WO2010061722A1 - 電磁鋼板及びその製造方法 - Google Patents

電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2010061722A1
WO2010061722A1 PCT/JP2009/069109 JP2009069109W WO2010061722A1 WO 2010061722 A1 WO2010061722 A1 WO 2010061722A1 JP 2009069109 W JP2009069109 W JP 2009069109W WO 2010061722 A1 WO2010061722 A1 WO 2010061722A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
metal phosphate
mass
sheet according
Prior art date
Application number
PCT/JP2009/069109
Other languages
English (en)
French (fr)
Inventor
竹田 和年
健司 小菅
達弥 高瀬
藤井 浩康
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US13/128,302 priority Critical patent/US9984801B2/en
Priority to EP09828970.5A priority patent/EP2366810B1/en
Priority to PL09828970T priority patent/PL2366810T3/pl
Priority to JP2010540437A priority patent/JP4831639B2/ja
Priority to KR1020117011958A priority patent/KR101293441B1/ko
Priority to BRPI0922826-8A priority patent/BRPI0922826B1/pt
Priority to CN2009801475683A priority patent/CN102227515B/zh
Publication of WO2010061722A1 publication Critical patent/WO2010061722A1/ja
Priority to US15/962,701 priority patent/US10665372B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the present invention relates to a magnetic steel sheet suitable for an iron core and a method for manufacturing the same.
  • ⁇ ⁇ ⁇ ⁇ Joule heat is generated during the operation of a motor having an iron core including a plurality of electromagnetic steel sheets stacked on each other. Since the motor includes a heat-sensitive portion such as an insulating film covering the copper wire and a terminal of the copper wire, it is desirable that the Joule heat be discharged efficiently.
  • an insulating coating is provided on the surface of the electrical steel sheet. This is mainly to ensure insulation between the laminated electromagnetic steel sheets.
  • An object of the present invention is to provide an electrical steel sheet capable of improving thermal conductivity and a method for manufacturing the same.
  • An electrical steel sheet according to the present invention has a steel strip for electrical steel sheet, and an insulating film formed on a surface of the steel strip and containing a metal phosphate and an organic resin, and at least the metal phosphate Some have at least one crystal structure selected from the group consisting of cubic, tetragonal, hexagonal, and orthorhombic, and the organic resin has carboxyl groups or 1 part by mass to 50 parts by mass of at least one selected from the group consisting of an acrylic resin, an epoxy resin, and a polyester resin having a hydroxyl group with respect to 100 parts by mass of the metal phosphate.
  • FIG. 1 is a cross-sectional view showing the structure of an electrical steel sheet according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing the structure of an electrical steel sheet according to an embodiment of the present invention.
  • insulating films 2 are formed on both surfaces of a steel strip 1 for an electromagnetic steel sheet.
  • Steel strip 1 is a steel strip for non-oriented electrical steel sheets, for example. Moreover, it is preferable that the steel strip 1 contains Si: 0.1 mass% or more and Al: 0.05 mass% or more, for example. Note that the higher the Si content, the greater the electrical resistance and the magnetic properties, while the brittleness increases. For this reason, it is preferable that Si content is less than 4.0%. Also, the higher the Al content, the better the magnetic properties, but on the other hand, the rollability is lowered. For this reason, the Al content is preferably less than 3.0%. The steel strip 1 may contain about 0.01% by mass to 1.0% by mass of Mn. The contents of S, N, and C in the steel strip 1 are all preferably less than 100 ppm, for example, and more preferably less than 20 ppm.
  • the insulating film 2 contains a metal phosphate and an organic resin. Further, the insulating film 2 does not contain chromic acid. At least a part of the metal phosphate is crystallized, and the crystal structure of this part is at least one of cubic, tetragonal, hexagonal, and orthorhombic. That is, at least a part of the metal phosphate has at least one crystal structure selected from the group consisting of cubic, tetragonal, hexagonal, and orthorhombic.
  • the hexagonal system includes a trigonal system.
  • the organic resin contains 1 to 50 parts by mass of acrylic resin, epoxy resin, or polyester resin having a carboxyl group or a hydroxyl group on the surface of the emulsion particles with respect to 100 parts by mass of the metal phosphate.
  • the organic resin may contain 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the metal phosphate of two or three kinds of these three kinds of resins or a mixture or copolymer.
  • the metal phosphate is obtained, for example, by drying an aqueous solution (metal phosphate solution) containing phosphoric acid and metal ions.
  • aqueous solution metal phosphate solution
  • phosphoric acid is not specifically limited, For example, orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, etc. are preferable.
  • metal ion is not particularly limited, for example, light metals such as Li, Al, Mg, Ca, Sr, and Ti are preferable. In particular, Al and Ca are preferable.
  • As the phosphoric acid metal salt solution it is preferable to use, for example, a mixture of orthophosphoric acid and metal ion oxide, carbonate, and / or hydroxide.
  • the metal phosphate is crystallized, and it is not necessary that the entire metal phosphate is crystallized.
  • cubic and orthorhombic systems are preferred.
  • Mineralogically preferred are crystal structures belonging to the berlinite structure, tridymite structure, and cristobalite structure. This is because higher thermal conductivity can be obtained.
  • a carboxyl group or a hydroxyl group is present on the surface of the organic resin emulsion particles contained in the insulating film 2, but the method for synthesizing such an organic resin is not particularly limited.
  • a graft polymerization method can be used.
  • a monomer having a predetermined functional group (carboxyl group or hydroxyl group) is bonded to a side chain that does not participate in the copolymerization reaction of the acrylic resin, epoxy resin, or polyester resin raw material, the acrylic resin as described above is used.
  • Resin, epoxy resin, or polyester resin can be synthesized by a copolymerization reaction.
  • the molecular structure of the acrylic resin, epoxy resin, or polyester resin synthesized in this manner is, for example, linear or network-like.
  • the acrylic resin as described above can be synthesized, for example, by copolymerizing a normal monomer having no carboxyl group and a hydroxyl group and a monomer having a carboxyl group or a hydroxyl group.
  • Typical monomers include, for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, n-octyl acrylate, i-octyl acrylate, 2-ethylhexyl acrylate, n-nonyl acrylate, n-decyl acrylate, and and n-dodecyl acrylate.
  • Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, citraconic acid, and cinnamic acid.
  • Examples of the monomer having a hydroxyl group include 2-hydroxylethyl (meth) acrylate, 2-hydroxylpropyl (meth) acrylate, 3-hydroxylpropyl (meth) acrylate, 3-hydroxylbutyl (meth) acrylate, 4-hydroxyl Examples include butyl (meth) acrylate, 2-hydroxylethyl (meth) allyl ether, and allyl alcohol.
  • the epoxy resin as described above can be synthesized, for example, by reacting carboxylic anhydride with an epoxy resin modified with an amine (amine-modified epoxy resin).
  • the epoxy resin include bisphenol A-diglycidyl ether, caprolactone ring-opening adduct of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether, bisphenol S-diglycidyl ether, novolac glycidyl ether, glycidyl hexahydrophthalate
  • Examples include esters, dimer acid glycidyl ether, tetraglycidylaminodiphenylmethane, 3,4-epoxy-6-methylcyclohexylmethyl carboxylate, and polypropylene glycidyl ether.
  • Examples of amines that modify the epoxy resin include isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine, diethylenetriamine, ethylenediamine, butalamine, propylamine, isophoronediamine, tetrahydrofurfurylamine, xylenediamine, diaminediphenylmethane, and diaminosulfone.
  • Examples of the carboxylic anhydride include succinic anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, phthalic anhydride, and trimellitic anhydride.
  • the polyester resin as described above can be synthesized, for example, by copolymerizing dicarboxylic acid and glycol to obtain a copolymer polyester resin, and then graft-polymerizing a predetermined monomer to the copolymer polyester resin.
  • dicarboxylic acid examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, 1,4-cyclohexanedicarboxylic acid , Fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, and tetrahydrophthalic anhydride.
  • glycol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyldiol 1,6-hexanediol, 1,9 -Nonanediol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol and the like.
  • Examples of the monomer that is graft-polymerized to the copolyester resin include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, itaconic anhydride, and methacrylic anhydride. .
  • the particle diameter of the organic resin emulsion particles is not particularly limited, but the median average particle diameter measured by a laser light scattering method is preferably 0.2 ⁇ m to 0.6 ⁇ m, for example.
  • the entire organic resin in the insulating film 2 does not have to be an acrylic resin, an epoxy resin, or a polyester resin having a carboxyl group or a hydroxyl group.
  • a resin having no carboxyl group and a hydroxyl group is used as the organic resin. It may be included.
  • the ratio of the acrylic resin, epoxy resin, or polyester resin having a carboxyl group or a hydroxyl group to the total amount of the organic resin is preferably 30% by mass or more, and more preferably 70% by mass or more.
  • the content of the organic resin is 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the metal phosphate. This is because if the content of the organic resin is less than 1 part by mass, the insulating film 2 may powder, and if it exceeds 50 parts by mass, the adhesiveness after strain relief annealing may deteriorate. It is.
  • the crystal structure has a high density of cubic, tetragonal, hexagonal or orthorhombic metal phosphate.
  • the wettability with the metal phosphate is good because carboxyl groups or hydroxyl groups are present on the surface of the emulsion particles of the organic resin. That is, as will be described later, when the insulating film 2 is formed, the coating film of the insulating film 2 is dried, so that the organic resin undergoes thermal expansion or contraction. At this time, there is a gap between the metal phosphate and the metal resin.
  • One of the reasons is that it is difficult to occur and high adhesion is ensured.
  • the insulating film 2 is preferably an organic film.
  • a steel strip 1 for an electromagnetic steel sheet is produced.
  • a slab having a predetermined component is hot-rolled, and a hot-rolled steel sheet obtained by hot rolling is wound into a coil shape.
  • cold rolling of the hot rolled steel sheet is performed to obtain a cold rolled steel sheet.
  • the thickness of the cold rolled steel sheet is, for example, about 0.15 mm to 0.5 mm.
  • annealing is performed. Note that annealing may be performed at about 800 ° C. to 1050 ° C. between hot rolling and cold rolling.
  • the surface roughness of the steel strip is low. This is because good adhesion can be obtained when the magnetic steel sheets are laminated.
  • the center line average roughness Ra in both the rolling direction and the direction orthogonal to the rolling direction is preferably 1.0 ⁇ m or less, and more preferably 0.5 ⁇ m or less. If the average roughness Ra exceeds 1.0 ⁇ m, good adhesion may not be obtained and high thermal conductivity may not be obtained. Note that if the average roughness Ra is less than 0.1 ⁇ m, the cost is likely to increase remarkably. This is because it is necessary to extremely smooth the surface of the cold rolling roll, and high cost is required for this smoothing.
  • the raw material for the insulating film 2 is produced.
  • a solution of a mixture of the above-mentioned metal phosphate and organic resin is produced, and a polyhydric alcohol compound is added to this solution.
  • a polyhydric alcohol compound is a low molecular organic compound having two or more hydroxyl groups. Examples of the polyhydric alcohol compound include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, 1,6-hexanediol, glycerin, polyprene glycol, and sucrose.
  • the ratio of organic resin shall be 1 mass part thru
  • the amount of the polyhydric alcohol compound added is preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the metal phosphate.
  • the addition amount of the polyhydric alcohol compound is less than 1 part by mass, the effect associated with the addition is hardly exhibited, and when it exceeds 20 parts by mass, the temperature range in which the coating film for forming the insulating film 2 can be dried is This is because it becomes narrower.
  • a nucleating agent to a solution of a mixture of a metal phosphate and an organic resin.
  • the nucleating agent include oxide nucleating agents such as talc, magnesium oxide, and titanium oxide, and sulfate nucleating agents such as barium sulfate.
  • the size of the nucleating agent is not particularly limited, but the median average particle diameter measured by a laser light scattering method is preferably 0.1 ⁇ m to 2 ⁇ m, for example.
  • the nucleating agent is preferably hardly soluble.
  • the metal phosphate can be crystallized at a lower baking temperature than when no nucleating agent is added. Also, under a common baking temperature, the crystal structure tends to be cubic and high thermal conductivity is easily obtained as compared with the case where no nucleating agent is added.
  • the addition amount of the nucleating agent is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the metal phosphate. This is because if the addition amount of the nucleating agent is less than 0.1 parts by mass, the effects associated with the addition are difficult to develop, and if it exceeds 5 parts by mass, powdering is likely to occur during punching.
  • a treatment liquid containing a mixture solution and a polyhydric alcohol compound, to which a nucleating agent is added as necessary, is prepared.
  • the treatment liquid does not contain chromic acid.
  • the coating amount of the treatment liquid is not particularly limited, but is preferably 0.5 g / m 2 to 4.0 g / m 2 . This is because when the coating amount is less than 0.5 g / m 2 , the crystallization of the metal phosphate salt is easy to proceed, so that the control of the crystallization rate is difficult, and when it exceeds 4.0 g / m 2 , This is because the tendency for the adhesiveness to decrease becomes remarkable.
  • the coating film is baked. That is, the coating film is heated and dried.
  • the heating rate at this time is, for example, 25 ° C./second to 65 ° C./second.
  • the heating rate is less than 25 ° C./second, the productivity is low, and when it exceeds 65 ° C./second, the crystal structure of the metal phosphate is cubic, tetragonal, hexagonal, and orthorhombic. It is because it is difficult to become a system.
  • the baking temperature (holding temperature) is, for example, 200 ° C. to 360 ° C.
  • the baking temperature is less than 200 ° C.
  • the polymerization reaction of the metal phosphate is difficult to proceed, so that the water resistance is low, and when it exceeds 360 ° C., the organic resin may be oxidized, and the productivity is high. This is because it becomes lower.
  • the lower limit of the baking temperature is preferably 210 ° C, and more preferably 230 ° C. This is because the crystal structure of the metal phosphate is more likely to be cubic, tetragonal, hexagonal, and orthorhombic.
  • the holding time at the baking temperature is, for example, 10 seconds to 30 seconds.
  • the retention time is less than 10 seconds, the crystal structure of the metal phosphate is not easily cubic, tetragonal, hexagonal, and orthorhombic, and if it exceeds 30 seconds, the productivity is low. Because.
  • the cooling rate is, for example, 20 ° C./second to 85 ° C./second up to 100 ° C. When the cooling rate is less than 20 ° C./second, the productivity is low, and when it exceeds 85 ° C./second, the metal phosphate is difficult to crystallize and is likely to be amorphous, so that it is difficult to obtain good thermal conductivity. Because.
  • the method for applying the treatment liquid to the surface of the steel strip is not particularly limited.
  • the treatment liquid may be applied using a roll coater, the treatment liquid may be applied using a spray, or the steel strip may be immersed in the treatment liquid.
  • the method for baking the coating film is not particularly limited.
  • baking may be performed using a radiation furnace, or baking may be performed using an electric furnace such as an induction heating furnace. Baking using an induction heating furnace is preferable from the viewpoint of accuracy in controlling the heating rate.
  • surfactant etc. to a process liquid further.
  • a nonionic surfactant is preferable.
  • a brightener or the like may be added.
  • aqueous solutions of eight types of phosphates (phosphate metal salts) shown in Table 1 were prepared.
  • phosphate no. Nucleating agents were added to 1, 4 and 6.
  • Talc having an average particle size of 1.0 ⁇ m was used, and barium sulfate having an average particle size of 0.5 ⁇ m was used.
  • a mixture of substances shown in Table 1 was diffused in water.
  • the concentration of the aqueous phosphate solution was 40% by mass.
  • the solubility of manganese phosphate (phosphate No. 7) and iron phosphate (phosphate No. 8) is low. Therefore, in preparing these aqueous solutions, orthophosphoric acid was mixed by about 5% by mass more than the amount of phosphoric acid determined from the stoichiometric ratio, so that the pH of the aqueous solution was 5 or less.
  • the 30 mass% emulsion solution or 30 mass% dispersion solution of the 7 types of organic resin shown below was produced.
  • a 30% by mass dispersion solution was prepared by forced stirring.
  • the average particle diameter of each organic resin is a median average particle diameter measured by a laser light scattering method.
  • Acrylic resin-2 (average particle size: 0.22 ⁇ m) Fumaric acid (15% by mass) as a monomer having a carboxyl group, and methyl acrylate (30% by mass), butyl acrylate (35% by mass), and styrene monomer (20% by mass) as ordinary monomers are copolymerized, An acrylic resin having a carboxyl group was prepared.
  • Epoxy resin (average particle size: 0.15 ⁇ m) A bisphenol A epoxy resin was modified with monoethanolamine to prepare an amine-modified epoxy resin, and then succinic anhydride was grafted onto the amine-modified epoxy resin to prepare an epoxy resin having a carboxyl group.
  • Polyester resin (average particle size: 0.10 ⁇ m) A copolymer polyester resin was prepared by copolymerizing dimethyl terephthalate (40% by mass) and neopentyl glycol (40% by mass), and then fumaric acid (10% by mass) and trimellitic anhydride (10% by mass) were prepared. %) was graft polymerized to prepare a polyester resin having a carboxyl group.
  • Acrylic resin-3 (average particle size: 0.20 ⁇ m) Methyl acrylate (50% by mass), styrene monomer (20% by mass), and butyl acrylate (30% by mass) were copolymerized to prepare an acrylic resin having no carboxyl group and no hydroxyl group.
  • the thermal conductivity, space factor, adhesion, corrosion resistance, appearance, crystal system, and crystallinity of the obtained non-oriented electrical steel sheet were evaluated.
  • thermal conductivity 50 30 mm square samples were cut out from each non-oriented electrical steel sheet and laminated. Next, the periphery of the laminate was surrounded by a heat insulating material, and pressure-adhered with a pressure of 200 N / cm 2 (20 kgf / cm 2 ) on a heating element at 200 ° C. And the temperature of the sample located in the uppermost part of a laminated body was measured. This temperature increased toward 200 ° C. over time, but after about 60 minutes, it was saturated at a temperature less than 200 ° C. The difference between the temperature at this time and the temperature of the heating element (200 ° C.) was determined. This temperature difference is shown in Table 3. It can be said that the smaller the temperature difference, the higher the thermal conductivity.
  • the space factor was measured according to JIS C 2550. The results are also shown in Table 3.
  • each non-oriented electrical steel sheet was subjected to strain relief annealing in a nitrogen atmosphere at 750 ° C. for 2 hours.
  • an adhesive tape was attached to each non-oriented electrical steel sheet sample, and this was wound around a metal rod having diameters of 10 mm, 20 mm, and 30 mm. Thereafter, the adhesive tape was peeled off from each sample, and the degree of peeling of the insulating film was observed.
  • a sample in which the insulating film was not peeled off even when wound around a metal rod having a diameter of 10 mm was evaluated as “10 mm ⁇ OK”.
  • Corrosion resistance was evaluated according to the salt spray test of JIS Z 2371. That is, for each sample of the non-oriented electrical steel sheet, a 10-point evaluation was performed 7 hours after the spraying of salt water. The case where rust was not generated was designated as “10 points”, and the case where rust was extremely small (the area ratio of the portion where rust was produced was 0.1% or less) was designated as “9 points”.
  • Example No. belonging to the scope of the present invention Example No. belonging to the scope of the present invention. 1-No. In No. 11, good thermal conductivity was obtained, and the space factor, adhesion, corrosion resistance, and appearance were also good. On the other hand, Comparative Example No. deviating from the scope of the present invention. 12-No. In No. 24, no cubic, tetragonal, hexagonal, or orthorhombic crystal structures existed, and good thermal conductivity could not be obtained. In addition, adhesion, space factor, corrosion resistance, and appearance may not be good.
  • the present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

 電磁鋼板には、電磁鋼板用の鋼帯(1)と、鋼帯(1)の表面に形成され、リン酸金属塩及び有機樹脂を含有する絶縁膜(2)と、が設けられている。前記リン酸金属塩の少なくとも一部は、立方晶系、正方晶系、六方晶系、及び斜方晶系からなる群から選択された少なくとも1種の結晶構造を備えている。前記有機樹脂は、エマルジョン粒子の表面にカルボキシル基又は水酸基を有する、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂からなる群から選択された少なくとも1種を、前記リン酸金属塩100質量部に対して1質量部乃至50質量部含んでいる。

Description

電磁鋼板及びその製造方法
 本発明は、鉄芯に好適な電磁鋼板及びその製造方法に関する。
 互いに積層された複数の電磁鋼板を含む鉄芯を備えたモータの動作時には、ジュール熱が発生する。モータには、銅線を覆う絶縁膜、銅線の端子等の熱に弱い部分が含まれているため、ジュール熱は効率的に放出することが望ましい。
 その一方で、一般的に、電磁鋼板の表面には、絶縁被膜が設けられている。これは、主に、積層された電磁鋼板同士の絶縁性を確保するためである。
 しかしながら、従来の絶縁被膜の熱伝導率は金属の熱伝導率よりも著しく低い。このため、互いに積層された複数の電磁鋼板を含む鉄芯では、電磁鋼板の積層方向に熱が伝わりにくい。そして、近時、モータの形状の多様化等に伴って、このような積層方向への熱の伝わりにくさが問題視されるようになってきている。
特公昭50-15013号公報 特開平03-36284号公報 特開平06-330338号公報 特開2000-129455号公報 特開2002-69657号公報 特開2000-313967号公報 特開2007-217758号公報 特開昭60-169567号公報
 本発明は、熱伝導性を向上することができる電磁鋼板及びその製造方法を提供することを目的とする。
 本発明に係る電磁鋼板は、電磁鋼板用の鋼帯と、前記鋼帯の表面に形成され、リン酸金属塩及び有機樹脂を含有する絶縁膜と、を有し、前記リン酸金属塩の少なくとも一部は、立方晶系、正方晶系、六方晶系、及び斜方晶系からなる群から選択された少なくとも1種の結晶構造を備え、前記有機樹脂は、エマルジョン粒子の表面にカルボキシル基又は水酸基を有する、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂からなる群から選択された少なくとも1種を、前記リン酸金属塩100質量部に対して1質量部乃至50質量部含んでいることを特徴とする。
 本発明によれば、適切な絶縁膜が設けられているため、高い熱伝導性を得ることができる。
図1は、本発明の実施形態に係る電磁鋼板の構造を示す断面図である。
 以下、本発明の実施形態について詳細に説明する。図1は、本発明の実施形態に係る電磁鋼板の構造を示す断面図である。本実施形態では、図1に示すように、電磁鋼板用の鋼帯1の両表面に絶縁膜2が形成されている。
 鋼帯1は、例えば無方向性電磁鋼板用の鋼帯である。また、鋼帯1は、例えばSi:0.1質量%以上、及びAl:0.05質量%以上含有していることが好ましい。なお、Siの含有量が高いほど、電気抵抗が大きくなって磁気特性が向上するが、その一方で、脆性が増大する。このため、Si含有量は4.0%未満であることが好ましい。また、Alの含有量が高いほど、磁気特性が向上するが、その一方で、圧延性が低下する。このため、Al含有量は3.0%未満であることが好ましい。鋼帯1に、0.01質量%~1.0質量%程度のMnが含有されていてもよい。鋼帯1中のS、N及びCの含有量は、いずれも、例えば100ppm未満であることが好ましく、20ppm未満であることがより好ましい。
 絶縁膜2は、リン酸金属塩及び有機樹脂を含有している。また、絶縁膜2には、クロム酸が含有されていない。リン酸金属塩の少なくとも一部は結晶化しており、この部分の結晶構造は、立方晶系、正方晶系、六方晶系、及び斜方晶系のうちの少なくとも1種である。つまり、リン酸金属塩の少なくとも一部は、立方晶系、正方晶系、六方晶系、及び斜方晶系からなる群から選択された少なくとも1種の結晶構造を備えている。六方晶系には、三方晶系が含まれる。有機樹脂は、エマルジョン粒子の表面にカルボキシル基又は水酸基を有する、アクリル系樹脂、エポキシ系樹脂、又はポリエステル樹脂を、リン酸金属塩100質量部に対して1質量部乃至50質量部含んでいる。有機樹脂が、これら3種類の樹脂のうちの2種類又は3種類の混合物又は共重合物を、リン酸金属塩100質量部に対して1質量部乃至50質量部含んでいてもよい。
 リン酸金属塩は、例えば、リン酸及び金属イオンを含有する水溶液(リン酸金属溶液)を乾燥させることにより、得られる。リン酸の種類は特に限定されないが、例えば、オルトリン酸、メタリン酸、及びポリリン酸等が好ましい。金属イオンの種類も特に限定されないが、例えば、Li、Al、Mg、Ca、Sr、及びTi等の軽金属が好ましい。特に、Al及びCaが好ましい。リン酸金属塩溶液としては、例えば、オルトリン酸に金属イオンの酸化物、炭酸塩、及び/又は水酸化物等を混合したものを用いることが好ましい。
 リン酸金属塩の少なくとも一部が結晶化していればよく、リン酸金属塩の全部が結晶化している必要はない。但し、リン酸金属塩の20質量%以上が結晶化して、その部分の結晶構造が立方晶系、正方晶系、六方晶系及び斜方晶系の少なくとも1種になっていることが好ましく、リン酸金属塩の50質量%以上の部分が上記の結晶構造になっていることがより好ましく、リン酸金属塩の60質量%以上の部分が上記の結晶構造になっていることが更に好ましい。なお、上記の4種類の結晶構造のうち、立方晶系及び斜方晶系が好ましく、鉱物学的にはベルリナイト構造、トリディマイト構造、及びクリストバライト構造に属する結晶構造が好ましい。より高い熱伝導性が得られるからである。
 上述のように、絶縁膜2に含まれる有機樹脂のエマルジョン粒子の表面にはカルボキシル基又は水酸基が存在するが、このような有機樹脂を合成する方法は特に限定されない。例えば、グラフト重合法を用いることができる。つまり、所定の官能基(カルボキシル基又は水酸基)を有するモノマーを、アクリル系樹脂、エポキシ系樹脂、又はポリエステル樹脂の原料の共重合反応に関与しない側鎖に結合させれば、上述のようなアクリル系樹脂、エポキシ系樹脂、又はポリエステル樹脂を共重合反応によって合成することができる。このようにして合成されたアクリル系樹脂、エポキシ系樹脂、又はポリエステル樹脂の分子構造は、例えば線状又は網目状となる。なお、所定の官能基として、後処理によりカルボキシル基又は水酸基となる官能基を用いてもよい。
 上述のようなアクリル系樹脂は、例えばカルボキシル基及び水酸基を持たない通常のモノマーと、カルボキシル基又は水酸基を持つモノマーとを共重合させることにより合成することができる。通常のモノマーとしては、例えば、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、n-オクチルアクリレート、i-オクチルアクリレート、2-エチルヘキシルアクリレート、n-ノニルアクリレート、n-デシルアクリレート、及びn-ドデシルアクリレート等が挙げられる。カルボキシル基を持つモノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、及び桂皮酸が挙げられる。水酸基を持つモノマーとしては、例えば、2-ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシルプロピル(メタ)アクリレート、3-ヒロドキシルプロピル(メタ)アクリレート、3-ヒロドキシルブチル(メタ)アクリレート、4-ヒドロキシルブチル(メタ)アクリレート、2-ヒドロキシルエチル(メタ)アリルエーテル、及びアリルアルコール等が挙げられる。
 上述のようなエポキシ系樹脂は、例えば、アミンで変性したエポキシ樹脂(アミン変性エポキシ樹脂)に無水カルボン酸を反応させることにより合成することができる。エポキシ樹脂としては、例えば、ビスフェノールA-ジグリシジルエーテル、ビスフェノールA-ジグリシジルエーテルのカプロラクトン開環付加物、ビスフェノールF-ジグリシジルエーテル、ビスフェノールS-ジグリシジルエーテル、ノボラックグリシジルエーテル、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエーテル、テトラグリシジルアミノジフェニルメタン、3,4-エポキシ-6-メチルシクロヘキシルメチルカルボキシレート、及びポリプロピレングリシジルエーテル等が挙げられる。エポキシ樹脂を変性するアミンとしては、例えば、イソプロパノールアミン、モノプロパノールアミン、モノブタノールアミン、モノエタノールアミン、ジエチレントリアミン、エチレンジアミン、ブタルアミン、プロピルアミン、イソホロンジアミン、テトラヒドロフルフリルアミン、キシレンジアミン、ジアミンジフェニルメタン、ジアミノスルホン、オクチルアミン、メタフェニレンジアミン、アミルアミン、ヘキシルアミン、ノニルアミン、デシルアミン、トリエチレンテトラミン、テトラメチレンペンタミン、及びジアミノジフェニルスルホン等が挙げられる。無水カルボン酸としては、例えば、無水コハク酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸、及び無水トリメリット酸等が挙げられる。
 上述のようなポリエステル系樹脂は、例えば、ジカルボン酸及びグルコールを共重合させて共重合ポリエステル樹脂を得た後、共重合ポリエステル樹脂に所定のモノマーをグラフト重合させることにより合成することができる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、1,4-シクロヘキサンジカルボン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸、及びテトラヒドロ無水フタル酸等が挙げられる。グリコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルジオール1,6-ヘキサンジオール、1,9-ノナンジオール、1,4-シクロヘキサンジメタノ-ル、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、及びポリエチレングリコール等が挙げられる。共重合ポリエステル樹脂にグラフト重合させるモノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、マレイン酸無水物、イタコン酸無水物、及びメタクリル酸無水物が挙げられる。
 なお、有機樹脂のエマルジョン粒子の粒径は特に限定されないが、レーザ光散乱法で測定したメジアン平均粒径が例えば0.2μm~0.6μmであることが好ましい。
 また、絶縁膜2中の有機樹脂の全体が、カルボキシル基又は水酸基を有するアクリル系樹脂、エポキシ系樹脂、又はポリエステル樹脂である必要はなく、例えば、カルボキシル基及び水酸基を有しない樹脂が有機樹脂に含まれていてもよい。但し、有機樹脂の総量に対するカルボキシル基又は水酸基を有するアクリル系樹脂、エポキシ系樹脂、又はポリエステル樹脂の割合は、30質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 上述のように、有機樹脂の含有量は、リン酸金属塩100質量部に対して1質量部~50質量部である。これは、有機樹脂の含有量が1質量部未満では、絶縁膜2が発粉する可能性があり、50質量を超えていると、歪取り焼鈍後の密着性が劣化する可能性があるからである。
 このように構成された電磁鋼板では、良好な熱伝導性を得ることができる。この理由は明らかではないが、結晶構造が立方晶系、正方晶系、六方晶系又は斜方晶系のリン酸金属塩の密度が高いことが理由の一つであると考えられる。また、有機樹脂のエマルジョン粒子の表面にカルボキシル基又は水酸基が存在しているため、リン酸金属塩との濡れ性が良好であることも理由の一つであると考えられる。つまり、後述のように、絶縁膜2の形成時には、絶縁膜2の塗膜を乾燥させるため、有機樹脂に熱膨張又は熱収縮が生じるが、この際にリン酸金属塩との間に隙間が生じにくく、高い密着性が確保されることが理由の一つであると考えられる。
 なお、絶縁膜2として無機膜を用いるには、高温度での焼き付けが必要であり、生産性が低いため、絶縁膜2は有機膜であることが好ましい。
 次に、本発明の実施形態に係る電磁鋼板を製造する方法について説明する。
 先ず、電磁鋼板用の鋼帯1を作製する。この鋼帯の作製では、例えば、所定の成分のスラブの熱間圧延を行い、熱間圧延により得られる熱延鋼板をコイル状に巻き取る。次いで、熱延鋼板の冷間圧延を行い、冷延鋼板を得る。冷延鋼板の厚さは、例えば0.15mm~0.5mm程度とする。その後、焼鈍を行う。なお、熱間圧延と冷間圧延との間に、800℃~1050℃程度で焼鈍を行ってもよい。
 なお、鋼帯の表面粗度は低いことが好ましい。電磁鋼板の積層時に良好な密着性が得られるからである。具体的には、圧延方向、及び圧延方向に直交する方向の両方向における中心線平均粗さRaが1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。平均粗さRaが1.0μmを超えていると、良好な密着性が得られず、高い熱伝導性がえられないことがある。なお、平均粗さRaを0.1μm未満とするとコストが著しく上昇しやすい。これは、冷間圧延ロールの表面を極度に平滑化させる必要があり、この平滑化に高コストが必要とされるからである。
 また、絶縁膜2の原料を作製する。この原料の作製では、上述のリン酸金属塩及び有機樹脂の混合物の溶液を作製し、この溶液に、多価アルコール化合物を添加する。多価アルコール化合物とは、水酸基を2以上有する低分子有機化合物である。多価アルコール化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、1,6-ヘキサンジオール、グリセリン、ポリプレングリコース、及びスクロース等が挙げられる。なお、有機樹脂の割合は、樹脂固形分に換算して、リン酸金属塩100質量部に対して1質量部乃至50質量部とする。
 多価アルコール化合物の添加量は、リン酸金属塩100質量部に対し、1質量部~20質量部とすることが好ましい。多価アルコール化合物の添加量が1質量部未満では、添加に伴う効果が発現しにくく、20質量部を超えていると、絶縁膜2の形成のための塗膜の乾燥が可能な温度範囲が狭くなるからである。
 更に、リン酸金属塩及び有機樹脂の混合物の溶液に核化剤を添加することが好ましい。核化剤としては、例えば、タルク、酸化マグネシウム、及び酸化チタン等の酸化物系核化剤、並びに硫酸バリウム等の硫酸塩系核化剤等が挙げられる。核化剤の大きさは特に限定されないが、レーザ光散乱法で測定したメジアン平均粒径が例えば0.1μm~2μmであることが好ましい。また、核化剤は難溶性であることが好ましい。
 核化剤の添加により、リン酸金属塩が結晶化しやすくなるため、核化剤が添加されていない場合と比較して、低い焼き付け温度でリン酸金属塩を結晶化させることができる。また、共通の焼き付け温度下では、核化剤が添加されていない場合と比較して、結晶構造が立方晶系になりやすく、高い熱伝導性を得やすい。
 核化剤の添加量は、リン酸金属塩100質量部に対し、0.1質量部~5質量部とすることが好ましい。核化剤の添加量が0.1質量部未満では、添加に伴う効果が発現しにくく、5質量部を超えていると、打ち抜き加工時に発粉が生じやすいからである。
 このようにして、混合物の溶液及び多価アルコール化合物を含有し、必要に応じて核化剤が添加された処理液が作製される。処理液は、クロム酸を含有しない。
 そして、鋼帯及び処理液を作製した後には、鋼帯の表面に処理液の塗膜を形成する。処理液の塗布量は特に限定されないが、0.5g/m~4.0g/mとすることが好ましい。これは、塗布量が0.5g/m未満では、リン酸金属塩の結晶化が進みやすいために結晶化率の制御が難しく、4.0g/m超えていると、電磁鋼板同士の密着性が低下する傾向が顕著になるためである。
 塗膜の形成後には、塗膜の焼き付けを行う。つまり、塗膜を加熱し、乾燥させる。このときの加熱速度は、例えば、25℃/秒~65℃/秒とする。加熱速度が25℃/秒未満では、生産性が低くなり、65℃/秒を超えていると、リン酸金属塩の結晶構造が立方晶系、正方晶系、六方晶系、及び斜方晶系になりにくいためである。焼き付け温度(保持温度)は、例えば、200℃~360℃とする。焼き付け温度が200℃未満では、リン酸金属塩の重合反応が進行しにくいために耐水性等が低く、360℃を超えていると、有機樹脂が酸化する可能性があり、また、生産性が低くなるためである。また、焼き付け温度の下限は210℃とすることが好ましく、230℃とすることがより一層好ましい。リン酸金属塩の結晶構造がより一層立方晶系、正方晶系、六方晶系、及び斜方晶系になりやすくなるためである。焼き付け温度での保持時間は、例えば、10秒間~30秒間とする。保持時間が10秒間未満では、リン酸金属塩の結晶構造が立方晶系、正方晶系、六方晶系、及び斜方晶系になりにくく、30秒間を超えていると、生産性が低くなるためである。冷却速度は、例えば、100℃まで20℃/秒~85℃/秒とする。冷却速度が20℃/秒未満では、生産性が低くなり、85℃/秒を超えていると、リン酸金属塩が結晶化しにくく非晶質になりやすいために良好な熱伝導性を得にくいためである。
 処理液の鋼帯の表面への塗布方法は特に限定されない。例えば、ロールコータを用いて処理液を塗布してもよく、スプレーを用いて処理液を塗布してもよく、処理液中に鋼帯を浸漬してもよい。
 塗膜の焼き付けの方法も特に限定されない。例えば、輻射炉を用いて焼き付けを行ってもよく、誘導加熱炉等の電気炉を用いて焼き付けを行ってもよい。加熱速度の制御の精度の面から、誘導加熱炉を用いた焼き付けが好ましい。
 なお、処理液に、更に、界面活性剤等を添加してもよい。界面活性剤としては、非イオン系界面活性剤が好ましい。他に、光沢剤等を添加してもよい。
 次に、本願発明者らが行った実験について説明する。
 この実験では、Si:2.5%、Al:0.5%、及びMn:0.05%を含有し、厚さが0.35mmの無方向性電磁鋼板用の鋼帯を作製した。
 また、表1に示す8種類のリン酸塩(リン酸金属塩)の水溶液を作製した。なお、表1に示すように、リン酸塩No.1、4及び6には核化剤を添加した。タルクとしては平均粒径が1.0μmのものを用い、硫酸バリウムとしては平均粒径が0.5μmのものを用いた。リン酸塩水溶液の作製に当たっては、表1に示す物質の混合物を水中で拡散した。リン酸塩水溶液の濃度は40質量%とした。なお、リン酸マンガン(リン酸塩No.7)及びリン酸鉄(リン酸塩No.8)の溶解度は低い。このため、これらの水溶液の作製に当たっては、オルトリン酸を、化学量論比から決まるリン酸の量よりも約5質量%多めに混合して水溶液のpHを5以下にした。
[規則26に基づく補充 15.01.2010] 
Figure WO-DOC-TABLE-1
 また、以下に示す7種類の有機樹脂の30質量%エマルジョン溶液又は30質量%ディスパージョン溶液を作製した。30質量%ディスパージョン溶液は強制撹拌により作製した。なお、各有機樹脂の平均粒径は、レーザ光散乱法で測定したメジアン平均粒径である。
 (1)アクリル系樹脂-1(平均粒径:0.35μm)
 水酸基を有するモノマーとしての2-ヒドロキシエチル(メタ)アクリレート(10質量%)、並びに通常のモノマーとしてのスチレンモノマー(30質量%)、メチルメタクリレート(50質量%)、及びメチルアクリレート(10質量%)を共重合させ、水酸基を有するアクリル系樹脂を作製した。
 (2)アクリル系樹脂-2(平均粒径:0.22μm)
 カルボキシル基を有するモノマーとしてのフマル酸(15質量%)、並びに通常のモノマーとしてのメチルアクリレート(30質量%)、ブチルアクリレート(35質量%)、及びスチレンモノマー(20質量%)を共重合させ、カルボキシル基を有するアクリル系樹脂を作製した。
 (3)エポキシ系樹脂(平均粒径:0.15μm)
 ビスフェノールAエポキシ樹脂をモノエタノールアミンで変性してアミン変性エポキシ樹脂を作製した後、アミン変性エポキシ樹脂に無水コハク酸をグラフト重合させ、カルボキシル基を有するエポキシ系樹脂を作製した。
 (4)ポリエステル系樹脂(平均粒径:0.10μm)
 ジメチルテレフタレート(40質量%)及びネオペンチルグリコール(40質量%)を共重合させて共重合ポリエステル樹脂を作製した後、共重合ポリエステル樹脂にフマル酸(10質量%)及び無水トリメリット酸(10質量%)をグラフト重合させ、カルボキシル基を有するポリエステル系樹脂を作製した。
 (5)アクリル系樹脂-3(平均粒径:0.20μm)
 メチルアクリレート(50質量%)、スチレンモノマー(20質量%)、及びブチルアクリレート(30質量%)を共重合させ、カルボキシル基及び水酸基を有しないアクリル系樹脂を作製した。
 (6)ポリウレタン(平均粒径:0.16μm)
 既知の方法で水性ポリウレタンを合成した。
 (7)フェノール樹脂(平均粒径:0.12μm)
 レゾール型フェノール樹脂水系エマルジョンを準備した。
 そして、有機樹脂の溶液に、適宜、多価アルコール化合物を添加した。次いで、この溶液及び上記のリン酸塩水溶液を混合して、表2に示す24種類の処理液を作製した。その後、処理液を上記の鋼帯の表面にロールコータを用いて塗布して塗膜を形成した。このとき、塗布量が2g/mになるようにロール圧下量等を調整した。続いて、輻射炉を用いて塗膜の乾燥及び焼き付けを行った。この条件も表2に示す。
[規則26に基づく補充 15.01.2010] 
Figure WO-DOC-TABLE-2
 そして、得られた無方向性電磁鋼板の熱伝導性、占積率、密着性、耐蝕性、外観、晶系、及び結晶化度の評価を行った。
 熱伝導性の評価では、各無方向性電磁鋼板から30mm角の試料を50枚切り出し、これらを積層した。次いで、この積層体の周囲を断熱材で囲い、200℃の発熱体の上で200N/cm(20kgf/cm)の加圧力で加圧密着させた。そして、積層体の最上部に位置する試料の温度を測定した。この温度は、時間の経過と共に200℃に向けて上昇したが、60分程度経過すると、200℃に満たない温度で飽和した。このときの温度と発熱体の温度(200℃)との差を求めた。この温度差を表3に示す。温度差が小さいほど、熱伝導性が高いといえる。
 占積率は、JIS C 2550に準じて測定した。この結果も表3に示す。
 密着性の評価では、各無方向性電磁鋼板に750℃、2時間、窒素雰囲気中での歪取焼鈍を行った。次いで、各無方向性電磁鋼板の試料に粘着テープを貼り付け、これを直径が10mm、20mm、及び30mmの金属棒に巻き付けた。その後、各試料から粘着テープを剥がし、絶縁膜の剥がれ具合を観察した。そして、直径が10mmの金属棒に巻き付けた場合でも絶縁膜が剥がれなかった試料を「10mmφOK」と評価した。直径が20mmの金属棒に巻き付けた場合では絶縁膜が剥がれなかった試料を「20mmφOK」と評価した。直径が30mmの金属棒に巻き付けた場合では絶縁膜が剥がれなかった試料を「30mmφOK」と評価した。また、直径が30mmの金属棒に巻き付けた場合に絶縁膜が剥がれた試料を「30mmφNG」と評価した。この結果も表3に示す。
 耐蝕性の評価は、JIS Z 2371の塩水噴霧試験に準じて行った。即ち、各無方向性電磁鋼板の試料について、塩水の噴霧から7時間経時後に10点評価を行った。錆が発生していないものを「10点」、錆が極少量(錆が発生した部分の面積率が0.1%以下)のものを「9点」とした。また、錆が発生した部分の面積率が0.1%超、且つ0.5%以下のものを「8点」、0.5%超、且つ1.0%以下のものを「7点」、1.0%超、且つ3.0%以下のものを「6点」、3.0%超、且つ10%以下のものを「5点」、10%超、且つ20%以下のものを「4点」、20%超、且つ30%以下のものを「3点」、30%超、且つ40%以下のものを「2点」、40%超、且つ50%以下のものを「1点」とした。この結果も表3に示す。
 外観の評価は、目視により行った。即ち、光沢があり、平滑で均一であるものを「5」とし、光沢はあるが均一性が若干低いものを「4」とした。また、やや光沢があり平滑ではあるが均一性が低いものを「3」、光沢が少なく、平滑性がやや低く均一性が低いものを「2」、光沢、均一性及び平滑性が低いものを「1」とした。この結果も表3に示す。
 晶系及び結晶化度の評価では、株式会社リガク製RINT-2000を用い、X線回折法により、各無方向性電磁鋼板の試料のピーク位置及び強度と、標準試料とのピーク位置及び強度との比較を行い、リン酸金属塩の結晶構造の特定及び結晶化度を特定した。なお、解析できるだけのリン酸金属塩由来のピーク強度が得られなかった場合、絶縁膜が非晶質からなると判断した。また、結晶化の割合(結晶化度)は、X線回折法によって得られたチャートからプロファイルフィッティング法によって決定した。この結果も表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、本発明範囲に属する実施例No.1~No.11では、良好な熱伝導性が得られ、更に、占積率、密着性、耐蝕性、及び外観も良好であった。一方、本発明範囲から外れる比較例No.12~No.24では、立方晶系、正方晶系、六方晶系、及び斜方晶系のどの結晶構造も存在せず、良好な熱伝導性を得ることができなかった。また、密着性、占積率、耐蝕性、及び外観が良好とならないこともあった。
 なお、本発明は上記の実施形態及び実施例等に限定されない。
 本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。

Claims (16)

  1.  電磁鋼板用の鋼帯と、
     前記鋼帯の表面に形成され、リン酸金属塩及び有機樹脂を含有する絶縁膜と、
     を有し、
     前記リン酸金属塩の少なくとも一部は、立方晶系、正方晶系、六方晶系、及び斜方晶系からなる群から選択された少なくとも1種の結晶構造を備え、
     前記有機樹脂は、エマルジョン粒子の表面にカルボキシル基又は水酸基を有する、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂からなる群から選択された少なくとも1種を、前記リン酸金属塩100質量部に対して1質量部乃至50質量部含んでいることを特徴とする電磁鋼板。
  2.  前記鋼帯は、無方向性電磁鋼板用であることを特徴とする請求項1に記載の電磁鋼板。
  3.  前記リン酸金属塩の20質量%以上が、前記少なくとも1種の結晶構造を備えていることを特徴とする請求項1に記載の電磁鋼板。
  4.  前記リン酸金属塩の50質量%以上が、前記少なくとも1種の結晶構造を備えていることを特徴とする請求項1に記載の電磁鋼板。
  5.  前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項1に記載の電磁鋼板。
  6.  前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項2に記載の電磁鋼板。
  7.  前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項3に記載の電磁鋼板。
  8.  前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項4に記載の電磁鋼板。
  9.  前記絶縁膜は、クロム酸を含まないことを特徴とする請求項1に記載の電磁鋼板。
  10.  電磁鋼板用の鋼帯の表面に、リン酸金属塩、有機樹脂及び多価アルコール化合物を含有する処理液を塗布する工程と、
     前記処理液の焼き付けを行い、前記リン酸金属塩の少なくとも一部が、立方晶系、正方晶系、六方晶系、及び斜方晶系からなる群から選択された少なくとも1種の結晶構造を備えた絶縁膜を形成する工程と、
     を有し、
     前記処理液は、
     前記有機樹脂として、エマルジョン粒子の表面にカルボキシル基又は水酸基を有する、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂からなる群から選択された少なくとも1種を樹脂固形分に換算して、前記リン酸金属塩100質量部に対して1質量部乃至50質量部含み、
     前記多価アルコール化合物を、前記リン酸金属塩100質量部に対して1質量部乃至20質量部含むことを特徴とする電磁鋼板の製造方法。
  11.  前記処理液の焼き付けを行う工程は、
     前記処理液が塗布された前記鋼帯を、25℃/秒乃至65℃/秒の速度で200℃乃至360℃まで加熱する工程と、
     次いで、前記鋼帯を200℃乃至360℃に10秒間乃至30秒間保持する工程と、
     次いで、前記鋼帯を、20℃/秒乃至85℃/秒の速度で100℃まで冷却する工程と、
     を有することを特徴とする請求項10に記載の電磁鋼板の製造方法。
  12.  前記鋼帯は、無方向性電磁鋼板用であることを特徴とする請求項10に記載の電磁鋼板の製造方法。
  13.  前記リン酸金属塩の20質量%以上が、前記少なくとも1種の結晶構造を備えていることを特徴とする請求項10に記載の電磁鋼板の製造方法。
  14.  前記リン酸金属塩の50質量%以上が、前記少なくとも1種の結晶構造を備えていることを特徴とする請求項10に記載の電磁鋼板の製造方法。
  15.  前記リン酸金属塩の少なくとも一部は、立方晶系又は斜方晶系の結晶構造を備えていることを特徴とする請求項10に記載の電磁鋼板の製造方法。
  16.  前記処理液は、クロム酸を含まないことを特徴とする請求項10に記載の電磁鋼板の製造方法。
PCT/JP2009/069109 2008-11-27 2009-11-10 電磁鋼板及びその製造方法 WO2010061722A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/128,302 US9984801B2 (en) 2008-11-27 2009-11-10 Electrical steel sheet and manufacturing method thereof
EP09828970.5A EP2366810B1 (en) 2008-11-27 2009-11-10 Electrical steel sheet and manufacturing method thereof
PL09828970T PL2366810T3 (pl) 2008-11-27 2009-11-10 Blacha elektrotechniczna i sposób jej wytwarzania
JP2010540437A JP4831639B2 (ja) 2008-11-27 2009-11-10 電磁鋼板及びその製造方法
KR1020117011958A KR101293441B1 (ko) 2008-11-27 2009-11-10 전자기 강판 및 그 제조 방법
BRPI0922826-8A BRPI0922826B1 (pt) 2008-11-27 2009-11-10 Chapa de aço elétrico e método para sua produção
CN2009801475683A CN102227515B (zh) 2008-11-27 2009-11-10 电磁钢板及其制造方法
US15/962,701 US10665372B2 (en) 2008-11-27 2018-04-25 Electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008302233 2008-11-27
JP2008-302233 2008-11-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/128,302 A-371-Of-International US9984801B2 (en) 2008-11-27 2009-11-10 Electrical steel sheet and manufacturing method thereof
US15/962,701 Division US10665372B2 (en) 2008-11-27 2018-04-25 Electrical steel sheet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2010061722A1 true WO2010061722A1 (ja) 2010-06-03

Family

ID=42225602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069109 WO2010061722A1 (ja) 2008-11-27 2009-11-10 電磁鋼板及びその製造方法

Country Status (10)

Country Link
US (2) US9984801B2 (ja)
EP (1) EP2366810B1 (ja)
JP (1) JP4831639B2 (ja)
KR (1) KR101293441B1 (ja)
CN (1) CN102227515B (ja)
BR (1) BRPI0922826B1 (ja)
PL (1) PL2366810T3 (ja)
RU (1) RU2458183C1 (ja)
TW (1) TWI398351B (ja)
WO (1) WO2010061722A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115443A1 (en) * 2010-07-23 2013-05-09 Nippon Steel & Sumitomo Metal Corporation Electrical steel sheet and method for manufacturing the same
WO2016136515A1 (ja) * 2015-02-26 2016-09-01 新日鐵住金株式会社 電磁鋼板、および、電磁鋼板の製造方法
JP2017201845A (ja) * 2016-05-02 2017-11-09 日立ジョンソンコントロールズ空調株式会社 永久磁石同期機、及びそれを用いた圧縮機、空調機
JP2018090836A (ja) * 2016-11-30 2018-06-14 新日鐵住金株式会社 無方向性電磁鋼板
JP2018518591A (ja) * 2015-03-24 2018-07-12 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh コイルおよび電磁鋼帯または電磁鋼板
JPWO2019013348A1 (ja) * 2017-07-13 2020-08-13 日本製鉄株式会社 方向性電磁鋼板
CN113165328A (zh) * 2018-09-27 2021-07-23 Posco公司 电工钢板层叠体

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0922826B1 (pt) * 2008-11-27 2020-01-07 Nippon Steel Corporation Chapa de aço elétrico e método para sua produção
JP5005844B2 (ja) * 2010-10-29 2012-08-22 新日本製鐵株式会社 電磁鋼板及びその製造方法
CN103041966B (zh) * 2011-10-17 2014-12-24 宝山钢铁股份有限公司 电工钢表面极厚绝缘涂层的生产方法
BR112019013259A2 (pt) * 2017-01-10 2019-12-24 Nippon Steel Corp núcleo enrolado e método para sua fabricação
EP3822386A4 (en) * 2018-07-13 2022-01-19 Nippon Steel Corporation GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MAKING THE SAME
EP3808871A4 (en) * 2018-09-03 2021-08-25 JFE Steel Corporation ELECTROMAGNETIC STEEL SHEET ON WHICH IS FIXED AN INSULATING COATING FILM, AND PROCESS FOR PRODUCING IT
CN109675953B (zh) * 2018-12-27 2021-01-15 上海应达风机股份有限公司 一种冷弯型钢及其成型工艺
US20220336129A1 (en) * 2019-09-20 2022-10-20 Nippon Steel Corporation Non-oriented electrical steel sheet
CN111136851B (zh) * 2019-12-31 2021-10-26 九牧厨卫股份有限公司 一种高强度耐腐蚀制品及其制备方法
JP7176648B2 (ja) * 2020-06-17 2022-11-22 日本製鉄株式会社 積層コアの製造方法
US11447983B1 (en) 2021-09-23 2022-09-20 George Condorodis Door and window securing apparatus and method
US11898376B2 (en) 2021-09-23 2024-02-13 George Condorodis Door and window securing apparatus and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015013A (ja) 1973-04-30 1975-02-17
JPS60169567A (ja) 1983-01-04 1985-09-03 セントロ・スビルツポ・マテリア−リ・エセ・ピ・ア 金属シ−ト用の打抜き可能な耐熱性コ−テイング
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH1180971A (ja) * 1997-09-01 1999-03-26 Nippon Steel Corp 被膜特性に優れた絶縁被膜を有する無方向性電磁鋼板及びその製造方法並びにその製造に用いる絶縁被膜形成剤
JPH11181577A (ja) * 1997-12-22 1999-07-06 Nippon Steel Corp 打抜き性に優れた無方向性電磁鋼板およびその製造方法
JP2000129455A (ja) 1998-10-23 2000-05-09 Nippon Steel Corp 被膜特性に優れた無方向性電磁鋼板
JP2000313967A (ja) 1999-04-27 2000-11-14 Sumitomo Metal Ind Ltd 耐食性に優れた表面処理鋼板
JP2002069657A (ja) 2000-09-01 2002-03-08 Nippon Steel Corp 被膜特性の極めて優れた電磁鋼板とその絶縁被膜形成方法
JP2007217758A (ja) 2006-02-17 2007-08-30 Nippon Steel Corp 方向性電磁鋼板とその絶縁被膜処理方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015013B1 (ja) 1970-08-28 1975-06-02
ES2004805A6 (es) * 1987-08-14 1989-02-01 Colores Hispania Procedimiento para fabricar un pigmento anticorrosivo.
FR2638466B1 (fr) * 1988-11-03 1993-05-07 Atochem Procede pour revetir des substrats metalliques a l'aide d'un primaire en poudre et d'un revetement superficiel applique par trempage, compositions de primaire en poudre utilisees et materiaux composites obtenus
RU94019948A (ru) * 1991-10-29 1996-04-10 Хенкель Корпорейшн (Us) Состав для обработки фосфатного покрытия, способ образования защитного покрытия, изделие
KR0129687B1 (ko) * 1993-05-21 1998-04-16 다나까 미노루 피막특성이 극히 우수한 절연 피막 처리제 및 이 처리제를 이용한 무방향성 전기강판의 제조방법
US5578669A (en) * 1993-12-24 1996-11-26 Nippon Paint Co., Ltd. Water-based polyurethane coating composition
DE19733312A1 (de) * 1997-08-01 1999-02-04 Herberts Gmbh Verfahren zur Aufbringung eines schützenden und dekorativen Schichtenverbundes
TWI221861B (en) * 1998-04-22 2004-10-11 Toyo Boseki Agent for treating metallic surface, surface-treated metal material and coated metal material
CN1087355C (zh) * 1998-06-23 2002-07-10 住友金属工业株式会社 钢丝材
US6383650B1 (en) * 1998-11-23 2002-05-07 Nippon Steel Corporation Non-oriented electromagnetic steel sheet having insulating film excellent in film properties
US6159534A (en) 1998-11-23 2000-12-12 Nippon Steel Corporation Method for producing non-oriented electromagnetic steel sheet having insulating film excellent in film properties
CN100465337C (zh) * 1998-12-17 2009-03-04 新日本制铁株式会社 非取向型电磁钢板的制备方法及所用的绝缘膜形成剂
WO2000071337A1 (en) * 1999-05-26 2000-11-30 Henkel Corporation Autodeposition coatings and process therefor
KR20010100204A (ko) 2000-03-16 2001-11-14 이구택 절연피막 형성용 피복조성물 및 이를 이용한 무방향성전기강판의 절연피막 형성방법
JP3935664B2 (ja) * 2000-08-01 2007-06-27 住友金属工業株式会社 電磁鋼板の絶縁皮膜形成用処理液と処理方法
JP3718638B2 (ja) * 2001-02-23 2005-11-24 住友金属工業株式会社 絶縁皮膜付き電磁鋼板およびその製造方法。
SE0302903L (sv) * 2003-11-04 2005-05-05 Dieter Neidhardt Anordning för förstoring av en bild på en bildskärm på en apparat
JP4907054B2 (ja) * 2003-12-09 2012-03-28 中央発條株式会社 高耐久性ばねおよびその塗装方法
KR100816695B1 (ko) * 2004-03-19 2008-03-27 제이에프이 스틸 가부시키가이샤 절연 피막을 갖는 전자 강판
FR2887558B1 (fr) * 2005-06-28 2007-08-17 Aubert & Duval Soc Par Actions Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue
JP5026414B2 (ja) * 2006-05-19 2012-09-12 新日本製鐵株式会社 高張力絶縁被膜を有する方向性電磁鋼板及びその絶縁被膜処理方法
BRPI0922826B1 (pt) * 2008-11-27 2020-01-07 Nippon Steel Corporation Chapa de aço elétrico e método para sua produção

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015013A (ja) 1973-04-30 1975-02-17
JPS60169567A (ja) 1983-01-04 1985-09-03 セントロ・スビルツポ・マテリア−リ・エセ・ピ・ア 金属シ−ト用の打抜き可能な耐熱性コ−テイング
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH1180971A (ja) * 1997-09-01 1999-03-26 Nippon Steel Corp 被膜特性に優れた絶縁被膜を有する無方向性電磁鋼板及びその製造方法並びにその製造に用いる絶縁被膜形成剤
JPH11181577A (ja) * 1997-12-22 1999-07-06 Nippon Steel Corp 打抜き性に優れた無方向性電磁鋼板およびその製造方法
JP2000129455A (ja) 1998-10-23 2000-05-09 Nippon Steel Corp 被膜特性に優れた無方向性電磁鋼板
JP2000313967A (ja) 1999-04-27 2000-11-14 Sumitomo Metal Ind Ltd 耐食性に優れた表面処理鋼板
JP2002069657A (ja) 2000-09-01 2002-03-08 Nippon Steel Corp 被膜特性の極めて優れた電磁鋼板とその絶縁被膜形成方法
JP2007217758A (ja) 2006-02-17 2007-08-30 Nippon Steel Corp 方向性電磁鋼板とその絶縁被膜処理方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115443A1 (en) * 2010-07-23 2013-05-09 Nippon Steel & Sumitomo Metal Corporation Electrical steel sheet and method for manufacturing the same
US11377569B2 (en) * 2010-07-23 2022-07-05 Nippon Steel Corporation Electrical steel sheet and method for manufacturing the same
WO2016136515A1 (ja) * 2015-02-26 2016-09-01 新日鐵住金株式会社 電磁鋼板、および、電磁鋼板の製造方法
JPWO2016136515A1 (ja) * 2015-02-26 2017-11-24 新日鐵住金株式会社 電磁鋼板、および、電磁鋼板の製造方法
US10706998B2 (en) 2015-02-26 2020-07-07 Nippon Steel Corporation Electrical steel sheet and method for producing electrical steel sheet
JP2018518591A (ja) * 2015-03-24 2018-07-12 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh コイルおよび電磁鋼帯または電磁鋼板
JP2017201845A (ja) * 2016-05-02 2017-11-09 日立ジョンソンコントロールズ空調株式会社 永久磁石同期機、及びそれを用いた圧縮機、空調機
JP2018090836A (ja) * 2016-11-30 2018-06-14 新日鐵住金株式会社 無方向性電磁鋼板
JPWO2019013348A1 (ja) * 2017-07-13 2020-08-13 日本製鉄株式会社 方向性電磁鋼板
CN113165328A (zh) * 2018-09-27 2021-07-23 Posco公司 电工钢板层叠体
CN113165328B (zh) * 2018-09-27 2023-07-07 浦项股份有限公司 电工钢板层叠体

Also Published As

Publication number Publication date
KR101293441B1 (ko) 2013-08-05
US9984801B2 (en) 2018-05-29
JP4831639B2 (ja) 2011-12-07
US20180240579A1 (en) 2018-08-23
EP2366810A4 (en) 2017-08-23
CN102227515A (zh) 2011-10-26
EP2366810A1 (en) 2011-09-21
JPWO2010061722A1 (ja) 2012-04-26
BRPI0922826B1 (pt) 2020-01-07
TWI398351B (zh) 2013-06-11
RU2458183C1 (ru) 2012-08-10
CN102227515B (zh) 2013-08-21
PL2366810T3 (pl) 2019-12-31
BRPI0922826A2 (pt) 2015-12-29
US10665372B2 (en) 2020-05-26
EP2366810B1 (en) 2019-08-21
KR20110083687A (ko) 2011-07-20
TW201029836A (en) 2010-08-16
US20110212335A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP4831639B2 (ja) 電磁鋼板及びその製造方法
JP4644317B2 (ja) 絶縁被膜を有する電磁鋼板及びその製造方法
JP6524448B2 (ja) 電磁鋼板、および、電磁鋼板の製造方法
JP5005844B2 (ja) 電磁鋼板及びその製造方法
KR101431349B1 (ko) 전자기 강판 및 그 제조 방법
JP5423465B2 (ja) 電磁鋼板および電磁鋼板の製造方法
KR20130026475A (ko) 전자기 강판 및 그 제조 방법
TW200302139A (en) Method for producing a coated steel sheet
JP5471849B2 (ja) 電磁鋼板およびその製造方法
JP4608600B2 (ja) 熱伝導性に優れた絶縁被膜を持つ電磁鋼板及びその製造方法
KR20230092809A (ko) 전기강판용 절연피막 조성물, 이를 포함하는 전기강판, 및 이의 제조 방법
JPH04235287A (ja) 電磁鋼板の絶縁被膜形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147568.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009828970

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540437

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3341/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13128302

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117011958

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011126142

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0922826

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110527