WO2010057350A1 - 一种电感器件及其制做方法 - Google Patents

一种电感器件及其制做方法 Download PDF

Info

Publication number
WO2010057350A1
WO2010057350A1 PCT/CN2008/073746 CN2008073746W WO2010057350A1 WO 2010057350 A1 WO2010057350 A1 WO 2010057350A1 CN 2008073746 W CN2008073746 W CN 2008073746W WO 2010057350 A1 WO2010057350 A1 WO 2010057350A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
core
magnetic core
magnetic
column
Prior art date
Application number
PCT/CN2008/073746
Other languages
English (en)
French (fr)
Inventor
黄思忠
陈限育
林金城
薛文碧
Original Assignee
清流县鑫磁线圈制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清流县鑫磁线圈制品有限公司 filed Critical 清流县鑫磁线圈制品有限公司
Publication of WO2010057350A1 publication Critical patent/WO2010057350A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present invention relates to electrical components, and more particularly to an inductive device and a method of fabricating the same, which is a power conversion core component of green lighting and power supply parts of various electronic devices.
  • Conventional coil-type inductive devices are generally composed of an EE combined magnetic core or an EI combined magnetic core with a bobbin (skeleton) wound around an enameled wire.
  • the coil bobbin is an injection-molded one-piece structure, and the coil of the inductive component of the above-mentioned shape core must use a coil bobbin, and the inner surface of the coil bobbin in the middle of the coil bobbin and the middle pillar of the magnetic core are all-inclusive structure, since the coil bobbin is injection molded in the machine
  • the thickness of the processing is required to be greater than 0. 5mm. Otherwise, the quality of the skeleton produced (especially the wall thickness) is difficult to ensure.
  • the inner hole and the magnetic core are matched.
  • the length and material of the coil enameled wire are increased, and the coils on the inductive device are generally hundreds of thousands of turns, so that the copper resistance of the device itself increases, and the copper loss increases, and the temperature rise of the device also follows. Raise, which wastes material and wastes power while reducing the life of the product.
  • the traditional EE core or EI core has an air gap in the magnetic circuit.
  • the air gap is usually placed on the center pillar of the core, that is, the air gap is placed in the middle of the package, due to the air.
  • the magnetic permeability is low, and there is leakage magnetic leakage (leakage) near the air air gap. Therefore, the coil of the air air gap attachment cannot participate in the energy conversion, and most of the coils only serve to fill, and the magnetic flux lines vertically cut the coil to cause the coil to heat up.
  • the device's own copper resistance and copper loss increase, so that the temperature rise of the device increases. This situation, as described above, wastes material and wastes power, and reduces the service life of the product.
  • the purpose of the invention is to shorten the distance between the coil of the inductor device and the core of the middle column, optimize the magnetic circuit to reduce the number of invalid turns, thereby shortening the length of the enameled wire of the winding coil, and reducing the copper resistance and copper loss of the device itself.
  • the device and its manufacturing method technical solution the program improves the traditional coil-type inductor device, uses a non-E-type magnetic core, removes the independent skeleton, and uses the method of directly winding the coil on the magnetic core column to save material and save Electrical energy, while extending the life of the product.
  • An inductive device comprising a Japanese-shaped closed magnetic circuit core body and a coil, wherein the Japanese-shaped closed magnetic circuit core body is composed of a center pillar magnetic core and a side pillar magnetic core, and the center pillar core shape is T
  • the font shape of the side column core is U-shaped, and the U-shaped side column core has a groove in the middle of the inner side, and the end of the vertical magnetic core column of the T-shaped middle column core is inserted into the U-shaped side column magnetic field.
  • the groove in the middle of the inner side of the core, the two ends of the transverse magnetic core of the T-shaped middle column core are connected with the U-shaped side column core port to form a Japanese-shaped closed magnetic circuit core body, and the docking distance of each abutting surface (Magnetic air gap) is adjusted according to the magnetic saturation requirement, the adjustment distance is between 0 and 5 mm, and the coil is wound on the vertical magnetic core column of the T-shaped middle column core, and the coil and the vertical magnetic core column 5 ⁇
  • the thickness of the insulating layer is less than 0. 5mm.
  • An inductive device comprising a Japanese-shaped closed magnetic circuit core body and a coil
  • the Japanese-shaped closed magnetic circuit core body is composed of a center pillar magnetic core and a side pillar magnetic core
  • the center pillar magnetic core has a shape I-shaped magnetic core
  • the shape of the core of the side column is two in-line magnetic cores
  • the two one-shaped magnetic cores are respectively connected with the two ports of the I-shaped middle column magnetic core to form a Japanese-shaped closed magnetic circuit magnetic core body
  • the docking distance (magnetic path air gap) of each abutting surface is adjusted according to the magnetic saturation requirement, and the adjustment distance is between 0 and 5 mm
  • the coil winding is arranged on the center column of the I-shaped middle column magnetic core, the coil and the work 5 ⁇
  • the thickness of the thickness of the insulating layer is less than 0. 5mm.
  • An inductive device comprising a Japanese-shaped closed magnetic circuit core body and a coil, wherein the Japanese-shaped closed magnetic circuit core body is composed of a center pillar magnetic core and a side pillar magnetic core, wherein the center pillar magnetic core has a shape A magnetic core, the shape of the core of the side column is a mouth-shaped magnetic core, and the in-line magnetic core of the in-line column is connected to the middle of the magnetic core of the side column to form a magnetic core body of the day-type closed magnetic circuit, each of which
  • the butt joint distance (magnetic path air gap) is adjusted according to the magnetic saturation requirement.
  • the adjusted distance is between 0 and 5 mm, and the coil winding is set in one word. 5 ⁇
  • the thickness of the thickness of the insulating layer is less than 0. 5mm.
  • An inductive device manufacturing method is to wind a coil on a middle column magnetic core of a Japanese-shaped closed magnetic circuit core, wherein the day-type closed magnetic circuit core body is composed of a middle column core and a side column
  • the magnetic core is composed of an insulating layer on the magnetic core column in which the center magnetic core is required to be wound, and the thickness thereof is less than 0.5 mm, and then wound by a single strand of enameled wire or by a plurality of stranded enameled wires according to the required number of turns;
  • the center pillar core and the side pillar core are butted into a day-type closed magnetic loop magnetic core body, and the mating distance (magnetic path air gap) of each mating surface is adjusted according to the magnetic saturation requirement, and the adjusted distance is Between 0 and 5 mm, the outer core of the core body is tightly wrapped with an insulating tape so that the center pillar core and the side pillar core are closely and firmly connected to each other.
  • FIG. 1 is a schematic structural view of an inductive device of a first type of T-shaped and U-shaped magnetic core
  • FIG. 2 is a schematic structural view of an inductive device of a second type of T-shaped and U-shaped magnetic core
  • Figure 4 is a schematic diagram of the structure of the inductive device of the fourth T-shaped and U-shaped magnetic core combination
  • Figure 5 is the fifth T-shaped and U-shaped Schematic diagram of the inductive device of the core assembly
  • Figure 6 is a schematic diagram of the structure of the inductive device of the sixth T-shaped and U-shaped magnetic core combination
  • Figure 7 is the first type of I-shaped and two in-line core combinations Schematic diagram of the structure of the inductive device
  • FIG. 8 is a schematic structural view of the inductive device of the second type of I-shaped and two in-line magnetic cores; 9 is a schematic structural view of an inductive device of a combination of a third I-shaped type and two in-line magnetic cores; FIG. 10 is a schematic structural view of an inductive device of a fourth I-shaped type and two in-line magnetic core combinations; FIG. 12 is a schematic structural view of an inductive device in which a first one-word and a word-type magnetic core is combined; FIG. 12 is a schematic structural view of a second in-line and a lip-shaped magnetic core combination; FIG. Schematic diagram of the structure of the inductive device of the combination of the font and the word core; Fig.
  • FIG. 14 is a schematic diagram of the structure of the inductive device of the fourth in-line and lip-type magnetic core combination;
  • Figure 15 is the fifth in-line type and the lip-shaped type Schematic diagram of the structure of the inductive device of the magnetic core combination;
  • Fig. 16 is a schematic structural view of the inductive device of the sixth in-line type and the word-shaped magnetic core combination;
  • Figure 17 is the seventh inductive device of the in-line type and the word-shaped magnetic core combination;
  • FIG. 18 is a schematic structural view of an inductive device of an eighth one-word and word-type magnetic core combination;
  • FIG. 19 is a schematic structural view of an inductive device of a ninth in-line type and a word-type magnetic core combination; Tenth in-line and lip-type magnetic core combination inductor Schematic structural diagram; eleventh a schematic shaped core inductor device structure shaped opening 21 and is combined.
  • the inductor device includes a center pillar core, a side pillar core, and a coil. 1 .
  • the shape of the middle pillar magnetic core is a T-shaped magnetic core 2
  • the shape of the side pillar magnetic core is a U-shaped magnetic core 3
  • the inner side of the U-shaped side pillar magnetic core is provided with a groove 3-1, T character
  • the end of the vertical magnetic core column 2-1 of the type middle column core is inserted into the groove in the middle of the inner side of the U-shaped side column core, and the two ends of the transverse magnetic core column 2-2 of the T-shaped middle column core are U-shaped
  • the side cylinder core ports are butted to form a Japanese-shaped closed magnetic circuit core body, and the mating distance (magnetic path air gap) of each mating surface is adjusted according to the magnetic saturation requirement, and the adjustment distance is between 0 and 5 mm, and the coil
  • the winding is disposed on the vertical magnetic core column of the T-shaped middle cylindrical core, and the insulating layer 4 is disposed between the coil and the vertical magnetic core of the T-shaped middle cylindrical magnetic core, and the thickness of the insul
  • the end faces 2-3 of the horizontal transverse magnetic core column in the upper part of the T-shaped magnetic core are flush with the outer side 3-2 of the open end of the U-shaped side pillar core, and are U-shaped.
  • Side column core open end upper end 3-3 Docking, forming a Japanese-shaped closed magnetic loop magnetic core body;
  • the end faces 2-3 of the horizontal transverse magnetic core column in the upper part of the column of the U-shaped magnetic core are flush with the inner end surface 3-4 of the open end of the U-shaped side pillar core, and are U-shaped.
  • the inner end faces of the open ends of the side prism cores are butted to form a Japanese-shaped closed magnetic loop magnetic core body;
  • the end faces 2-3 of the horizontal transverse magnetic core column in the upper part of the column of the U-shaped magnetic core are flush with the outer side of the open end of the U-shaped side pillar core, and the two ends of the horizontal transverse magnetic core column are horizontally
  • the upper end surface of the open end of the U-shaped side pillar core has a 45 degree inclined surface 2-4 and 3-5 and abut each other to form a Japanese-shaped closed magnetic loop magnetic core body;
  • FIG. 4 is a schematic view showing a vertical step 2-5 of a vertical magnetic core column of the column in the U-shaped magnetic core on the basis of FIG. 1, and a vertical magnetic core column and a U-shaped side column are added. Air gap section of the magnetic core;
  • Figure 5 is a schematic view showing, on the basis of Fig. 2, a convex step 2-5 is provided in the lower part of the vertical magnetic core column of the column in the U-shaped magnetic core, and the vertical magnetic core column and the U-shaped side column are added. Air gap section of the magnetic core;
  • Figure 6 is a schematic view showing, on the basis of Fig. 3, a convex step 2-5 is provided in the lower part of the vertical magnetic core column of the column in the U-shaped magnetic core, and the vertical magnetic core column and the U-shaped side column are added. Air gap section of the core.
  • the magnetic core body of the Japanese-shaped closed magnetic circuit which is butted after winding the coil is wrapped with an insulating tape on the outer side thereof, and the tight wrapping of the insulating tape makes the magnetic cores of different shapes closely and firmly connected to each other.
  • a center pillar magnetic core shape is an I-shaped magnetic core
  • a side pillar magnetic core shape is two in-line magnetic core inductance device embodiments.
  • the inductance device includes a middle pillar magnetic core, a prism core and a coil, wherein the center pillar core has an I-shaped magnetic core 5, and the side pillar core has two in-line cores 6, and the two in-line cores respectively have an I-shaped shape
  • the two-port docking of the center pillar magnetic core forms a magnetic core body of the day-type closed magnetic circuit, and the docking distance (magnetic air gap) of each abutting surface is adjusted according to the magnetic saturation requirement, and the adjustment distance is between 0 and 5 mm, and the coil is wound. 5 ⁇
  • the thickness of the insulating layer is less than 0. 5mm.
  • the thickness of the insulating layer is less than 0. 5mm.
  • the horizontal core of the I-shaped magnetic core is longer than the upper horizontal direction of the magnetic core 5-2.
  • the core 5-3, one end of the two in-line cores 6-1 is butted on the inner shoulder 5-4 of the lower horizontal core, and the other end sides of the two in-line cores 6-2 are docked at the upper level.
  • the lengths of the two in-line cores are flush with the upper and lower outer sides 5-6 of the open sides of the I-shaped magnetic core, and are connected with the open end faces 5-7 of the I-shaped magnetic cores.
  • the lengths of the two in-line cores are flush with the upper and lower inner side faces 5-8 of the I-shaped magnetic core on both sides, and are connected with the inner side faces of the open sides of the I-shaped magnetic core to form a Japanese-shaped closed magnetic loop magnetic core body;
  • the lengths of the two in-line cores are flush with the outer sides of the upper and lower ends of the two sides of the I-shaped magnetic core, and the open end faces of the two sides of the I-shaped magnetic core and the two in-line magnetic cores are upper and lower.
  • the magnetic core body of the Japanese-shaped closed magnetic circuit which is butted after winding the coil is wrapped with an insulating tape on the outer side thereof, and the tight wrapping of the insulating tape makes the magnetic cores of different shapes closely and firmly connected to each other.
  • a center pillar magnetic core shape is a one-shaped magnetic core
  • the side pillar magnetic core shape is a mouth-shaped magnetic core inductor device embodiment.
  • the inductance device includes a middle pillar magnetic core and an edge.
  • the center pillar core has a shape of a magnetic core
  • the side pillar core has a mouth-shaped magnetic core
  • the in-line pillar core is placed on the lip-shaped side pillar core
  • the middle is connected with the magnetic core body of the closed type magnetic circuit, and the mating distance (magnetic air gap) of each abutting surface is adjusted according to the magnetic saturation requirement, and the adjusted distance is between 0 and 5 mm, and the coil winding is arranged in a shape. 5 ⁇
  • the thickness of the insulating layer is less than 0. 5mm.
  • the mouth-shaped magnetic core is composed of two open magnetic cores 7 which are butted together, and the inner side of the open inner magnetic core is provided with a groove 7-1, and the end faces 8 of the font core are inserted into the concave end.
  • the groove and the mouth-shaped magnetic core are butted to form a Japanese-shaped closed magnetic circuit core body;
  • the mouth-shaped magnetic core has two open magnetic cores, and the two open magnetic cores and one The end portions 9 on both sides of the font core are butted to form a Japanese-shaped closed magnetic circuit core body;
  • the mouth-shaped magnetic core is a right-angle toroidal magnetic core, and two corresponding magnetic core columns are provided with a groove 10 on the inner side of the right-angle toroidal core, and the ends of both sides of the font core are provided. Inserting a groove into a groove and a right-angle toroidal core to form a Japanese-shaped closed magnetic circuit core body;
  • the mouth-shaped magnetic core is composed of two open magnetic cores 11 which are butted together, and the open end of the open magnetic core is provided with a groove 11-1 on the inner magnetic core column, and two ends of the in-line magnetic core The end face 8 is inserted into the groove and the mouth-shaped magnetic core is butted to form a Japanese-shaped closed magnetic circuit core body;
  • the magnetic core column of one side of the mouth-shaped magnetic core is provided with an opening 12, and the other side of the corresponding magnetic core column is provided with a groove 13, and one end of the letter-shaped magnetic core is inserted. a groove, the other end of the in-line magnetic core is docked with the opening to form a Japanese-shaped closed magnetic circuit core body;
  • the mouth-shaped magnetic core is composed of two open magnetic cores 14. One end of the two open magnetic cores is butted and a groove 15 is provided on the inner side of the butting, and the other end of the two open magnetic cores is clamped. One end of the in-line magnetic core is inserted into the groove, and the other end of the in-line magnetic core is inserted into the groove to form a Japanese-shaped closed magnetic circuit core body.
  • the mouth-shaped magnetic core is composed of two L-shaped cores.
  • the magnetic core 16 is butt-connected, and the two magnetic cores corresponding to each other are provided with a groove 16-1, and the end faces of the magnetic core are inserted into the groove and the two L-shaped magnetic cores are butted. a Japanese-shaped closed magnetic loop magnetic core body;
  • the mouth-shaped magnetic core is composed of two L-shaped magnetic cores 16 which are butted together, and the two L-shaped magnetic core abutting faces are 45-degree inclined faces 16-2, and two butted L-shaped magnetic cores correspond to each other.
  • the magnetic core column is provided with a groove 16-1, wherein the two end faces of the font core are inserted into the groove and the two L-shaped magnetic cores are butted to form a Japanese-shaped closed magnetic circuit core body;
  • the mouth-shaped magnetic core is composed of a U-shaped magnetic core 17 and a magnetic core 18 having a groove 18-1 therebetween, and a magnetic core having a groove in the middle is provided.
  • the lateral end faces 18-2 are flush with the U-shaped core open end outer side 17-1, and the U-shaped magnetic core has a groove 17-2 at the inner middle portion thereof, and the two end faces of the in-line magnetic core as the center pillar are respectively Inserting the grooves on both sides and the mouth-shaped magnetic core to form a Japanese-shaped closed magnetic circuit core body;
  • the mouth-shaped magnetic core is composed of a U-shaped magnetic core 17 and a magnetic core 18 provided with a groove 18-1 therebetween, and a magnetic core having a groove in the middle is provided. Lateral end faces 18-2 It is flush with the inner side of the open end of the U-shaped magnetic core 1 7-3, and the inner side of the U-shaped magnetic core is provided with a groove 17-2.
  • the end faces of the in-line magnetic core as the center pillar are respectively inserted into the grooves on both sides. Interfacing with the mouth-shaped magnetic core to form a Japanese-shaped closed magnetic circuit core body;
  • the mouth-shaped magnetic core is composed of a U-shaped magnetic core and a flat-shaped magnetic core provided with a groove therebetween, and the difference is that the mating surface is 45 degrees.
  • Bevel 1 8-3 the U-shaped core has a groove in the middle of the inner side of the core. The end faces of the in-line core as the center column are inserted into the grooves on both sides and the mouth-shaped cores are butted to form a Japanese-shaped closed.
  • Magnetic circuit core body
  • the magnetic core body of the Japanese-shaped closed magnetic circuit wound with the coil and the above is wrapped with an insulating tape on the outer side thereof, and the tight wrapping of the insulating tape makes the magnetic cores of different shapes closely and firmly connected to each other.
  • the traditional air-type magnetic circuit of the E-shaped magnetic core is designed to generate electromagnetic interference to the surrounding components.
  • the number of air gaps can be increased as needed, and the air gaps can be placed at different positions away from the package, and the cross-sectional area of the magnets at the air gap can be added as needed to reduce electromagnetic interference to peripheral components;
  • the design of the air gap can make the air gap of each air gap smaller, so the total leakage inductance of the magnetic circuit becomes smaller, and the temperature rise of the small leakage device is small, which not only saves electric energy but also prolongs the service life of the product.
  • the magnetic path of the multi-air gap design and the cross-sectional area of the magnet at the air gap can reduce the diffusion flux to help reduce the loss, and the diffusion flux penetrates the coil to increase the loss of the device.
  • the magnetic circuit is provided with multiple air gaps, and the air gap of each air gap must be reduced to make the total air gap of the design constant.
  • the extent to which the diffusion flux penetrates into the coil depends on the amount of air gap and the amount of air gap. The smaller the diffusion flux penetrates into the coil, the smaller the loss, and the less the loss. The reduced loss further reduces the temperature rise of the device, as well as saving power and extending the life of the product.
  • the cross-sectional area of the magnetic core can be designed into one of a circular shape, a semicircular shape, an elliptical shape, a rectangular shape, a trapezoidal shape, a prismatic shape, a triangular shape, and the like according to actual needs.
  • the inductive device of the above embodiment is a power conversion core component of green lighting and power supply parts of various electronic devices, such as choke coils, transformers, thin and ultra-thin module power supplies, and the like.
  • This embodiment is an inductive device manufacturing method, which winds a coil in a Japanese font closure
  • the day-type closed magnetic circuit core body is composed of a middle column core and a side column core, and firstly, an insulating layer is disposed on the core column of the center column core to be wound. , the thickness is less than 0.
  • the middle column core and the side column core are docked into a day-type closed magnetic
  • the mating distance (magnetic path air gap) of each mating surface is adjusted according to the magnetic saturation requirement, and the adjustment distance is between 0 and 5 mm, and the outer core of the core body is tightly wrapped with an insulating tape to make the center pillar core
  • the side column cores are closely connected to each other and away from the line package, and at the same time, depending on the case, the cross-sectional area of the magnet at the air gap is firm.
  • the insulating layer is made of an insulating material having a small thickness and a high withstand voltage, such as: a nylon cloth, a non-woven fabric, a PET plastic film having a thickness of less than 0.4 mm, and an insulating encapsulation treatment for the center pillar magnetic core.
  • a nylon cloth, a non-woven fabric, a PET plastic film having a thickness of less than 0.4 mm 0. 15mm PET plastic film wrapped in the middle cylinder core to two turns, or a thickness of less than 0. 4mm nylon cloth or a non-woven fabric or PET plastic film sleeve directly on the center pillar core. Then, the winding coil is wound directly on the encapsulated center pillar core, and the average distance between the coil and the core of the core is less than or equal to 0.4 mm, which is compared with the conventional skeleton method.
  • the enameled wire length used was shortened by 3-6 mm.
  • the thickness of the coating is less than 0. 5mm.
  • the thickness of the coating is less than 0. 5mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

一种电感器件及其制做方法 技术领域
本发明涉及电器元件, 尤其涉及一种电感器件及其制做方法, 该电感器件 是绿色照明和各种电子设备电源部分的电源变换核心部件。
背景技术
传统的线圈类电感器件,一般是由 EE组合型磁芯或 EI组合型磁芯配合线 圈架(骨架)绕上漆包线组成。 线圈架为注塑一体结构, 上述形状磁芯的电感 器件线圈必须使用线圈架, 而且线圈架中间绕线柱的内孔与磁芯中柱的配合面 为全包的结构, 由于线圈架在机器注塑加工有厚度要求, 其厚度要求一般大于 0. 5mm, 否则生产出来的骨架质量(尤其壁厚)难于保证, 为了便于配件的组 合装配及注塑脱模的工艺要求,其内孔与磁芯的配合处必须要留有一定的间隙 约为 0. 5mm, 且一边大一边小导致骨架与磁芯中柱的间隙进一步加大, 二者相 加约为 1mm, 因此在骨架上的绕线周长就要增大, 增加了线圈漆包线的长度和 材料, 而且电感器件上的线圈一般都是成百上千圈, 使器件自身铜电阻增加, 铜损也随着增加, 器件的温升也会随之升高, 这样既浪费材料又浪费电能, 同 时降低产品的使用寿命。
传统的 EE型磁芯或 EI型磁芯, 在磁路中会留有空气气隙, 空气气隙通常 置于磁芯的中柱上, 即空气气隙置于线包的中部, 由于空气的磁导率低, 在空 气气隙附近会存在漏磁 (漏感)现象, 因此空气气隙附件的线圈不能全部参与 能量转换,大部份只起填充作用, 同时磁力线垂直切割线圈导致线圈发热,从而 造成器件自身铜电阻和铜损的增加, 使器件的温升随之升高, 这种情况同上面 所述一样, 既浪费材料又浪费电能, 同时降低产品的使用寿命。
随着工业的快速发展, 生产线圈的主要原材料一一铜矿等不可再生资源在 不断的减少,为了充分合理的利用资源, 同时较大幅度地降低产品成本, 需要 克服上述问题提高铜线的使用效率。 发明内容
本发明的目的是为了缩短电感器件线圈与中柱磁芯的距离,优化磁路减少 无效圈数从而减短绕组线圈的漆包线长度,使器件自身铜电阻及铜损减小而提 出的一种电感器件及其制做方法技术方案, 该方案对传统的线圈类电感器件进 行改进, 釆用非 E型磁芯, 去掉独立骨架釆用直接在磁芯柱上绕制线圈的方法 既节省材料又节约电能, 同时延长产品的使用寿命。
本发明的技术方案是这样实现的:
一种电感器件, 包括日字型闭合磁回路磁芯体和线圈, 所述日字型闭合磁 回路磁芯体由中柱磁芯和边柱磁芯组成, 所述中柱磁芯形状为 T字型, 边柱磁 芯形状为 U字型, U字型边柱磁芯的内侧中间设有凹槽, T字型中柱磁芯的竖 向磁芯柱端部插入 U字型边柱磁芯内侧中间的凹槽, T字型中柱磁芯的横向磁 芯柱两端与 U字型边柱磁芯端口对接形成一个日字型闭合磁回路磁芯体, 其各 对接面的对接距离 (磁路气隙)根据磁饱和要求进行调整, 调整的距离在 0至 5mm之间, 线圈缠绕设置在 T字型中柱磁芯的竖向磁芯柱上, 线圈与竖向磁芯 柱之间设有绝缘层, 所述绝缘层的厚度小于 0. 5mm。
一种电感器件, 包括日字型闭合磁回路磁芯体和线圈, 所述日字型闭合磁 回路磁芯体由中柱磁芯和边柱磁芯组成, 所述中柱磁芯形状为一个工字型磁 芯, 边柱磁芯形状为两个一字型磁芯, 两个一字型磁芯分别与工字型中柱磁芯 的两端口对接形成日字型闭合磁回路磁芯体, 其各对接面的对接距离(磁路气 隙 )根据磁饱和要求进行调整, 调整的距离在 0至 5mm之间, 线圈缠绕设置在 工字型中柱磁芯的中心柱上, 线圈与工字型中柱磁芯的中心柱之间设有绝缘 层, 所述绝缘层的厚度小于 0. 5mm。
一种电感器件, 包括日字型闭合磁回路磁芯体和线圈, 所述日字型闭合磁 回路磁芯体由中柱磁芯和边柱磁芯组成, 所述中柱磁芯形状为一个一字型磁 芯, 边柱磁芯形状为一个口字型磁芯, 一字型中柱磁芯放入口字型边柱磁芯中 间与其对接形成日子型闭合磁回路磁芯体,其各对接面的对接距离(磁路气隙) 根据磁饱和要求进行调整, 调整的距离在 0至 5mm之间, 线圈缠绕设置在一字 型中柱磁芯上, 线圈与一字型中柱磁芯之间设有绝缘层, 所述绝缘层的厚度小 于 0. 5mm。
一种电感器件制做方法, 该方法是将线圈绕制在一个日字型闭合磁回路磁 芯的中柱磁芯上, 所述日子型闭合磁回路磁芯体由中柱磁芯和边柱磁芯组成, 首先在中柱磁芯需要绕线的磁芯柱上设置绝缘层, 其厚度小于 0. 5mm, 然后按 照所需圈数用单股漆包线或用多股绞合漆包线依次缠绕; 绕好漆包线圈后, 将 中柱磁芯和边柱磁芯对接成日子型闭合磁回路磁芯体, 其各对接面的对接距离 (磁路气隙)根据磁饱和要求进行调整, 调整的距离在 0至 5mm之间, 在磁芯 体外侧用绝缘带紧密包扎使得中柱磁芯和边柱磁芯相互之间对接紧密、 牢固。
本发明的有益效果是:
1.减短了绕组线圈漆包线的单匝长度,减少了无效圈数使绕组线圈的漆包 线长度减短了,提高了铜线的利用率,节约铜材 1 0%以上,使器件自身铜电阻及 铜损减小, 器件的温升也会随之减小, 这样既节省材料又节约电能, 同时延长 产品的使用寿命。
2.设置磁路多气隙,气隙尽量远离线包和增大气隙处的截面积等优化磁路 的措施,有效地减少了扩散磁通的影响,降低了器件的温升,这样既节约电能又 延长产品的使用寿命.
下面结合附图和实施例对本发明作一详细描述。
附图说明
图 1为第一种 T字型和 U字型磁芯组合的电感器件结构示意图; 图 2为第二种 T字型和 U字型磁芯组合的电感器件结构示意图; 图 3为第三种 T字型和 U字型磁芯组合的电感器件结构示意图; 图 4为第四种 T字型和 U字型磁芯组合的电感器件结构示意图; 图 5为第五种 T字型和 U字型磁芯组合的电感器件结构示意图; 图 6为第六种 T字型和 U字型磁芯组合的电感器件结构示意图; 图 7为第一种工字型和两个一字型磁芯组合的电感器件结构示意图; 图 8为第二种工字型和两个一字型磁芯组合的电感器件结构示意图; 图 9为第三种工字型和两个一字型磁芯组合的电感器件结构示意图; 图 10为第四种工字型和两个一字型磁芯组合的电感器件结构示意图; 图 11为第一种一字型和口字型磁芯组合的电感器件结构示意图; 图 12为第二种一字型和口字型磁芯组合的电感器件结构示意图; 图 1 3为第三种一字型和口字型磁芯组合的电感器件结构示意图; 图 14为第四种一字型和口字型磁芯组合的电感器件结构示意图; 图 15为第五种一字型和口字型磁芯组合的电感器件结构示意图; 图 16为第六种一字型和口字型磁芯组合的电感器件结构示意图; 图 17为第七种一字型和口字型磁芯组合的电感器件结构示意图; 图 18为第八种一字型和口字型磁芯组合的电感器件结构示意图; 图 19为第九种一字型和口字型磁芯组合的电感器件结构示意图; 图 20为第十种一字型和口字型磁芯组合的电感器件结构示意图; 图 21为第十一种一字型和口字型磁芯组合的电感器件结构示意图。
具体实施方式
实施例 1
一种中柱磁芯形状为 T字型, 边柱磁芯形状为 U字型的电感器件实施例, 参见图 1至图 6 , 所述电感器件包括中柱磁芯、 边柱磁芯和线圈 1 , 所述中柱 磁芯形状为 T字型磁芯 2 , 边柱磁芯形状为 U字型磁芯 3 , U字型边柱磁芯的内 侧中间设有凹槽 3-1 , T字型中柱磁芯的竖向磁芯柱 2-1端部插入 U字型边柱 磁芯内侧中间的凹槽, T字型中柱磁芯的横向磁芯柱 2-2两端与 U字型边柱磁 芯端口对接形成一个日字型闭合磁回路磁芯体, 其各对接面的对接距离 (磁路 气隙)根据磁饱和要求进行调整, 调整的距离在 0至 5mm之间, 线圈缠绕设置 在 T字型中柱磁芯的竖向磁芯柱上, 线圈与 T字型中柱磁芯的竖向磁芯柱之间 设有绝缘层 4 , 所述绝缘层的厚度小于 0. 5mm。
其中:
参照图 1所示, 所述 T字型磁芯中柱上部的水平横向磁芯柱两侧端面 2-3 与 U字型边柱磁芯开口端外侧 3-2平齐,并与 U字型边柱磁芯开口端上端面 3-3 对接, 形成一个日字型闭合磁回路磁芯体;
参照图 2所示, 所述 Τ字型磁芯中柱上部的水平横向磁芯柱两侧端面 2-3 与 U字型边柱磁芯开口端内侧端面 3-4平齐, 并与 U字型边柱磁芯开口端内侧 端面对接, 形成一个日字型闭合磁回路磁芯体;
参照图 3所示, 所述 Τ字型磁芯中柱上部的水平横向磁芯柱两侧端面 2-3 与 U字型边柱磁芯开口端外侧平齐,且水平横向磁芯柱两端面与 U字型边柱磁 芯开口端上端面都呈 45度斜面 2-4与 3-5并相互对接, 形成一个日字型闭合 磁回路磁芯体;
图 4示意的是在图 1的基础上在所述 Τ字型磁芯中柱的竖向磁芯柱下部设 有凸起台阶 2-5 , 增加了竖向磁芯柱与 U字型边柱磁芯的气隙截面;
图 5示意的是在图 2的基础上在所述 Τ字型磁芯中柱的竖向磁芯柱下部设 有凸起台阶 2-5 , 增加了竖向磁芯柱与 U字型边柱磁芯的气隙截面;
图 6示意的是在图 3的基础上在所述 Τ字型磁芯中柱的竖向磁芯柱下部设 有凸起台阶 2-5 , 增加了竖向磁芯柱与 U字型边柱磁芯的气隙截面。
上述缠绕有线圈后对接好的日字型闭合磁回路磁芯体, 在其外侧包有绝缘 带, 绝缘带的紧密包扎使得不同形状磁芯相互之间的对接紧密、 牢固。
实施例 2
一种中柱磁芯形状为一个工字型磁芯, 边柱磁芯形状为两个一字型磁芯电 感器件实施例, 参见图 7至图 10, 所述电感器件包括中柱磁芯、 边柱磁芯和线 圈, 所述中柱磁芯形状为一个工字型磁芯 5 , 边柱磁芯形状为两个一字型磁芯 6 , 两个一字型磁芯分别与工字型中柱磁芯的两端口对接形成日子型闭合磁回 路磁芯体, 其各对接面的对接距离 (磁路气隙)根据磁饱和要求进行调整, 调 整的距离在 0至 5mm之间, 线圈缠绕设置在工字型中柱磁芯的中心柱 5-1上, 线圈与工字型中柱磁芯的中心柱之间设有绝缘层, 所述绝缘层的厚度小于 0. 5mm。
其中:
参照图 7所示, 所述工字型磁芯中柱下部水平向磁芯 5-2长于上部水平向 磁芯 5-3 , 两个一字型磁芯一端 6-1对接在下部水平向磁芯的内侧肩 5-4上, 两个一字型磁芯另一端侧面 6-2对接在上部的水平向磁芯的两侧端面 5-5上, 形成一个日字型闭合磁回路磁芯体;
参照图 8所示, 所述两个一字型磁芯长度与工字型磁芯两侧开口上、 下端 外侧 5-6平齐并与工字型磁芯两侧开口端面 5-7对接, 形成一个日字型闭合磁 回路磁芯体;
参照图 9所示, 所述两个一字型磁芯长度与工字型磁芯两侧开口上、 下端 内侧面 5-8平齐并与工字型磁芯两侧开口内侧端面对接, 形成一个日字型闭合 磁回路磁芯体;
参照图 10所示, 所述两个一字型磁芯长度与工字型磁芯两侧开口上下端 外侧平齐, 工字型磁芯两侧开口端面与两个一字型磁芯上下两侧各形成 45度 斜面 6-3和 5-9并相互对接, 形成一个日字型闭合磁回路磁芯体;
上述缠绕有线圈后对接好的日字型闭合磁回路磁芯体, 在其外侧包有绝缘 带, 绝缘带的紧密包扎使得不同形状磁芯相互之间的对接紧密、 牢固。
实施例 3
一种中柱磁芯形状为一个一字型磁芯, 边柱磁芯形状为一个口字型磁芯电 感器件实施例, 参见图 11至图 21 , 所述电感器件包括中柱磁芯、 边柱磁芯和 线圈,所述中柱磁芯形状为一个一字型磁芯,边柱磁芯形状为一个口字型磁芯, 一字型中柱磁芯放在口字型边柱磁芯中间与其对接形成日子型闭合磁回路磁 芯体, 其各对接面的对接距离 (磁路气隙)根据磁饱和要求进行调整, 调整的 距离在 0至 5mm之间, 线圈缠绕设置在一字型中柱磁芯上, 线圈与一字型中柱 磁芯之间设有绝缘层, 所述绝缘层的厚度小于 0. 5mm。
其中:
参照图 11所示, 所述口字型磁芯由两个开口磁芯 7对接组成, 开口磁芯 的开口内侧磁体中间设有凹槽 7-1 , —字型磁芯两头端面 8插进凹槽与口字型 磁芯对接形成一个日字型闭合磁回路磁芯体;
参照图 12 所示, 所述口字型磁芯两个开口磁芯, 所述两个开口磁芯与一 字型磁芯两侧端端部 9对接形成一个日字型闭合磁回路磁芯体;
参照图 1 3 所示, 所述口字型磁芯为一个直角环形磁芯, 在直角环形磁芯 两个相对应的磁芯柱内侧设有凹槽 10 ,—字型磁芯两侧端部插进凹槽与直角环 形磁芯对接形成一个日字型闭合磁回路磁芯体;
参照图 14所示, 所述口字型磁芯由两个开口磁芯 11对接组成, 开口磁芯 的开口端对接处内侧磁芯柱上设有凹槽 11-1 ,一字型磁芯两头端面 8插进凹槽 与口字型磁芯对接形成一个日字型闭合磁回路磁芯体;
参照图 15所示, 所述口字型磁芯的一侧磁芯柱上设有开口 12 , 对应开口 的另一侧磁芯柱上设有凹槽 1 3 , —字型磁芯的一端插入凹槽,一字型磁芯的另 一端与开口对接, 形成一个日字型闭合磁回路磁芯体;
参照图 16所示, 所述口字型磁芯由两个开口磁芯 14组成, 两个开口磁芯 的一端对接并在对接处内侧设有凹槽 15 ,两个开口磁芯的另一端夹住一字型磁 芯的一端,一字型磁芯的另一端插入凹槽,形成一个日字型闭合磁回路磁芯体; 参照图 17所示, 所述口字型磁芯由两个 L型磁芯 16对接组成, 两个对接 的 L型磁芯相互对应的磁芯柱上设有凹槽 16-1 ,—字型磁芯两头端面插进凹槽 与两个 L型磁芯对接形成一个日字型闭合磁回路磁芯体;
参照图 18所示, 所述口字型磁芯由两个 L型磁芯 16对接组成, 两个 L型 磁芯对接面为 45度斜面 16-2 , 两个对接的 L型磁芯相互对应的磁芯柱上设有 凹槽 16-1 ,—字型磁芯两头端面插进凹槽与两个 L型磁芯对接形成一个日字型 闭合磁回路磁芯体;
参照图 19所示, 所述口字型磁芯由一个 U字型磁芯 17和一个中间设有凹 槽 18-1的一字磁芯 18对接组成,中间设有凹槽的一字磁芯横向两侧端面 18-2 与 U字型磁芯开口端外侧 17-1平齐, U字型磁芯内侧中部设有凹槽 17-2 , 做 为中柱的一字型磁芯两头端面分别插进两侧凹槽与口字型磁芯对接形成一个 日字型闭合磁回路磁芯体;
参照图 20所示, 所述口字型磁芯由一个 U字型磁芯 17和一个中间设有凹 槽 18-1的一字磁芯 18对接组成,中间设有凹槽的一字磁芯横向两侧端面 18-2 与 U字型磁芯开口端内侧 1 7-3平齐, U字型磁芯内侧中部设有凹槽 17-2 , 做 为中柱的一字型磁芯两头端面分别插进两侧凹槽与口字型磁芯对接形成一个 日字型闭合磁回路磁芯体;
参照图 21所示, 与图 19相同, 所述口字型磁芯由一个 U字型磁芯和一个 中间设有凹槽的一字型磁芯对接组成,其不同点在于对接面为 45度斜面 1 8-3 , U字型磁芯内侧中部设有凹槽, 做为中柱的一字型磁芯两头端面分别插进两侧 凹槽与口字型磁芯对接形成一个日字型闭合磁回路磁芯体;
上述缠绕有线圈并对接好的日字型闭合磁回路磁芯体, 在其外侧包有绝缘 带, 绝缘带的紧密包扎使得不同形状磁芯相互之间的对接紧密、 牢固。
为防止磁饱和现象的发生, 需要对磁路对接气隙进行调整, 传统的日字型 磁路 E型磁芯设计成的多气隙磁路很容易对周边的元器件产生电磁干扰, 本发 明可以根据需要增加气隙的数量, 将气隙放置在不同且远离线包的位置上, 同 时可视情况加大气隙处磁体的截面积, 以减少对周边元器件产生的电磁干扰; 磁路多气隙的设计可使每处气隙的气隙量变小, 因而磁路总漏感变小, 漏感小 器件的温升就小, 这样既节约电能又可延长产品的使用寿命。 同时, 多气隙设 计的磁路和加大气隙处磁体的截面积可以减小扩散磁通以利于减小损耗,扩散 磁通深入线圈会使器件的损耗增加。 磁路设置了多气隙, 每一处气隙的气隙量 必须要减小, 才能使设计的总气隙量不变, 扩散磁通深入线圈的程度取决于气 隙量大小, 气隙量越小扩散磁通深入线圈的程度越小损耗也越小, 反之则会增 加损耗。 损耗减小了就进一步减小器件的温升,同样达到了节约电能和延长产 品使用寿命的目的。
上述实施例中, 磁芯的横截面积可根据实际需要, 设计成圓形、 半圓形、 椭圓形、 矩形、 梯形、 棱形、 三角形等形状的一种。
上述实施例电感器件是绿色照明和各种电子设备电源部分的电源变换核 心部件, 例如扼流线圈、 变压器、 薄型和超薄型模块电源等。
实施例 4
本实施例为一种电感器件制做方法, 该方法将线圈绕制在一个日字型闭合 磁回路磁芯的中柱磁芯上, 所述日子型闭合磁回路磁芯体由中柱磁芯和边柱磁 芯组成, 首先在中柱磁芯需要绕线的磁芯柱上设置绝缘层,其厚度小于 0. 5mm, 然后按照所需圈数用单股漆包线或用多股绞合漆包线依次缠绕; 绕好漆包线圈 后, 将中柱磁芯和边柱磁芯对接成日子型闭合磁回路磁芯体, 其各对接面的对 接距离 (磁路气隙)根据磁饱和要求进行调整, 调整的距离在 0至 5mm之间, 在磁芯体外侧用绝缘带紧密包扎使得中柱磁芯和边柱磁芯相互之间对接紧密、 且远离线包的位置上, 同时可视情况加大气隙处磁体的截面积, 牢固。
该绝缘层选用厚度薄耐压高的绝缘材料如: 厚度为小于 0. 4mm的尼龙布、 无纺布、 PET塑料薄膜等直接对中柱磁芯进行绝缘包封处理, 本实施利釆用厚 度为 0. 15mm的 PET塑料薄膜缠绕中柱磁芯壹至两圈, 或者用厚度小于 0. 4mm 的尼龙布或无纺布或 PET塑料薄膜套管中的一种直接套在中柱磁芯上, 而后将 绕组线圈直接绕在包封好的中柱磁芯上, 线圈与磁芯中柱的平均距离小于或等 于 0. 4mm, 此方法与传统骨架方法绕制相比使每绕一匝线圈所用漆包线长度减 短了 3-6毫米。
除使用厚度薄耐压高的绝缘材料外, 所述绝缘层还可以直接在中柱磁芯表 面进行喷涂环氧树脂绝缘层, 喷涂的厚度小于 0. 5mm。

Claims

权 利 要 求
1.一种电感器件, 包括日字型闭合磁回路磁芯体和线圈, 所述日字型闭合 磁回路磁芯体由中柱磁芯和边柱磁芯组成, 其特征在于, 所述中柱磁芯形状为
T字型, 边柱磁芯形状为 U字型, U字型边柱磁芯的内侧中间设有凹槽, T字型 中柱磁芯的竖向磁芯柱端部插入 U字型边柱磁芯内侧中间的凹槽, T字型中柱 磁芯的横向磁芯柱两端与 U字型边柱磁芯端口对接形成一个日字型闭合磁回路 磁芯体, 线圈缠绕设置在 T字型中柱磁芯的竖向磁芯柱上, 线圈与竖向磁芯柱 之间设有绝缘层, 所述绝缘层的厚度小于 0. 5mm。
2.根据权利要求 1所述的一种电感器件, 其特征在于, 所述 T字型磁芯中 柱上部的水平横向磁芯柱两侧端面与 U字型边柱磁芯开口端外侧平齐, 并与 U 字型边柱磁芯开口端上端面对接, 形成一个日字型闭合磁回路磁芯体。
3.根据权利要求 1所述的一种电感器件, 其特征在于, 所述 T字型磁芯中 柱上部的水平横向磁芯柱两侧端面与 U字型边柱磁芯开口端内侧端面平齐, 并 与 U字型边柱磁芯开口端内侧端面对接, 形成一个日字型闭合磁回路磁芯体。
4.根据权利要求 1所述的一种电感器件, 其特征在于, 所述 T字型磁芯中 柱上部的水平横向磁芯柱两侧端面与 U字型边柱磁芯开口端外侧平齐, 且水平 横向磁芯柱两端面与 U字型边柱磁芯开口端上端面都呈 45度斜面并相互对接, 形成一个日字型闭合磁回路磁芯体。
5.根据权利要求 1所述的一种电感器件, 其特征在于, 所述 T字型磁芯中 柱的竖向磁芯柱下部设有凸起台阶。
6.根据权利要求 1所述的一种电感器件, 其特征在于, 所述磁芯的横截面 积是圓形或半圓形或椭圓形或矩形或梯形或棱形或三角形中的任一种。
7. 一种电感器件, 包括日字型闭合磁回路磁芯体和线圈, 所述日字型闭 合磁回路磁芯体由中柱磁芯和边柱磁芯组成, 其特征在于, 所述中柱磁芯形状 为一个工字型磁芯, 边柱磁芯形状为两个 I字型磁芯, 两个 I字型磁芯分别与 工字型中柱磁芯的两端口对接形成日字型闭合磁回路磁芯体, 线圈缠绕设置在 工字型中柱磁芯的中心柱上, 线圈与工字型中柱磁芯的中心柱之间设有绝缘 层, 所述绝缘层的厚度小于 0. 5mm。
8.根据权利要求 7所述的一种电感器件, 其特征在于, 所述工字型磁芯中 柱下部水平向磁芯长于上部水平向磁芯,两个 I 字型磁芯一端对接在下部水平 向磁芯的内侧肩上, 两个 I字型磁芯另一端侧面对接在上部的水平向磁芯的两 侧端面上, 形成一个日字型闭合磁回路磁芯体。
9.根据权利要求 7所述的一种电感器件, 其特征在于, 所述两个 I字型磁 芯长度与工字型磁芯两侧开口上、 下端外侧平齐并与工字型磁芯两侧开口端面 对接, 形成一个日字型闭合磁回路磁芯体。
10.根据权利要求 7所述的一种电感器件, 其特征在于, 所述两个 I字型 磁芯长度与工字型磁芯两侧开口上、 下端内侧面平齐并与工字型磁芯两侧开口 内侧端面对接, 形成一个日字型闭合磁回路磁芯体。
11.根据权利要求 7所述的一种电感器件, 其特征在于, 所述两个 I字型 磁芯长度与工字型磁芯两侧开口上下端外侧平齐, 工字型磁芯两侧开口端面与 两个 I字型磁芯上下两侧各形成 45度斜面并相互对接, 形成一个日字型闭合 磁回路磁芯体。
12.根据权利要求 7 所述的一种电感器件, 其特征在于, 所述磁芯的横截 面积是圓形或半圓形或椭圓形或矩形或梯形或棱形或三角形中的任一种。
13. 一种电感器件, 包括日字型闭合磁回路磁芯体和线圈, 所述日字型闭 合磁回路磁芯体由中柱磁芯和边柱磁芯组成, 其特征在于, 所述中柱磁芯形状 为一个 I字型磁芯, 边柱磁芯形状为一个口字型磁芯, I字型中柱磁芯放入口 字型边柱磁芯中间与其对接形成日字型闭合磁回路磁芯体, 线圈缠绕设置在 I 字型中柱磁芯上, 线圈与 I字型中柱磁芯之间设有绝缘层, 所述绝缘层的厚度 小于 0. 5mm。
14.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 由两个开口磁芯对接组成, 开口磁芯的开口内侧磁体中间设有凹槽, I字型中 柱磁芯两头端面插进凹槽与口字型磁芯对接形成一个日字型闭合磁回路磁芯 体。
15.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 两个开口磁芯, 所述两个开口磁芯与 I字型中柱磁芯两侧端端部对接形成一个 日字型闭合磁回路磁芯体。
16.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 为一个直角环形磁芯, 在直角环形磁芯两个相对应的磁芯柱内侧设有凹槽, I 字型中柱磁芯两侧端部插进凹槽与直角环形磁芯对接形成一个日字型闭合磁 回路磁芯体。
17.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 由两个开口磁芯对接组成, 开口磁芯的开口端对接处内侧磁芯柱上设有凹槽,
I字型中柱磁芯两头端面插进凹槽与口字型磁芯对接形成一个日字型闭合磁回 路磁芯体。
18.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 的一侧磁芯柱上设有开口, 对应开口的另一侧磁芯柱上设有凹槽, I字型中柱 磁芯的一端插入凹槽, I字型中柱磁芯的另一端与开口对接, 形成一个日字型 闭合磁回路磁芯体。
19.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 由两个开口磁芯组成, 两个开口磁芯的一端对接并在对接处内侧设有凹槽, 两 个开口磁芯的另一端夹住 I字型中柱磁芯的一端, I字型中柱磁芯的另一端插 入凹槽, 形成一个日字型闭合磁回路磁芯体。
20.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 由两个 L型磁芯对接组成,两个对接的 L型磁芯相互对应的磁芯柱上设有凹槽, I字型中柱磁芯两头端面插进凹槽与两个 L型磁芯对接形成一个日字型闭合磁 回路磁芯体。
21.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 由两个 L型磁芯对接组成, 两个 L型磁芯对接面为 45度斜面, 两个对接的 L 型磁芯相互对应的磁芯柱上设有凹槽, I字型中柱磁芯两头端面插进凹槽与两 个 L型磁芯对接形成一个日字型闭合磁回路磁芯体。
22.根据权利要求 13所述的一种电感器件, 其特征在于, 所述口字型磁芯 由一个 U字型磁芯和一个中间设有凹槽的一字磁芯对接组成, U字型磁芯内侧 中部设有凹槽, 所述 I字型中柱磁芯两头端面分别插进两侧凹槽与口字型磁芯 对接形成一个日字型闭合磁回路磁芯体。
23.根据权利要求 22所述的一种电感器件, 其特征在于, 所述 U字型磁芯 和 I字型中柱磁芯对接为 45度斜面对接。
24.根据权利要求 13所述的一种电感器件, 其特征在于, 所述磁芯的横截 面积是圓形或半圓形或椭圓形或矩形或梯形或棱形或三角形中的一种。
25. 一种电感器件制做方法, 将线圈绕制在一个日字型闭合磁回路磁芯的 中柱磁芯上, 所述日字型闭合磁回路磁芯体由中柱磁芯和边柱磁芯组成, 其特 征在于, 首先在中柱磁芯需要绕线的磁芯柱上设置绝缘层,其厚度小于 0. 5mm, 然后按照所需圈数用单股漆包线或用多股绞合漆包线依次缠绕; 绕好漆包线圈 后, 将中柱磁芯和边柱磁芯对接成日字型闭合磁回路磁芯体, 对接距离为 0至 Soiffi, 在磁芯体外侧用绝缘带紧密包扎使得中柱磁芯和边柱磁芯相互之间对接 紧密、 牢固。
26. 根据权利要求 25 所述的一种电感器件制做方法, 其特征在于, 所述 绝缘层为 0. 15mm厚尼龙布或无纺布或 PET塑料薄膜中的一种在中柱磁芯上缠 绕壹至两圈。
27.根据权利要求 25所述的一种电感器件制做方法, 其特征在于, 所述绝 缘层为厚度小于 0. 4mm的尼龙布或无纺布或 PET塑料薄膜套管中的一种套在磁 芯中柱上。
28. 根据权利要求 25 所述的一种电感器件制做方法, 其特征在于, 所述 绝缘层为环氧树脂, 环氧树脂直接喷涂或粘浸在中柱磁芯表面其厚度小于 0. 5mm。
PCT/CN2008/073746 2008-11-19 2008-12-26 一种电感器件及其制做方法 WO2010057350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810072172.4 2008-11-19
CN200810072172A CN101521089A (zh) 2008-11-19 2008-11-19 一种电感器件及其制做方法

Publications (1)

Publication Number Publication Date
WO2010057350A1 true WO2010057350A1 (zh) 2010-05-27

Family

ID=41081619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073746 WO2010057350A1 (zh) 2008-11-19 2008-12-26 一种电感器件及其制做方法

Country Status (2)

Country Link
CN (1) CN101521089A (zh)
WO (1) WO2010057350A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223824A (zh) * 2021-04-29 2021-08-06 东莞沛波电子有限公司 一种便于自动化生产的大容量功率电感
EP4152351A4 (en) * 2020-06-24 2023-07-26 Huawei Technologies Co., Ltd. ELECTRICAL COMPONENT, CIRCUIT BOARD AND SWITCHING POWER SUPPLY

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543367A (zh) * 2010-12-10 2012-07-04 泰商泰达电子公司 磁性组件及其组装方法
CN102122563B (zh) * 2010-12-30 2012-12-26 深圳顺络电子股份有限公司 一种绕线电感及其制造方法
ES2421002T3 (es) * 2011-01-03 2013-08-28 Höganäs Ab Núcleo de inductor
JP5552661B2 (ja) * 2011-10-18 2014-07-16 株式会社豊田自動織機 誘導機器
CN102842417A (zh) * 2012-06-20 2012-12-26 山亿新能源股份有限公司 一种逆变器电感灌封的绝缘结构
CN103077802B (zh) * 2012-12-31 2015-12-23 山东电力集团公司青岛供电公司 振荡波系统用电感及其制作方法
CN103117156B (zh) * 2013-03-01 2016-12-28 重庆祥龙电气有限公司 一种特殊结构的环氧树脂包封干式变压器
CN103258624A (zh) * 2013-05-13 2013-08-21 田村(中国)企业管理有限公司 混合磁路电感器
CN104979064A (zh) * 2014-04-08 2015-10-14 浙江科达磁电有限公司 一种epq型磁芯及包含它的电感磁性元件
CN104347587A (zh) * 2014-09-15 2015-02-11 武汉新芯集成电路制造有限公司 一种立体集成电感结构
JP6038385B2 (ja) * 2014-12-03 2016-12-07 三菱電機株式会社 デュアルモードチョークコイル及びそれを用いた高周波フィルタ並びに車載用モータ一体型電動パワーステアリング及び車載用充電装置
CN105405632A (zh) * 2015-12-30 2016-03-16 无锡斯贝尔磁性材料有限公司 大型变压器制作方法
CN106059271A (zh) * 2016-08-15 2016-10-26 苏州茂昌电子有限公司 一种电源供应器
CN109036797A (zh) * 2017-06-12 2018-12-18 美桀电子科技(深圳)有限公司 功率电感器及其制作方法
CN107545975A (zh) * 2017-08-09 2018-01-05 海宁联丰东进电子有限公司 一种可增加电感量和差模感量的变压器磁芯
CN109036779A (zh) * 2018-09-04 2018-12-18 湖南创电子科技股份有限公司 模具灌注成型绕线式电感器及其制备方法
CN212461293U (zh) * 2020-05-15 2021-02-02 山特电子(深圳)有限公司 集成电感装置
CN113990683B (zh) * 2020-07-27 2023-12-29 南京南瑞继保电气有限公司 一种电磁斥力操作机构及电气设备
CN112489958A (zh) * 2020-11-18 2021-03-12 深圳顺络汽车电子有限公司 一种新型低损耗变压器
WO2023060550A1 (zh) * 2021-10-15 2023-04-20 广东伊戈尔智能电器有限公司 一种注塑成型的电感装置、压粉磁芯及注塑成型方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223290A (en) * 1977-12-24 1980-09-16 Omron Tateisi Electronics Co. Electromagnetic device of the flat package type
CN2509694Y (zh) * 2001-04-27 2002-09-04 台达电子工业股份有限公司 薄形变压器
JP2005302926A (ja) * 2004-04-09 2005-10-27 Cosel Co Ltd フェライトコアとインダクタの製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223290A (en) * 1977-12-24 1980-09-16 Omron Tateisi Electronics Co. Electromagnetic device of the flat package type
CN2509694Y (zh) * 2001-04-27 2002-09-04 台达电子工业股份有限公司 薄形变压器
JP2005302926A (ja) * 2004-04-09 2005-10-27 Cosel Co Ltd フェライトコアとインダクタの製造法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152351A4 (en) * 2020-06-24 2023-07-26 Huawei Technologies Co., Ltd. ELECTRICAL COMPONENT, CIRCUIT BOARD AND SWITCHING POWER SUPPLY
CN113223824A (zh) * 2021-04-29 2021-08-06 东莞沛波电子有限公司 一种便于自动化生产的大容量功率电感

Also Published As

Publication number Publication date
CN101521089A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
WO2010057350A1 (zh) 一种电感器件及其制做方法
CN102163489B (zh) 一种串联集成电感器件
TWM396477U (en) Iron core coil assembly
US8031040B1 (en) Magnetic component having a bobbin structure with integrated winding
CN101692385A (zh) 一种电感器及其制作方法
CN106340375A (zh) 立式变压器结构
CN102760571B (zh) 一种高频变压器的绕线方法
CN206421891U (zh) 一种方便自动化绕线的变压器及开关电源
CN207938419U (zh) 一种手机高频电源变压器
CN202839244U (zh) 一种高频变压器
JP2001297922A (ja) 巻線構造
CN219738710U (zh) 共模差模滤波电感
JP2009170489A (ja) インバータトランス
CN202275691U (zh) 一种集成nUI磁心
CN203366970U (zh) 变压器和电源
WO2021068679A1 (zh) 电感装置
CN221239491U (zh) 一种脉冲信号变压器
CN219202923U (zh) 自粘型跑道式扁平线圈
CN108962562A (zh) 一种hc型无骨架llc变压器及其制造方法
CN216287952U (zh) 一种组合式大电流电感器
CN116313428A (zh) 共模差模滤波电感及其制作方法
CN218957506U (zh) 一种eq型磁粉芯电感
CN221200894U (zh) 磁芯结构及变压器
TWI660382B (zh) 耦合電感結構及製造方法
CN218123154U (zh) 平面电感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878220

Country of ref document: EP

Kind code of ref document: A1