WO2010058761A1 - 塩素の製造方法 - Google Patents

塩素の製造方法 Download PDF

Info

Publication number
WO2010058761A1
WO2010058761A1 PCT/JP2009/069463 JP2009069463W WO2010058761A1 WO 2010058761 A1 WO2010058761 A1 WO 2010058761A1 JP 2009069463 W JP2009069463 W JP 2009069463W WO 2010058761 A1 WO2010058761 A1 WO 2010058761A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorinated
hydrogen chloride
propene
gas
reaction
Prior art date
Application number
PCT/JP2009/069463
Other languages
English (en)
French (fr)
Inventor
ビエレン カルロス グスタボ クナップ
航平 関
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2009801459534A priority Critical patent/CN102216207A/zh
Publication of WO2010058761A1 publication Critical patent/WO2010058761A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)

Definitions

  • the present invention relates to a method for producing chlorine by oxidizing hydrogen chloride by bringing a gas containing hydrogen chloride into contact with a gas containing oxygen in the presence of a catalyst in which ruthenium and / or a ruthenium compound is supported on titanium oxide. About.
  • a gas containing hydrogen chloride (hydrogen chloride-containing gas) is brought into contact with a gas containing oxygen to oxidize the hydrogen chloride to produce chlorine.
  • a gas containing hydrogen chloride hydrogen chloride-containing gas
  • a hydrogen chloride-containing gas a hydrogen chloride-containing gas by-produced from a synthesis process of various organic compounds or a pyrolysis process of a chlorine compound (see, for example, Patent Document 4).
  • the conversion rate of hydrogen chloride may be reduced.
  • the present inventors have found that when a large amount of a predetermined compound such as chlorinated propane or chlorinated propene is contained in the hydrogen chloride-containing gas to be used, a decrease in the conversion rate of hydrogen chloride is induced. Furthermore, it has been found that the decrease in the conversion rate can be prevented by using a hydrogen chloride-containing gas in which the content of the compound is 0.1% by volume or less with respect to hydrogen chloride.
  • a predetermined compound such as chlorinated propane or chlorinated propene
  • a mixed gas containing chlorinated propane and / or chlorinated propene and hydrogen chloride is brought into contact with a gas containing oxygen in the presence of a catalyst in which ruthenium and / or a ruthenium compound is supported on titanium oxide.
  • chlorine can be produced by oxidizing chlorinated propane and chlorinated propene satisfactorily and oxidizing hydrogen chloride at a good conversion rate.
  • the catalyst used in the present invention is a catalyst in which ruthenium and / or a ruthenium compound is supported on titanium oxide.
  • the ruthenium and / or ruthenium compound mentioned here is composed of ruthenium metal, ruthenium oxide, ruthenium oxide, ruthenium chloride, ruthenium chloride hydrate, nitrosyl ruthenium nitrate, ruthenium carbonyl complex, and any combination thereof. A mixture is mentioned.
  • ruthenium oxide is preferable, that is, a supported ruthenium oxide catalyst in which ruthenium oxide is supported on titanium oxide is preferable as the catalyst.
  • titanium oxide in the present invention includes a composite oxide of titanium oxide and other metal oxides, and a mixture of titanium oxide and other metal oxides such as alumina, zirconium oxide, and silica. It is. Among these, titanium oxide itself is preferable. Titanium oxide includes amorphous, anatase crystal, and rutile crystal forms. Among these, titanium oxide containing a rutile crystal form is preferable.
  • a catalyst for an oxidation reaction it can also be used by diluting with a substance inert to the reaction such as alumina, zirconium oxide and silica.
  • the catalyst may be used in the form of a spherical granule, a cylindrical pellet, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule that has been pulverized and classified after molding.
  • the diameter of the catalyst is preferably 5 mm or less. If the diameter of the catalyst is too large, the conversion rate of the oxidation reaction of chlorinated propane and / or chlorinated propene may be low, or the conversion rate of hydrogen chloride to chlorine may be low.
  • the lower limit of the diameter of the catalyst is not particularly limited, but if it becomes excessively small, pressure loss in the catalyst layer increases, and therefore, a catalyst having a diameter of 0.5 mm or more is usually used.
  • the diameter of the catalyst here means the diameter of a sphere in the case of spherical particles, the diameter of a circular cross section in the case of a cylindrical pellet, and the maximum diameter of the cross section in other shapes.
  • Such a catalyst can be produced, for example, based on the methods described in JP 2000-229239 A, JP 2000-281314 A, and JP 2002-79093 A.
  • a mixed gas containing chlorinated propane and / or chlorinated propene and hydrogen chloride is brought into contact with a gas containing oxygen in the presence of a catalyst in which ruthenium and / or a ruthenium compound is supported on titanium oxide.
  • Chlorinated propane can be propane substituted with at least one chlorine atom, for example, 1-chloropropane, 2-chloropropane, 1,1-dichloropropane, 1,2-dichloropropane, 1,3- Dichloropropane, 2,2-dichloropropane, 1,1,1-trichloropropane, 1,1,2-trichloropropane, 1,1,3-trichloropropane, 1,2,2-trichloropropane, 1,1, 2,2-tetrachloropropane, 1,1,2,3-tetrachloropropane, 1,2,2,3-tetrachloropropane, 1,1,2,2,3-pentachloropropane, 1,1,2,2, 3,3-hexachloropropane is mentioned.
  • the chlorinated propane is 2-chloropropane or 1,2-dichloropropane
  • the present invention is advantageously employed.
  • the chlorinated propene can be a propene substituted with at least one chlorine atom, such as allyl chloride (allyl chloride; 3-chloro-1-propene), 2-chloro-1-propene, 1-chloro -1-propene, 1,3-dichloro-1-propene, 1,2-dichloro-1-propene, 1,1-dichloro-1-propene, 3,3-dichloro-1-propene, 1,1,2 -Trichloro-1-propene, 1,1,3-trichloro-1-propene, 1,2,3-trichloro-1-propene, 2,3,3-trichloro-1-propene, 1,1,2,3 -Tetrachloro-1-propene, 1,2,3,3-tetrachloropropene, 1,1,2,3,3-pentachloro-1-propene.
  • allyl chloride allyl chloride
  • 3-chloro-1-propene 2-chloro-1
  • the amount of the catalyst used is usually 10 to 50000 h -1 in terms of the ratio (GHSV) of the mixed gas containing chlorinated propane and / or chlorinated propene and hydrogen chloride in the standard state.
  • the present invention is characterized in that, during the oxidation reaction, the content of chlorinated propane and / or chlorinated propene in the mixed gas is 0.1% by volume or less based on hydrogen chloride.
  • chlorinated propane and chlorinated propene can be oxidized well, and hydrogen chloride can be oxidized at a good conversion rate to produce chlorine.
  • the content is preferably 0.05% by volume or less with respect to hydrogen chloride.
  • the mixed gas contains two or more compounds of chlorinated propane and / or chlorinated propene, the total content thereof is 0.1% by volume or less with respect to hydrogen chloride, and each compound The content of is preferably 0.1% by volume or less based on hydrogen chloride. If the content of chlorinated propane and / or chlorinated propene is too high, the catalytic activity may be lowered.
  • the content of chlorinated propane and / or chlorinated propene in the mixed gas depends on the origin of the gas, but usually 0.1 ppm by volume or more with respect to hydrogen chloride can be contained.
  • the invention is effective.
  • the mixed gas containing chlorinated propane and / or chlorinated propene and hydrogen chloride may be any hydrogen chloride-containing gas that can be contained in chlorinated propane and / or chlorinated propene, but is mainly organic. Examples include chlorination reaction of compounds, pyrolysis reaction and combustion reaction of chlorine compounds, phosgenation reaction of organic compounds, and hydrogen chloride generated in the production of chlorofluoroalkanes. Furthermore, even if hydrogen chloride is generated during the reaction between hydrogen and chlorine, heating hydrochloric acid, or burning in an incinerator, chlorinated propane and / or chlorinated propene is contained and accumulated as impurities in the hydrogen chloride. If so, they are also subject to use.
  • Chlorination reaction of organic compounds includes production of allyl chloride by reaction of propylene and chlorine, production of ethyl chloride by reaction of ethane and chlorine, production of trichlorethylene and tetrachloroethylene by reaction of 1,2-dichloroethane and chlorine, etc. Is mentioned.
  • thermal decomposition reaction of chlorine compounds examples include production of vinyl chloride from 1,2-dichloroethane, production of tetrafluoroethylene from chlorodifluoromethane, and the like.
  • Examples of the phosgenation reaction of an organic compound include production of isocyanate by reaction of amine and phosgene, and production of carbonate ester by reaction of alcohol and / or aromatic alcohol with phosgene.
  • the production of chlorofluoroalkane includes the production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of carbon tetrachloride and hydrogen fluoride, and the production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of methane, chlorine and hydrogen fluoride. Manufacturing etc. are mentioned.
  • the content of hydrogen chloride in the mixed gas containing chlorinated propane and / or chlorinated propene and hydrogen chloride is usually 50% by volume or more, preferably 80% by volume or more, more preferably 90% by volume with respect to the total amount of the mixed gas. % Or more.
  • the mixed gas may contain a gas inert to the oxidation reaction such as nitrogen gas or argon gas.
  • the amount of oxygen used is not particularly limited, but the molar ratio of oxygen is preferably 0.2 or more with respect to the total amount of chlorinated propane and / or chlorinated propene and hydrogen chloride. More preferably. If the amount of oxygen used is too small, the conversion rate of the oxidation reaction of chlorinated propane and / or chlorinated propene may be low.
  • the mixed gas is brought into contact with a gas containing oxygen.
  • the gas containing oxygen may be pure oxygen, and pure oxygen is a gas inert to an oxidation reaction such as nitrogen gas or argon gas. It may be diluted or air. Oxygen can be obtained by ordinary industrial methods such as pressure swing of air or cryogenic separation.
  • the reaction temperature in the oxidation reaction according to the present invention is usually 200 to 500 ° C., preferably 250 to 450 ° C., more preferably 300 to 400 ° C. If the reaction temperature is too low, the conversion rate of the oxidation reaction of chlorinated propane and / or chlorinated propene and the conversion rate of hydrogen chloride may be low. On the other hand, if the reaction temperature is too high, the catalyst component may volatilize.
  • the pressure of the oxidation reaction is usually 0.1 to 5 MPa, but preferably 0.1 to 1 MPa.
  • the gas linear velocity based on the empty tower is usually 0.1 to 20 m / s.
  • the superficial gas linear velocity means the ratio of the total supply rate of all the gases supplied to the reactor in the standard state to the cross-sectional area of the reactor.
  • reaction method examples include a fixed bed gas phase flow reaction method and a fluidized bed gas phase flow reaction method.
  • the heat exchange system means a system having a jacket portion outside the reaction tube filled with the catalyst and removing the reaction heat generated by the reaction by the heat medium in the jacket.
  • the temperature of the catalyst packed bed in the reaction tube is controlled by the heat medium in the jacket.
  • chlorine can usually be obtained by the following steps.
  • Reaction step contacting a mixed gas containing chlorinated propane and / or chlorinated propene and hydrogen chloride with a gas containing oxygen to oxidize chlorinated propane and / or chlorinated propene, Step of oxidizing to chlorine
  • Absorption step Cooling the gas obtained in the reaction step by cooling, bringing it into contact with water and / or hydrochloric acid, or after bringing it into contact with water and / or hydrochloric acid
  • Drying step removing moisture in the gas obtained in the absorption step while recovering a solution mainly containing hydrogen chloride and water and obtaining a gas mainly containing chlorine and unreacted oxygen
  • Purification step separating the dried gas obtained in the drying step into a liquid or gas containing chlorine as a main component and a gas containing unreacted oxygen as a main component.
  • the mixed gas can be used in the reaction step after being brought into contact with activated carbon.
  • the solution mainly composed of hydrogen chloride and water obtained in the absorption step is used as it is or after removing chlorine contained in the solution by heating and / or bubbling with an inert gas such as nitrogen, and then the electrolytic cell.
  • an inert gas such as nitrogen
  • PH adjustment neutralization of boiler feed water, production of 4,4′-diphenylmethanediamine by condensation rearrangement reaction between aniline and formalin, and hydrochloric acid electrolysis.
  • hydrogen chloride is recovered from the top of the distillation column by being subjected to distillation for hydrogen chloride recovery and used in the reaction as a part of the mixed gas. A part or all of the liquid at the bottom of the distillation column is distilled for dehydration. Then, water can be recovered from the top of the distillation column, and part or all of the liquid at the bottom of the distillation column can be supplied to the distillation column for recovering hydrogen chloride.
  • the sulfuric acid mist can be removed by bubbling a part or all of the gas mainly composed of unreacted oxygen obtained in the purification step with an aeration member.
  • the chlorine obtained in the purification step can be used for the production of 1,2-dichloroethane by reaction with ethylene, the production of phosgene by the reaction with carbon monoxide, and the production of allyl chloride by the reaction with propylene.
  • Phosgene can be used in the production of isocyanates by reaction with amines, and in the production of carbonate esters by reaction with alcohols and / or aromatic alcohols.
  • Examples of the isocyanate include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and hexamethylene-1,6-diisocyanate.
  • the carbonate ester include diphenyl carbonate and dimethyl carbonate.
  • Example 1 50 parts by weight of titanium oxide (STR-60R manufactured by Sakai Chemical Co., Ltd., 100% rutile type), 100 parts by weight of ⁇ -alumina [AES-12 manufactured by Sumitomo Chemical Co., Ltd.], 19.2 parts by weight of titania sol [ ⁇ CSB manufactured by Chemical Co., Ltd., titania content 38% by weight] and 3 parts by weight of methylcellulose [Metroze 65SH-4000 manufactured by Shin-Etsu Chemical Co., Ltd.] were mixed, and then pure water was added and kneaded. This mixture was extruded into a cylindrical shape having a diameter of 3.0 mm ⁇ , dried and then crushed to a length of about 4 to 6 mm.
  • the obtained molded body was fired in air at 800 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and ⁇ -alumina.
  • This support was impregnated with an aqueous solution of ruthenium chloride, dried, and then calcined in air at 250 ° C. for 2 hours to obtain a supported ruthenium oxide catalyst containing 1% by weight of ruthenium oxide.
  • an oxidation reaction was carried out by bringing 2-chloropropane and hydrogen chloride into contact with oxygen as follows.
  • an upright quartz reaction tube (inner diameter: 14 mm) was filled with a mixture of 2.37 g (1.8 cm 3 ) of catalyst and 3.7 g of ⁇ -alumina sphere (Nikkato Co., Ltd., SSA995) having a diameter of 2 mm.
  • a mixture of 1.19 g (0.9 cm 3 ) of the catalyst and 5.5 g of the ⁇ -alumina sphere having a diameter of 2 mm was charged above the catalyst.
  • the gas is collected by circulating the gas at the outlet of the reaction tube through a 30% by mass potassium iodide aqueous solution, the amount of chlorine produced by iodine titration method, and the amount of unreacted hydrogen chloride by neutralization titration method.
  • the amount of outlet carbon dioxide was measured by chromatographic analysis. Table 1 shows the conversion rate of hydrogen chloride and the yield of carbon dioxide with respect to 2-chloropropane when about 48 hours had elapsed after the start of the reaction.
  • Comparative Example 1 The same operation as in Example 1 was performed, except that the flow rate of 2-chloropropane gas diluted to 2.0% by volume with nitrogen was 10 ml / min. The content of 2-chloropropane gas with respect to hydrogen chloride gas in the raw material is calculated to be 0.2% by volume. Table 1 shows the conversion rate of hydrogen chloride and the yield of carbon dioxide with respect to 2-chloropropane when about 48 hours had elapsed after the start of the reaction.
  • Comparative Example 2 The same operation as in Example 1 was performed except that 2-chloropropane gas diluted to 4.9% by volume with nitrogen was supplied at a flow rate of 10 ml / min. The content of 2-chloropropane gas with respect to hydrogen chloride gas in the raw material is calculated to be 0.5% by volume. Table 1 shows the conversion rate of hydrogen chloride and the yield of carbon dioxide with respect to 2-chloropropane when about 48 hours had elapsed after the start of the reaction.
  • Example 2 The same operation as in Example 1 was carried out except that allyl chloride gas diluted to 0.5% by volume with nitrogen was continuously supplied instead of 2-chloropropane gas at a flow rate of 10 ml / min.
  • content of allyl chloride gas with respect to hydrogen chloride gas in a raw material is calculated with 0.05 volume%. Table 2 shows the conversion rate of hydrogen chloride and the yield of carbon dioxide relative to allyl chloride when about 48 hours had passed after the reaction was started.
  • Comparative Example 3 The same operation as in Example 1 was performed except that allyl chloride gas diluted to 0.5% by volume with nitrogen was continuously supplied at a flow rate of 40 ml / min instead of 2-chloropropane gas. In addition, content of allyl chloride gas with respect to hydrogen chloride gas in a raw material is calculated with 0.2 volume%. Table 2 shows the conversion rate of hydrogen chloride and the yield of carbon dioxide with respect to allyl chloride gas when about 48 hours had passed after the start of the reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、塩素化プロパンや塩素化プロペンを良好に酸化するとともに、塩化水素を良好な転化率で酸化して塩素を製造する方法を提供することを課題とする。  本発明は、酸化チタンにルテニウム及び/又はルテニウム化合物が担持されてなる触媒の存在下、塩素化プロパン及び/又は塩素化プロペンと塩化水素とを含む混合ガスを、酸素を含むガスと接触させ、塩素化プロパン及び/又は塩素化プロペンを酸化するとともに、塩化水素を酸化して塩素を製造する方法であって、混合ガス中の塩素化プロパン及び/又は塩素化プロペンの含有量が、塩化水素に対し0.1体積%以下であることを特徴とする塩素の製造方法に関する。

Description

塩素の製造方法
 本特許出願は、日本国特許出願第2008-294305号(2008年11月18日出願)に基づくパリ条約上の優先権を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が、本明細書中に組み込まれるものとする。
 本発明は、酸化チタンにルテニウム及び/又はルテニウム化合物が担持されてなる触媒の存在下、塩化水素を含むガスを、酸素を含むガスと接触させて、塩化水素を酸化して塩素を製造する方法に関する。
 酸化チタンにルテニウム及び/又はルテニウム化合物が担持されてなる触媒の存在下、塩化水素を含むガス(塩化水素含有ガス)を、酸素を含むガスと接触させて、塩化水素を酸化して塩素を製造する方法はよく知られている(例えば、特許文献1~4参照)。また、塩化水素含有ガスとして、各種有機化合物の合成プロセスや、塩素化合物の熱分解プロセスから副生する塩化水素含有ガスを用いることも知られている(例えば、特許文献4参照)。
特開2000-281314号公報 特開2002-79093号公報 特開2004-181408号公報 特開2005-289800号公報
 しかしながら、使用する塩化水素含有ガスによっては、塩化水素の転化率の低下を招くことがあった。
 本発明者らは鋭意検討したところ、使用する塩化水素含有ガス中に塩素化プロパンや塩素化プロペンといった所定の化合物が多量に含まれると、塩化水素の転化率の低下が誘発されることを見出し、さらに、該化合物の含有量が塩化水素に対し0.1体積%以下である塩化水素含有ガスを使用することにより、前記転化率の低下を防ぎうることを見出した。
 くわえて、塩素化プロパンや塩素化プロペンが塩化水素含有ガスに含まれる場合、該化合物自体或いは該化合物が塩素化された誘導体が反応工程以降に持ち込まれることによる配管の閉塞が懸念されるところ、前記化合物の含有量が塩化水素に対し0.1体積%以下である塩化水素含有ガスを使用することにより、該化合物も良好に酸化され、懸念される配管の閉塞を防ぎうることも見出した。
 すなわち本発明は、酸化チタンにルテニウム及び/又はルテニウム化合物が担持されてなる触媒の存在下、塩素化プロパン及び/又は塩素化プロペンと塩化水素とを含む混合ガスを、酸素を含むガスと接触させ、塩素化プロパン及び/又は塩素化プロペンを酸化するとともに、塩化水素を酸化して塩素を製造する方法であって、混合ガス中の塩素化プロパン及び/又は塩素化プロペンの含有量が、塩化水素に対し0.1体積%以下であることを特徴とする塩素の製造方法を提供するものである。
 本発明によれば、塩素化プロパンや塩素化プロペンを良好に酸化するとともに、塩化水素を良好な転化率で酸化して塩素を製造することができる。
 本発明で使用する触媒は、酸化チタンにルテニウム及び/又はルテニウム化合物が担持されてなる触媒である。ここでいうルテニウム及び/又はルテニウム化合物としては、金属単体のルテニウムである金属ルテニウム、酸化ルテニウム、塩化ルテニウム、塩化ルテニウム水和物、硝酸ニトロシルルテニウム、ルテニウムカルボニル錯体およびこれらのうちの任意の組み合わせよりなる混合物が挙げられる。中でも、酸化ルテニウムが好ましく、すなわち、触媒として、酸化チタンに酸化ルテニウムが担持されてなる担持酸化ルテニウム触媒が好ましい。
 本発明における酸化チタンには、酸化チタンそのものに加え、酸化チタンと他の金属酸化物との複合酸化物や、酸化チタンとアルミナ、酸化ジルコニウム、シリカなどの他の金属酸化物との混合物も含まれる。中でも、酸化チタンそのものが好ましい。また、酸化チタンとしては、非晶質のものや、アナターゼ結晶形、ルチル結晶形のものが含まれる。中でも、ルチル結晶形を含む酸化チタンが好ましい。
 なお、酸化反応に触媒を使用する際、アルミナ、酸化ジルコニウム、シリカ等の反応に不活性な物質で希釈して使用することもできる。
 触媒の形状は、球形粒状、円柱形ペレット状、押出形状、リング形状、ハニカム状あるいは成型後に粉砕分級した適度の大きさの顆粒状等で用いられる。この際、触媒の直径としては5mm以下が好ましい。触媒の直径が大きすぎると、塩素化プロパン及び/又は塩素化プロペンの酸化反応の転化率が低くなったり、塩化水素の塩素への転化率が低くなったりすることがある。触媒の直径の下限は特に制限はないが、過度に小さくなると、触媒層での圧力損失が大きくなるため、通常は0.5mm以上のものが用いられる。なお、ここでいう触媒の直径とは、球形粒状では球の直径、円柱形ペレット状では円形断面の直径、その他の形状では断面の最大直径を意味する。
 かかる触媒は、例えば、特開2000-229239号公報、特開2000-281314号公報、特開2002-79093号公報に記載の方法に基づいて製造することができる。
 本発明では、酸化チタンにルテニウム及び/又はルテニウム化合物が担持されてなる触媒の存在下、塩素化プロパン及び/又は塩素化プロペンと塩化水素とを含む混合ガスを、酸素を含むガスと接触させる。塩素化プロパンは、少なくとも1つの塩素原子で置換されているプロパンであることができ、例えば、1-クロロプロパン、2-クロロプロパン、1,1-ジクロロプロパン、1,2-ジクロロプロパン、1,3-ジクロロプロパン、2,2-ジクロロプロパン、1,1,1-トリクロロプロパン、1,1,2-トリクロロプロパン、1,1,3-トリクロロプロパン、1,2,2-トリクロロプロパン、1,1,2,2-テトラクロロプロパン、1,1,2,3-テトラクロロプロパン、1,2,2,3-テトラクロロプロパン、1,1,2,2,3-ペンタクロロプロパン、1,1,2,2,3,3-ヘキサクロロプロパンが挙げられる。中でも、塩素化プロパンが、2-クロロプロパンや1,2-ジクロロプロパンである場合、本発明は有利に採用される。
 塩素化プロペンは、少なくとも1つの塩素原子で置換されているプロペンであることができ、例えば、塩化アリル(アリルクロリド;3-クロロ-1-プロペン)、2-クロロ-1-プロペン、1-クロロ-1-プロペン、1,3-ジクロロ-1-プロペン、1,2-ジクロロ-1-プロペン、1,1-ジクロロ-1-プロペン、3,3-ジクロロ-1-プロペン、1,1,2-トリクロロ-1-プロペン、1,1,3-トリクロロ-1-プロペン、1,2,3-トリクロロ-1-プロペン、2,3,3-トリクロロ-1-プロペン、1,1,2,3-テトラクロロ-1-プロペン、1,2,3,3-テトラクロロプロペン、1,1,2,3,3-ペンタクロロ-1-プロペンが挙げられる。中でも、塩素化プロペンが、塩化アリル、1,3-ジクロロ-1-プロペン、2-クロロ-1-プロペンである場合、本発明は有利に採用される。
 触媒の使用量は、標準状態における塩素化プロパン及び/又は塩素化プロペンと塩化水素とを含む混合ガスの供給速度との比(GHSV)で表すと、通常10~50000h-1である。
 本発明は、前記酸化反応の際、前記混合ガス中の塩素化プロパン及び/又は塩素化プロペンの含有量が、塩化水素に対し0.1体積%以下であることを特徴とするものである。
これにより、本反応系において、塩素化プロパンや塩素化プロペンを良好に酸化するとともに、塩化水素を良好な転化率で酸化して塩素を製造することができる。かかる含有量は、塩化水素に対し0.05体積%以下であるのが好ましい。尚、前記混合ガス中に、塩素化プロパン及び/又は塩素化プロペンのうち2種以上の化合物を含む場合、これらの合計含有量が塩化水素に対し0.1体積%以下であるとともに、各化合物の含有量を塩化水素に対し0.1体積%以下であるのがよい。塩素化プロパン及び/又は塩素化プロペンの含有量が高すぎると、触媒活性を低下することがある。
 前記混合ガス中の塩素化プロパン及び/又は塩素化プロペンの含有量は、該ガスの由来によるが、通常、塩化水素に対し0.1体積ppm以上は含まれうるものであり、その場合でも本発明は有効である。
 塩素化プロパン及び/又は塩素化プロペンと塩化水素とを含む混合ガスは、塩素化プロパン及び/又は塩素化プロペンが含有しうる塩化水素含有ガスであれば、いずれのものでもよいが、主に有機化合物の塩素化反応、塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応、クロロフルオロアルカンの製造等において発生した塩化水素が挙げられる。さらに、水素と塩素の反応や、塩酸の加熱、焼却炉での燃焼等において発生した塩化水素であっても、該塩化水素中に不純物として塩素化プロパン及び/又は塩素化プロペンが含有・蓄積されている場合には、それらも使用の対象となる。
 有機化合物の塩素化反応としては、プロピレンと塩素との反応による塩化アリルの製造、エタンと塩素との反応による塩化エチルの製造、1,2-ジクロロエタンと塩素との反応によるトリクロロエチレンとテトラクロロエチレンの製造等が挙げられる。
 塩素化合物の熱分解反応としては、1,2-ジクロロエタンから塩化ビニルの製造、クロロジフルオロメタンからテトラフルオロエチレンの製造等が挙げられる。
 有機化合物のホスゲン化反応としては、アミンとホスゲンとの反応によるイソシアネートの製造、アルコール及び/又は芳香族アルコールとホスゲンとの反応による炭酸エステルの製造が挙げられる。
 クロロフルオロアルカンの製造としては、四塩化炭素とフッ化水素との反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造、メタンと塩素とフッ化水素との反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造等が挙げられる。
 塩素化プロパン及び/又は塩素化プロペンと塩化水素とを含む混合ガス中の塩化水素の含有量は、混合ガス全量に対し、通常50体積%以上、好ましくは80体積%以上、より好ましくは90体積%以上である。尚、前記混合ガス中には、窒素ガス、アルゴンガス等の酸化反応に不活性なガスを含んでもよい。
 酸素の使用量については、特に制限はないが、塩素化プロパン及び/又は塩素化プロペンと塩化水素との合計量に対し、酸素のモル比を0.2以上とするのが好ましく、0.5以上とするのがより好ましい。酸素の使用量が少なすぎると、塩素化プロパン及び/又は塩素化プロペンの酸化反応の転化率が低くなることがある。尚、本発明では、上記混合ガスと、酸素を含むガスとを接触させるが、酸素を含むガスは、純酸素でもよく、純酸素を窒素ガスやアルゴンガス等の酸化反応に不活性なガスで希釈したものでもよく、空気でもよい。酸素は空気の圧力スイング法や深冷分離などの通常の工業的な方法によって得ることができる。
 本発明による酸化反応における反応温度は、通常200~500℃であるが、250~450℃とすることが好ましく、300~400℃が更に好ましい。反応温度が低すぎると、塩素化プロパン及び/又は塩素化プロペンの酸化反応の転化率や塩化水素の転化率が低くなることがある。一方、反応温度が高すぎると、触媒成分が揮散することがある。
 酸化反応の圧力は、通常0.1~5MPaであるが、0.1~1MPaとすることが好ましい。
 空塔基準のガス線速度は、通常0.1~20m/sである。なお、本発明において空塔基準のガス線速度とは、反応器に供給される全てのガスの標準状態における供給速度の合計量と反応器の断面積の比を意味する。
 反応方式としては、固定床気相流通反応方式または流動層気相流通反応方式が挙げられる。
 固定床気相流通反応方式の場合、温度制御は熱交換方式で行うことができる。本発明において熱交換方式とは、触媒が充填された反応管の外側にジャケット部を有し、反応で生成した反応熱をジャケット内の熱媒体によって除去する方式を意味する。熱交換方式では、反応管内の触媒充填層の温度がジャケット内の熱媒体によって制御される。工業的には、反応管を並列に配列し、外側にジャケット部を有する多管式熱交換器型の固定床多管式反応器を用いることができる。
 本発明においては、通常、以下の工程によって塩素を得ることができる。
(1)反応工程:塩素化プロパン及び/又は塩素化プロペンと塩化水素とを含む混合ガスを、酸素を含むガスと接触させ、塩素化プロパン及び/又は塩素化プロペンを酸化するとともに、塩化水素を塩素に酸化する工程
(2)吸収工程:反応工程で得られたガスを、冷却することにより、水及び/又は塩酸と接触させることにより、或いは、水及び/又は塩酸と接触させた後に冷却することにより、塩化水素及び水を主成分とする溶液を回収するとともに、塩素及び未反応酸素を主成分とするガスを得る工程
(3)乾燥工程:吸収工程で得られたガス中の水分を除去することにより、乾燥したガスを得る工程
(4)精製工程:乾燥工程で得られた乾燥したガスを、塩素を主成分とする液体又はガスと未反応酸素を主成分とするガスとに分離することにより塩素を得る工程
(5)循環工程:精製工程で得られた未反応酸素を主成分とするガスの一部又は全部を反応工程へ供給する工程
 本発明においては、前記混合ガスを活性炭と接触させた後に反応工程に用いることができる。
 前記吸収工程で得られた塩化水素及び水を主成分とする溶液は、そのまま、或いは溶液中に含まれる塩素を加熱、及び/又は窒素等の不活性なガスのバブリングにより除去した後、電解槽のpH調整、ボイラ-フィ-ド水の中和、アニリンとホルマリンとの縮合転位反応による4,4’-ジフェニルメタンジアミンの製造、および塩酸電解の原料に用いることができる。また、塩化水素回収用の蒸留に付して蒸留塔の頂部から塩化水素を回収して該混合ガスの一部として反応に用い、蒸留塔の底部における液の一部又は全部を脱水用の蒸留に付して蒸留塔の頂部から水を回収し、蒸留塔の底部における液の一部又は全部を上記塩化水素回収用の蒸留塔へ供給することができる。
 前記精製工程で得られた未反応酸素を主成分とするガスの一部又は全部を散気部材にて吸収液にバブリングさせて硫酸ミストを除去することができる。
 前記精製工程で得られた塩素は、エチレンとの反応による1,2-ジクロロエタンの製造、一酸化炭素との反応によるホスゲンの製造、プロピレンとの反応による塩化アリルの製造に用いることができる。ホスゲンはアミンとの反応によるイソシアネートの製造、アルコール及び/又は芳香族アルコールとの反応による炭酸エステルの製造に使用することができる。イソシアネートとしては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレン-1,6-ジイソシアネートを挙げることができる。
炭酸エステルとしては、炭酸ジフェニル、炭酸ジメチルを挙げることができる。
 以下、本発明を実施例により説明する。
実施例1
 酸化チタン50重量部〔堺化学(株)製のSTR-60R、100%ルチル型〕、α-アルミナ100重量部〔住友化学(株)製のAES-12〕、チタニアゾル19.2重量部〔堺化学(株)製のCSB、チタニア含有量38重量%〕及びメチルセルロース3重量部〔信越化学(株)製のメトローズ65SH-4000〕を混合し、次いで純水を加えて混練した。この混合物を直径3.0mmφの円柱状に押出し、乾燥した後、長さ4~6mm程度に破砕した。得られた成型体を空気中、800℃で3時間焼成し、酸化チタンとα-アルミナの混合物からなる担体を得た。この担体に、塩化ルテニウムの水溶液を含浸し、乾燥した後、空気中、250℃で2時間焼成することにより、酸化ルテニウムが1重量%の担持酸化ルテニウム触媒を得た。
 得られた担持酸化ルテニウム触媒を用い、以下の通り、2-クロロプロパン及び塩化水素を酸素と接触させて、酸化反応を行った。すなわち、直立させた石英反応管(内径14mm)に、触媒を2.37g(1.8cm)と直径2mmのα-アルミナ球(ニッカトー(株)製、SSA995)3.7gとの混合物を充填し、さらに該触媒の上方に1.19g(0.9cm)の触媒と直径2mmの該α-アルミナ球5.5gとの混合物を充填した。
 この反応管上部から、塩化水素ガスを100ml/min、酸素ガスを50ml/min(いずれも絶対圧力0.1MPa、0℃換算)、窒素により2.0体積%に希釈された2-クロロプロパンガスを2.5ml/minの流量で連続的に供給した。原料中の塩化水素ガスに対する2-クロロプロパンガスの含有量は0.05体積%と計算される。反応温度は339~350℃であり、反応圧力は0.1MPaであり、触媒体積に対するGHSVは2277h-1であった。
 反応管出口のガスを30質量%ヨウ化カリウム水溶液に流通させることにより前記ガスを捕集し、ヨウ素滴定法により塩素の生成量を、中和滴定法により未反応塩化水素量を測定し、ガスクロマトグラフィー分析により、出口二酸化炭素量を測定した。反応を開始して約48時間経過した時点での塩化水素の転化率及び2-クロロプロパンに対する二酸化炭素の収率を表1に示した。
比較例1
 窒素により2.0体積%に希釈された2-クロロプロパンガスの流量を10ml/minとしたこと以外、実施例1と同様の操作を行った。尚、原料中の塩化水素ガスに対する2-クロロプロパンガスの含有量は0.2体積%と計算される。反応を開始して約48時間経過した時点での塩化水素の転化率及び2-クロロプロパンに対する二酸化炭素の収率を表1に示した。
比較例2
 窒素により4.9体積%に希釈された2-クロロプロパンガスを10ml/minの流量で供給したこと以外、実施例1と同様の操作を行った。尚、原料中の塩化水素ガスに対する2-クロロプロパンガスの含有量は0.5体積%と計算される。反応を開始して約48時間経過した時点での塩化水素の転化率及び2-クロロプロパンに対する二酸化炭素の収率を表1に示した。
Figure JPOXMLDOC01-appb-T000001
実施例2
 2-クロロプロパンガスにかえ、窒素により0.5体積%に希釈された塩化アリルガスを10ml/minの流量で連続的に供給したこと以外、実施例1と同様の操作を行った。尚、原料中の塩化水素ガスに対する塩化アリルガスの含有量は0.05体積%と計算される。反応を開始して約48時間経過した時点での塩化水素の転化率及び塩化アリルに対する二酸化炭素の収率を表2に示した。
比較例3
 2-クロロプロパンガスにかえ、窒素により0.5体積%に希釈された塩化アリルガスを40ml/minの流量で連続的に供給したこと以外、実施例1と同様の操作を行った。尚、原料中の塩化水素ガスに対する塩化アリルガスの含有量は0.2体積%と計算される。反応を開始して約48時間経過した時点での塩化水素の転化率及び塩化アリルガスに対する二酸化炭素の収率を表2に示した。
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  酸化チタンにルテニウム及び/又はルテニウム化合物が担持されてなる触媒の存在下、塩素化プロパン及び/又は塩素化プロペンと塩化水素とを含む混合ガスを、酸素を含むガスと接触させ、塩素化プロパン及び/又は塩素化プロペンを酸化するとともに、塩化水素を酸化して塩素を製造する方法であって、
     混合ガス中の塩素化プロパン及び/又は塩素化プロペンの含有量が、塩化水素に対し0.1体積%以下であることを特徴とする塩素の製造方法。
  2.  前記触媒が、酸化チタンに酸化ルテニウムが担持されてなる担持酸化ルテニウム触媒である請求項1に記載の製造方法。
  3.  酸化チタンが、ルチル結晶形を含む酸化チタンである請求項1又は2に記載の製造方法。
  4.  前記塩素化プロパンが、2-クロロプロパン及び1,2-ジクロロプロパンからなる群より選ばれる少なくとも1種の化合物である請求項1~3のいずれかに記載の製造方法。
  5.  前記塩素化プロペンが、塩化アリル、1,3-ジクロロ-1-プロペン及び2-クロロ-1-プロペンからなる群より選ばれる少なくとも1種の化合物である請求項1~4のいずれかに記載の製造方法。
  6.  混合ガス中の塩化水素の含有量が、混合ガス全量に対し80体積%以上である請求項1~5のいずれかに記載の製造方法。
  7.  酸化温度が、250~450℃である請求項1~6のいずれかに記載の製造方法。
PCT/JP2009/069463 2008-11-18 2009-11-17 塩素の製造方法 WO2010058761A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801459534A CN102216207A (zh) 2008-11-18 2009-11-17 氯的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008294305A JP5169763B2 (ja) 2008-11-18 2008-11-18 塩素の製造方法
JP2008-294305 2008-11-18

Publications (1)

Publication Number Publication Date
WO2010058761A1 true WO2010058761A1 (ja) 2010-05-27

Family

ID=42198201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069463 WO2010058761A1 (ja) 2008-11-18 2009-11-17 塩素の製造方法

Country Status (3)

Country Link
JP (1) JP5169763B2 (ja)
CN (1) CN102216207A (ja)
WO (1) WO2010058761A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289800A (ja) * 2004-03-22 2005-10-20 Sumitomo Chemical Co Ltd 塩素の製造方法
JP2007021484A (ja) * 2005-06-13 2007-02-01 Sumitomo Chemical Co Ltd 酸化用触媒の製造方法、塩素の製造方法、並びに一酸化炭素及び/又は不飽和炭化水素の酸化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135074A1 (ja) * 2005-06-13 2006-12-21 Sumitomo Chemical Company, Limited 酸化触媒の製造方法、塩素の製造方法、並びに一酸化炭素及び/又は不飽和炭化水素の酸化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289800A (ja) * 2004-03-22 2005-10-20 Sumitomo Chemical Co Ltd 塩素の製造方法
JP2007021484A (ja) * 2005-06-13 2007-02-01 Sumitomo Chemical Co Ltd 酸化用触媒の製造方法、塩素の製造方法、並びに一酸化炭素及び/又は不飽和炭化水素の酸化方法

Also Published As

Publication number Publication date
JP2010120791A (ja) 2010-06-03
JP5169763B2 (ja) 2013-03-27
CN102216207A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
US8889578B2 (en) Processes for regenerating sulfur-poisoned, ruthenium and/or ruthenium compound-containing catalysts
JP5177360B2 (ja) 塩化水素の製造方法および塩素の製造方法
US7837767B2 (en) Processes for removing organic components from gases containing hydrogen chloride
JP2005289800A (ja) 塩素の製造方法
JP2006503785A (ja) 塩酸からの塩素製造方法
JP4372008B2 (ja) 塩化水素の気相触媒的酸化による固定床塩素製造方法
KR101121389B1 (ko) 염소의 제조 방법
JP2010524814A (ja) 塩化水素含有ガスストリームから無機成分を除去する吸着方法
US20120128575A1 (en) Method for activating catalyst for chlorine production
JP4785515B2 (ja) 塩素の製造方法
JP4438771B2 (ja) 酸化用触媒の製造方法、塩素の製造方法、並びに一酸化炭素及び/又は不飽和炭化水素の酸化方法
JP2000034105A (ja) 塩素の製造方法
JP5169763B2 (ja) 塩素の製造方法
JP4611007B2 (ja) 塩素の製造方法
KR20110110146A (ko) 염소의 제조 방법
JP5267305B2 (ja) 塩素の製造方法
JP4487975B2 (ja) 酸化用触媒の製造方法、塩素の製造方法、並びに一酸化炭素及び/又は不飽和炭化水素の酸化方法
JP2008105862A (ja) 塩素の製造方法
JP4999406B2 (ja) 塩素の製造方法
JP5365540B2 (ja) 有機化合物の酸化方法
WO2010137505A1 (ja) 塩素製造用触媒の賦活方法および塩素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145953.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827542

Country of ref document: EP

Kind code of ref document: A1