WO2010061722A1 - 電磁鋼板及びその製造方法 - Google Patents
電磁鋼板及びその製造方法 Download PDFInfo
- Publication number
- WO2010061722A1 WO2010061722A1 PCT/JP2009/069109 JP2009069109W WO2010061722A1 WO 2010061722 A1 WO2010061722 A1 WO 2010061722A1 JP 2009069109 W JP2009069109 W JP 2009069109W WO 2010061722 A1 WO2010061722 A1 WO 2010061722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- electrical steel
- metal phosphate
- mass
- sheet according
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31681—Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
Definitions
- the present invention relates to a magnetic steel sheet suitable for an iron core and a method for manufacturing the same.
- ⁇ ⁇ ⁇ ⁇ Joule heat is generated during the operation of a motor having an iron core including a plurality of electromagnetic steel sheets stacked on each other. Since the motor includes a heat-sensitive portion such as an insulating film covering the copper wire and a terminal of the copper wire, it is desirable that the Joule heat be discharged efficiently.
- an insulating coating is provided on the surface of the electrical steel sheet. This is mainly to ensure insulation between the laminated electromagnetic steel sheets.
- An object of the present invention is to provide an electrical steel sheet capable of improving thermal conductivity and a method for manufacturing the same.
- An electrical steel sheet according to the present invention has a steel strip for electrical steel sheet, and an insulating film formed on a surface of the steel strip and containing a metal phosphate and an organic resin, and at least the metal phosphate Some have at least one crystal structure selected from the group consisting of cubic, tetragonal, hexagonal, and orthorhombic, and the organic resin has carboxyl groups or 1 part by mass to 50 parts by mass of at least one selected from the group consisting of an acrylic resin, an epoxy resin, and a polyester resin having a hydroxyl group with respect to 100 parts by mass of the metal phosphate.
- FIG. 1 is a cross-sectional view showing the structure of an electrical steel sheet according to an embodiment of the present invention.
- FIG. 1 is a cross-sectional view showing the structure of an electrical steel sheet according to an embodiment of the present invention.
- insulating films 2 are formed on both surfaces of a steel strip 1 for an electromagnetic steel sheet.
- Steel strip 1 is a steel strip for non-oriented electrical steel sheets, for example. Moreover, it is preferable that the steel strip 1 contains Si: 0.1 mass% or more and Al: 0.05 mass% or more, for example. Note that the higher the Si content, the greater the electrical resistance and the magnetic properties, while the brittleness increases. For this reason, it is preferable that Si content is less than 4.0%. Also, the higher the Al content, the better the magnetic properties, but on the other hand, the rollability is lowered. For this reason, the Al content is preferably less than 3.0%. The steel strip 1 may contain about 0.01% by mass to 1.0% by mass of Mn. The contents of S, N, and C in the steel strip 1 are all preferably less than 100 ppm, for example, and more preferably less than 20 ppm.
- the insulating film 2 contains a metal phosphate and an organic resin. Further, the insulating film 2 does not contain chromic acid. At least a part of the metal phosphate is crystallized, and the crystal structure of this part is at least one of cubic, tetragonal, hexagonal, and orthorhombic. That is, at least a part of the metal phosphate has at least one crystal structure selected from the group consisting of cubic, tetragonal, hexagonal, and orthorhombic.
- the hexagonal system includes a trigonal system.
- the organic resin contains 1 to 50 parts by mass of acrylic resin, epoxy resin, or polyester resin having a carboxyl group or a hydroxyl group on the surface of the emulsion particles with respect to 100 parts by mass of the metal phosphate.
- the organic resin may contain 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the metal phosphate of two or three kinds of these three kinds of resins or a mixture or copolymer.
- the metal phosphate is obtained, for example, by drying an aqueous solution (metal phosphate solution) containing phosphoric acid and metal ions.
- aqueous solution metal phosphate solution
- phosphoric acid is not specifically limited, For example, orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, etc. are preferable.
- metal ion is not particularly limited, for example, light metals such as Li, Al, Mg, Ca, Sr, and Ti are preferable. In particular, Al and Ca are preferable.
- As the phosphoric acid metal salt solution it is preferable to use, for example, a mixture of orthophosphoric acid and metal ion oxide, carbonate, and / or hydroxide.
- the metal phosphate is crystallized, and it is not necessary that the entire metal phosphate is crystallized.
- cubic and orthorhombic systems are preferred.
- Mineralogically preferred are crystal structures belonging to the berlinite structure, tridymite structure, and cristobalite structure. This is because higher thermal conductivity can be obtained.
- a carboxyl group or a hydroxyl group is present on the surface of the organic resin emulsion particles contained in the insulating film 2, but the method for synthesizing such an organic resin is not particularly limited.
- a graft polymerization method can be used.
- a monomer having a predetermined functional group (carboxyl group or hydroxyl group) is bonded to a side chain that does not participate in the copolymerization reaction of the acrylic resin, epoxy resin, or polyester resin raw material, the acrylic resin as described above is used.
- Resin, epoxy resin, or polyester resin can be synthesized by a copolymerization reaction.
- the molecular structure of the acrylic resin, epoxy resin, or polyester resin synthesized in this manner is, for example, linear or network-like.
- the acrylic resin as described above can be synthesized, for example, by copolymerizing a normal monomer having no carboxyl group and a hydroxyl group and a monomer having a carboxyl group or a hydroxyl group.
- Typical monomers include, for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, n-octyl acrylate, i-octyl acrylate, 2-ethylhexyl acrylate, n-nonyl acrylate, n-decyl acrylate, and and n-dodecyl acrylate.
- Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, citraconic acid, and cinnamic acid.
- Examples of the monomer having a hydroxyl group include 2-hydroxylethyl (meth) acrylate, 2-hydroxylpropyl (meth) acrylate, 3-hydroxylpropyl (meth) acrylate, 3-hydroxylbutyl (meth) acrylate, 4-hydroxyl Examples include butyl (meth) acrylate, 2-hydroxylethyl (meth) allyl ether, and allyl alcohol.
- the epoxy resin as described above can be synthesized, for example, by reacting carboxylic anhydride with an epoxy resin modified with an amine (amine-modified epoxy resin).
- the epoxy resin include bisphenol A-diglycidyl ether, caprolactone ring-opening adduct of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether, bisphenol S-diglycidyl ether, novolac glycidyl ether, glycidyl hexahydrophthalate
- Examples include esters, dimer acid glycidyl ether, tetraglycidylaminodiphenylmethane, 3,4-epoxy-6-methylcyclohexylmethyl carboxylate, and polypropylene glycidyl ether.
- Examples of amines that modify the epoxy resin include isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine, diethylenetriamine, ethylenediamine, butalamine, propylamine, isophoronediamine, tetrahydrofurfurylamine, xylenediamine, diaminediphenylmethane, and diaminosulfone.
- Examples of the carboxylic anhydride include succinic anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, phthalic anhydride, and trimellitic anhydride.
- the polyester resin as described above can be synthesized, for example, by copolymerizing dicarboxylic acid and glycol to obtain a copolymer polyester resin, and then graft-polymerizing a predetermined monomer to the copolymer polyester resin.
- dicarboxylic acid examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, 1,4-cyclohexanedicarboxylic acid , Fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, and tetrahydrophthalic anhydride.
- glycol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyldiol 1,6-hexanediol, 1,9 -Nonanediol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol and the like.
- Examples of the monomer that is graft-polymerized to the copolyester resin include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, itaconic anhydride, and methacrylic anhydride. .
- the particle diameter of the organic resin emulsion particles is not particularly limited, but the median average particle diameter measured by a laser light scattering method is preferably 0.2 ⁇ m to 0.6 ⁇ m, for example.
- the entire organic resin in the insulating film 2 does not have to be an acrylic resin, an epoxy resin, or a polyester resin having a carboxyl group or a hydroxyl group.
- a resin having no carboxyl group and a hydroxyl group is used as the organic resin. It may be included.
- the ratio of the acrylic resin, epoxy resin, or polyester resin having a carboxyl group or a hydroxyl group to the total amount of the organic resin is preferably 30% by mass or more, and more preferably 70% by mass or more.
- the content of the organic resin is 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the metal phosphate. This is because if the content of the organic resin is less than 1 part by mass, the insulating film 2 may powder, and if it exceeds 50 parts by mass, the adhesiveness after strain relief annealing may deteriorate. It is.
- the crystal structure has a high density of cubic, tetragonal, hexagonal or orthorhombic metal phosphate.
- the wettability with the metal phosphate is good because carboxyl groups or hydroxyl groups are present on the surface of the emulsion particles of the organic resin. That is, as will be described later, when the insulating film 2 is formed, the coating film of the insulating film 2 is dried, so that the organic resin undergoes thermal expansion or contraction. At this time, there is a gap between the metal phosphate and the metal resin.
- One of the reasons is that it is difficult to occur and high adhesion is ensured.
- the insulating film 2 is preferably an organic film.
- a steel strip 1 for an electromagnetic steel sheet is produced.
- a slab having a predetermined component is hot-rolled, and a hot-rolled steel sheet obtained by hot rolling is wound into a coil shape.
- cold rolling of the hot rolled steel sheet is performed to obtain a cold rolled steel sheet.
- the thickness of the cold rolled steel sheet is, for example, about 0.15 mm to 0.5 mm.
- annealing is performed. Note that annealing may be performed at about 800 ° C. to 1050 ° C. between hot rolling and cold rolling.
- the surface roughness of the steel strip is low. This is because good adhesion can be obtained when the magnetic steel sheets are laminated.
- the center line average roughness Ra in both the rolling direction and the direction orthogonal to the rolling direction is preferably 1.0 ⁇ m or less, and more preferably 0.5 ⁇ m or less. If the average roughness Ra exceeds 1.0 ⁇ m, good adhesion may not be obtained and high thermal conductivity may not be obtained. Note that if the average roughness Ra is less than 0.1 ⁇ m, the cost is likely to increase remarkably. This is because it is necessary to extremely smooth the surface of the cold rolling roll, and high cost is required for this smoothing.
- the raw material for the insulating film 2 is produced.
- a solution of a mixture of the above-mentioned metal phosphate and organic resin is produced, and a polyhydric alcohol compound is added to this solution.
- a polyhydric alcohol compound is a low molecular organic compound having two or more hydroxyl groups. Examples of the polyhydric alcohol compound include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, 1,6-hexanediol, glycerin, polyprene glycol, and sucrose.
- the ratio of organic resin shall be 1 mass part thru
- the amount of the polyhydric alcohol compound added is preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the metal phosphate.
- the addition amount of the polyhydric alcohol compound is less than 1 part by mass, the effect associated with the addition is hardly exhibited, and when it exceeds 20 parts by mass, the temperature range in which the coating film for forming the insulating film 2 can be dried is This is because it becomes narrower.
- a nucleating agent to a solution of a mixture of a metal phosphate and an organic resin.
- the nucleating agent include oxide nucleating agents such as talc, magnesium oxide, and titanium oxide, and sulfate nucleating agents such as barium sulfate.
- the size of the nucleating agent is not particularly limited, but the median average particle diameter measured by a laser light scattering method is preferably 0.1 ⁇ m to 2 ⁇ m, for example.
- the nucleating agent is preferably hardly soluble.
- the metal phosphate can be crystallized at a lower baking temperature than when no nucleating agent is added. Also, under a common baking temperature, the crystal structure tends to be cubic and high thermal conductivity is easily obtained as compared with the case where no nucleating agent is added.
- the addition amount of the nucleating agent is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the metal phosphate. This is because if the addition amount of the nucleating agent is less than 0.1 parts by mass, the effects associated with the addition are difficult to develop, and if it exceeds 5 parts by mass, powdering is likely to occur during punching.
- a treatment liquid containing a mixture solution and a polyhydric alcohol compound, to which a nucleating agent is added as necessary, is prepared.
- the treatment liquid does not contain chromic acid.
- the coating amount of the treatment liquid is not particularly limited, but is preferably 0.5 g / m 2 to 4.0 g / m 2 . This is because when the coating amount is less than 0.5 g / m 2 , the crystallization of the metal phosphate salt is easy to proceed, so that the control of the crystallization rate is difficult, and when it exceeds 4.0 g / m 2 , This is because the tendency for the adhesiveness to decrease becomes remarkable.
- the coating film is baked. That is, the coating film is heated and dried.
- the heating rate at this time is, for example, 25 ° C./second to 65 ° C./second.
- the heating rate is less than 25 ° C./second, the productivity is low, and when it exceeds 65 ° C./second, the crystal structure of the metal phosphate is cubic, tetragonal, hexagonal, and orthorhombic. It is because it is difficult to become a system.
- the baking temperature (holding temperature) is, for example, 200 ° C. to 360 ° C.
- the baking temperature is less than 200 ° C.
- the polymerization reaction of the metal phosphate is difficult to proceed, so that the water resistance is low, and when it exceeds 360 ° C., the organic resin may be oxidized, and the productivity is high. This is because it becomes lower.
- the lower limit of the baking temperature is preferably 210 ° C, and more preferably 230 ° C. This is because the crystal structure of the metal phosphate is more likely to be cubic, tetragonal, hexagonal, and orthorhombic.
- the holding time at the baking temperature is, for example, 10 seconds to 30 seconds.
- the retention time is less than 10 seconds, the crystal structure of the metal phosphate is not easily cubic, tetragonal, hexagonal, and orthorhombic, and if it exceeds 30 seconds, the productivity is low. Because.
- the cooling rate is, for example, 20 ° C./second to 85 ° C./second up to 100 ° C. When the cooling rate is less than 20 ° C./second, the productivity is low, and when it exceeds 85 ° C./second, the metal phosphate is difficult to crystallize and is likely to be amorphous, so that it is difficult to obtain good thermal conductivity. Because.
- the method for applying the treatment liquid to the surface of the steel strip is not particularly limited.
- the treatment liquid may be applied using a roll coater, the treatment liquid may be applied using a spray, or the steel strip may be immersed in the treatment liquid.
- the method for baking the coating film is not particularly limited.
- baking may be performed using a radiation furnace, or baking may be performed using an electric furnace such as an induction heating furnace. Baking using an induction heating furnace is preferable from the viewpoint of accuracy in controlling the heating rate.
- surfactant etc. to a process liquid further.
- a nonionic surfactant is preferable.
- a brightener or the like may be added.
- aqueous solutions of eight types of phosphates (phosphate metal salts) shown in Table 1 were prepared.
- phosphate no. Nucleating agents were added to 1, 4 and 6.
- Talc having an average particle size of 1.0 ⁇ m was used, and barium sulfate having an average particle size of 0.5 ⁇ m was used.
- a mixture of substances shown in Table 1 was diffused in water.
- the concentration of the aqueous phosphate solution was 40% by mass.
- the solubility of manganese phosphate (phosphate No. 7) and iron phosphate (phosphate No. 8) is low. Therefore, in preparing these aqueous solutions, orthophosphoric acid was mixed by about 5% by mass more than the amount of phosphoric acid determined from the stoichiometric ratio, so that the pH of the aqueous solution was 5 or less.
- the 30 mass% emulsion solution or 30 mass% dispersion solution of the 7 types of organic resin shown below was produced.
- a 30% by mass dispersion solution was prepared by forced stirring.
- the average particle diameter of each organic resin is a median average particle diameter measured by a laser light scattering method.
- Acrylic resin-2 (average particle size: 0.22 ⁇ m) Fumaric acid (15% by mass) as a monomer having a carboxyl group, and methyl acrylate (30% by mass), butyl acrylate (35% by mass), and styrene monomer (20% by mass) as ordinary monomers are copolymerized, An acrylic resin having a carboxyl group was prepared.
- Epoxy resin (average particle size: 0.15 ⁇ m) A bisphenol A epoxy resin was modified with monoethanolamine to prepare an amine-modified epoxy resin, and then succinic anhydride was grafted onto the amine-modified epoxy resin to prepare an epoxy resin having a carboxyl group.
- Polyester resin (average particle size: 0.10 ⁇ m) A copolymer polyester resin was prepared by copolymerizing dimethyl terephthalate (40% by mass) and neopentyl glycol (40% by mass), and then fumaric acid (10% by mass) and trimellitic anhydride (10% by mass) were prepared. %) was graft polymerized to prepare a polyester resin having a carboxyl group.
- Acrylic resin-3 (average particle size: 0.20 ⁇ m) Methyl acrylate (50% by mass), styrene monomer (20% by mass), and butyl acrylate (30% by mass) were copolymerized to prepare an acrylic resin having no carboxyl group and no hydroxyl group.
- the thermal conductivity, space factor, adhesion, corrosion resistance, appearance, crystal system, and crystallinity of the obtained non-oriented electrical steel sheet were evaluated.
- thermal conductivity 50 30 mm square samples were cut out from each non-oriented electrical steel sheet and laminated. Next, the periphery of the laminate was surrounded by a heat insulating material, and pressure-adhered with a pressure of 200 N / cm 2 (20 kgf / cm 2 ) on a heating element at 200 ° C. And the temperature of the sample located in the uppermost part of a laminated body was measured. This temperature increased toward 200 ° C. over time, but after about 60 minutes, it was saturated at a temperature less than 200 ° C. The difference between the temperature at this time and the temperature of the heating element (200 ° C.) was determined. This temperature difference is shown in Table 3. It can be said that the smaller the temperature difference, the higher the thermal conductivity.
- the space factor was measured according to JIS C 2550. The results are also shown in Table 3.
- each non-oriented electrical steel sheet was subjected to strain relief annealing in a nitrogen atmosphere at 750 ° C. for 2 hours.
- an adhesive tape was attached to each non-oriented electrical steel sheet sample, and this was wound around a metal rod having diameters of 10 mm, 20 mm, and 30 mm. Thereafter, the adhesive tape was peeled off from each sample, and the degree of peeling of the insulating film was observed.
- a sample in which the insulating film was not peeled off even when wound around a metal rod having a diameter of 10 mm was evaluated as “10 mm ⁇ OK”.
- Corrosion resistance was evaluated according to the salt spray test of JIS Z 2371. That is, for each sample of the non-oriented electrical steel sheet, a 10-point evaluation was performed 7 hours after the spraying of salt water. The case where rust was not generated was designated as “10 points”, and the case where rust was extremely small (the area ratio of the portion where rust was produced was 0.1% or less) was designated as “9 points”.
- Example No. belonging to the scope of the present invention Example No. belonging to the scope of the present invention. 1-No. In No. 11, good thermal conductivity was obtained, and the space factor, adhesion, corrosion resistance, and appearance were also good. On the other hand, Comparative Example No. deviating from the scope of the present invention. 12-No. In No. 24, no cubic, tetragonal, hexagonal, or orthorhombic crystal structures existed, and good thermal conductivity could not be obtained. In addition, adhesion, space factor, corrosion resistance, and appearance may not be good.
- the present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical Treatment Of Metals (AREA)
- Soft Magnetic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
(1)アクリル系樹脂-1(平均粒径:0.35μm)
水酸基を有するモノマーとしての2-ヒドロキシエチル(メタ)アクリレート(10質量%)、並びに通常のモノマーとしてのスチレンモノマー(30質量%)、メチルメタクリレート(50質量%)、及びメチルアクリレート(10質量%)を共重合させ、水酸基を有するアクリル系樹脂を作製した。
(2)アクリル系樹脂-2(平均粒径:0.22μm)
カルボキシル基を有するモノマーとしてのフマル酸(15質量%)、並びに通常のモノマーとしてのメチルアクリレート(30質量%)、ブチルアクリレート(35質量%)、及びスチレンモノマー(20質量%)を共重合させ、カルボキシル基を有するアクリル系樹脂を作製した。
(3)エポキシ系樹脂(平均粒径:0.15μm)
ビスフェノールAエポキシ樹脂をモノエタノールアミンで変性してアミン変性エポキシ樹脂を作製した後、アミン変性エポキシ樹脂に無水コハク酸をグラフト重合させ、カルボキシル基を有するエポキシ系樹脂を作製した。
(4)ポリエステル系樹脂(平均粒径:0.10μm)
ジメチルテレフタレート(40質量%)及びネオペンチルグリコール(40質量%)を共重合させて共重合ポリエステル樹脂を作製した後、共重合ポリエステル樹脂にフマル酸(10質量%)及び無水トリメリット酸(10質量%)をグラフト重合させ、カルボキシル基を有するポリエステル系樹脂を作製した。
(5)アクリル系樹脂-3(平均粒径:0.20μm)
メチルアクリレート(50質量%)、スチレンモノマー(20質量%)、及びブチルアクリレート(30質量%)を共重合させ、カルボキシル基及び水酸基を有しないアクリル系樹脂を作製した。
(6)ポリウレタン(平均粒径:0.16μm)
既知の方法で水性ポリウレタンを合成した。
(7)フェノール樹脂(平均粒径:0.12μm)
レゾール型フェノール樹脂水系エマルジョンを準備した。
Claims (16)
- 電磁鋼板用の鋼帯と、
前記鋼帯の表面に形成され、リン酸金属塩及び有機樹脂を含有する絶縁膜と、
を有し、
前記リン酸金属塩の少なくとも一部は、立方晶系、正方晶系、六方晶系、及び斜方晶系からなる群から選択された少なくとも1種の結晶構造を備え、
前記有機樹脂は、エマルジョン粒子の表面にカルボキシル基又は水酸基を有する、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂からなる群から選択された少なくとも1種を、前記リン酸金属塩100質量部に対して1質量部乃至50質量部含んでいることを特徴とする電磁鋼板。 - 前記鋼帯は、無方向性電磁鋼板用であることを特徴とする請求項1に記載の電磁鋼板。
- 前記リン酸金属塩の20質量%以上が、前記少なくとも1種の結晶構造を備えていることを特徴とする請求項1に記載の電磁鋼板。
- 前記リン酸金属塩の50質量%以上が、前記少なくとも1種の結晶構造を備えていることを特徴とする請求項1に記載の電磁鋼板。
- 前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項1に記載の電磁鋼板。
- 前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項2に記載の電磁鋼板。
- 前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項3に記載の電磁鋼板。
- 前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項4に記載の電磁鋼板。
- 前記絶縁膜は、クロム酸を含まないことを特徴とする請求項1に記載の電磁鋼板。
- 電磁鋼板用の鋼帯の表面に、リン酸金属塩、有機樹脂及び多価アルコール化合物を含有する処理液を塗布する工程と、
前記処理液の焼き付けを行い、前記リン酸金属塩の少なくとも一部が、立方晶系、正方晶系、六方晶系、及び斜方晶系からなる群から選択された少なくとも1種の結晶構造を備えた絶縁膜を形成する工程と、
を有し、
前記処理液は、
前記有機樹脂として、エマルジョン粒子の表面にカルボキシル基又は水酸基を有する、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂からなる群から選択された少なくとも1種を樹脂固形分に換算して、前記リン酸金属塩100質量部に対して1質量部乃至50質量部含み、
前記多価アルコール化合物を、前記リン酸金属塩100質量部に対して1質量部乃至20質量部含むことを特徴とする電磁鋼板の製造方法。 - 前記処理液の焼き付けを行う工程は、
前記処理液が塗布された前記鋼帯を、25℃/秒乃至65℃/秒の速度で200℃乃至360℃まで加熱する工程と、
次いで、前記鋼帯を200℃乃至360℃に10秒間乃至30秒間保持する工程と、
次いで、前記鋼帯を、20℃/秒乃至85℃/秒の速度で100℃まで冷却する工程と、
を有することを特徴とする請求項10に記載の電磁鋼板の製造方法。 - 前記鋼帯は、無方向性電磁鋼板用であることを特徴とする請求項10に記載の電磁鋼板の製造方法。
- 前記リン酸金属塩の20質量%以上が、前記少なくとも1種の結晶構造を備えていることを特徴とする請求項10に記載の電磁鋼板の製造方法。
- 前記リン酸金属塩の50質量%以上が、前記少なくとも1種の結晶構造を備えていることを特徴とする請求項10に記載の電磁鋼板の製造方法。
- 前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項10に記載の電磁鋼板の製造方法。
- 前記処理液は、クロム酸を含まないことを特徴とする請求項10に記載の電磁鋼板の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/128,302 US9984801B2 (en) | 2008-11-27 | 2009-11-10 | Electrical steel sheet and manufacturing method thereof |
EP09828970.5A EP2366810B1 (en) | 2008-11-27 | 2009-11-10 | Electrical steel sheet and manufacturing method thereof |
PL09828970T PL2366810T3 (pl) | 2008-11-27 | 2009-11-10 | Blacha elektrotechniczna i sposób jej wytwarzania |
JP2010540437A JP4831639B2 (ja) | 2008-11-27 | 2009-11-10 | 電磁鋼板及びその製造方法 |
KR1020117011958A KR101293441B1 (ko) | 2008-11-27 | 2009-11-10 | 전자기 강판 및 그 제조 방법 |
BRPI0922826-8A BRPI0922826B1 (pt) | 2008-11-27 | 2009-11-10 | Chapa de aço elétrico e método para sua produção |
CN2009801475683A CN102227515B (zh) | 2008-11-27 | 2009-11-10 | 电磁钢板及其制造方法 |
US15/962,701 US10665372B2 (en) | 2008-11-27 | 2018-04-25 | Electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008302233 | 2008-11-27 | ||
JP2008-302233 | 2008-11-27 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/128,302 A-371-Of-International US9984801B2 (en) | 2008-11-27 | 2009-11-10 | Electrical steel sheet and manufacturing method thereof |
US15/962,701 Division US10665372B2 (en) | 2008-11-27 | 2018-04-25 | Electrical steel sheet and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010061722A1 true WO2010061722A1 (ja) | 2010-06-03 |
Family
ID=42225602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/069109 WO2010061722A1 (ja) | 2008-11-27 | 2009-11-10 | 電磁鋼板及びその製造方法 |
Country Status (10)
Country | Link |
---|---|
US (2) | US9984801B2 (ja) |
EP (1) | EP2366810B1 (ja) |
JP (1) | JP4831639B2 (ja) |
KR (1) | KR101293441B1 (ja) |
CN (1) | CN102227515B (ja) |
BR (1) | BRPI0922826B1 (ja) |
PL (1) | PL2366810T3 (ja) |
RU (1) | RU2458183C1 (ja) |
TW (1) | TWI398351B (ja) |
WO (1) | WO2010061722A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130115443A1 (en) * | 2010-07-23 | 2013-05-09 | Nippon Steel & Sumitomo Metal Corporation | Electrical steel sheet and method for manufacturing the same |
WO2016136515A1 (ja) * | 2015-02-26 | 2016-09-01 | 新日鐵住金株式会社 | 電磁鋼板、および、電磁鋼板の製造方法 |
JP2017201845A (ja) * | 2016-05-02 | 2017-11-09 | 日立ジョンソンコントロールズ空調株式会社 | 永久磁石同期機、及びそれを用いた圧縮機、空調機 |
JP2018090836A (ja) * | 2016-11-30 | 2018-06-14 | 新日鐵住金株式会社 | 無方向性電磁鋼板 |
JP2018518591A (ja) * | 2015-03-24 | 2018-07-12 | フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh | コイルおよび電磁鋼帯または電磁鋼板 |
JPWO2019013348A1 (ja) * | 2017-07-13 | 2020-08-13 | 日本製鉄株式会社 | 方向性電磁鋼板 |
CN113165328A (zh) * | 2018-09-27 | 2021-07-23 | Posco公司 | 电工钢板层叠体 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0922826B1 (pt) * | 2008-11-27 | 2020-01-07 | Nippon Steel Corporation | Chapa de aço elétrico e método para sua produção |
JP5005844B2 (ja) * | 2010-10-29 | 2012-08-22 | 新日本製鐵株式会社 | 電磁鋼板及びその製造方法 |
CN103041966B (zh) * | 2011-10-17 | 2014-12-24 | 宝山钢铁股份有限公司 | 电工钢表面极厚绝缘涂层的生产方法 |
BR112019013259A2 (pt) * | 2017-01-10 | 2019-12-24 | Nippon Steel Corp | núcleo enrolado e método para sua fabricação |
EP3822386A4 (en) * | 2018-07-13 | 2022-01-19 | Nippon Steel Corporation | GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MAKING THE SAME |
EP3808871A4 (en) * | 2018-09-03 | 2021-08-25 | JFE Steel Corporation | ELECTROMAGNETIC STEEL SHEET ON WHICH IS FIXED AN INSULATING COATING FILM, AND PROCESS FOR PRODUCING IT |
CN109675953B (zh) * | 2018-12-27 | 2021-01-15 | 上海应达风机股份有限公司 | 一种冷弯型钢及其成型工艺 |
US20220336129A1 (en) * | 2019-09-20 | 2022-10-20 | Nippon Steel Corporation | Non-oriented electrical steel sheet |
CN111136851B (zh) * | 2019-12-31 | 2021-10-26 | 九牧厨卫股份有限公司 | 一种高强度耐腐蚀制品及其制备方法 |
JP7176648B2 (ja) * | 2020-06-17 | 2022-11-22 | 日本製鉄株式会社 | 積層コアの製造方法 |
US11447983B1 (en) | 2021-09-23 | 2022-09-20 | George Condorodis | Door and window securing apparatus and method |
US11898376B2 (en) | 2021-09-23 | 2024-02-13 | George Condorodis | Door and window securing apparatus and method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5015013A (ja) | 1973-04-30 | 1975-02-17 | ||
JPS60169567A (ja) | 1983-01-04 | 1985-09-03 | セントロ・スビルツポ・マテリア−リ・エセ・ピ・ア | 金属シ−ト用の打抜き可能な耐熱性コ−テイング |
JPH0336284A (ja) | 1989-06-30 | 1991-02-15 | Sumitomo Metal Ind Ltd | 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法 |
JPH06330338A (ja) | 1993-05-21 | 1994-11-29 | Nippon Steel Corp | 被膜特性の極めて良好な無方向性電磁鋼板の製造方法 |
JPH1180971A (ja) * | 1997-09-01 | 1999-03-26 | Nippon Steel Corp | 被膜特性に優れた絶縁被膜を有する無方向性電磁鋼板及びその製造方法並びにその製造に用いる絶縁被膜形成剤 |
JPH11181577A (ja) * | 1997-12-22 | 1999-07-06 | Nippon Steel Corp | 打抜き性に優れた無方向性電磁鋼板およびその製造方法 |
JP2000129455A (ja) | 1998-10-23 | 2000-05-09 | Nippon Steel Corp | 被膜特性に優れた無方向性電磁鋼板 |
JP2000313967A (ja) | 1999-04-27 | 2000-11-14 | Sumitomo Metal Ind Ltd | 耐食性に優れた表面処理鋼板 |
JP2002069657A (ja) | 2000-09-01 | 2002-03-08 | Nippon Steel Corp | 被膜特性の極めて優れた電磁鋼板とその絶縁被膜形成方法 |
JP2007217758A (ja) | 2006-02-17 | 2007-08-30 | Nippon Steel Corp | 方向性電磁鋼板とその絶縁被膜処理方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5015013B1 (ja) | 1970-08-28 | 1975-06-02 | ||
ES2004805A6 (es) * | 1987-08-14 | 1989-02-01 | Colores Hispania | Procedimiento para fabricar un pigmento anticorrosivo. |
FR2638466B1 (fr) * | 1988-11-03 | 1993-05-07 | Atochem | Procede pour revetir des substrats metalliques a l'aide d'un primaire en poudre et d'un revetement superficiel applique par trempage, compositions de primaire en poudre utilisees et materiaux composites obtenus |
RU94019948A (ru) * | 1991-10-29 | 1996-04-10 | Хенкель Корпорейшн (Us) | Состав для обработки фосфатного покрытия, способ образования защитного покрытия, изделие |
KR0129687B1 (ko) * | 1993-05-21 | 1998-04-16 | 다나까 미노루 | 피막특성이 극히 우수한 절연 피막 처리제 및 이 처리제를 이용한 무방향성 전기강판의 제조방법 |
US5578669A (en) * | 1993-12-24 | 1996-11-26 | Nippon Paint Co., Ltd. | Water-based polyurethane coating composition |
DE19733312A1 (de) * | 1997-08-01 | 1999-02-04 | Herberts Gmbh | Verfahren zur Aufbringung eines schützenden und dekorativen Schichtenverbundes |
TWI221861B (en) * | 1998-04-22 | 2004-10-11 | Toyo Boseki | Agent for treating metallic surface, surface-treated metal material and coated metal material |
CN1087355C (zh) * | 1998-06-23 | 2002-07-10 | 住友金属工业株式会社 | 钢丝材 |
US6383650B1 (en) * | 1998-11-23 | 2002-05-07 | Nippon Steel Corporation | Non-oriented electromagnetic steel sheet having insulating film excellent in film properties |
US6159534A (en) | 1998-11-23 | 2000-12-12 | Nippon Steel Corporation | Method for producing non-oriented electromagnetic steel sheet having insulating film excellent in film properties |
CN100465337C (zh) * | 1998-12-17 | 2009-03-04 | 新日本制铁株式会社 | 非取向型电磁钢板的制备方法及所用的绝缘膜形成剂 |
WO2000071337A1 (en) * | 1999-05-26 | 2000-11-30 | Henkel Corporation | Autodeposition coatings and process therefor |
KR20010100204A (ko) | 2000-03-16 | 2001-11-14 | 이구택 | 절연피막 형성용 피복조성물 및 이를 이용한 무방향성전기강판의 절연피막 형성방법 |
JP3935664B2 (ja) * | 2000-08-01 | 2007-06-27 | 住友金属工業株式会社 | 電磁鋼板の絶縁皮膜形成用処理液と処理方法 |
JP3718638B2 (ja) * | 2001-02-23 | 2005-11-24 | 住友金属工業株式会社 | 絶縁皮膜付き電磁鋼板およびその製造方法。 |
SE0302903L (sv) * | 2003-11-04 | 2005-05-05 | Dieter Neidhardt | Anordning för förstoring av en bild på en bildskärm på en apparat |
JP4907054B2 (ja) * | 2003-12-09 | 2012-03-28 | 中央発條株式会社 | 高耐久性ばねおよびその塗装方法 |
KR100816695B1 (ko) * | 2004-03-19 | 2008-03-27 | 제이에프이 스틸 가부시키가이샤 | 절연 피막을 갖는 전자 강판 |
FR2887558B1 (fr) * | 2005-06-28 | 2007-08-17 | Aubert & Duval Soc Par Actions | Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue |
JP5026414B2 (ja) * | 2006-05-19 | 2012-09-12 | 新日本製鐵株式会社 | 高張力絶縁被膜を有する方向性電磁鋼板及びその絶縁被膜処理方法 |
BRPI0922826B1 (pt) * | 2008-11-27 | 2020-01-07 | Nippon Steel Corporation | Chapa de aço elétrico e método para sua produção |
-
2009
- 2009-11-10 BR BRPI0922826-8A patent/BRPI0922826B1/pt active IP Right Grant
- 2009-11-10 EP EP09828970.5A patent/EP2366810B1/en active Active
- 2009-11-10 KR KR1020117011958A patent/KR101293441B1/ko active IP Right Grant
- 2009-11-10 PL PL09828970T patent/PL2366810T3/pl unknown
- 2009-11-10 JP JP2010540437A patent/JP4831639B2/ja active Active
- 2009-11-10 RU RU2011126142/02A patent/RU2458183C1/ru active
- 2009-11-10 CN CN2009801475683A patent/CN102227515B/zh active Active
- 2009-11-10 US US13/128,302 patent/US9984801B2/en active Active
- 2009-11-10 WO PCT/JP2009/069109 patent/WO2010061722A1/ja active Application Filing
- 2009-11-16 TW TW98138800A patent/TWI398351B/zh active
-
2018
- 2018-04-25 US US15/962,701 patent/US10665372B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5015013A (ja) | 1973-04-30 | 1975-02-17 | ||
JPS60169567A (ja) | 1983-01-04 | 1985-09-03 | セントロ・スビルツポ・マテリア−リ・エセ・ピ・ア | 金属シ−ト用の打抜き可能な耐熱性コ−テイング |
JPH0336284A (ja) | 1989-06-30 | 1991-02-15 | Sumitomo Metal Ind Ltd | 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法 |
JPH06330338A (ja) | 1993-05-21 | 1994-11-29 | Nippon Steel Corp | 被膜特性の極めて良好な無方向性電磁鋼板の製造方法 |
JPH1180971A (ja) * | 1997-09-01 | 1999-03-26 | Nippon Steel Corp | 被膜特性に優れた絶縁被膜を有する無方向性電磁鋼板及びその製造方法並びにその製造に用いる絶縁被膜形成剤 |
JPH11181577A (ja) * | 1997-12-22 | 1999-07-06 | Nippon Steel Corp | 打抜き性に優れた無方向性電磁鋼板およびその製造方法 |
JP2000129455A (ja) | 1998-10-23 | 2000-05-09 | Nippon Steel Corp | 被膜特性に優れた無方向性電磁鋼板 |
JP2000313967A (ja) | 1999-04-27 | 2000-11-14 | Sumitomo Metal Ind Ltd | 耐食性に優れた表面処理鋼板 |
JP2002069657A (ja) | 2000-09-01 | 2002-03-08 | Nippon Steel Corp | 被膜特性の極めて優れた電磁鋼板とその絶縁被膜形成方法 |
JP2007217758A (ja) | 2006-02-17 | 2007-08-30 | Nippon Steel Corp | 方向性電磁鋼板とその絶縁被膜処理方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130115443A1 (en) * | 2010-07-23 | 2013-05-09 | Nippon Steel & Sumitomo Metal Corporation | Electrical steel sheet and method for manufacturing the same |
US11377569B2 (en) * | 2010-07-23 | 2022-07-05 | Nippon Steel Corporation | Electrical steel sheet and method for manufacturing the same |
WO2016136515A1 (ja) * | 2015-02-26 | 2016-09-01 | 新日鐵住金株式会社 | 電磁鋼板、および、電磁鋼板の製造方法 |
JPWO2016136515A1 (ja) * | 2015-02-26 | 2017-11-24 | 新日鐵住金株式会社 | 電磁鋼板、および、電磁鋼板の製造方法 |
US10706998B2 (en) | 2015-02-26 | 2020-07-07 | Nippon Steel Corporation | Electrical steel sheet and method for producing electrical steel sheet |
JP2018518591A (ja) * | 2015-03-24 | 2018-07-12 | フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh | コイルおよび電磁鋼帯または電磁鋼板 |
JP2017201845A (ja) * | 2016-05-02 | 2017-11-09 | 日立ジョンソンコントロールズ空調株式会社 | 永久磁石同期機、及びそれを用いた圧縮機、空調機 |
JP2018090836A (ja) * | 2016-11-30 | 2018-06-14 | 新日鐵住金株式会社 | 無方向性電磁鋼板 |
JPWO2019013348A1 (ja) * | 2017-07-13 | 2020-08-13 | 日本製鉄株式会社 | 方向性電磁鋼板 |
CN113165328A (zh) * | 2018-09-27 | 2021-07-23 | Posco公司 | 电工钢板层叠体 |
CN113165328B (zh) * | 2018-09-27 | 2023-07-07 | 浦项股份有限公司 | 电工钢板层叠体 |
Also Published As
Publication number | Publication date |
---|---|
KR101293441B1 (ko) | 2013-08-05 |
US9984801B2 (en) | 2018-05-29 |
JP4831639B2 (ja) | 2011-12-07 |
US20180240579A1 (en) | 2018-08-23 |
EP2366810A4 (en) | 2017-08-23 |
CN102227515A (zh) | 2011-10-26 |
EP2366810A1 (en) | 2011-09-21 |
JPWO2010061722A1 (ja) | 2012-04-26 |
BRPI0922826B1 (pt) | 2020-01-07 |
TWI398351B (zh) | 2013-06-11 |
RU2458183C1 (ru) | 2012-08-10 |
CN102227515B (zh) | 2013-08-21 |
PL2366810T3 (pl) | 2019-12-31 |
BRPI0922826A2 (pt) | 2015-12-29 |
US10665372B2 (en) | 2020-05-26 |
EP2366810B1 (en) | 2019-08-21 |
KR20110083687A (ko) | 2011-07-20 |
TW201029836A (en) | 2010-08-16 |
US20110212335A1 (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4831639B2 (ja) | 電磁鋼板及びその製造方法 | |
JP4644317B2 (ja) | 絶縁被膜を有する電磁鋼板及びその製造方法 | |
JP6524448B2 (ja) | 電磁鋼板、および、電磁鋼板の製造方法 | |
JP5005844B2 (ja) | 電磁鋼板及びその製造方法 | |
KR101431349B1 (ko) | 전자기 강판 및 그 제조 방법 | |
JP5423465B2 (ja) | 電磁鋼板および電磁鋼板の製造方法 | |
KR20130026475A (ko) | 전자기 강판 및 그 제조 방법 | |
TW200302139A (en) | Method for producing a coated steel sheet | |
JP5471849B2 (ja) | 電磁鋼板およびその製造方法 | |
JP4608600B2 (ja) | 熱伝導性に優れた絶縁被膜を持つ電磁鋼板及びその製造方法 | |
KR20230092809A (ko) | 전기강판용 절연피막 조성물, 이를 포함하는 전기강판, 및 이의 제조 방법 | |
JPH04235287A (ja) | 電磁鋼板の絶縁被膜形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980147568.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009828970 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09828970 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010540437 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3341/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13128302 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117011958 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011126142 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0922826 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110527 |