成単位は、例えば、スチレン、ビニルトルエン、α-メチルスチレンなどの芳香族ビニル単量体;アクリロニトリルなどのニトリル単量体;酢酸ビニルなどのビニルエステル類;2-(ヒドロキシエチル)アクリル酸メチルなどの2-(ヒドロキシアルキル)アクリル酸エステル;2-(ヒドロキシエチル)アクリル酸などの2-(ヒドロキシアルキル)アクリル酸;メチルビニルケトン、エチレン、プロピレン、メタリルアルコール、アリルアルコール、2-ヒドロキシメチル-1-ブテン、α-ヒドロキシメチルスチレン、α-ヒドロキシエチルスチレンなどの単量体の重合により形成される構成単位である。アクリル樹脂(A)は、これらの構成単位を2種以上有していてもよい。
 アクリル樹脂(A)の重量平均分子量は、例えば1,000~2,000,000の範囲であり、5,000~1,000,000の範囲が好ましく、10,000~500,000の範囲がより好ましく、50,000~500,000の範囲がさらに好ましい。
 アクリル樹脂(A)の色相は、イエローインデックス(YI)値にして、10以下が好ましく、5以下がより好ましい。
 アクリル樹脂(A)が主鎖にラクトン環構造を有する場合、当該樹脂(A)は、ダイナミックTG測定における150~300℃の温度域での重量減少率が1%以下であることが好ましく、0.5%以下であることがより好ましく、0.3%以下であることがさらに好ましい。
 アクリル樹脂(A)が主鎖にラクトン環構造を有する場合、熱重量分析(TG)で測定した5%重量減少温度が280℃以上であることが好ましく、290℃以上であることがより好ましく、300℃以上であることがさらに好ましい。5%重量減少温度は、樹脂の熱安定性に対する指標であり、この値が280℃未満の場合、樹脂が十分な熱安定性を有さないことがある。
 主鎖に環構造を有するアクリル樹脂(A)は、公知の方法により製造できる。環構造がラクトン環構造であるアクリル樹脂(A)は、例えば、特開2006-96960号公報(WO2006/025445号公報)、特開2006-171464号公報あるいは特開2007-63541号公報に記載の方法により製造できる。環構造がN-置換マレイミド構造、無水グルタル酸構造あるいはグルタルイミド構造であるアクリル樹脂(A)は、例えば、特開2007-31537号公報、WO2007/26659号公報あるいはWO2005/108438号公報に記載の方法により製造できる。環構造が無水マレイン酸構造であるアクリル樹脂(A)は、例えば、特開昭57-153008号公報に記載の方法により製造できる。
 一例として、主鎖にラクトン環構造を有するアクリル樹脂(A)の形成方法を説明する。
 ラクトン環構造を主鎖に有するアクリル樹脂(A)は、例えば、水酸基とエステル基とを分子鎖内に有する重合体(前駆体)(a)を任意の触媒存在下で加熱し、脱アルコールを伴うラクトン環化縮合反応を進行させて形成できる。
 重合体(a)は、例えば、以下の式(4)に示される単量体を含む単量体群の重合により形成できる。
Figure JPOXMLDOC01-appb-C000004
 上記式(4)において、R10およびR11は、互いに独立して、水素原子または式(3)における有機残基と同様の基である。
 式(4)により示される単量体は、例えば、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸ノルマルブチル、2-(ヒドロキシメチル)アクリル酸t-ブチルなどである。なかでも、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチルが好ましく、高い透明性および耐熱性を有する熱可塑性樹脂体が得られることから、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)が特に好ましい。
 重合体(a)の形成に用いる単量体群は、上記式(4)により示される単量体を2種以上含んでいてもよい。
 重合体(a)の形成に用いる単量体群は、上記式(4)により示される単量体以外の単量体を含んでいてもよい。この単量体は、式(4)により示される単量体と共重合できる限り特に限定されず、例えば、(メタ)アクリル酸エステルである。
 ここで(メタ)アクリル酸エステルは、式(4)に示される単量体以外の単量体であって、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル;などである。なかでも、高い透明性および耐熱性を有する熱可塑性樹脂体が実現できることから、メタクリル酸メチル(MMA)が特に好ましい。
 重合体(a)の形成に用いる単量体群は、これら(メタ)アクリル酸エステルを2種以上含んでいてもよい。
 重合体(a)の形成に用いる単量体群は、その他、スチレン、ビニルトルエン、α-メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニルなどの単量体を、1種または2種以上含んでいてもよい。
 [粒子(B)]
 粒子(B)は、光学フィルムに含まれることで、当該フィルムにアンチブロッキング性を賦与する作用を有する。
 粒子(B)の種類は特に限定されず、例えば、無機粒子、有機粒子、有機-無機複合粒子である。有機粒子は、例えば、ビニル架橋重合体などの有機架橋重合体からなる粒子であり、粒子(B)が有機架橋重合体粒子または有機-無機複合粒子である場合、当該粒子の屈折率および平均径の制御が容易である。一方、粒子(B)が無機粒子である場合、当該粒子を含む本発明の光学フィルムの耐熱性が高くなるとともに、粒子(B)の硬度が高いことによって、本発明の光学フィルムのアンチブロッキング性が向上する。
 無機粒子は、例えば、ガラス粒子、シリカ粒子、アルミナ粒子である。
 有機架橋重合体粒子は、例えば、メチルメタクリレートなどの単官能モノマーと、トリ(メタ)アクリル酸トリメチロールプロパン、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレングリコールなどの多官能モノマーとを、懸濁重合させて得た(メタ)アクリル架橋粒子(特許4034157号公報参照)である。懸濁重合時に、スチレン、α-メチルスチレン、ジビニルベンゼンなどのスチレン系モノマーをさらに共重合させたスチレン-(メタ)アクリル架橋粒子であってもよい。また、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマーおよびスチレン系モノマーから選ばれる少なくとも1種を、乳化重合、ソープフリー乳化重合、ミニエマルジョン重合、分散重合またはシード重合させて得た(メタ)アクリル架橋粒子あるいはスチレン-(メタ)アクリル架橋粒子であってもよい。
 有機-無機複合粒子は、有機質部分と無機質部分とからなる。有機-無機複合粒子における無機質部分の含有率は、無機酸化物換算で、例えば、0.5~90重量%であり、1~70重量%が好ましく、2~60重量%がより好ましい。ここで、無機酸化物換算の含有率とは、具体的には、有機-無機複合粒子の重量に対する、当該粒子を空気中などの酸化雰囲気中において高温(例えば1000℃以上)で焼成したときに残留する無機酸化物の重量の比で表される数値である。
 具体的な有機-無機複合粒子は特に限定されない。好ましい例は、特開平8-81561号公報に記載されている、有機ポリマー骨格と、当該骨格中の少なくとも1個の炭素原子にケイ素原子が直接化学結合した有機ケイ素を有するポリシロキサン骨格とを有し、ポリシロキサン骨格を構成するSiO2の含有率が25重量%以上である粒子、ならびに特開2003-183337号公報に記載されている、(メタ)アクリロキシ基を有するポリシロキサン粒子の構造中にビニル系重合体が含まれてなる粒子である。
 粒子(B)の平均粒径は、第1の光学フィルムに対しては、0.01~30μmが好ましく、0.05~10μmがより好ましく、0.1~5μmがさらに好ましく、0.1~0.3μmが最も好ましい。粒子(B)の平均粒径が0.05μm未満になると、アンチブロッキング性を有する光学フィルムを得ることが困難となる。粒子(B)の平均粒径が30μmを超えると、光学フィルムとして十分な透明性を有する光学フィルムを得ることが困難となる。
 第2の光学フィルムにおける粒子(B)の平均粒径は、0.1~1μmである。このように非常に狭い範囲内に平均粒径値を有する粒子(B)を含むことにより、主鎖に環構造を有するアクリル樹脂を主成分とし、ポリマーフィルタを介した溶融押出成形により得られた光学フィルムであって、光学フィルムとして十分な透明性と、アンチブロッキング性とを両立させた光学フィルムが得られる。第2の光学フィルムにおける粒子(B)の平均粒径は、0.1~0.3μmが好ましい。
 粒子(B)の粒径の変動係数(CV値)は、第1の光学フィルムに対しては、50%以下が好ましく、45%以下がより好ましい。粒子(B)の粒径の変動係数が50%を超えると、アンチブロッキング性を有する光学フィルムが得られなかったり、十分な透明性を有する光学フィルムが得られなかったりする。
 第2の光学フィルムにおける、粒子(B)の粒径の変動係数(CV値)は、18%以下が好ましい。
 粒子(B)の平均粒径および粒径の変動係数は、レーザー回折/散乱式粒子径分布測定装置(例えば、堀場製作所社製、LA-920)あるいは精密粒度分布測定装置(例えば、ベックマンコールター社製、コールターマルチサイザーIII)を用いて求めることができる。測定精度の観点から、測定対象となる粒子(B)のおおよその粒径に応じて測定装置を選択することが好ましく、例えば、粒子(B)の粒径がおよそ2μmより小さい場合はレーザー回折/散乱式粒子径分布測定装置を、およそ2μmより大きい場合は精密粒度分布測定装置を使用することが好ましい。
 フィルムに含まれている粒子(B)の平均粒径および粒径の変動係数は、例えば、以下のように求めることができる。最初に、フィルムのレーザー顕微鏡(例えば、キーエンス社製、VK-9700)像を観察する。観察する範囲は94μm×70μmとし、撮影倍率は150倍程度が好ましい。次に、観察像に写っている粒子の径(一次粒子径)を、レーザー顕微鏡に付属するスケールゲージにより測定し、その算術平均値を粒子の平均粒径とすればよい。粒径の変動係数は、スケールゲージにより測定した粒子径に対する不偏分散の平方根を標準偏差σとして、式(σ/X)×100(%)より求めることができる。
 粒子(B)の形状は特に限定されず、球状、針状、板状、鱗片状、破砕状、俵状、繭状、金平糖状などの任意の形状をとることができる。粒子(B)の形状は球状であることが好ましく、この場合、得られた光学フィルムにおけるアンチブロッキング性の均一性がより高くなる。
 粒子(B)が有機微粒子または有機-無機複合微粒子である場合、アクリル樹脂(A)の屈折率を基準として、粒子(B)の屈折率が0.98倍以上1.02倍以下であることが好ましく、0.99倍以上1.01倍以下であることがさらに好ましい。
 [光学フィルム]
 第1の光学フィルムは、主鎖に環構造を有するアクリル樹脂(A)を主成分として含むとともに、粒子(B)を含む。第1の光学フィルムは、樹脂として、アクリル樹脂(A)のみを含んでいてもよい。この場合、第1の光学フィルムは、アクリル樹脂(A)からなる基体に、粒子(B)が分散した構造を有する。
 第1の光学フィルムは、本発明の効果が得られる限り、アクリル樹脂(A)以外の樹脂を含んでいてもよい。ただし、第1の光学フィルムが含んでいてもよい、アクリル樹脂以外の樹脂は、光学フィルムとして十分な透明性を得るために、アクリル樹脂(A)に対する相溶性が高く、かつ自身が光学的に透明な樹脂である必要がある。当該樹脂は、例えば、シアン化ビニル単量体と芳香族ビニル単量体との共重合体(一例としてアクリロニトリル-スチレン共重合体)、ポリ塩化ビニル、アクリル樹脂(A)以外のアクリル樹脂である。
 第1の光学フィルムは、紫外線吸収剤、酸化防止剤、滑剤、帯電防止剤、可塑剤、流動化剤、着色剤、染料、難燃剤、フィラーなどの添加剤を含んでいてもよい。
 第1の光学フィルムにおける粒子(B)の含有率は、例えば、0.005~0.5重量%であり、0.008~0.1重量%が好ましい。
 第1の光学フィルムは、JIS K7361に準拠して測定した全光線透過率が90%以上、ヘイズが1%以下である。
 第1の光学フィルムは、JIS B0601に準拠して測定した、表面の十点平均粗さRzが1.0μm以上である。
 第1の光学フィルムは、JIS P8115に準拠して測定した耐折り曲げ回数(MIT回数)が100回以上である。
 第1の光学フィルムは、JIS K7125に準拠して測定した滑り性が400g以下であることが好ましい。
 第1の光学フィルムは延伸フィルムであってもよく、この場合、表面の互いに1cm離れた2点において測定した当該フィルムの面内位相差Reの差が2nm以下であることが好ましい。
 第1の光学フィルムは、アクリル樹脂(A)と粒子(B)とを含み、アクリル樹脂(A)が主成分である樹脂組成物の溶融押出成形によって形成されたフィルムであり、当該樹脂組成物を溶融押出成形して形成される。溶融押出成形の具体的な方法は特に限定されず、公知の方法を適用できる。例えば、T型ダイスを装着した溶融押出機を用いて、あるいはインフレーション法によって、アクリル樹脂(A)および粒子(B)を含み、必要に応じてその他の樹脂および/または添加物を含む樹脂組成物を加熱溶融状態で押出成形して、フィルムとすればよい。
 アクリル樹脂(A)および粒子(B)を含む樹脂組成物は、公知の方法により形成できる。当該樹脂組成物は、例えば、アクリル樹脂(A)中に粒子(B)を添加して形成できるが、粒子を添加するタイミングは特に限定されない。アクリル樹脂(A)の重合中など、アクリル樹脂(A)の製造中に粒子(B)を添加してもよいし、アクリル樹脂(A)を製造した後、アクリル樹脂(A)と粒子(B)と、必要に応じて、さらにその他の成分とを同時に加熱溶融して混練してもよい。また、アクリル樹脂(A)と、必要に応じて、さらにその他の成分とを加熱溶融し、そこに粒子(B)を添加して混練してもよいし、アクリル樹脂(A)を加熱溶融し、そこに粒子(B)と、必要に応じてさらにその他の成分とを添加して混練してもよい。
 第2の光学フィルムは、主鎖に環構造を有するアクリル樹脂(A)を主成分として含むとともに、平均粒径が0.1~1μmである粒子(B)を含む。第2の光学フィルムは、樹脂として、アクリル樹脂(A)のみを含んでいてもよい。この場合、第2の光学フィルムは、アクリル樹脂(A)からなる基体に、粒子(B)が分散した構造を有する。
 第2の光学フィルムは、本発明の効果が得られる限り、アクリル樹脂(A)以外の樹脂を含んでいてもよい。ただし、第2の光学フィルムが含んでいてもよい、アクリル樹脂以外の樹脂は、光学フィルムとして十分な透明性を得るために、アクリル樹脂(A)に対する相溶性が高く、かつ自身が光学的に透明な樹脂である必要がある。当該樹脂は、例えば、シアン化ビニル単量体と芳香族ビニル単量体との共重合体(一例としてアクリロニトリル-スチレン共重合体)、ポリ塩化ビニル、アクリル樹脂(A)以外のアクリル樹脂である。
 第2の光学フィルムにおける粒子(B)の含有率は、例えば、0.005重量%以上1重量%未満が好ましく、0.005~0.5重量%がより好ましく、0.008~0.1重量%がさらに好ましい。
 第2の光学フィルムは、紫外線吸収剤、酸化防止剤、滑剤、帯電防止剤、可塑剤、流動化剤、着色剤、染料、難燃剤、フィラーなどの添加物を含んでいてもよい。
 第2の光学フィルムは、JIS K7361に準拠して測定した全光線透過率が90%以上、ヘイズが1%以下である。
 第2の光学フィルムは、JIS B0601に準拠して測定した、表面の十点平均粗さRzが0.7μm以上であり、Rzは1μm以上が好ましい。
 第2の光学フィルムは、JIS K7125に準拠して測定した滑り性が500g以下であることが好ましく、400g以下であることがより好ましい。
 第2の光学フィルムは延伸フィルムであってもよく、この場合、表面の互いに1cm離れた2点において測定した当該フィルムの面内位相差Reの差が2nm以下であることが好ましい。
 第2の光学フィルムは、アクリル樹脂(A)と平均粒径が0.1~1μmである粒子(B)とを含み、アクリル樹脂(A)が主成分である樹脂組成物の、溶融状態でポリマーフィルタを通過した後の溶融押出成形によって形成されたフィルムである。
 第2の光学フィルムの厚さは、典型的には、10~300μmである。
 本発明のフィルム(第1および第2のフィルム)は、延伸フィルムであってもよい。延伸フィルムは、溶融押出成形により得たフィルムを延伸して形成できる。フィルムの延伸方法は特に限定されず、公知の方法を適用できる。例えば、溶融押出成形により得たフィルム(未延伸フィルム)を、自由端一軸延伸、固定端一軸延伸などの一軸延伸、あるいは逐次二軸延伸、同時二軸延伸などの二軸延伸などの延伸法により延伸すればよい。溶融押出成形により得たフィルムの一方の主面または双方の主面に収縮性フィルムを接着して積層体を形成し、形成した積層体を加熱延伸処理して延伸方向と直交する方向の収縮力をフィルムに与えることで、フィルムの延伸方向と厚さ方向のそれぞれの方向に配向した分子群が混在する延伸フィルムとする延伸方法を採用してもよい。延伸方法は、得られた延伸フィルムの耐折り曲げ特性、特に、フィルム面内における互いに直交する任意の二方向への耐折り曲げ特性が向上することから、二軸延伸が好ましい。
 延伸装置は特に限定されず、例えば、ロール延伸機、オーブン型延伸機、テンター型延伸機、引張試験機、一軸延伸機、逐次二軸延伸機、同時二軸延伸機である。光学フィルムの大量生産時において、帯状のフィルムの流れ方向(溶融押出方向、X方向)と幅方向(フィルム面内において溶融押出方向に直交する方向、Y方向)とに逐次二軸延伸を行う場合、ロール延伸機またはオーブン型延伸機とテンター型延伸機とを組み合わせて延伸することが好ましい。
 本発明の光学フィルム(第1および第2の光学フィルム)は、ナーリング加工されていてもよい。ナーリング加工とは、フィルム表面に微細な凹凸を設ける加工のことであり、ナーリング加工によって、フィルムのアンチブロッキング性がさらに向上する。ナーリング加工は、ローレット加工、エンボス加工とも呼ばれる。
 本発明の光学フィルムにおいて、ナーリング加工された位置、即ち、ナーリング部の位置は特に限定されないが、ナーリング部においてフィルムの光学特性が低下することから、フィルムの端部であることが好ましい。本発明の光学フィルムが帯状である場合、ナーリング部の位置は、典型的には、フィルムの幅方向の両端部である。
 ナーリング部は、フィルムの端部から、フィルムの幅の5%以内の位置にあることが好ましい。
 ナーリング部における凹凸の形状は特に限定されず、主面に垂直な方向からフィルムを見たときの突起の形状にして、例えば、円錐台形、角柱台形、円柱、角柱、円錐、角錐であり、不定形であってもよい。1つのナーリング部に、突起の形状が2種以上混在していてもよい。
 ナーリング部における凹凸の高さ(主面に垂直な方向からフィルムを見て、ナーリング部における最も低い箇所を基準としたときの最も高い箇所の高さ)は、1~20μmが好ましい。当該高さが1μm未満の場合、ナーリング加工によるアンチブロッキング性向上効果が十分に得られないことがある。当該高さが20μmを超えると、帯状である本発明の光学フィルムをロールにしたときに、ロール中央部の直径と、ナーリング部が位置するロール両端部の直径との差が大きくなり、馬の背故障、変形故障などの故障が誘発されやすくなる。
 ナーリング部における凹凸の個数は、主面に垂直な方向からフィルムを見たときの突起の個数にして、フィルム面積1cm2あたり3~100個程度が好ましい。
 ナーリング部の幅は、1つのナーリング部あたり、フィルムの幅の0.3~5%程度が好ましい。
 ナーリング加工の方法は特に限定されず、公知の方法を適用できる。例えば、フィルムの表面を、凹凸形状が刻印された刻印ロール、エンボスロール、エンボスベルトで押圧すればよい。
 ナーリング加工は、常温で行っても、フィルムを加熱した状態で行ってもよい。
 本発明の光学フィルムの表面には、必要に応じて、各種の機能性コーティング層が形成されていてもよい。機能性コーティング層は、例えば、帯電防止層、粘着剤・接着剤層、易接着層、防眩(ノングレア)層、光触媒層などの防汚層、反射防止層、ハードコート層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリヤー層である。
 本発明の光学フィルム(第1および第2の光学フィルム)の用途は特に限定されず、例えば、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどの画像表示装置に用いられる複屈折フィルム、位相差フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、画素部(発光部)保護フィルム、偏光子保護フィルム、紫外線吸収フィルム、フィルム基板などである。本発明の光学フィルムは、偏光子保護フィルム、複屈折フィルム、位相差フィルム、視野角補償フィルム、フィルム基板としての用途が特に好ましい。
 第2の光学フィルムは、例えば、以下に説明する本発明の光学フィルムの製造方法によって製造できる。
 [光学フィルムの製造方法]
 本発明の光学フィルムの製造方法では、アクリル樹脂(A)と平均粒径0.1~1μmの粒子(B)とを含み、主成分がアクリル樹脂(A)である樹脂組成物を、溶融状態でポリマーフィルタを通過させた後に、フィルムに溶融押出成形して、上記説明した第2の光学フィルムを得ている。
 粒子(B)の平均粒径は、0.1~0.3μmが好ましい。
 樹脂組成物における粒子(B)の含有率は、0.005重量%以上1重量%未満が好ましく、0.005~0.5重量%がより好ましく、0.008~0.1重量%がさらに好ましい。
 樹脂組成物の形成方法は、粒子(B)の平均粒径が0.1~1μmであること以外、上述したとおりである。
 溶融状態の樹脂組成物をポリマーフィルタに通す方法、ならびに溶融状態でポリマーフィルタを通過させた樹脂組成物をフィルムに溶融押出成形する方法は公知の方法に従えばよい。樹脂組成物の劣化を防ぐ観点からは、溶融状態の樹脂組成物をポリマーフィルタに通した後、当該樹脂組成物が溶融した状態のまま、フィルムに溶融押出成形することが好ましい。この方法は、例えば、ポリマーフィルタを備える溶融押出機によって実現できる。
 ポリマーフィルタは、特に限定されず、例えば、リーフディスクフィルタ、キャンドルフィルタ、パックディスクフィルタ、円筒型フィルタである。なかでも、有効濾過面積が高いリーフディスクフィルタが好ましい。
 フィルタの濾材は特に限定されない。例えば、ポリプロピレン、コットン、ポリエステル、ビスコースレーヨン、グラスファイバーなどの各種の繊維の不織布もしくはロービングヤーン巻回体、またはフェノール樹脂含浸セルロースからなる濾材、金属繊維の不織布を焼結した濾材、金属粉末を焼結した濾材、複数の金網を積層した濾材、これらの濾材を組み合わせたいわゆるハイブリッド型の濾材など、いずれの濾材も使用可能である。なかでも、耐久性および耐圧性に優れることから、金属繊維の不織布を焼結した濾材が好ましい。
 ポリマーフィルタの濾過精度を5~10μmとすることが、十分な透明性を有する光学フィルムを得るためには好ましく、5~7μmとすることがより好ましい。
 以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されない。
 最初に、本実施例で作製した樹脂組成物および光学フィルムならびに本実施例で使用した粒子の評価方法を示す。
 [ガラス転移温度]
 アクリル樹脂を含む樹脂組成物のガラス転移温度(Tg)は、ASTM-D-3418に準拠して求めた。具体的には、示差走査熱量計(リガク製、DSC-8230)を用い、窒素ガスフロー(50ml/分)下、約10mgの試料を常温から200℃まで昇温(昇温速度10℃/分)して得られたDSC曲線から、中点法により評価した。
 [ラクトン環含有率]
 アクリル樹脂を含む樹脂組成物のラクトン環含有率は、上述した計算方法により評価した。当該方法に用いるパラメータである実測重量減少率(X)は、ダイナミックTG測定により、以下のように求めた。
 作製したアクリル樹脂を含む樹脂組成物のペレットを、テトラヒドロフラン(THF)に溶解させた後、過剰のヘキサンまたはメタノールを用いて樹脂を沈殿させた。次に、沈殿物を真空乾燥(圧力1.33hPa、80℃、3時間以上)して揮発成分を除去し、得られた白色固体状の樹脂に対して、以下の測定条件下でダイナミックTG測定を行い、その実測重量減少率(X)を求めた:
 測定装置:リガク製、Thermo Plus 2 TG-8120 Dynamic TG
 試料重量:5~10mg
 昇温速度:10℃/分
 雰囲気:窒素フロー(200ml/分)下
 測定方法:階段状等温制御法(60~500℃の間で、重量減少速度値を0.005%/秒以下として制御)。
 [屈折率]
 作製したアクリル樹脂を含む樹脂組成物の屈折率は、JIS K7142に準拠して、以下のように求めた。作製した樹脂ペレットを、240℃の溶融プレスにより厚さ100μmのフィルムとした。次に、得られたフィルムの波長589nmの光に対する屈折率を、屈折率計(アタゴ社製、デジタルアッベ屈折率計DR-M2)を用いて23℃で測定し、得られた屈折率値を、作製したアクリル樹脂を含む樹脂組成物の屈折率とした。
 実施例で用いた粒子の屈折率は、ハロゲン系の高屈折率液体と、メタノールなどの低屈折率液体とを種々の比率で混合した屈折液を用いて求めた。屈折液に粒子を分散させた場合、両者の屈折率が一致しないときは白濁した分散液となるが、両者の屈折率が一致したときは透明感のある液体となる。これにより、粒子の屈折率を知ることができる。
 アクリル樹脂に対する粒子の屈折率比は、式(屈折率比)=(粒子の屈折率)/(アクリル樹脂の屈折率)によって算出した。
 [平均粒径、変動係数(CV)]
 粒子の平均粒径および変動係数は、レーザー回折/散乱式粒子径分布測定装置(堀場製作所製、LA-920)を用いて、以下のように求めた。最初に、粒子2.5gを内容積20mLのスクリュー管に取りわけ、そこにメタノール2.0gを加えた後、超音波洗浄機を用いた振動をスクリュー管に3分間加えた。次に、水15gを加えた後、超音波洗浄機を用いた振動をスクリュー管にさらに15分加えて、粒子のメタノール/水分散液を得た。これを測定サンプルとして、レーザー回折/散乱式粒子径分布測定装置により、粒子の体積平均粒径Xを求めた。粒径の変動係数は、上記装置により粒径の標準偏差σを求め、式(σ/X)×100(%)より算出した。なお、測定の際には、粒子の屈折率を入力し、「分布形態」を単分散、「粒子径基準」を体積基準とした。
 [全光線透過率、ヘイズ]
 作製した光学フィルムの全光線透過率およびヘイズは、JIS K7361に準拠して、ヘーズメーター(日本電色工業社製、NDH-1001DP)を用いて評価した。
 [位相差]
 作製した光学フィルムの面内位相差Reは、位相差測定装置(王子計測器社製、KOBRA-WR)を用いて評価した。光学フィルムの面内位相差Reを測定するにあたり、表面の互いに1cm離れた2点は、フィルムの中央からそれぞれ5mm離れた2点とした。
 [十点平均表面粗さRz]
 作製した光学フィルムの表面の十点平均粗さRzは、JIS B0601に準拠して、レーザー顕微鏡(キーエンス社製、VK-9700)を用いて評価した。
 [滑り性]
 作製した光学フィルムの表面の滑り性は、JIS K7125に準拠して、以下のように評価した。最初に、表面を水平に保ったステンレス板の上に、80mm×100mmのサイズに裁断した光学フィルムを固定した。次に、固定したフィルムの上に、短辺に補助板を取り付けた、70mm×100mmのサイズに裁断した光学フィルムを置き、さらにその上に、厚さ2mmの緩衝材を貼った円柱状のおもり(540g、直径62mm)を置いた。この状態で、補助板にばねばかりを取り付け、取り付けたばねばかりを水平方向に300mm/分の速度で引っ張って、おもりが動き始める、即ち、光学フィルム同士が滑り始めるまでにばねばかりが示した最大荷重を測定し、これを光学フィルム表面の滑り性とした。光学フィルム表面の滑り性が高くなるほど、測定される最大荷重の値は小さくなる。
 [耐折り曲げ特性]
 作製した光学フィルムの耐折り曲げ特性は、当該フィルムの耐折り曲げ回数を、23℃、50%RHの雰囲気下に1時間以上静置させた、15mm×90mmのサイズに裁断した光学フィルムに対して、MIT耐折度試験機(テスター産業社製、BE-201型)を用い、荷重200gの条件でJIS P8115に準拠して測定することで評価した。
 [第1の光学フィルム]
 (製造例1)
 撹拌装置、温度センサー、冷却管および窒素導入管を備えた内容積1m3の反応釜に、204kgのメタクリル酸メチル(MMA)、51kgの2-(ヒドロキシメチル)アクリル酸メチル(MHMA)および重合溶媒として249kgのトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として281gのt-アミルパーオキシイソノナノエート(アトフィナ吉富社製、ルペロックス570)を添加するとともに、5.4kgのトルエンに上記重合開始剤561gを溶解させた溶液を2時間かけて滴下しながら、約105~110℃の還流下で溶液重合を進行させ、さらに4時間の熟成を行った。
 次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、255gのリン酸ステアリル/リン酸ジステアリル混合物(堺化学社製、Phoslex A-18)を加え、約90~110℃の還流下において5時間、環化縮合反応を進行させた。
 次に、得られた重合溶液を、バレル温度250℃、回転数150rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個およびフォアベント数4個のベントタイプスクリュー二軸押出機(Φ=42mm、L/D=42)に、樹脂量換算で15kg/時の処理速度で導入し、さらなる環化縮合反応の進行と脱揮とを行った。脱揮完了後、押出機内に残された熱溶融状態にある樹脂を押出機の先端から排出し、ペレタイザーによりペレット化して、主鎖にラクトン環構造を有するアクリル樹脂のペレットを得た。
 次に、上記作製したアクリル樹脂ペレット90重量部、アクリロニトリル-スチレン樹脂(旭化成ケミカルズ社製、スタイラックAS783)10重量部および酢酸亜鉛0.04重量部をブレンドした後、多条フライト構造のミキシング部を有するフルフライト型スクリューからなる単軸押出機(Φ50mm、L/D=36)を用いて、シリンダ設定温度270℃および50kg/時の処理速度で溶融押出して、主鎖にラクトン環構造を有するアクリル樹脂を主成分とし、アクリロニトリル-スチレン樹脂をさらに含む樹脂組成物からなる樹脂ペレット(1A)を得た。樹脂ペレット(1A)を構成する樹脂組成物の重量平均分子量は132000、ラクトン環含有率は28.5重量%、Tgは125℃、屈折率は1.506であった。
 (製造例2)
 特許第4034157号公報に記載の方法に基づき、屈折率が1.505であり、平均粒径(質量平均粒径)が2μmの(メタ)アクリル架橋粒子(1B)を得た。
 次に、作製した粒子(1B)0.5重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、(メタ)アクリル架橋粒子を含む樹脂ペレットのマスターバッチ(1AB)を得た。次に、作製したマスターバッチ(1AB)25重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とをドライブレンドし、260℃で溶融混練して、(メタ)アクリル架橋粒子(1B)の含有率が0.1重量%となるように調整した樹脂ペレット(1AB-1)を得た。
 (製造例3)
 製造例2で作製したマスターバッチ(1AB)2.04重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とをドライブレンドし、260℃で溶融混練して、(メタ)アクリル架橋粒子(1B)の含有率が0.01重量%となるように調整した樹脂ペレット(1AB-2)を得た。
 (製造例4)
 シリカ粒子(屈折率1.43、平均粒径0.5μm、日本触媒社製、シーホスターKE-P50)0.5重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(1AC)を得た。次に、作製したマスターバッチ(1AC)25重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.1重量%となるように調整した樹脂ペレット(1AC-1)を得た。
 (製造例5)
 シリカ粒子(屈折率1.43、平均粒径0.3μm、日本触媒社製、シーホスターKE-P30)0.5重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(1AD)を得た。次に、作製したマスターバッチ(1AD)25重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.1重量%となるように調整した樹脂ペレット(1AD-1)を得た。
 (製造例6)
 製造例4で作製したマスターバッチ(1AC)2.04重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子(平均粒径0.5μm)の含有率が0.01重量%となるように調整した樹脂ペレット(1AC-2)を得た。
 (製造例7)
 特許第4034157号公報に記載の方法に基づき、屈折率が1.505であり、平均粒径(質量平均粒径)が1μmの(メタ)アクリル架橋粒子(1E)を得た。
 次に、作製した粒子(1E)0.5重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、(メタ)アクリル架橋粒子を含む樹脂ペレットのマスターバッチ(1AE)を得た。次に、作製したマスターバッチ(1AE)25重量部と、製造例1で作製した樹脂ペレット(1A)100重量部とをドライブレンドし、260℃で溶融混練して、(メタ)アクリル架橋粒子(1E)の含有率が0.1重量%となるように調整した樹脂ペレット(1AE-1)を得た。
 (実施例1)
 製造例2で作製した樹脂ペレット(1AB-1)を、270℃で溶融押出成形して、厚さ150μmの未延伸フィルムを得た。次に、得られた未延伸フィルムを、二軸延伸装置(東洋精機製作所社製、TYPE X6-S、以降の実施例、比較例においても同じ)により逐次二軸延伸して、厚さ約60μmの延伸フィルム(1AB-1F)を得た。なお、逐次二軸延伸における一段目の延伸は、未延伸フィルムの長手方向(溶融押出方向)に、延伸温度142℃、延伸倍率2.0倍、延伸速度1000%/分の延伸条件で行い、二段目の延伸は、未延伸フィルムの短手方向(幅方向)に、延伸温度142℃、延伸倍率1.5倍、延伸速度1000%/分の延伸条件で行った。
 作製した延伸フィルム(1AB-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.1%
 ヘイズ:0.7%
 Rz:2.22μm
 MIT回数:100回以上
 滑り性:240g
 フィルム表面において互いに1cm離れた2点の面内位相差Re:1.2nm、1.5nm。
 (実施例2)
 樹脂ペレット(1AB-1)の代わりに、製造例3で作製した樹脂ペレット(1AB-2)を用いた以外は実施例1と同様にして、延伸フィルム(1AB-2F)を得た。
 作製した延伸フィルム(1AB-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.5%
 ヘイズ:0.5%
 Rz:1.23μm
 MIT回数:100回以上
 滑り性:280g
 フィルム表面において互いに1cm離れた2点の面内位相差Re:0.2nm、0.4nm。
 (比較例1)
 樹脂ペレット(1AB-1)の代わりに、製造例1で作製した、粒子を含まない樹脂ペレット(1A)を用いた以外は実施例1と同様にして、延伸フィルム(1A-F)を得た。
 作製した延伸フィルム(1A-F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.4%
 ヘイズ:0.4%
 Rz:0.17μm
 MIT回数:100回以上
 滑り性:1000g以上(ばねばかりのスケール上限が1000gであったため、測定不能)
 フィルム表面において互いに1cm離れた2点の面内位相差Re:0.5nm、0.4nm。
 延伸フィルム(1A-F)は、透明性に優れるものの、滑り性に劣っていた。
 (比較例2)
 樹脂ペレット(1AB-1)の代わりに、製造例4で作製した樹脂ペレット(1AC-1)を用いた以外は実施例1と同様にして、延伸フィルム(1AC-1F)を得た。
 作製した延伸フィルム(1AC-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.6%
 ヘイズ:1.3%
 Rz:8.50μm
 MIT回数:100回以上
 滑り性:230g
 フィルム表面において互いに1cm離れた2点の面内位相差Re:3.3nm、3.8nm。
 延伸フィルム(1AC-1F)は、滑り性に優れるものの、ヘイズが高く、光学フィルムとしては不適であった。
 (実施例3)
 樹脂ペレット(1AB-1)の代わりに、製造例5で作製した樹脂ペレット(1AD-1)を用いた以外は実施例1と同様にして、延伸フィルム(1AD-1F)を得た。
 作製した延伸フィルム(1AD-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.4%
 ヘイズ:1.0%
 Rz:1.49μm
 MIT回数:100回以上
 滑り性:240g
 フィルム表面において互いに1cm離れた2点の面内位相差Re:3.2nm、4.4nm。
 延伸フィルム(1AD-1F)は、ヘイズがやや高いものの、光学フィルムとしては許容できる。一方、滑り性は優れていた。
 (実施例4)
 製造例7で作製した樹脂ペレット(1AE-1)を、温度270℃でTダイを介してシート状に溶融押出成形し、さらにタッチロール成形して、帯状の未延伸フィルム(厚さ180μm)を連続的に形成した。次に、連続的に形成した未延伸フィルムを、連続的に縦延伸および横延伸し、その後さらにナーリング加工して、二軸延伸フィルム(1AE-1F)を形成した。縦延伸(溶融押出方向の延伸)は、2組のニップロールの周速差を用いて行った。横延伸(幅方向の延伸)はテンター法により行い、延伸条件は、縦延伸について延伸温度140℃、延伸倍率1.9倍、横延伸について延伸温度140℃、延伸倍率2.2倍とした。なお、延伸フィルムがクリップから開放された時点における左右2列のクリップ間距離は920mmであった。幅方向の延伸後、テンターから出てきたフィルムをトリミングにより幅500mmとし、巻き取り機を用いてロールとした。次に、得られたロールを巻き替えながら、フィルムに連続的にナーリング加工を行い、ナーリング付きフィルムのロールを得た。ナーリング部は、幅10mm、凹凸の高さ5~10mm、凹凸の個数が突起の個数にして3~5個/cm2、ナーリング部の中心線がフィルムの端部から20mmとなるようにした。
 作製した延伸フィルム(1AE-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.4%
 ヘイズ:0.8%
 Rz:2.20μm
 MIT回数:100回以上
 滑り性:250g
 フィルム表面において互いに1cm離れた2点の面内位相差Re:1.3nm、1.5nm。
 第1の光学フィルムの実施例、比較例のデータを、以下の表1にまとめる。
Figure JPOXMLDOC01-appb-T000005
 [第2の光学フィルム]
 (製造例11)
 撹拌装置、温度センサー、冷却管および窒素導入管を備えた内容積1m3の反応釜に、204kgのメタクリル酸メチル(MMA)、51kgの2-(ヒドロキシメチル)アクリル酸メチル(MHMA)および重合溶媒として249kgのトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として281gのt-アミルパーオキシイソノナノエート(アトフィナ吉富社製、ルペロックス570)を添加するとともに、5.4kgのトルエンに上記重合開始剤561gを溶解させた溶液を2時間かけて滴下しながら、約105~110℃の還流下で溶液重合を進行させ、さらに4時間の熟成を行った。
 次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、255gのリン酸ステアリル/リン酸ジステアリル混合物(堺化学社製、Phoslex A-18)を加え、約90~110℃の還流下において5時間、環化縮合反応を進行させた。
 次に、得られた重合溶液を、バレル温度250℃、回転数150rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個およびフォアベント数4個のベントタイプスクリュー二軸押出機(Φ=42mm、L/D=42)に、樹脂量換算で15kg/時の処理速度で導入し、さらなる環化縮合反応の進行と脱揮とを行った。脱揮完了後、押出機内に残された熱溶融状態にある樹脂を押出機の先端から排出し、ペレタイザーによりペレット化して、主鎖にラクトン環構造を有するアクリル樹脂のペレットを得た。
 次に、上記作製したアクリル樹脂ペレット90重量部、アクリロニトリル-スチレン樹脂(旭化成ケミカルズ社製、スタイラックAS783)10重量部および酢酸亜鉛0.04重量部をブレンドした後、多条フライト構造のミキシング部を有するフルフライト型スクリューからなる単軸押出機(Φ50mm、L/D=36)を用いて、シリンダ設定温度270℃および50kg/時の処理速度で溶融押出して、主鎖にラクトン環構造を有するアクリル樹脂を主成分とし、アクリロニトリル-スチレン樹脂をさらに含む樹脂組成物からなる樹脂ペレット(2A)を得た。樹脂ペレット(2A)を構成する樹脂組成物の重量平均分子量は132000、ラクトン環含有率は28.5重量%、Tgは125℃、屈折率は1.506であった。
 (製造例12)
 シリカ粒子(屈折率1.43、平均粒径0.3μm、日本触媒社製、シーホスターKE-P30)0.5重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(2AB)を得た。次に、作製したマスターバッチ(2AB)25重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.1重量%となるように調整した樹脂ペレット(2AB-1)を得た。
 (製造例13)
 製造例12で作製したマスターバッチ(2AB)11重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.05重量%となるように調整した樹脂ペレット(2AB-2)を得た。
 (製造例14)
 製造例12で作製したマスターバッチ(2AB)2.04重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.01重量%となるように調整した樹脂ペレット(2AB-3)を得た。
 (製造例15)
 製造例12で作製したマスターバッチ(2AB)0.2重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.001重量%となるように調整した樹脂ペレット(2AB-4)を得た。
 (製造例16)
 製造例11で作製した樹脂ペレット(2A)と溶融混練するシリカ粒子の量を1.0重量部とした以外は製造例12と同様にして、シリカ粒子の含有率が1重量%となるように調整した樹脂ペレット(2AB-5)を得た。
 (製造例17)
 シリカ粒子(屈折率1.43、平均粒径0.1μm、日本触媒社製、シーホスターKE-P10)0.5重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(2AC)を得た。次に、作製したマスターバッチ(2AC)25重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.1重量%となるように調整した樹脂ペレット(2AC-1)を得た。
 (製造例18)
 製造例17で作製したマスターバッチ(2AC)2.04重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.01重量%となるように調整した樹脂ペレット(2AC-2)を得た。
 (製造例19)
 シリカ粒子(屈折率1.43、平均粒径0.5μm、日本触媒社製、シーホスターKE-P50)0.5重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(2AD)を得た。次に、作製したマスターバッチ(2AD)1.63重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.008重量%となるように調整した樹脂ペレット(2AD-1)を得た。
 (製造例20)
 特許第4034157号公報に記載の方法に基づき、屈折率が1.505であり、平均粒径(質量平均粒径)が1μmの(メタ)アクリル架橋粒子(2B)を得た。
 次に、作製した粒子(2B)0.5重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、(メタ)アクリル架橋粒子を含む樹脂ペレットのマスターバッチ(2AE)を得た。次に、作製したマスターバッチ(2AE)1.63重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、(メタ)アクリル架橋粒子(2B)の含有率が0.008重量%となるように調整した樹脂ペレット(2AE-1)を得た。
 (製造例21)
 特許第4034157号公報に記載の方法に基づき、屈折率が1.505であり、平均粒径(質量平均粒径)が2μmの(メタ)アクリル架橋粒子(2E)を得た。
 次に、作製した粒子(2E)0.5重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、(メタ)アクリル架橋粒子を含む樹脂ペレットのマスターバッチ(2AF)を得た。次に、作製したマスターバッチ(2AF)1.63重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、(メタ)アクリル架橋粒子(2E)の含有率が0.008重量%となるように調整した樹脂ペレット(2AF-1)を得た。
 (製造例22)
 シリカ粒子(屈折率1.43、平均粒径0.3μm、日本触媒社製、シーホスターKE-P30)0.5重量部と、主鎖にグルタルイミド構造を有するアクリル樹脂(ロームアンドハース社製、KAMAX T-240)からなるペレット100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(2AG)を得た。次に、作製したマスターバッチ(2AG)11重量部と、主鎖にグルタルイミド構造を有する上記アクリル樹脂からなるペレット100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.05重量%となるように調整した樹脂ペレット(2AG-1)を得た。
 (製造例23)
 シリカ粒子(屈折率1.43、平均粒径0.3μm、日本触媒社製、シーホスターKE-P30)0.5重量部と、主鎖に無水グルタル酸構造を有するアクリル樹脂(住友化学社製、スミペックスB-TR)からなるペレット100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(2AH)を得た。次に、作製したマスターバッチ(2AH)11重量部と、主鎖に無水グルタル酸構造を有する上記アクリル樹脂からなるペレット100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.05重量%となるように調整した樹脂ペレット(2AH-1)を得た。
 (製造例24)
 撹拌装置、温度センサー、冷却管および窒素導入管を備えた内容積1m3の反応釜に、40重量部のメタクリル酸メチル(MMA)、10重量部の2-(ヒドロキシメチル)アクリル酸メチル(MHMA)、重合溶媒として50重量部のトルエンおよび0.025重量部の酸化防止剤(ADEKA社製、アデカスタブ2112)を仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として0.05重量部のt-アミルパーオキシイソノナノエート(アトフィナ吉富社製、ルペロックス570)を添加するとともに、0.10重量部の上記重合開始剤を3時間かけて滴下しながら、約105~110℃の還流下で溶液重合を進行させ、さらに4時間の熟成を行った。
 次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、0.05重量部のリン酸2-エチルヘキシル(堺化学社製、Phoslex A-8)を加え、約90~110℃の還流下において2時間、環化縮合反応を進行させた後、240℃のオートクレーブにより重合溶液を30分間加熱し、環化縮合反応をさらに進行させた。
 次に、得られた重合溶液を、バレル温度240℃、回転数100rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個およびフォアベント数4個(上流側から第1、第2、第3、第4ベントと称する)、第3ベントと第4ベントとの間にサイドフィーダーが設けられており、先端部にリーフディスク型のポリマーフィルタ(濾過精度5μm、濾過面積1.5m2)が配置されたベントタイプスクリュー二軸押出機(Φ=50mm、L/D=30)に、樹脂量換算で45kg/時の処理速度で導入し、脱揮を行った。その際、別途準備しておいた酸化防止剤/環化触媒失活剤の混合溶液を0.68kg/時の投入速度で第1ベントの後ろから、イオン交換水を0.22kg/時の投入速度で第2および第3ベントの後ろから、それぞれ投入した。酸化防止剤/環化触媒失活剤の混合溶液には、50重量部の酸化防止剤(チバスペシャリティケミカルズ社製、イルガノックス1010)と、失活剤として35重量部のオクチル酸亜鉛(日本化学産業社製、ニッカオクチクス亜鉛3.6%)とを、トルエン200重量部に溶解させた溶液を用いた。また、上記サイドフィーダーから、スチレン-アクリロニトリル樹脂(スチレン/アクリロニトリルの含有率の比率は73重量%/27重量%、重量平均分子量22万)のペレットを投入速度24.2kg/時で投入した。
 次に、脱揮完了後、押出機内に残された熱溶融状態にある樹脂を押出機の先端からポリマーフィルタを通して排出し、ペレタイザーによりペレット化して、主鎖にラクトン環構造を有するアクリル樹脂を主成分とし、アクリロニトリル-スチレン樹脂をさらに含む(当該樹脂の含有率35重量%)樹脂組成物からなる樹脂ペレット(2F)を得た。樹脂ペレット(2F)を構成する樹脂組成物のTgは120℃、重量平均分子量は16.3万であった。なお、この樹脂組成物を延伸フィルムとした際に、当該フィルムは負の位相差特性を示す。
 次に、シリカ粒子(屈折率1.43、平均粒径0.3μm、日本触媒社製、シーホスターKE-P30)0.5重量部と、樹脂ペレット(2F)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(2AI)を得た。次に、作製したマスターバッチ(2AI)11重量部と、上記アクリル樹脂からなるペレット100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.05重量%となるように調整した樹脂ペレット(2AI-1)を得た。
 (製造例25)
 シリカ粒子(屈折率1.43、平均粒径0.3μm、日本触媒社製、シーホスターKE-P30)0.5重量部と、WO/2009/084663の製造例7で作製したアクリル樹脂(この樹脂を延伸フィルムとした際に、当該フィルムは正の位相差特性および逆波長分散性を示す。WO/2009/084663の実施例11を参照)からなるペレット100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、シリカ粒子を含む樹脂ペレットのマスターバッチ(2AJ)を得た。次に、作製したマスターバッチ(2AJ)11重量部と、上記アクリル樹脂からなるペレット100重量部とをドライブレンドし、260℃で溶融混練して、シリカ粒子の含有率が0.05重量%となるように調整した樹脂ペレット(2AJ-1)を得た。
 (製造例26)
 製造例11において、二軸押出機によりさらなる環化縮合反応の進行と脱揮とを行う際に、屈折率1.49、平均粒径0.02μmの粒子を含むエマルジョン(日本触媒社製、エポスターMX020W)を、粒子換算で0.075kg/時の添加速度で押出機内に添加した以外は、製造例11と同様にして、主鎖にラクトン環構造を有するアクリル樹脂を主成分とし、アクリロニトリル-スチレン樹脂と上記粒子とをさらに含む樹脂ペレット(2AK)を得た。次に、作製したペレット(2AK)2.04重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、粒子の含有率が0.01重量%となるように調整した樹脂ペレット(2AK-1)を得た。
 (製造例27)
 製造例11において、二軸押出機によりさらなる環化縮合反応の進行と脱揮とを行う際に、屈折率1.49、平均粒径0.15μmの粒子を含むエマルジョン(日本触媒社製、エポスターMX100W)を、粒子換算で0.075kg/時の添加速度で押出機内に添加した以外は、製造例11と同様にして、主鎖にラクトン環構造を有するアクリル樹脂を主成分とし、アクリロニトリル-スチレン樹脂と上記粒子とをさらに含む樹脂ペレット(2AL)を得た。次に、作製したペレット(2AL)2.04重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、粒子の含有率が0.01重量%となるように調整した樹脂ペレット(2AL-1)を得た。
 (製造例28)
 特許第4034157号公報に記載の方法に基づき、屈折率が1.505であり、平均粒径(質量平均粒径)が1.2μmの(メタ)アクリル架橋粒子(2G)を得た。
 次に、作製した粒子(2G)0.5重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とを、スクリュー二軸押出機(プラスチック工学研究所製、BT-30-S21C-30-1)を用いて260℃で溶融混練して、(メタ)アクリル架橋粒子を含む樹脂ペレットのマスターバッチ(2AM)を得た。次に、作製したマスターバッチ(2AM)25重量部と、製造例11で作製した樹脂ペレット(2A)100重量部とをドライブレンドし、260℃で溶融混練して、(メタ)アクリル架橋粒子(2G)の含有率が0.1重量%となるように調整した樹脂ペレット(2AM-1)を得た。
 (実施例11)
 製造例12で作製した樹脂ペレット(2AB-1)を、濾過精度5μm、濾過面積0.74m2のリーフディスク型ポリマーフィルタを備える溶融押出機を用いて、溶融状態で当該ポリマーフィルタを通過させた後に(通過量25kg/時)、溶融状態を保ったまま270℃で溶融押出成形して、厚さ150μmの未延伸フィルムを得た。次に、得られた未延伸フィルムを、二軸延伸装置(東洋精機製作所社製、TYPE X6-S、以降の実施例、比較例においても同じ)により逐次二軸延伸して、厚さ約60μmの延伸フィルム(2AB-1F)を得た。なお、逐次二軸延伸における一段目の延伸は、未延伸フィルムの長手方向(溶融押出方向)に、延伸温度142℃、延伸倍率2.0倍、延伸速度1000%/分の延伸条件で行い、二段目の延伸は、未延伸フィルムの短手方向(幅方向)に、延伸温度142℃、延伸倍率1.5倍、延伸速度1000%/分の延伸条件で行った。
 作製した延伸フィルム(2AB-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.4%
 ヘイズ:1.0%
 Rz:1.49μm
 滑り性:240g
 フィルム表面において互いに1cm離れた2点の面内位相差Re:3.2nm、4.4nm。
 (実施例12)
 樹脂ペレット(2AB-1)の代わりに、製造例14で作製した樹脂ペレット(2AB-3)を用いた以外は実施例11と同様にして、延伸フィルム(2AB-3F)を得た。
 作製した延伸フィルム(2AB-3F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.5%
 ヘイズ:0.5%
 Rz:1.07μm
 滑り性:450g。
 (比較例11)
 樹脂ペレット(2AB-1)の代わりに、製造例11で作製した、粒子を含まない樹脂ペレット(2A)を用いた以外は実施例11と同様にして、延伸フィルム(2A-F)を得た。
 作製した延伸フィルム(2A-F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.4%
 ヘイズ:0.5%
 Rz:0.17μm
 滑り性:1000g以上(ばねばかりのスケール上限が1000gであったため、測定不能)
 フィルム表面において互いに1cm離れた2点の面内位相差Re:0.5nm、0.4nm。
 延伸フィルム(2A-F)は、透明性に優れるものの、滑り性に劣っていた。
 (比較例12)
 樹脂ペレット(2AB-1)の代わりに、製造例15で作製した樹脂ペレット(2AB-4)を用いた以外は実施例11と同様にして、延伸フィルム(2AB-4F)を得た。
 作製した延伸フィルム(2AB-4F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.5%
 ヘイズ:0.5%
 Rz:0.18μm
 滑り性:1000g以上(測定不能)。
 (比較例13)
 樹脂ペレット(2AB-1)の代わりに、製造例16で作製した樹脂ペレット(2AB-5)を用いた以外は実施例11と同様にして、延伸フィルム(2AB-5F)を得た。
 作製した延伸フィルム(2AB-5F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.4%
 ヘイズ:2.5%
 Rz:2.2μm
 滑り性:170g。
 (実施例13)
 樹脂ペレット(2AB-1)の代わりに、製造例17で作製した樹脂ペレット(2AC-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AC-1F)を得た。
 作製した延伸フィルム(2AC-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.5%
 ヘイズ:0.7%
 Rz:0.93μm
 滑り性:330g。
 (実施例14)
 樹脂ペレット(2AB-1)の代わりに、製造例18で作製した樹脂ペレット(2AC-2)を用いた以外は実施例11と同様にして、延伸フィルム(2AC-2F)を得た。
 作製した延伸フィルム(2AC-2F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.3%
 ヘイズ:0.5%
 Rz:0.7μm
 滑り性:500g。
 (実施例15)
 樹脂ペレット(2AB-1)の代わりに、製造例19で作製した樹脂ペレット(2AD-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AD-1F)を得た。
 作製した延伸フィルム(2AD-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.3%
 ヘイズ:0.8%
 Rz:1.01μm
 滑り性:450g。
 (実施例16)
 樹脂ペレット(2AB-1)の代わりに、製造例20で作製した樹脂ペレット(2AE-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AE-1F)を得た。
 作製した延伸フィルム(2AE-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.3%
 ヘイズ:0.6%
 Rz:1.83μm
 滑り性:250g。
 なお、樹脂ペレット(2AE-1)の溶融押出時には、ポリマーフィルタにおける差圧の上昇は見られなかった。
 (比較例14)
 製造例12で作製した樹脂ペレット(2AB-1)を、ポリマーフィルタを通さずにそのまま溶融押出成形して未延伸フィルムを得た以外は、実施例11と同様にして、厚さ約60μmの延伸フィルム(2AB-1F2)を得た。
 作製した延伸フィルム(2AB-1F2)の特性評価結果は、以下のとおりである:
 全光線透過率:92.4%
 ヘイズ:2%
 Rz:1.2μm
 滑り性:350g。
 延伸フィルム(2AB-1F2)は、ヘイズが高く、光学フィルムとして不適であった。
 (比較例15)
 樹脂ペレット(2AB-1)の代わりに、製造例21で作製した樹脂ペレット(2AF-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AF-1F)を得た。
 作製した延伸フィルム(2AF-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.5%
 ヘイズ:0.5%
 Rz:0.20μm
 滑り性:1000g以上(測定不能)。
 なお、樹脂ペレット(2AF-1)の溶融押出時には、ポリマーフィルタにおける差圧の上昇(0.1MPa/時で昇圧)が見られ、樹脂ペレット(2AF-1)に含まれる粒子の多くがポリマーフィルタで除去されたと考えられる。
 (実施例17)
 樹脂ペレット(2AB-1)の代わりに、製造例22で作製した樹脂ペレット(2AG-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AG-1F)を得た。
 作製した延伸フィルム(2AG-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.3%
 ヘイズ:0.6%
 Rz:1.25μm
 滑り性:220g。
 (実施例18)
 樹脂ペレット(2AB-1)の代わりに、製造例23で作製した樹脂ペレット(2AH-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AH-1F)を得た。
 作製した延伸フィルム(2AH-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.3%
 ヘイズ:0.6%
 Rz:1.25μm
 滑り性:220g。
 (実施例19)
 樹脂ペレット(2AB-1)の代わりに、製造例24で作製した樹脂ペレット(2AI-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AI-1F)を得た。
 作製した延伸フィルム(2AI-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.3%
 ヘイズ:0.6%
 Rz:1.25μm
 滑り性:220g。
 (実施例20)
 樹脂ペレット(2AB-1)の代わりに、製造例25で作製した樹脂ペレット(2AJ-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AJ-1F)を得た。
 作製した延伸フィルム(2AJ-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.3%
 ヘイズ:0.6%
 Rz:1.25μm
 滑り性:220g。
 (実施例21)
 製造例12で作製した樹脂ペレット(2AB-1)を、濾過精度5μm、濾過面積0.74m2のリーフディスク型ポリマーフィルタを備える溶融押出機を用いて、溶融状態で当該ポリマーフィルタを通過させた後に(通過量25kg/時)、溶融状態を保ったまま温度270℃でTダイを介してシート状に溶融押出成形し、さらにタッチロール成形して、帯状の未延伸フィルム(厚さ180μm)を連続的に形成した。次に、連続的に形成した未延伸フィルムを、連続的に縦延伸および横延伸し、その後さらにナーリング加工して、二軸延伸フィルム(2AB-1F3)を形成した。縦延伸(溶融押出方向の延伸)は、2組のニップロールの周速差を用いて行った。横延伸(幅方向の延伸)はテンター法により行い、延伸条件は、縦延伸について延伸温度140℃、延伸倍率1.9倍、横延伸について延伸温度140℃、延伸倍率2.2倍とした。なお、延伸フィルムがクリップから開放された時点における左右2列のクリップ間距離は920mmであった。幅方向の延伸後、テンターから出てきたフィルムをトリミングにより幅500mmとし、巻き取り機を用いてロールとした。次に、得られたロールを巻き替えながら、フィルムに連続的にナーリング加工を行い、ナーリング付きフィルムのロールを得た。ナーリング部は、幅10mm、凹凸の高さ5~10mm、凹凸の個数が突起の個数にして3~5個/cm2、ナーリング部の中心線がフィルムの端部から20mmとなるようにした。
 作製した延伸フィルム(2AB-1F3)の特性評価結果は、以下のとおりである:
 全光線透過率:92.3%
 ヘイズ:0.6%
 Rz:1.25μm
 滑り性:220g。
 (比較例16)
 比較例11で作製した延伸フィルム(2A-F)の両端部に、実施例21と同様のナーリング加工を施し、延伸フィルム(2A-F1)とした。
 作製した延伸フィルム(2A-F1)の特性評価結果は、以下のとおりである:
 全光線透過率:92.5%
 ヘイズ:0.5%
 Rz:0.17μm
 滑り性:1000g以上(測定不能)。
 (比較例17)
 樹脂ペレット(2AB-1)の代わりに、製造例26で作製した樹脂ペレット(2AK-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AK-1F)を得た。
 作製した延伸フィルム(2AK-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.5%
 ヘイズ:0.5%
 Rz:0.2μm
 滑り性:1000g以上(測定不能)。
 (実施例22)
 樹脂ペレット(2AB-1)の代わりに、製造例27で作製した樹脂ペレット(2AL-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AL-1F)を得た。
 作製した延伸フィルム(2AL-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.4%
 ヘイズ:0.6%
 Rz:0.8μm
 滑り性:500g。
 第2の光学フィルムの実施例、比較例のデータを、以下の表2にまとめる。
 (比較例18)
 樹脂ペレット(2AB-1)の代わりに、製造例28で作製した樹脂ペレット(2AM-1)を用いた以外は実施例11と同様にして、延伸フィルム(2AM-1F)を得た。
 作製した延伸フィルム(2AM-1F)の特性評価結果は、以下のとおりである:
 全光線透過率:92.5%
 ヘイズ:0.5%
 Rz:0.4μm
 滑り性:1000g以上(測定不能)。
 なお、樹脂ペレット(2AM-1)の溶融押出時には、ポリマーフィルタにおける差圧の上昇が見られた。
 第2の光学フィルムの実施例、比較例のデータを、以下の表2にまとめる。
Figure JPOXMLDOC01-appb-T000006
 本発明は、その意図および本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味および範囲にあるすべての変更はそれに含まれる。
 本発明の光学フィルムは、光学フィルムとして十分な透明性と、アンチブロッキング性とを両立させた光学フィルムであり、LCDなどの偏光を利用した画像表示装置における位相差フィルム、偏光子保護フィルムなどに好適に使用できる。

Claims (9)

  1.  主成分として、主鎖に環構造を有する非晶性のアクリル樹脂(A)と、
     粒子(B)と、を含み、
     溶融押出によって形成され、
     下記の条件(i)~(iii)を満たす光学フィルム。
     (i)JIS K7361に準拠して測定した全光線透過率が90%以上、ヘイズが1%以下、
     (ii)JIS B0601に準拠して測定した、表面の十点平均粗さRzが1.0μm以上、
     (iii)JIS P8115に準拠して測定した耐折り曲げ回数(MIT回数)が100回以上。
  2.  JIS K7125に準拠して測定した滑り性が400g以下である請求項1に記載の光学フィルム。
  3.  前記光学フィルムが延伸フィルムであり、
     表面の互いに1cm離れた2点において測定した当該フィルムの面内位相差Reの差が、2nm以下である請求項1に記載の光学フィルム。
  4.  前記環構造が、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、N-置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種である請求項1に記載の光学フィルム。
  5.  前記粒子の平均粒径が0.1~1μmである請求項1に記載の光学フィルム。
  6.  主成分として、主鎖に環構造を有する非晶性のアクリル樹脂(A)と、
     平均粒径が0.1~1μmの粒子(B)と、を含み、
     溶融状態でポリマーフィルタを通過した後の溶融押出成形によって形成され、
     JIS K7361に準拠して測定した全光線透過率が90%以上であるとともにヘイズが1%以下であり、
     JIS B0601に準拠して測定した、表面の十点平均粗さRzが0.7μm以上である光学フィルム。
  7.  厚さが10~300μmである請求項6に記載の光学フィルム。
  8.  主成分として、主鎖に環構造を有する非晶性のアクリル樹脂(A)と、
     平均粒径が0.1~1μmの粒子(B)と、を含む樹脂組成物を、
     溶融状態でポリマーフィルタを通過させた後に、フィルムに溶融押出成形することで、
     JIS K7361に準拠して測定した全光線透過率が90%以上であるとともにヘイズが1%以下であり、
     JIS B0601に準拠して測定した、表面の十点平均粗さRzが0.7μm以上である光学フィルムを得る、光学フィルムの製造方法。
  9.  厚さが10~300μmの前記光学フィルムを得る。請求項8に記載の光学フィルムの製造方法。
PCT/JP2009/070038 2008-11-27 2009-11-27 光学フィルムとその製造方法 WO2010061917A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010540524A JP5587209B2 (ja) 2008-11-27 2009-11-27 光学フィルムとその製造方法
CN200980144385.6A CN102209749B (zh) 2008-11-27 2009-11-27 光学膜及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008302238 2008-11-27
JP2008-302238 2008-11-27
JP2009-036846 2009-02-19
JP2009036846 2009-02-19

Publications (1)

Publication Number Publication Date
WO2010061917A1 true WO2010061917A1 (ja) 2010-06-03

Family

ID=42225787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070038 WO2010061917A1 (ja) 2008-11-27 2009-11-27 光学フィルムとその製造方法

Country Status (4)

Country Link
JP (1) JP5587209B2 (ja)
KR (1) KR101632456B1 (ja)
CN (1) CN102209749B (ja)
WO (1) WO2010061917A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032768A (ja) * 2010-03-31 2012-02-16 Nippon Shokubai Co Ltd 光学フィルムとその製造方法、光学部材および画像表示装置
WO2012035939A1 (ja) * 2010-09-14 2012-03-22 コニカミノルタオプト株式会社 樹脂フィルム、樹脂フィルムの製造方法、偏光板、及び液晶表示装置
JP2012118479A (ja) * 2010-12-03 2012-06-21 Nippon Shokubai Co Ltd 光学フィルムの製造方法
JP2012214795A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物、ポリカーボネート樹脂成形品及び光反射部材
JP2014518294A (ja) * 2011-10-04 2014-07-28 エルジー・ケム・リミテッド 樹脂組成物及びこれを用いて形成された光学補償フィルム
JP2017101230A (ja) * 2015-11-20 2017-06-08 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム
JP2017177596A (ja) * 2016-03-30 2017-10-05 株式会社カネカ 光学フィルムの製造方法および光学フィルム
JP2017179142A (ja) * 2016-03-30 2017-10-05 株式会社日本触媒 アクリル系共重合体およびその製造方法
JP2017181990A (ja) * 2016-03-31 2017-10-05 株式会社カネカ 光学フィルムおよびその製造方法
JP2018002994A (ja) * 2016-06-22 2018-01-11 旭化成株式会社 メタクリル系樹脂組成物、光学フィルム、光学部品
JP2020034673A (ja) * 2018-08-29 2020-03-05 日東電工株式会社 位相差フィルム、位相差層付き偏光板、および位相差フィルムの製造方法
CN114302794A (zh) * 2019-09-30 2022-04-08 日本瑞翁株式会社 树脂片和树脂片的制造方法
CN116178869A (zh) * 2022-12-14 2023-05-30 安徽合美材料科技有限公司 一种超薄pmma膜及其制备方法
WO2024106484A1 (ja) * 2022-11-18 2024-05-23 株式会社日本触媒 ペレットおよびペレットの製造方法、ならびに、光学フィルムの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782744A (zh) * 2016-12-19 2017-05-31 南昌欧菲显示科技有限公司 透明导电薄膜
CN110249376B (zh) * 2017-01-06 2021-08-24 大日本印刷株式会社 光学膜和图像显示装置
TWI731228B (zh) * 2017-03-29 2021-06-21 日商大日本印刷股份有限公司 光學膜及影像顯示裝置
JP7341643B2 (ja) * 2018-08-28 2023-09-11 日東電工株式会社 表面保護フィルム用基材、該基材の製造方法、該基材を用いた表面保護フィルム、および表面保護フィルム付光学フィルム
JP7294094B2 (ja) * 2019-12-02 2023-06-20 コニカミノルタ株式会社 光学フィルム及び光学フィルムの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181837A (ja) * 1985-02-06 1986-08-14 Japan Synthetic Rubber Co Ltd 熱可塑性樹脂フイルム
JP2001131337A (ja) * 1999-11-04 2001-05-15 Mizusawa Ind Chem Ltd アンチブロッキング剤
JP2003251678A (ja) * 2002-03-01 2003-09-09 Kanegafuchi Chem Ind Co Ltd フィルム製造方法
JP2006096960A (ja) * 2004-08-31 2006-04-13 Nippon Shokubai Co Ltd 光学用面状熱可塑性樹脂成形体
WO2007099927A1 (ja) * 2006-02-28 2007-09-07 Nippon Shokubai Co., Ltd. 位相差フィルム
JP2008133462A (ja) * 2006-10-25 2008-06-12 Nippon Shokubai Co Ltd 耐熱アクリル樹脂及びその濾過方法、製造方法
JP2009203348A (ja) * 2008-02-28 2009-09-10 Kaneka Corp 樹脂組成物、フィルムおよび偏光板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001910B (zh) * 2004-08-31 2011-12-07 株式会社日本触媒 光学用面状热塑性树脂组合物
JP5132950B2 (ja) * 2006-02-22 2013-01-30 株式会社日本触媒 光学フィルムの製造方法
US20070205706A1 (en) * 2006-03-01 2007-09-06 General Electric Company Optical Substrate Comprising Boron Nitride Particles
JP4751312B2 (ja) * 2006-12-22 2011-08-17 日東電工株式会社 光学フィルム、偏光板、および画像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181837A (ja) * 1985-02-06 1986-08-14 Japan Synthetic Rubber Co Ltd 熱可塑性樹脂フイルム
JP2001131337A (ja) * 1999-11-04 2001-05-15 Mizusawa Ind Chem Ltd アンチブロッキング剤
JP2003251678A (ja) * 2002-03-01 2003-09-09 Kanegafuchi Chem Ind Co Ltd フィルム製造方法
JP2006096960A (ja) * 2004-08-31 2006-04-13 Nippon Shokubai Co Ltd 光学用面状熱可塑性樹脂成形体
WO2007099927A1 (ja) * 2006-02-28 2007-09-07 Nippon Shokubai Co., Ltd. 位相差フィルム
JP2008133462A (ja) * 2006-10-25 2008-06-12 Nippon Shokubai Co Ltd 耐熱アクリル樹脂及びその濾過方法、製造方法
JP2009203348A (ja) * 2008-02-28 2009-09-10 Kaneka Corp 樹脂組成物、フィルムおよび偏光板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032768A (ja) * 2010-03-31 2012-02-16 Nippon Shokubai Co Ltd 光学フィルムとその製造方法、光学部材および画像表示装置
WO2012035939A1 (ja) * 2010-09-14 2012-03-22 コニカミノルタオプト株式会社 樹脂フィルム、樹脂フィルムの製造方法、偏光板、及び液晶表示装置
JP5716748B2 (ja) * 2010-09-14 2015-05-13 コニカミノルタ株式会社 樹脂フィルム、樹脂フィルムの製造方法、偏光板、及び液晶表示装置
JP2012118479A (ja) * 2010-12-03 2012-06-21 Nippon Shokubai Co Ltd 光学フィルムの製造方法
JP2012214795A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物、ポリカーボネート樹脂成形品及び光反射部材
JP2014518294A (ja) * 2011-10-04 2014-07-28 エルジー・ケム・リミテッド 樹脂組成物及びこれを用いて形成された光学補償フィルム
US9315659B2 (en) 2011-10-04 2016-04-19 Lg Chem, Ltd. Resin composition and optical compensation film formed using the same
JP2017101230A (ja) * 2015-11-20 2017-06-08 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム
JP2017177596A (ja) * 2016-03-30 2017-10-05 株式会社カネカ 光学フィルムの製造方法および光学フィルム
JP2017179142A (ja) * 2016-03-30 2017-10-05 株式会社日本触媒 アクリル系共重合体およびその製造方法
JP2017181990A (ja) * 2016-03-31 2017-10-05 株式会社カネカ 光学フィルムおよびその製造方法
JP2018002994A (ja) * 2016-06-22 2018-01-11 旭化成株式会社 メタクリル系樹脂組成物、光学フィルム、光学部品
JP2020034673A (ja) * 2018-08-29 2020-03-05 日東電工株式会社 位相差フィルム、位相差層付き偏光板、および位相差フィルムの製造方法
CN114302794A (zh) * 2019-09-30 2022-04-08 日本瑞翁株式会社 树脂片和树脂片的制造方法
WO2024106484A1 (ja) * 2022-11-18 2024-05-23 株式会社日本触媒 ペレットおよびペレットの製造方法、ならびに、光学フィルムの製造方法
CN116178869A (zh) * 2022-12-14 2023-05-30 安徽合美材料科技有限公司 一种超薄pmma膜及其制备方法

Also Published As

Publication number Publication date
KR101632456B1 (ko) 2016-06-21
JP5587209B2 (ja) 2014-09-10
CN102209749B (zh) 2014-11-05
JPWO2010061917A1 (ja) 2012-04-26
KR20110099219A (ko) 2011-09-07
CN102209749A (zh) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5587209B2 (ja) 光学フィルムとその製造方法
US10597525B2 (en) Resin composition and film thereof
JP6731913B2 (ja) 樹脂組成物およびフィルム
JP5605803B2 (ja) 光学フィルム、その製造方法、位相差フィルム、偏光板及び電子装置
CN104541189A (zh) 光学膜及其制造方法、偏振片以及液晶显示装置
CN105829923B (zh) 光学用热塑性树脂及成形体
JP2009052036A (ja) アクリル系フィルム、積層フィルムおよび偏光板
JP2012031332A (ja) 光学フィルムの製造方法
JP2010265396A (ja) アクリル樹脂フィルムおよびその製造方法
JP5965621B2 (ja) 光学フィルム及びその製造方法
JP2012118479A (ja) 光学フィルムの製造方法
JP2020509115A (ja) 高いガラス転移温度を有する樹脂成分をベースとする透明フィルム
JP5980465B2 (ja) 偏光板及びそれを用いた液晶表示装置
JP5433328B2 (ja) 位相差フィルム
JP7533217B2 (ja) 光学フィルム、偏光板、および光学フィルムの製造方法
US20120076955A1 (en) Optical film and its production method, polarizer and liquid crystal display device
KR20140047548A (ko) 광학 필름 및 그 제조 방법, 편광판 및 액정 표시 장치
JP2011224934A (ja) 光学フィルムの製造方法
JP5965612B2 (ja) 光学フィルム及びその製造方法
JP2009199044A (ja) 位相差フィルム
JP2014098133A (ja) 樹脂組成物とそれを用いた樹脂成形品
JP2009235160A (ja) アクリル樹脂フィルム
TWI770005B (zh) 熱可塑性樹脂層合延伸薄膜
JP5350640B2 (ja) 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルム
JP6556598B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144385.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540524

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117010428

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09829162

Country of ref document: EP

Kind code of ref document: A1