WO2010061585A1 - 固体酸化物電解質型燃料電池用部材 - Google Patents

固体酸化物電解質型燃料電池用部材 Download PDF

Info

Publication number
WO2010061585A1
WO2010061585A1 PCT/JP2009/006333 JP2009006333W WO2010061585A1 WO 2010061585 A1 WO2010061585 A1 WO 2010061585A1 JP 2009006333 W JP2009006333 W JP 2009006333W WO 2010061585 A1 WO2010061585 A1 WO 2010061585A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
glass
coating layer
solid electrolyte
oxide
Prior art date
Application number
PCT/JP2009/006333
Other languages
English (en)
French (fr)
Inventor
宮田素之
山本浩貴
上原利弘
安田信隆
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2010540365A priority Critical patent/JP5273157B2/ja
Publication of WO2010061585A1 publication Critical patent/WO2010061585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a highly reliable solid oxide electrolyte fuel cell member which does not deteriorate even in long-term high temperature operation.
  • the fuel cell has excellent characteristics such as high power generation efficiency, low SOx, NOx and CO 2 generation, good response to load fluctuation, and compactness It is expected to be applied to a wide range of power generation systems such as large-scale centralized type, decentralized urban suburbs type, and self power generation as alternatives.
  • Fuel cells are classified into phosphoric acid type, molten carbonate type, solid oxide type and solid polymer type according to the electrolyte used, but among them, solid oxide fuel cells are stabilized as zirconia as an electrolyte. And other ceramics and is operated at a high temperature of 700 to 1000.degree.
  • the solid oxide fuel cell does not need to use a catalyst for the electrode reaction because it is operated at high temperature, can internally reform fossil fuel at high temperature, and can use various fuels such as coal gas, High-efficiency power generation is possible by combining high-temperature waste heat with a gas turbine or steam turbine, etc., and using so-called combined cycle power generation, and features such as compactness because all components are solid And is considered very promising as a next-generation power supply source.
  • separators can be mentioned as important components.
  • the separator supports the three layers of the electrolyte, the fuel electrode, and the air electrode, has a role of forming a gas flow path and passing an electric current. Therefore, the separator is required to have properties such as electrical conductivity at high temperature, oxidation resistance, and small difference in thermal expansion with the electrolyte.
  • conductive ceramics have been widely used, but in recent years, they are cheaper and more reliable than ceramics because of cost reduction, lightening and thinning, ease of processing, etc. Development of separators using metal materials is in progress.
  • Patent Document 1 discloses C: 0.1% or less, Si: 0.5 to 3.0%, Mn: 3.3, as a metal material for a solid oxide fuel cell.
  • An austenitic stainless steel has been proposed consisting of 0% or less, Cr: 15 to 30%, Ni: 20 to 60%, Al: 2.5 to 5.5%, balance Fe.
  • Patent Document 2 discloses an additive element (La, or the like) for reducing the contact resistance with the air electrode of the unit cell to Fe: 60 to 82% and Cr: 18 to 40% as a separator of a solid electrolyte fuel cell. It has been proposed to use alloys consisting of Y, Ce or Al alone. Further, Patent Document 3 JP-A-H07-145454 proposes a material comprising 5 to 30% of Cr, 3 to 45% of Co, 1% or less of La, and the balance of Fe as a metal material for a solid electrolyte fuel cell. It is done.
  • La additive element
  • the austenitic stainless steel disclosed in Patent Document 1 has a thermal expansion coefficient larger than that of stabilized zirconia which is an electrolyte, and therefore the performance deterioration of the battery due to the cracking of the electrolyte due to the thermal cycle accompanying the start and stop of the battery. It is easy to cause
  • the materials disclosed in Patent Document 2 and Patent Document 3 are smaller in thermal expansion coefficient than austenitic stainless steels, and are close to stabilized zirconia which is an electrolyte, so they are advantageous for stability in long-term use Yes, and its electrical conductivity is also high.
  • the oxidation resistance after use for a long time is insufficient, causing a peeling phenomenon accompanying the increase of the oxide layer, and there is a problem that the gas flow path of the battery is narrowed to lower the battery performance.
  • Patent Document 4 the method of suppressing the oxidation of an air electrode is described by forming the oxidation-resistant thin film in the metal base material surface of a metal separator.
  • Patent Document 5 describes a method for securing oxidation resistance and conductivity by forming a surface protective layer containing conductive ceramic powder and glass on the surface of a separator base material, as disclosed in Patent Document 6 A method is disclosed in which the contact resistance between the air electrode and the separator is reduced by applying and firing a glass frit added conductive paste on the bonding interface of the air electrode and the separator.
  • An object of the present invention is to provide a highly reliable solid oxide electrolyte fuel cell separator that does not deteriorate even in long-term high temperature operation and a solid oxide electrolyte fuel cell using the same.
  • the member for a solid oxide fuel cell of the present invention comprises a metal substrate, an oxide layer formed on the surface of the metal substrate, and a coating layer formed on the surface of the oxide layer, and the coating
  • the layer is characterized by containing glass and a conductive material.
  • the glass contains 25 to 65 mass% of SiO 2, and the content of the alkali metal component is 0.1 mass% or less.
  • the glass contains 5 to 30 mass% of Al 2 O 3 , 25 to 60 mass% of an alkaline earth metal oxide, 0 to 30 mass% of ZrO 2, and 0 to 30 mass% of rare earth oxide. Contains 20 mass%.
  • the conductive material is formed of a metal oxide whose conductivity becomes higher as the temperature rises.
  • the conductive material is formed of an oxide or composite oxide containing Fe, Cr, Ni, Co, Cu, Mn, or La.
  • the thickness of the coating layer is 0.1 to 300 ⁇ m.
  • the thermal expansion coefficient of the coating layer is equal to or less than the thermal expansion coefficient of the metal substrate.
  • the amount of the glass contained in the coating layer is 20 to 80% by volume.
  • the softening point of the glass is equal to or higher than the operating temperature of the solid electrolyte fuel cell.
  • the thermal expansion coefficient of the glass is equal to or smaller than the thermal expansion coefficient of the metal base.
  • the solid electrolyte fuel cell member is suitable for a separator or a current collector.
  • the solid electrolyte fuel cell uses the solid electrolyte fuel cell member as a separator or a current collector.
  • the solid electrolyte fuel cell member electrically connects the cells, and includes a metal base, an oxide layer of the metal base, and a coating layer, and the coating
  • the layer comprises glass and a conductive material.
  • the metal base Since the solid oxide fuel cell has a high operating temperature of 700 to 1000 ° C., the metal base is required to be electrically stable as well as being chemically stable in a high temperature oxidizing atmosphere.
  • materials suitable for metal substrates suitable for such applications include Fe-based alloys and Ni-based alloys, but Ni-based alloys are expensive because they contain expensive Ni, while Fe-based alloys are expensive. It is preferable because it is cheaper than this.
  • austenitic alloys as described in Patent Document 1 are expensive because they contain a large amount of expensive Ni.
  • ferritic alloys do not contain Ni, or contain small amounts of Ni, and are inexpensive and preferable.
  • an Fe--Cr alloy is preferable as the material for the metal base material in view of the stability to a high temperature oxidizing atmosphere and the conductive property.
  • the oxide layer of the metal substrate is essential for securing a strong bond between the metal substrate and the glass of the coating layer.
  • the composition of the oxide layer depends on the composition of the metal base, it is not described in general but, for example, in the case of an Fe-Cr alloy, an oxide layer mainly composed of Cr 2 O 3 is formed.
  • This oxide layer is preferable, for example, when a SiO 2 -based glass is used for the coating layer, because the wettability with the glass is high and a dense coating layer can be formed.
  • an oxide layer containing Ni particularly when a SiO 2 glass is used for the coating layer, the wettability with the glass is low, and a dense coating layer can not be formed, which is not preferable.
  • the thickness of the oxide layer of the metal substrate is preferably 50 ⁇ m or less. If the thickness of the oxide layer is larger than this range, the conductive characteristics are lowered and the coating layer formed thereon is likely to be peeled off.
  • the glass of the coating layer is bonded to the metal substrate through the oxide layer of the metal substrate to secure a strong bond.
  • the thickness of the coating layer to be formed is preferably 0.1 to 300 ⁇ m, and more preferably 0.5 to 100 ⁇ m. This is because, for example, when a Fe-Cr alloy is used for the metal base, if the thickness of the coating layer is less than 0.1 ⁇ m, the evaporation of Cr is insufficient, and if it is more than 300 ⁇ m, the solid electrolyte fuel cell is The reason is that a crack is easily generated by thermal shock accompanying temperature fluctuation at the time of operation-stop.
  • the thermal expansion coefficient at 30 to 750 ° C. of the stabilized zirconia which is an electrolyte is 11 ⁇ 10 ⁇ 6 / ° C., and it is desirable to use a material having a thermal expansion coefficient equivalent to that for the metal substrate. From this point as well, an austenitic alloy having a thermal expansion coefficient larger than that of stabilized zirconia is unsuitable, and an Fe-Cr alloy having an equivalent thermal expansion coefficient is preferable.
  • the thermal expansion coefficient of the coating layer is desirably equal to or less than the thermal expansion coefficient of the metal substrate. This is because if the thermal expansion coefficient of the coating layer is larger than the thermal expansion coefficient of the metal substrate, the temperature of the solid electrolyte fuel cell changes with the operation-shutdown etc.
  • the thermal expansion coefficient of the coating layer is preferably 6 ⁇ 10 ⁇ 6 / ° C. to 11 ⁇ 10 ⁇ 6 / ° C., and further 8 ⁇ 10 ⁇ 6 / ° C. to 11 ⁇ 10 ⁇ 6 / ° C. Is more preferable.
  • the electrical resistance at 750 ° C. of the separator on which the coating layer is formed is preferably 30 m ⁇ cm 2 or less.
  • the coating layer of the present invention is chemically stable in a high temperature oxidizing atmosphere and has conductivity, it can also be used as a current collecting member.
  • the current collecting member is a metal sheet, a porous metal sheet or the like, and is installed between the separator and the electrode such as the air electrode or the fuel electrode or between the stack including the separator and the cell. Keep good electrical connection.
  • This current collecting member is used not only in flat type solid fuel cells but also in cylindrical and flat cylindrical solid fuel cells.
  • the softening point of the glass is preferably equal to or higher than the operating temperature of the solid electrolyte fuel cell.
  • the softening point is 1200 ° C. It is desirable to use the following glass.
  • the transition point is preferably equal to or less than the operating temperature of the solid oxide fuel cell.
  • the thermal expansion coefficient of the glass is desirably equal to or less than the thermal expansion coefficient of the metal substrate. This is because if the thermal expansion coefficient of the glass is larger than the thermal expansion coefficient of the metal substrate, the interface between the coating layer and the coating layer and the metal substrate is accompanied by the temperature fluctuation at the time of operation-stop of the solid electrolyte fuel cell. It is because a crack is caused by In addition, if the thermal expansion coefficient of the glass is too small relative to the thermal expansion coefficient of the metal substrate, cracks occur at the end portions and the uneven portions, etc., so the thermal expansion coefficient of the metal substrate is 11 ⁇ 10 ⁇ 6 / ° C. In this case, the thermal expansion coefficient of the glass is preferably 6 ⁇ 10 ⁇ 6 / ° C. to 11 ⁇ 10 ⁇ 6 / ° C., and further preferably 8 ⁇ 10 ⁇ 6 / ° C. to 11 ⁇ 10 ⁇ 6 / ° C. More preferable.
  • the amount of glass contained in the coating layer is preferably 20 to 80% by volume. This is because if it is less than 20%, it will be insufficient to prevent the volatilization of Cr, and if it exceeds 80%, it will be impossible to secure conductivity.
  • the glass of the coating layer preferably contains 25 to 65 mass% of SiO 2 and the content of the alkali metal component is 0.1 mass% or less. Further, the SiO 2 containing 25 ⁇ 65mass%, at least Al 2 O 3, alkaline earth metal oxides, a ZrO 2, oxides selected from rare earth oxides, the Al 2 O 3 5 ⁇ 30mass% , alkali
  • the content of the alkali metal component is preferably 0.1 mass% or less, containing 25 to 60 mass% of the earth metal oxide, 0 to 30 mass% of ZrO 2 and 0 to 20 mass% of the rare earth oxide. Since the alkali metal component promotes the volatilization of Cr, it is preferable not to intentionally add a component containing an alkali metal such as an alkali metal oxide.
  • composition of the glass will be described below.
  • the amount of SiO 2 is preferably 25 mass% to 65 mass%, and more preferably 40 mass% to 60 mass%. This is because if the content is less than 25 mass%, the softening point is lower than 700 ° C, and if the content is more than 65 mass%, the softening point is higher than 1200 ° C.
  • Al 2 O 3 has the effect of improving the heat resistance of the glass, but its amount is preferably 5 mass% to 30 mass%. This is because if the content is less than 5 mass%, the heat resistance can not be effectively improved. If the content is more than 30%, the softening point is higher than 1200 ° C.
  • the alkaline earth metal oxide has the effect of lowering the high temperature viscosity of the glass and increasing the thermal expansion coefficient, but its amount is preferably 25 mass% to 60 mass%. This is because if the content is less than 25 mass%, the softening point is higher than 1200 ° C, and if the content is more than 60 mass%, the thermal expansion coefficient is larger than 11 ⁇ 10 -6 / ° C.
  • ZrO 2 has the effect of improving the corrosion resistance of glass, but its amount is preferably 30 mass% or less. This is because the thermal expansion coefficient becomes larger than 11 ⁇ 10 ⁇ 6 / ° C. when the content is more than 30 mass%. If the amount is less than 1 mass%, the effect of improving the corrosion resistance is not obtained, so 1 mass% to 30 mass% is more preferable.
  • the addition of the rare earth oxide has the effect of raising the transition point of the glass and increasing the thermal expansion coefficient, but the amount is preferably 20 mass% or less, and more preferably 10 mass% or less. This is because the thermal expansion coefficient becomes larger than 11 ⁇ 10 ⁇ 6 / ° C. when it is larger than 20 mass%.
  • B 2 O 3 , ZnO and the like can be added to the present glass as necessary.
  • B 2 O 3 is effective in improving the high temperature viscosity of the glass, but if it is more than 10 mass%, the softening point becomes lower than 700 ° C., which is not preferable.
  • ZnO is also effective in improving the corrosion resistance, but if it is more than 10 mass%, the softening point is lower than 700 ° C., which is not preferable.
  • the conductive material of the coating layer is preferably a metal oxide whose conductivity increases as the temperature rises, and particularly, an oxide containing Fe, Cr, Ni, Co, Cu, Mn, and La, and a composite oxide are preferable.
  • metals and alloys stable in a high-temperature oxygen atmosphere in particular, noble metals such as platinum, iridium, rhodium, palladium, gold and silver, and alloys and metal nitrides of these metals can also be used.
  • a doctor blade method As a film forming method of the coating layer, a doctor blade method, a spray coating method, a slurry coating method, a thermal spraying method, a sputtering method, an evaporation method, an aerosol deposition method, a cold spray method and the like can be mentioned.
  • the paste or slurry used for these can use what glass-ized and electrically conductive materials, organic solvents, such as terpineol and butyl carbitol, etc. are added, and is paste-ized or slurried.
  • the viscosity of the paste or slurry can be adjusted by the amount of solvent or binder to be mixed, and examples of the binder include ethyl cellulose.
  • the particle size of the glass at the time of producing the paste is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less. This is because if the diameter is larger than 200 ⁇ m, the glass is not sufficiently softened at the time of firing to cause unevenness in the protective coat after the firing. Further, the particle size of the glass at the time of producing the slurry is preferably 50 ⁇ m or less, and more preferably 10 ⁇ m or less. This is because if it is larger than 50 ⁇ m, the glass can not be coated uniformly.
  • the baking temperature at the time of baking the formed coating film shall be 1300 degrees C or less, if it exists in an oxidizing atmosphere. This is because at temperatures higher than 1300 ° C., oxidation of the metal substrate proceeds and the conductivity decreases. In the environment where oxidation of the metal base is not promoted such as nitrogen and inert gas, it is possible to carry out firing at 1300 ° C. or higher.
  • ceramics that are stable in an oxidizing atmosphere such as alumina, zirconia, silicon carbide, silicon nitride, mullite, etc. can be used for the coating layer, as needed. These ceramics can be formed by the same method as described above.
  • Fe--22Cr steel is used as a base material of the metal separator for solid oxide fuel cells. Then, a glass having an average particle diameter of 3 ⁇ m and conductive material particles having an average particle diameter of 10 ⁇ m were dispersed in an organic solvent, and coated by an spray method or the like to have a thickness of 50 ⁇ m on the oxygen electrode side of the substrate. Furthermore, it baked in air in the electric furnace at 1000 degreeC for 1 hour, and formed the coating layer.
  • FIG. 1 The enlarged view of the cross section of a separator is shown in FIG.
  • 1 is Fe-22Cr steel
  • 2 is a Cr 2 O 3 oxide layer
  • 3 is a coating layer
  • 4 is a glass
  • 5 is a conductive material.
  • the Cr 2 O 3 oxide layer 2 formed on the surface of the Fe-22Cr steel 1 and the glass 4 are integrally bonded to form a strong coating layer. Moreover, although the electrically conductive material 5 is disperse
  • FIG. 2 is an enlarged cross-sectional view of the separator when the thickness of the coating layer is 10 ⁇ m.
  • the particle diameter of the conductive material 5 is substantially equal to the thickness of the coating layer 3, the conductive material 5 can ensure conductivity as a single element without contacting each other.
  • the glass 4 fills the gap of the conductive material 5 to prevent the volatilization of Cr.
  • the composition of the example of the glass is shown in FIG.
  • Fe-22Cr steel having a thermal expansion coefficient of 11 ⁇ 10 ⁇ 6 / ° C. was used as the base material of the metal separator.
  • No. No. 1 to 11 were SiO 2 amounts.
  • No. 12 to 19 contain Al 2 O 3 amounts. 20 to 29, the amount of alkaline earth metal oxides, The amount of ZrO 2 is 30 to 36, In 37 to 42, glass compositions in which the amount of Gd 2 O 3 is changed are shown.
  • the thermal expansion coefficient is greater than 11 ⁇ 10 ⁇ 6 / ° C., so the ZrO 2 / SiO 2 ratio is preferably 0.8 or less. .
  • the thermal expansion coefficient is greater than 11 ⁇ 10 ⁇ 6 / ° C., so the MgO / SiO 2 ratio is preferably 0.7 or less.
  • the thermal expansion coefficient is greater than 11 ⁇ 10 ⁇ 6 / ° C., so the CaO / SiO 2 ratio is preferably 0.8 or less.
  • the thermal expansion coefficient is greater than 11 ⁇ 10 ⁇ 6 / ° C., so the SrO / SiO 2 ratio is preferably 0.3 or less.
  • the thermal expansion coefficient is greater than 11 ⁇ 10 ⁇ 6 / ° C., so the BaO / SiO 2 ratio is preferably 1.6 or less.
  • Fe-22Cr steel is used as the metal substrate.
  • No. 1 of FIG. 6 and an Fe 3 O 4 powder (average particle size 50 ⁇ m) are mixed with terpineol and ethyl cellulose to form a paste, and the above-mentioned metal base is coated with the doctor blade method.
  • the coating was applied to a thickness of 100 ⁇ m. Furthermore, it baked in air at 900 degreeC in an electric furnace for 1 hour, and formed the coating layer.
  • the measurement of the electrical resistance at high temperature was performed on the obtained sample.
  • FIG. 10 shows the configuration of a device for measuring the electrical resistance value.
  • Measurement terminals are placed on the upper and lower surfaces of the metal base 6 (10 mm ⁇ 10 mm ⁇ 2 mm) on which the coating layer 3 is formed, a current I is supplied between the measurement terminals from the power supply 7, and the voltage drop ⁇ V between the upper and lower sides is a potentiometer It measured by 11.
  • the resistance value R ⁇ V / I was calculated from the measured voltage value ⁇ V and the supplied current value I.
  • this resistance value R was multiplied by the area S (2 cm 2 ) of the coating layer and then divided by 2 to obtain a value R ⁇ S / 2 (unit m ⁇ ⁇ cm) 2 ) rated it.
  • FIG. 11 shows the relationship between the amount of conductive material and the high temperature resistance value at 750.degree.
  • the high temperature resistance value at 750 ° C. shows a value of 30 m ⁇ cm 2 or less. This shows that this sample has high conductivity.
  • the type of conductive material to be mixed was changed for evaluation.
  • the amount of the conductive material was 60 vol%.
  • FIG. 12 shows the relationship between the type of conductive material and the high temperature resistance value at 750.degree.
  • the oxide containing Fe, Cr, Ni, Co, Cu, Mn or La, and the composite oxide have high-temperature resistances at 750 ° C. of 30 m ⁇ cm 2 or less. This shows that this sample has high conductivity.
  • Fe-22Cr steel is used as the metal substrate.
  • No. 1 of FIG. The glass powder described in 15 (average particle size 5 ⁇ m) and CoO powder with an average particle size 10 ⁇ m are dispersed in an organic solvent such as butyl carbitol acetate and the like, and the thickness is applied to the surface of the above metal substrate using a spray method or the like. It applied so that it might be set to 50 micrometers. Furthermore, it baked in air at 900 degreeC in an electric furnace for 1 hour, and formed the coating layer. The obtained sample was held at 900 ° C. for a predetermined time to measure the amount of volatile Cr.
  • FIG. 13 shows the configuration of an apparatus for evaluating the volatilization amount of Cr.
  • Alumina materials 8a, 8b and 8c are disposed around metal substrate 6 (10 mm ⁇ 10 mm ⁇ 2 mm) on which coating layer 3 is formed, and heated at 900 ° C. to place alumina on the top of metal substrate 6 Cr attached to the material 8a was extracted by microwave method and measured and evaluated by a dielectric coupled plasma emission spectrometer (ICP: SPS5100 manufactured by SII Nano Technology).
  • ICP dielectric coupled plasma emission spectrometer
  • FIG. 14 shows the relationship between the heating time and the volatilization amount of Cr for a coating layer having a conductive material content of 60 vol% (glass content 40 vol%).
  • the amount of volatilization of Cr increases as the heating time increases, and the amount of Cr formed is less than 0.3 mg (the lower limit of measurement), while the metal base without the coating layer is formed. It shows that the volatilization of Cr is suppressed for a long time.
  • FIG. 15 shows the relationship between the amount of glass and the amount of volatilized Cr.
  • the heating temperature is 900 ° C.
  • the heating time is 1000 hours
  • the other conditions are the same as described above.
  • the amount of Cr when the amount of glass is 20 vol% or more is less than 0.3 mg (the lower limit of measurement), which indicates that the volatilization of Cr is suppressed.
  • the relationship between the softening point of glass and the amount of Cr was evaluated.
  • the amount of glass is 40 vol%
  • the heating temperature is 900 ° C.
  • the heating time is 1000 hours
  • the other conditions are the same as above.
  • No. 3 is evaluated from FIG. 1 to No. Ten glasses were used.
  • the Cr content is less than 0.3 mg (lower limit of measurement), whereas in a glass material whose softening point is less than 900 ° C., the Cr content increases with the decrease of the softening point. It shows that the volatilization prevention of Cr is insufficient.
  • the coating layer is formed using the glass of the present invention, as described above, the paste or slurry mixed with the conductive material or the solvent is applied and fired to form a coating layer.
  • the formability of the coating layer depends on the high temperature viscosity of the glass, the spread ratio of the glass was measured as a method of easily evaluating this.
  • the glass powder pulverized to a particle size of 150 ⁇ m or less and classified is formed into a glass pellet having a diameter of 10 mm and a height of 5 mm using a hand press.
  • the glass pellet was placed on an alumina plate and heated in the air for 1 hour.
  • the spread ratio is larger than 1, the uniform and dense coating layer can be formed, but when the spread ratio is smaller than 1, the glass does not flow sufficiently and the thickness of the coating layer becomes It became uneven and it was not possible to form a dense coating layer.
  • the Al 2 O 3 / SiO 2 ratio is larger than 0.6, the spread ratio becomes smaller than 1, so the Al 2 O 3 / SiO 2 ratio is preferably 0.6 or less.
  • the ratio of MgO / SiO 2 is larger than 0.4, the spread ratio becomes smaller than 1, so the ratio of MgO / SiO 2 is preferably 0.6 or less.
  • the CaO / SiO 2 ratio is larger than 0.7, the spread ratio becomes smaller than 1, so the CaO / SiO 2 ratio is preferably 0.7 or less.
  • the SrO / SiO 2 ratio is larger than 0.3, the spread ratio is smaller than 1, so the SrO / SiO 2 ratio is preferably 0.3 or less.
  • the BaO / SiO 2 ratio when the BaO / SiO 2 ratio is larger than 1.5, the spread ratio is smaller than 1, so the BaO / SiO 2 ratio is preferably 1.5 or less.
  • the heating temperature is higher than 1000 ° C.
  • the weight ratio of each constituent oxide to SiO 2 whose spread ratio is smaller than 1 becomes larger than that at 1100 ° C.
  • the rate of increase was 0.2 to 0.5 / 100 ° C.
  • Fe-22Cr steel is used as the metal substrate.
  • No. 1 of FIG. A glass powder (average particle diameter 2 [mu] m) and Fe 3 O 4 powder (average particle size 16 [mu] m) and mixed powder mixed in a ratio of 40:60 by volume basis according to 15, were mixed ethyl cellulose as a binder.
  • the mixing ratio of the mixed powder to the binder is 98: 2 on a mass basis. This was mixed with terpineol as a solvent to form a paste, and a film was formed on the surface of the above-mentioned metal base using a screen printing method.
  • the film-formed sample was fired in an electric furnace at 950 ° C. for 1 hour in air to form a coating layer.
  • the measurement of the electrical resistance at high temperature was performed on the obtained sample as described with reference to FIG. 10 in Example 3.
  • FIG. 22 shows the relationship between the film thickness of the coating layer and the high temperature resistance value.
  • the high temperature resistance value decreases with the decrease of the film thickness, and when using Fe 3 O 4 powder with an average particle diameter of 16 ⁇ m, the high temperature resistance at 750 ° C. is particularly not more than 60 ⁇ m.
  • the value shows a value of 30 m ⁇ cm 2 or less, and it can be seen that it has high conductivity.
  • FIG. 23 shows the results of SEM-EDX analysis of the alumina plate (the alumina material 8a placed above the sample in FIG. 13) after the Cr volatility evaluation test.
  • the SEM image is in the form of the surface of the alumina plate, and the EDX analysis is the result of analyzing the rectangular framed portion in the central part of the SEM image.
  • Fe-22Cr steel is used as the metal substrate.
  • No. 1 of FIG. A mixed powder obtained by mixing the glass powder described in 25 (average particle diameter 1 ⁇ m) and Fe 3 O 4 powder (average particle diameter 1 ⁇ m) in a ratio of 40:60 on an volume basis is aerosolized on the surface of the above metal substrate Film formation was performed by a deposition method (hereinafter referred to as an AD method).
  • FIG. 25 shows the result of SEM-EDX analysis of the alumina plate (the alumina material 8a placed above the sample in FIG. 13) after the Cr volatility evaluation test.
  • the SEM image is in the form of the surface of the alumina plate, and the EDX analysis is the result of analyzing the rectangular framed portion in the central part of the SEM image.
  • Example 3 As described with reference to FIG. 10 in Example 3, as a result of measuring the high temperature resistance value at 750 ° C., it was 23 m ⁇ cm 2 and showed a value of 30 m ⁇ cm 2 or less which is a reference value of the high temperature resistance value. Thereby, it confirmed that this film-forming material had high conductivity.
  • the solid electrolyte fuel cell using the separator of the present invention can secure long-term stability and reliability of power generation characteristics as compared to a solid electrolyte fuel cell using a conventional metal separator, ceramic separator, etc. Therefore, it can be used as a distributed power generation system in a home, a business place such as a factory. It can also be used as a combined power generation system in combination with existing power generation systems such as thermal power generation and nuclear power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

 長時間の高温での運転においても劣化しない信頼性の高い固体酸化物電解質型燃料電池用セパレータ及びそれを用いた固体酸化物電解質型燃料電池を得る。 金属基材と、この金属基材の表面に形成された酸化物層と、この酸化物層の表面に形成されたコーティング層とを含み、このコーティング層がガラスと導電材とを含む固体電解質型燃料電池用部材を用いる。

Description

固体酸化物電解質型燃料電池用部材
 本発明は、長時間の高温での運転においても劣化しない信頼性の高い固体酸化物電解質型燃料電池用部材に関する。
 燃料電池は、その発電効率が高いこと、SOx、NOx、COの発生量が少ないこと、負荷の変動に対する応答性が良いこと、コンパクトであること等の優れた特徴を有するため、火力発電の代替としての大規模集中型、都市近郊分散配置型、及び自家発電用等の巾広い発電システムへの適用が期待されている。燃料電池の種類には用いる電解質により、りん酸型、溶融炭酸塩型、固体酸化物型、固体高分子型に分類されるが、なかでも、固体酸化物型燃料電池は、電解質として安定化ジルコニア等のセラミックスを用いており、700~1000℃の高温で運転されている。
 固体酸化物型燃料電池は、高温で運転されるために電極反応に触媒を用いる必要がないこと、高温による化石燃料の内部改質が可能で石炭ガス等の多様な燃料を用いることができること、高温排熱を利用しガスタービン或いは蒸気タービン等と組み合わせ、いわゆるコンバインドサイクル発電とすることにより高効率の発電が可能となること、構成物が全て固体であるためコンパクトであること等の優れた特徴を有し、次世代の電力供給源として非常に有望視されている。
 しかしながら、固体酸化物型燃料電池の実用化のためには多くの検討課題が残されており、特に高出力密度が可能な平板型燃料電池の場合、重要な構成要素としてセパレータが挙げられる。このセパレータは電解質、燃料極、空気極の三層を支持し、ガス流路を形成するとともに電流を流す役目を有する。従ってセパレータには、高温での電気伝導性、耐酸化性、更に電解質との熱膨張差が小さいこと等の特性が要求される。このような要求特性を鑑み、従来は導電性セラミックスが多く用いられてきたが、近年、低コスト化や軽量薄肉化、加工の容易性などの理由から、セラミックスに比べて安価で信頼性のある金属材料を用いたセパレータの開発が進められている。
 通常の金属材料を1000℃付近で使用すると、表面が酸化され酸化被膜を生じるが、セパレータ材として用いるためにはこの酸化被膜が安定で酸化が進行しないことと共に酸化被膜が電気伝導性を有することが必要である。このような要求特性を満足させるために、特許文献1には固体酸化物型燃料電池用金属材料として、C:0.1%以下、Si:0.5~3.0%、Mn:3.0%以下、Cr:15~30%、Ni:20~60%、Al:2.5~5.5%、残部Feからなるオーステナイト系ステンレス鋼が提案されている。また、特許文献2には固体電解質型燃料電池のセパレータとして、Fe:60~82%及びCr:18~40%に前記単電池の空気極との間の接触抵抗を低減する添加元素(La、Y、CeまたはAlをそれぞれ単独で含有させる)からなる合金を使用することが提案されている。更に、特許文献3特開平7-145454号には、固体電解質型燃料電池用金属材料としてCr:5~30%、Co:3~45%、La:1%以下、残部Feからなる材料が提案されている。
 このうち、特許文献1に開示されたオーステナイト系ステンレス鋼は電解質である安定化ジルコニアに比べて熱膨張係数が大きいため、電池の起動、停止に伴う熱サイクルによる電解質の割れなどによる電池の性能劣化を起こしやすい。これに対して、特許文献2や特許文献3に開示された材料は、オーステナイト系ステンレス鋼に比べて熱膨張係数が小さく、電解質である安定化ジルコニアに近いため長時間使用における安定性に有利であり、また、電気伝導率も高い。しかし、長時間使用後の耐酸化性が不十分であり、酸化層の増大に伴う剥離現象を引き起こし、電池のガス流路を狭めて電池性能を低下させるという問題がある。
 これに対して、特許文献4では、金属セパレータの金属基材表面に耐酸化性の薄膜を形成することで、空気極の酸化を抑制する方法が記載されている。また、特許文献5には、セパレータ母材の表面に導電性セラミックス粉末とガラスを含む表面保護層を形成することで、耐酸化性と導電性を確保する方法が記載されており、特許文献6には空気極とセパレータの接合界面にガラスフリット添加導電性ペーストを塗布、焼成することで、空気極とセパレータとの接触抵抗を低減する方法が記載されている。
特開平6-264193号公報 特開平7-166301号公報 特開平7-145454号公報 特開平10-92446号公報 特開平10-270062号公報 特開2006-190593号公報
 しかしながら、上記の特許文献4による方法では、長時間の使用や入り切り動作に伴う繰り返しの温度サイクルに伴い、薄膜表面に亀裂が入り、この亀裂から金属セパレータ本体へ酸化性雰囲気ガスが浸入し、金属セパレータの酸化が進行してしまい、長期間の安定性が十分とはいえないという問題があった。また、特許文献5や特許文献6による方法では、ガラスの軟化温度が固体電解質型燃料電池の動作温度より低いため、金属セパレータからCr又はCr化合物(以下、Crと略記)が揮発して電極に付着し、電極特性を劣化させるいわゆるCr被毒を抑制するのに十分とはいえないという問題があった。
 本発明の目的は、長時間の高温での運転においても劣化しない信頼性の高い固体酸化物電解質型燃料電池用セパレータ及びそれを用いた固体酸化物電解質型燃料電池を得ることにある。
 本発明の固体電解質型燃料電池用部材は、金属基材と、この金属基材の表面に形成された酸化物層と、この酸化物層の表面に形成されたコーティング層とを含み、このコーティング層がガラスと導電材とを含むことを特徴とする。
 本発明によれば、長時間の使用や繰り返しの温度サイクルに対しても割れ等が発生せず、長期間信頼性の高い固体酸化物燃料電池を得ることができる。
本発明による実施例の固体電解質型燃料電池用部材を示す拡大断面図である。 本発明による実施例の固体電解質型燃料電池用部材を示す拡大断面図である。 本発明による実施例の固体電解質型燃料電池用部材のコーティング層に用いるガラスの組成を示す一覧表である。 熱膨張係数とB/SiO比との関係を示すグラフである。 熱膨張係数とZrO/SiO比との関係を示すグラフである。 熱膨張係数とMgO/SiO比との関係を示すグラフである。 熱膨張係数とCaO/SiO比との関係を示すグラフである。 熱膨張係数とSrO/SiO比との関係を示すグラフである。 熱膨張係数とBaO/SiO比との関係を示すグラフである。 電気抵抗値の測定装置を示す概略構成図である。 本発明に係る固体電解質型燃料電池用部材のコーティング層に含まれる導電材の量と750℃における当該固体電解質型燃料電池用部材の高温抵抗値との関係を示すグラフである。 コーティング層に含まれる導電材の種類と750℃での高温抵抗値との関係を示すグラフである。 Crの揮発量の評価装置を示す概略断面図である。 加熱時間とCrの揮発量との関係を示すグラフである。 ガラス量とCrの揮発量との関係を示すグラフである。 ガラスの軟化点とCrの揮発量との関係を示すグラフである。 濡れ広がり比率とAl/SiO比との関係を示すグラフである。 濡れ広がり比率とMgO/SiO比との関係を示すグラフである。 濡れ広がり比率とCaO/SiO比との関係を示すグラフである。 濡れ広がり比率とSrO/SiO比との関係を示すグラフである。 濡れ広がり比率とBaO/SiO比との関係を示すグラフである。 コーティング層の膜厚と高温抵抗値との関係を示すグラフである。 Cr揮発性評価試験後のアルミナ板のSEM-EDX分析結果を示す画像及びグラフである。 本発明による実施例の固体電解質型燃料電池用部材を示す断面SEM画像である。 Cr揮発性評価試験後のアルミナ板のSEM-EDX分析結果を示す画像及びグラフである。
 以下、本発明の実施形態である固体電解質型燃料電池用部材、セパレータ、集電体及びこれらを用いた固体電解質型燃料電池について説明する。
 前記固体電解質型燃料電池用部材において、前記ガラスは、SiOを25~65mass%含有し、アルカリ金属成分の含有量が0.1mass%以下である。
 前記固体電解質型燃料電池用部材において、前記ガラスは、Alを5~30mass%、アルカリ土類金属酸化物を25~60mass%、ZrOを0~30mass%、希土類酸化物を0~20mass%含有する。
 前記固体電解質型燃料電池用部材において、前記導電材は、温度上昇に伴い、導電率が高くなる金属酸化物で形成されている。
 前記固体電解質型燃料電池用部材において、前記導電材は、Fe、Cr、Ni、Co、Cu、Mn又はLaを含む酸化物又は複合酸化物で形成されている。
 前記固体電解質型燃料電池用部材は、前記コーティング層の厚さが0.1~300μmである。
 前記固体電解質型燃料電池用部材は、前記コーティング層の熱膨張係数が金属基材の熱膨張係数と同等か、それより小さい。
 前記固体電解質型燃料電池用部材においては、前記コーティング層に含まれる前記ガラスの量が体積基準で20~80%である。
 前記固体電解質型燃料電池用部材においては、前記ガラスの軟化点が固体電解質型燃料電池の運転温度以上である。
 前記固体電解質型燃料電池用部材においては、前記ガラスの熱膨張係数が金属基材の熱膨張係数と同等か、それより小さい。
 前記固体電解質型燃料電池用部材においては、前記導電材の粒径と前記コーティング層の厚さとの比が、前記導電材の粒径/コーティング層の厚さ=1/300~1/1である。
 前記固体電解質型燃料電池用部材は、セパレータ又は集電体に好適である。
 前記固体電解質型燃料電池は、前記固体電解質型燃料電池用部材をセパレータ又は集電体として用いる。
 前記固体電解質型燃料電池用部材は、前記固体電解質型燃料電池において、セル間を電気的に接続し、金属基材と、この金属基材の酸化物層と、コーティング層とを含み、このコーティング層がガラスと導電材とを含む。
 固体電解質型燃料電池は、運転温度が700~1000℃と高温であるため、金属基材には高温酸化雰囲気に対して化学的に安定であるとともに、導電性を備えることが要求される。このような用途に適した金属基材用の材料として、Fe基合金、Ni基合金などが挙げられるが、Ni基合金は高価なNiを含むため高価であるのに対して、Fe基合金はこれに比べて安価であるため好ましい。
 また、Fe基合金のなかでも、特許文献1に記載のようなオーステナイト系合金は高価なNiを大量に含むため高価である。これに対して、フェライト系合金はNiを含まないか、又は含んでも少量であり安価であり好ましい。特に高温酸化雰囲気に対する安定性および導電特性の点から金属基材用の材料としてはFe-Cr系合金が好適である。
 金属基材の酸化物層は、金属基材とコーティング層のガラスとが強固な結合を確保する上で必須である。酸化物層の組成は金属基材の組成に依存するため、一概には述べられないが、例えばFe-Cr系合金の場合、Crを主成分とした酸化物層が形成される。この酸化物層は、例えば、コーティング層にSiO系ガラスを用いた場合、ガラスとの濡れ性が高く、緻密なコーティング層を形成することができるため好ましい。なお、Niを含有した酸化物層の場合、特にコーティング層にSiO系ガラスを用いた場合、ガラスとの濡れ性が低く、緻密なコーティング層を形成することができないため好ましくない。
 金属基材の酸化物層の厚さは50μm以下であることが好ましい。酸化物層の厚さがこれより厚いと、導電特性が低下するとともに、その上に形成するコーティング層が剥離しやすくなるためである。
 コーティング層のガラスが金属基材の酸化物層を介して金属基材と結合することで、強固な結合を確保している。形成するコーティング層の厚さは0.1~300μmであることが好ましく、さらに0.5~100μmであればより好ましい。これは、例えば金属基材にFe-Cr系合金を用いた場合、コーティング層の厚さが0.1μmより小さいとCrの揮発防止に不十分であり、300μmより大きいと固体電解質型燃料電池の作動-停止時などの温度変動に伴う熱衝撃によりクラックを生じやすくなるためである。
 電解質である安定化ジルコニアの30~750℃での熱膨張係数は11×10-6/℃であり、金属基材にはこれと同等の熱膨張係数を有する材料を用いることが望ましい。この点からも、安定化ジルコニアに比べて熱膨張係数が大きなオーステナイト系合金は不適であり、同等の熱膨張係数を有するFe-Cr系合金が好ましい。コーティング層の熱膨張係数は金属基材の熱膨張係数と同等か、それより小さいことが望ましい。これは、コーティング層の熱膨張係数が金属基材の熱膨張係数より大きいと、固体電解質型燃料電池の作動-停止時などの温度変動に伴い、コーティング層内やコーティング層と金属基材との界面などでクラックを生じるためである。また、金属基材の熱膨張係数に対して、コーティング層の熱膨張係数が小さすぎると、端部や凹凸部などでクラックを生じるため、金属基材の熱膨張係数が11×10-6/℃の場合、コーティング層の熱膨張係数は、6×10-6/℃~11×10-6/℃であることが好ましく、さらに、8×10-6/℃~11×10-6/℃であればより好ましい。
 なお、十分な導電性を確保するために、コーティング層を形成したセパレータの750℃での電気抵抗は30mΩcm以下であることが望ましい。また、電極へのCr付着による特性劣化を防止するため、酸化雰囲気中、900℃にて1000h加熱保持したセパレータからのCrの揮発量は、ICPで測定した場合、測定下限(0.3mg/cm)未満であり、SIMSで測定した場合、コーティング層を形成していない金属基材のCr量を基準(=1)として、その1/50未満であることが好ましい。これはCr量がこれら未満であれば、実質電極の特性に影響を及ぼさないためである。
 本発明のコーティング層は、高温酸化雰囲気に対して化学的に安定であるとともに、導電性を備えているため、集電部材にも用いることができる。ここで、集電部材とは、金属シート又は多孔質金属シートなどであり、セパレータと空気極や燃料極などの電極の間やセパレータとセルから構成されるスタック間などに設置され、これらの間での電気的接続を良好に保つものである。この集電部材は平板型固体燃料電池に限らず、円筒型や扁平円筒型の固体燃料電池に於いても用いられている。
 ガラスの軟化点が固体電解質型燃料電池の運転温度より低いと、固体電解質型燃料電池作動時にガラスの粘性が低くなりすぎてCrの揮発防止が不十分となる。そのためガラスの軟化点は固体電解質型燃料電池の運転温度以上であることが好ましい。但し、軟化点が高すぎると、コーティング層を形成する際の焼成温度を高くすることが必要であり、それにより金属基材の酸化が促進され導電特性の悪影響を及ぼすため、軟化点が1200℃以下のガラスを用いることが望ましい。なお、ガラスの転移点が固体電解質型燃料電池の運転温度より高いと、固体電解質型燃料電池作動時にガラスの粘性が高くなりすぎて、ガラスと金属基材の間で十分な密着性を確保できないため、転移点は固体電解質型燃料電池の運転温度以下であることが好ましい。
 ガラスの熱膨張係数は金属基材の熱膨張係数と同等か、それより小さいことが望ましい。これは、ガラスの熱膨張係数が金属基材の熱膨張係数より大きいと、固体電解質型燃料電池の作動-停止時などの温度変動に伴い、コーティング層内やコーティング層と金属基材との界面などでクラックを生じるためである。また、金属基材の熱膨張係数に対して、ガラスの熱膨張係数が小さすぎると、端部や凹凸部などでクラックを生じるため、金属基材の熱膨張係数が11×10-6/℃の場合、ガラスの熱膨張係数は、6×10-6/℃~11×10-6/℃であることが好ましく、さらに、8×10-6/℃~11×10-6/℃であればより好ましい。
 コーティング層に含まれるガラスの量は体積分率で20~80%であることが好ましい。これは20%より少ないとCrの揮発防止に不十分となるためであり、80%より多くなると導電性を確保できなくなるためである。
 コーティング層のガラスはSiOを25~65mass%含み、アルカリ金属成分の含有量が0.1mass%以下であるガラスが好ましい。さらに、SiOを25~65mass%含有し、少なくともAl、アルカリ土類金属酸化物、ZrO、希土類酸化物より選ばれた酸化物を、Alを5~30mass%、アルカリ土類金属酸化物を25~60mass%、ZrOを0~30mass%、希土類酸化物を0~20mass%含有し、アルカリ金属成分の含有量が0.1mass%以下であることが好ましい。アルカリ金属成分はCrの揮発を促進するため、アルカリ金属酸化物などのアルカリ金属を含む成分は意図的に添加しないことが好ましい。
 以下、ガラスの組成に関して説明する。
 SiO量は25mass%~65mass%が好ましく、さらに40mass%~60mass%であればより好ましい。これは、25mass%より少ないと軟化点が700℃より低くなるためであり、65mass%より多いと軟化点が1200℃より高くなるためである。
 Alはガラスの耐熱性を向上させる効果があるが、その量は5mass%~30mass%が好ましい。これは、5mass%より少ないと耐熱性向上に効果がないためであり、30%より多いと軟化点が1200℃より高くなるためである。
 アルカリ土類金属酸化物はガラスの高温粘性を低下させ、熱膨張係数を大きくする効果があるが、その量は25mass%~60mass%が好ましい。これは、25mass%より少ないと、軟化点が1200℃より高くなるためであり、60mass%より多いと熱膨張係数が11×10-6/℃より大きくなるためである。
 ZrOはガラスの耐食性を向上させる効果があるが、その量は30mass%以下が好ましい。これは、30mass%より多いと熱膨張係数が11×10-6/℃より大きくなるためである。なお、1mass%より少ないと耐食性向上に効果がないため、1mass%~30mass%であることがより好ましい。
 希土類酸化物の添加はガラスの転移点を上昇させ、熱膨張係数を大きくする効果があるが、その量は20mass%以下が好ましく、さらに10mass%以下であればより好ましい。これは20mass%より大きいと熱膨張係数が11×10-6/℃より大きくなるためである。
 また、本ガラスは必要に応じてB、ZnOなどを添加することができる。Bはガラスの高温粘性を改善するのに効果的であるが、10mass%より多いと軟化点が700℃より低くなるため好ましくない。
また、ZnOは耐食性を改善するのに効果的であるが、10mass%より多いと軟化点が700℃より低くなるため好ましくない。
 コーティング層の導電材は温度上昇に伴い、導電率が大きくなる金属酸化物が好ましく、特にFe、Cr、Ni、Co、Cu、Mn、Laを含む酸化物、複合酸化物が好適である。このほか、高温酸素雰囲気中で安定な金属や合金、特に白金、イリジウム、ロジウム、パラジウム、金、銀などの貴金属およびこれらの合金や金属窒化物なども用いることができる。
 導電材の粒径とコーティング層の厚さの比は導電材の粒径/コーティング層の厚さ=1/300~1/1であることが望ましい。これは1/300より小さいと導電性を確保できなくなるためであり、1/1より大きいとCrの揮発防止が不十分となるためである。
 コーティング層の成膜方法としては、ドクタブレード法、スプレーコート法、スラリーコート法、溶射法、スパッタリング法、蒸着法、エアロゾルデポジッション法、コールドスプレー法などが挙げられる。これらに用いるペースト又はスラリーはガラスおよび導電材にテルピネオール、ブチルカルビトールなどの有機溶媒を加えてペースト化またはスラリー化したものを用いることができる。ペーストやスラリーの粘度は溶媒や混合するバインダの量により調整することが可能であり、バインダとしてはエチルセルロースが挙げられる。ペーストを作製する際のガラスの粒径は200μm以下がよく、100μm以下であればより好ましい。これは200μmより大きいと、焼成する際にガラスが十分に軟化せず、焼成後の保護コートに凹凸を生じるためである。またスラリーを作製する際のガラスの粒径は50μm以下がよく、10μm以下であればより好ましい。これは50μmより大きいと、ガラスを均一にコートできないためである。
 形成したコーティング膜を焼成する際の焼成温度は酸化雰囲気中であれば1300℃以下とすることが好ましい。これは、1300℃より高い温度では、金属基材の酸化が進行して導電性が低下するためである。なお窒素や不活性ガスなど金属基材の酸化が促進されない環境であれば、1300℃以上での焼成を行うことが可能である。なお、コーティング層には必要に応じて、ガラス以外にも、アルミナ、ジルコニア、炭化珪素、窒化珪素、ムライトなどの酸化雰囲気で安定なセラミックスを用いることができる。これらのセラミックスは前記と同様の方法で形成することができる。
 以下、実施例を用いて本発明をさらに詳細に説明する。
 本実施例においては、固体酸化物燃料電池用金属セパレータの基材としてFe-22Cr鋼を用いる。そして、平均粒径3μmのガラス及び平均粒径10μmの導電材粒子を有機溶剤中に分散し、スプレー法等を用いて上記の基材の酸素極側に厚さ50μmとなるように塗布した。さらに、電気炉にて1000℃、1時間空気中で焼成し、コーティング層を形成した。
 図1にセパレータの断面の拡大図を示す。
 本図において、1はFe-22Cr鋼、2はCr酸化物層、3はコーティング層、4はガラス、5は導電材である。
 Fe-22Cr鋼1の表面に形成したCr酸化物層2とガラス4は一体結合し、強固なコーティング層を形成している。また、コーティング層のガラス中に導電材5が分散しているが、導電材5は相互に接触することで導電性を確保している。
 図2は、コーティング層の厚さが10μmの場合におけるセパレータの拡大断面図である。ここでは、導電材5の粒径がコーティング層3の厚さとほぼ等しいため、導電材5は相互に接触しなくても、単体で導電性を確保することが可能となる。ガラス4は導電材5の隙間を埋めており、これにより、Crの揮発を防止している。
 図3にガラスの実施例の組成を示す。なお、本実施例においては、金属セパレータの基材として、Fe-22Cr鋼(熱膨張係数11×10-6/℃)を用いた。
 No.1~11にはSiO量を、No.12~19にはAl量を、No.20~29にはアルカリ土類金属酸化物量を、No.30~36にはZrO量を、No.37~42にはGd量を変化させたガラス組成を示す。
 ここに示すように、SiOを25~65mass%、Alを5~30mass%、アルカリ土類金属酸化物を25~60mass%、ZrOを0~30mass%、希土類酸化物を0~20mass%の組成範囲において、軟化点が700~1200℃、熱膨張係数が11×10-6/℃以下のコーティング層に適したガラスが得られた。
 図3のNo.15をベースにして、さらに熱膨張係数とSiOに対する各構成酸化物の重量比との関係を検討した結果を図4~図9に示す。
 図4に示すように、B/SiO比が0.6より大きくなると、熱膨張係数が11×10-6/℃より大きくなるため、B/SiO比は0.6以下が好ましい。
 図5に示すように、ZrO/SiO比が0.8より大きくなると、熱膨張係数が11×10-6/℃より大きくなるため、ZrO/SiO比は0.8以下が好ましい。
 図6に示すように、MgO/SiO比が0.7より大きくなると、熱膨張係数が11×10-6/℃より大きくなるため、MgO/SiO比は0.7以下が好ましい。
 図7に示すように、CaO/SiO比が0.8より大きくなると、熱膨張係数が11×10-6/℃より大きくなるため、CaO/SiO比は0.8以下が好ましい。
 図8に示すように、SrO/SiO比が0.3より大きくなると、熱膨張係数が11×10-6/℃より大きくなるため、SrO/SiO比は0.3以下が好ましい。
 図9に示すように、BaO/SiO比が1.6より大きくなると、熱膨張係数が11×10-6/℃より大きくなるため、BaO/SiO比は1.6以下が好ましい。
 本実施例においては、金属基材にFe-22Cr鋼を用いる。そして、図3のNo.6に記載のガラス粉末(平均粒径3μm)及びFe粉末(平均粒径50μm)を、テルピネオール、エチルセルロースと混合してペースト化し、ドクタブレード法を用いて上記の金属基材の表面に厚さ100μmになるように塗布した。さらに、電気炉にて900℃、1時間空気中で焼成し、コーティング層を形成した。
 得られたサンプルに関して、高温での電気抵抗の測定を行った。
 図10に電気抵抗値の測定装置の構成を示す。
 コーティング層3を形成した金属基材6(10mm×10mm×2mm)の上下面に測定端子を設置し、電源7より測定端子間に電流Iを供給し、上下間での電圧降下ΔVを電位差計11により測定した。測定された電圧値ΔV及び供給電流値Iより抵抗値R=ΔV/Iを算出した。
 なお、本サンプルでは金属基材の両面にコーティング層を形成したため、この抵抗値Rにコーティング層の面積S(2cm)を乗じ、さらに2で割った値R・S/2(単位mΩ・cm)で評価した。
 図11に導電材の量と750℃での高温抵抗値との関係を示す。
 本図に示すように、導電材量が20vol%以上で、750℃での高温抵抗値は30mΩcm以下の値を示している。これにより、本サンプルが高導電性を有することがわかる。
 次に、混合する導電材の種類を変えて評価を行った。ここで、導電材の量は60vol%とした。
 図12に導電材の種類と750℃での高温抵抗値との関係を示す。
 本図に示すように、Fe、Cr、Ni、Co、Cu、Mn又はLaを含む酸化物、複合酸化物は、750℃での高温抵抗値は30mΩcm以下の値を示している。これにより、本サンプルが高導電性を有することがわかる。
 本実施例においては、金属基材にFe-22Cr鋼を用いる。そして、図3のNo.15に記載のガラス粉末(平均粒径5μm)及び平均粒径10μmのCoO粉末を、ブチルカルビトールアセテート等の有機溶剤中に分散し、スプレー法等を用いて上記の金属基材の表面に厚さ50μmとなるように塗布した。さらに、電気炉にて900℃、1時間空気中で焼成し、コーティング層を形成した。得られたサンプルを900℃にて所定の時間保持して、Cr揮発量の測定を行った。
 図13にCrの揮発量を評価するための装置の構成を示す。
 コーティング層3を形成した金属基材6(10mm×10mm×2mm)の周囲にアルミナ材8a、8b、8cを配置し、これを900℃で加熱して、金属基材6の上部に配置したアルミナ材8aに付着したCrをマイクロウエーブ法で抽出して、誘電結合プラズマ発行分光装置(ICP:エスアイアイ・ナノテクノロジー製 SPS5100)で測定評価した。ここで、金属基材6と上部に配置したアルミナ材8aとの間隔は0.5mmとした。
 図14に導電材量60vol%(ガラス量40vol%)のコーティング層について、加熱時間とCrの揮発量との関係を示す。
 コーティング層を形成していない金属基材は加熱時間の増加に伴い、Crの揮発量が増加しているのに対して、コーティング層を形成したものは0.3mg(測定下限)未満であり、長時間にわたってCrの揮発が抑制されていることを示している。
 図15にガラス量とCr揮発量との関係を示す。ここで、加熱温度は900℃で、加熱時間は1000時間とし、そのほかの条件は前記と同様である。
 本図に示すように、ガラス量が20vol%以上でのCr量は0.3mg(測定下限)未満であり、Crの揮発が抑制されていることを示している。
 次に、ガラスの軟化点とCr量の関係を評価した。ここで、ガラス量は40vol%、加熱温度は900℃で、加熱時間は1000時間とし、そのほかの条件は前記と同様である。評価には図3よりNo.1~No.10のガラスを用いた。
 図16に評価結果を示す。
 軟化点が900℃より高いガラスの場合、Cr量が0.3mg(測定下限)未満であるのに対して、軟化点が900℃未満のガラス材では、軟化点の低下に伴いCr量が増加しており、Crの揮発防止が不十分であることを示している。
 本発明のガラスを用いてコーティング層を形成する場合、前記のように導電材や溶媒などと混合したペーストやスラリーを塗布、焼成してコーティング層を形成する。ここで、コーティング層の形成性はガラスの高温粘性に依存するため、これを簡便に評価する方法としてガラスの広がり比率の測定を行った。
 粒径150μm以下に粉砕して分級したガラス粉末を、ハンドプレスを用いて直径10mm、高さ5mmのガラスペレットとした。このガラスペレットをアルミナ板の上に載せて大気中で1時間加熱した。
 加熱後の濡れ広がり面積を算出し、基準材に対する濡れ広がり比率(=ガラスの濡れ広がり面積/基準材の濡れ広がり面積)を算出した。ここで、広がり比率が1より大きい場合、厚さが均一で、かつ緻密なコーティング層を形成することができたが、1より小さいと、ガラスが十分に流動せず、コーティング層の厚さが不均一となり、緻密なコーティング層を形成することはできなかった。
 図17~図21には、図3のNo.6をベースにして、1000℃で加熱した場合の濡れ広がり比率とSiOに対する各構成酸化物の重量比との関係を示す。
 図17に示すように、Al/SiO比が0.6より大きくなると、広がり比率は1より小さくなるため、Al/SiO比は0.6以下が好ましい。
 図18に示すように、MgO/SiO比が0.4より大きくなると、広がり比率は1より小さくなるため、MgO/SiO比は0.6以下が好ましい。
 図19に示すように、CaO/SiO比が0.7より大きくなると、広がり比率は1より小さくなるため、CaO/SiO比は0.7以下が好ましい。
 図20に示すように、SrO/SiO比が0.3より大きくなると、広がり比率は1より小さくなるため、SrO/SiO比は0.3以下が好ましい。
 図21に示すように、BaO/SiO比が1.5より大きくなると、広がり比率は1より小さくなるため、BaO/SiO比は1.5以下が好ましい。
 なお、加熱温度が1000℃より高くなると、広がり比率が1より小さくなる各構成酸化物とSiOとの重量の比は、1100℃の場合より大きくなる。その増加割合は0.2~0.5/100℃であった。
 本実施例においては、金属基材にFe-22Cr鋼を用いる。そして、図3のNo.15に記載のガラス粉末(平均粒径2μm)とFe粉末(平均粒径16μm)とを体積基準で40:60の割合で混合した混合粉末に、バインダとしてエチルセルロースを混合した。混合粉末とバインダとの混合比は、質量基準で98:2である。これに溶媒としてテルピネオールを混合してペースト化し、上記の金属基材の表面にスクリーン印刷法を用いて成膜した。
 成膜後のサンプルを電気炉にて950℃、1時間空気中で焼成し、コーティング層を形成した。得られたサンプルに関して、実施例3において図10を用いて説明したように、高温(750℃)での電気抵抗の測定を行った。
 図22にコーティング層の膜厚と高温抵抗値との関係を示す。
 本図に示すように、膜厚の低下に伴い、高温抵抗値は低下し、平均粒子径16μmのFe粉末を用いた場合、特に膜厚60μm以下にて、750℃での高温抵抗値は30mΩcm以下の値を示しており、高導電性を有することがわかる。
 膜厚47μmのサンプルについて実施例4において図13を用いて説明したように、Cr揮発性の評価を行った。
 図23にCr揮発性評価試験後のアルミナ板(図13においてサンプル上方に設置したアルミナ材8a)のSEM-EDX分析結果を示す。
 SEM画像は、このアルミナ板の表面の形態であり、EDX分析は、SEM画像の中央部において長方形の枠で囲った箇所を分析した結果である。
 このEDX分析結果に示すように、アルミナ板からはCrは検出されていない。これは、本発明の成膜材がCr揮発の抑制に有効であることを示している。
 本実施例においては、金属基材にFe-22Cr鋼を用いる。そして、図3のNo.25に記載のガラス粉末(平均粒径1μm)とFe粉末(平均粒径1μm)とを体積基準で40:60の割合で混合した混合粉末を、上記の金属基材の表面にエアロゾルデポジション法(以下、AD法と記す。)により成膜を行った。
 図24に成膜材の断面SEM画像を示す。
 膜厚約1μmのガラス膜が金属基材の上に成膜されていることが分かる。また、ガラス膜と金属基材との界面、及びガラス膜中などにクラックや剥離などは見られず、緻密な膜が形成されていることを示している。このAD法で成膜した成膜材に関してCr揮発性の評価および高温抵抗の測定を実施した。Cr揮発性評価方法は実施例4において図13を用いて説明した通りである。
 図25にCr揮発性評価試験後のアルミナ板(図13においてサンプル上方に設置したアルミナ材8a)のSEM-EDX分析結果を示す。
 SEM画像は、このアルミナ板の表面の形態であり、EDX分析は、SEM画像の中央部において長方形の枠で囲った箇所を分析した結果である。
 本図におけるEDX分析結果に示すように、アルミナ板からはCrは検出されていない。これは、成膜材がCrの揮発を抑制するために有効であることを示している。
 実施例3において図10を用いて説明したように、750℃での高温抵抗値を測定した結果、23mΩcmとなり、高温抵抗値の基準値である30mΩcm以下の値を示した。これにより、本成膜材が高導電性を有することを確認した。
 本発明のセパレータを用いた固体電解質型燃料電池は、従来の金属セパレータやセラミックスセパレータなどを用いた固体電解質型燃料電池に比べて発電特性の長期安定性及び信頼性を確保することが可能であるため、一般家庭や工場などの事業所に置ける分散発電電源システムとして用いることができる。また、火力発電や原子力発電などの既存の発電システムと組み合わせたコンバインド発電システムとしても用いることもできる。
 1  Fe-22Cr鋼
 2  Cr酸化物層
 3  コーティング層
 4  ガラス
 5  導電材
 6  金属基材
 7  電源
 8  アルミナ材

Claims (14)

  1.  金属基材と、この金属基材の表面に形成された酸化物層と、この酸化物層の表面に形成されたコーティング層とを含み、このコーティング層がガラスと導電材とを含むことを特徴とする固体電解質型燃料電池用部材。
  2.  前記ガラスは、SiOを25~65mass%含有し、アルカリ金属成分の含有量が0.1mass%以下であることを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  3.  前記ガラスは、Alを5~30mass%、アルカリ土類金属酸化物を25~60mass%、ZrOを0~30mass%、希土類酸化物を0~20mass%含有することを特徴とする請求項2記載の固体電解質型燃料電池用部材。
  4.  前記導電材は、温度上昇に伴い、導電率が高くなる金属酸化物で形成されていることを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  5.  前記導電材は、Fe、Cr、Ni、Co、Cu、Mn又はLaを含む酸化物又は複合酸化物で形成されていることを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  6.  前記コーティング層の厚さが0.1~300μmであることを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  7.  前記コーティング層の熱膨張係数が金属基材の熱膨張係数と同等か、それより小さいことを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  8.  前記コーティング層に含まれる前記ガラスの量が体積基準で20~80%であることを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  9.  前記ガラスの軟化点が固体電解質型燃料電池の運転温度以上であることを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  10.  前記ガラスの熱膨張係数が金属基材の熱膨張係数と同等か、それより小さいことを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  11.  前記導電材の粒径と前記コーティング層の厚さとの比が、前記導電材の粒径/コーティング層の厚さ=1/300~1/1であることを特徴とする請求項1記載の固体電解質型燃料電池用部材。
  12.  請求項1~11のいずれか一項に記載の固体電解質型燃料電池用部材を用いることを特徴とするセパレータ。
  13.  請求項1~11のいずれか一項に記載の固体電解質型燃料電池用部材を用いることを特徴とする集電体。
  14.  請求項1~11のいずれか一項に記載の固体電解質型燃料電池用部材をセパレータ又は集電体として用いることを特徴とする固体電解質型燃料電池。
PCT/JP2009/006333 2008-11-26 2009-11-25 固体酸化物電解質型燃料電池用部材 WO2010061585A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010540365A JP5273157B2 (ja) 2008-11-26 2009-11-25 固体酸化物電解質型燃料電池用部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-300311 2008-11-26
JP2008300311 2008-11-26

Publications (1)

Publication Number Publication Date
WO2010061585A1 true WO2010061585A1 (ja) 2010-06-03

Family

ID=42225471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006333 WO2010061585A1 (ja) 2008-11-26 2009-11-25 固体酸化物電解質型燃料電池用部材

Country Status (2)

Country Link
JP (1) JP5273157B2 (ja)
WO (1) WO2010061585A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009226A (ja) * 2010-06-23 2012-01-12 Kyocera Corp 横縞型固体酸化物形燃料電池セルスタック、横縞型固体酸化物形燃料電池バンドルおよび燃料電池
JP2012084508A (ja) * 2010-10-11 2012-04-26 Samsung Electro-Mechanics Co Ltd 燃料電池及びその製造方法
WO2013045230A1 (de) * 2011-09-27 2013-04-04 Siemens Aktiengesellschaft Verfahren zur herstellung einer festelektrolyt-brennstoffzelle
JP2013093150A (ja) * 2011-10-25 2013-05-16 Hitachi Metals Ltd 固体酸化物形燃料電池用部材
JP2015502014A (ja) * 2011-11-17 2015-01-19 ブルーム エネルギー コーポレイション ジルコニア系電解質に耐食性を付与する多層コーティング
JP2017119916A (ja) * 2012-05-17 2017-07-06 京セラ株式会社 導電部材およびセルスタックならびに電気化学モジュール、電気化学装置
WO2019221142A1 (ja) * 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
JP2022083218A (ja) * 2020-11-24 2022-06-03 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146006A (ja) * 1992-11-04 1994-05-27 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼材とその製造法
JPH10270062A (ja) * 1997-03-21 1998-10-09 Sanyo Electric Co Ltd 固体電解質型燃料電池用セパレータ及び作製方法並びに固体電解質型燃料電池
WO2001028018A1 (fr) * 1999-10-14 2001-04-19 Matsushita Electric Industrial Co., Ltd. Pile a combustible electrolytique polymere
JP2005518652A (ja) * 2002-02-26 2005-06-23 セラミック・フューエル・セルズ・リミテッド 燃料電池ガスセパレータ
JP2007504363A (ja) * 2003-09-03 2007-03-01 エイティーアイ・プロパティーズ・インコーポレーテッド 耐酸化性フェライト系ステンレス鋼
JP2007529855A (ja) * 2004-03-20 2007-10-25 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 導電性の鋼−セラミック複合体並びにその製造方法
JP2008077913A (ja) * 2006-09-20 2008-04-03 Sumitomo Precision Prod Co Ltd 燃料電池用インターコネクタ及びセルスタック

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146006A (ja) * 1992-11-04 1994-05-27 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼材とその製造法
JPH10270062A (ja) * 1997-03-21 1998-10-09 Sanyo Electric Co Ltd 固体電解質型燃料電池用セパレータ及び作製方法並びに固体電解質型燃料電池
WO2001028018A1 (fr) * 1999-10-14 2001-04-19 Matsushita Electric Industrial Co., Ltd. Pile a combustible electrolytique polymere
JP2005518652A (ja) * 2002-02-26 2005-06-23 セラミック・フューエル・セルズ・リミテッド 燃料電池ガスセパレータ
JP2007504363A (ja) * 2003-09-03 2007-03-01 エイティーアイ・プロパティーズ・インコーポレーテッド 耐酸化性フェライト系ステンレス鋼
JP2007529855A (ja) * 2004-03-20 2007-10-25 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 導電性の鋼−セラミック複合体並びにその製造方法
JP2008077913A (ja) * 2006-09-20 2008-04-03 Sumitomo Precision Prod Co Ltd 燃料電池用インターコネクタ及びセルスタック

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009226A (ja) * 2010-06-23 2012-01-12 Kyocera Corp 横縞型固体酸化物形燃料電池セルスタック、横縞型固体酸化物形燃料電池バンドルおよび燃料電池
JP2012084508A (ja) * 2010-10-11 2012-04-26 Samsung Electro-Mechanics Co Ltd 燃料電池及びその製造方法
WO2013045230A1 (de) * 2011-09-27 2013-04-04 Siemens Aktiengesellschaft Verfahren zur herstellung einer festelektrolyt-brennstoffzelle
JP2013093150A (ja) * 2011-10-25 2013-05-16 Hitachi Metals Ltd 固体酸化物形燃料電池用部材
JP2015502014A (ja) * 2011-11-17 2015-01-19 ブルーム エネルギー コーポレイション ジルコニア系電解質に耐食性を付与する多層コーティング
US10784521B2 (en) 2011-11-17 2020-09-22 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
JP2017119916A (ja) * 2012-05-17 2017-07-06 京セラ株式会社 導電部材およびセルスタックならびに電気化学モジュール、電気化学装置
WO2019221142A1 (ja) * 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
JPWO2019221142A1 (ja) * 2018-05-17 2021-02-12 日本碍子株式会社 リチウム二次電池
JP7104148B2 (ja) 2018-05-17 2022-07-20 日本碍子株式会社 リチウム二次電池
JP2022083218A (ja) * 2020-11-24 2022-06-03 森村Sofcテクノロジー株式会社 電気化学反応セルスタック
JP7169333B2 (ja) 2020-11-24 2022-11-10 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Also Published As

Publication number Publication date
JP5273157B2 (ja) 2013-08-28
JPWO2010061585A1 (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2010061585A1 (ja) 固体酸化物電解質型燃料電池用部材
KR101951858B1 (ko) 층 구조부 및 고온형 연료 전지의 상호 접속부 및 음극 사이의 세라믹 층 구조체를 형성하기 위한 그의 용도
JP5288099B2 (ja) 固体酸化物形燃料電池用金属部材
JP5607903B2 (ja) インターコネクト用バリア皮膜、関連装置及び形成方法
KR101183774B1 (ko) 집전기 및 그 제조 방법
JP5134949B2 (ja) 導電性の鋼−セラミック複合体並びにその製造方法
JP2010113955A (ja) 固体酸化物形燃料電池用インターコネクト、その製造方法及び固体酸化物形燃料電池
Meulenberg et al. Improved contacting by the use of silver in solid oxide fuel cells up to an operating temperature of 800° C
JP5470278B2 (ja) 高温型燃料電池積層体用の密封機構
WO2014115867A1 (ja) ガスセンサー電極形成用の金属ペースト
JP2010033747A (ja) 固体酸化物形燃料電池スタック及びその製造方法
JP2013093150A (ja) 固体酸化物形燃料電池用部材
JP5013750B2 (ja) セルスタック及び燃料電池
JP5410076B2 (ja) 導電性積層体及び導電性積層体の製造方法
Shong et al. Characteristics of La0. 6Sr0. 4Co0. 2Fe0. 8O3–Cu2O mixture as a contact material in SOFC stacks
WO2017146120A1 (ja) ガスセンサー電極形成用の金属ペースト
CN102757671B (zh) 一种用于金属表面的复合涂层材料及其应用
JP6212328B2 (ja) ガスセンサー電極形成用の金属ペースト
Shong et al. Evaluation of Ag–NiO mixture as a cathode contact material for solid oxide fuel cell applications
JP2014112499A (ja) セル間接続部材の製造方法および固体酸化物型燃料電池
JP2013069616A (ja) 固体酸化物形燃料電池用インターコネクタ
JP5330849B2 (ja) 導電性接合材及びこれを備える固体電解質型燃料電池
JP4931423B2 (ja) 耐熱性導電部材、燃料電池用合金部材及び燃料電池用集電部材並びにセルスタック、燃料電池
US20090155666A1 (en) Bipolar plate and process for producing a bipolar plate
JP4136062B2 (ja) セパレータ材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540365

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828835

Country of ref document: EP

Kind code of ref document: A1