WO2021068679A1 - 电感装置 - Google Patents

电感装置 Download PDF

Info

Publication number
WO2021068679A1
WO2021068679A1 PCT/CN2020/111744 CN2020111744W WO2021068679A1 WO 2021068679 A1 WO2021068679 A1 WO 2021068679A1 CN 2020111744 W CN2020111744 W CN 2020111744W WO 2021068679 A1 WO2021068679 A1 WO 2021068679A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
gap
protrusions
magnetic core
inductance device
Prior art date
Application number
PCT/CN2020/111744
Other languages
English (en)
French (fr)
Inventor
李世刚
Original Assignee
深圳Tcl数字技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl数字技术有限公司 filed Critical 深圳Tcl数字技术有限公司
Publication of WO2021068679A1 publication Critical patent/WO2021068679A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields

Definitions

  • This application relates to the technical field of circuit elements, and in particular to an inductance device.
  • Common mode inductors generally use coils wound around the left and right magnetic columns of the closed-loop magnetic core. By passing common mode currents in the same direction to the left and right coils, the electromagnetic fields of the left and right coils are generated in the same direction to increase the inductive reactance of the coils. The coil exhibits high impedance to attenuate common mode current and achieve the purpose of attenuating common mode interference.
  • the common mode inductance In the common mode inductor, because the winding of the coil is not complete or tight, a certain amount of magnetic flux leakage often occurs, forming a differential mode inductance, so the common mode inductance also has a certain differential mode interference attenuation capability. But in fact, the magnetic flux leakage in the general common mode inductor is relatively small, and the differential mode inductance caused by the magnetic flux leakage is also relatively small, which makes the differential mode interference attenuation ability of the general common mode inductor relatively weak. The common mode interference attenuation ability will be stronger.
  • the main purpose of this application is to provide an inductance device, which aims to improve the attenuation strength of the common mode inductor to differential mode interference.
  • an inductance device including:
  • the magnetic core is arranged in a ring shape, the inner wall of the magnetic core is convexly provided with two oppositely arranged magnetic protrusions, and the two magnetic protrusions cooperate to form a gap;
  • Two windings are respectively made on both sides of the magnetic core, and the two magnetic protrusions and the gap are located between the two windings.
  • the two magnetic protrusions and the magnetic core are integrally formed.
  • both of the magnetic protrusions are arranged in a columnar shape, and the cross-sectional shape of the magnetic protrusions is one of a circle, a rectangle, a diamond, and an ellipse.
  • each magnetic protrusion away from the inner wall of the magnetic core is provided with a concave surface.
  • the width of the gap is defined as L1, and 1mm ⁇ L1 ⁇ 3mm.
  • the distance between the outer wall of the winding facing the magnetic protrusion and the magnetic protrusion is defined as L2, and L2 ⁇ 2mm.
  • the magnetic core includes two side posts arranged oppositely and two connecting posts arranged oppositely;
  • each connecting column Two ends of each connecting column are respectively connected to two side columns, and the two side columns and the two connecting columns are sequentially connected to form a ring;
  • the two magnetic protrusions are respectively arranged on the two connecting posts, and the two windings are respectively wound on the two side posts.
  • the distance between any one of the magnetic protrusions and the two side pillars is equal;
  • the distance between the two magnetic protrusions and any one of the side pillars is equal.
  • the inductance device further includes a base, and the magnetic core is provided on one side of the base;
  • a side of the base facing away from the magnetic core is provided with a pin, the base is provided with a wire passing gap adjacent to the pin, and the winding is electrically connected to the pin through the wire passing gap.
  • a positioning block is protrudingly provided on a side of the base facing the magnetic core, and the positioning block is at least partially accommodated and confined in the gap.
  • the material of the positioning block is an insulating material
  • the material of the pin is a conductive metal material
  • the material of the base is an insulating material
  • the material of the pin is a conductive metal material
  • the two magnetic protrusions are arranged opposite to each other and extend toward each other.
  • the inductance device provided by the present application can improve the attenuation strength of the inductance device to differential mode interference, and achieve an excellent electromagnetic interference filtering effect.
  • FIG. 1 is a schematic diagram of a structure of an inductance device of this application
  • Figure 2 is a schematic diagram of the distribution of magnetic lines of induction of the inductance device of the application
  • FIG. 3 is another schematic diagram of the structure of the inductance device of this application.
  • FIG. 5 is a schematic diagram of another structure of the inductance device of the present application.
  • the terms “connected”, “fixed”, etc. should be understood in a broad sense.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two components or an interaction relationship between two components, unless specifically defined otherwise.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two components or an interaction relationship between two components, unless specifically defined otherwise.
  • This application proposes an inductance device for filtering electromagnetic interference, and the electromagnetic interference includes common mode interference and differential mode interference.
  • the inductance device includes a magnetic core 1 and two windings 2, wherein the magnetic core 1 is arranged in a ring shape, and the inner wall of the magnetic core 1 is convexly provided with two opposite windings.
  • the two magnetic projections 11 are arranged to form a gap 12 in cooperation; the two windings 2 are wound on both sides of the magnetic core 1, and the two magnetic projections 11 and the gap 12 are located between the two windings 2.
  • the material of the magnetic core 1 is a magnetic metal oxide, such as manganese-zinc ferrite, nickel-zinc ferrite, etc.
  • the magnetic core 1 is arranged in a ring shape, and the magnetic core 1 is enclosed to form a cavity. 11 is provided on the inner wall of the cavity.
  • the shape of the magnetic core 1 is a box shape, so that the magnetic core 1 can be easily formed, and the winding 2 can be easily wound on the frame on either side of the magnetic core 1.
  • the magnetic protrusion 11 is a magnetic protrusion structure, and the material of the magnetic protrusion 11 is also a magnetic metal oxide.
  • the magnetic protrusion 11 has the characteristics of high permeability and high magnetic flux density, which can effectively increase the magnetic induction intensity of the winding 2 after it is energized. In this way, the magnetic lines of induction emitted by the winding 2 pass through the two magnetic protrusions 11 relatively concentratedly, and a concentrated magnetic flux leakage occurs at the gap 12.
  • the cross-sectional shape of the gap 12 may be rectangular, circular, elliptical, etc., which is not limited here.
  • the two magnetic protrusions 11 are arranged opposite to each other and extend toward each other.
  • the gap 12 is the gap between the two magnetic protrusions 11.
  • the gap 12 has a strong resistance to magnetism, that is, when the magnetic induction lines emitted after the winding 2 is energized pass through the gap 12, the gap 12 will appear to be different in all directions. Regular divergence, that is, the phenomenon of magnetic flux leakage.
  • the magnetic flux leakage is concentrated in the gap 12, so it has strong strength and high density, so as to form a strong and concentrated differential mode inductance.
  • the strong and concentrated differential mode inductance can effectively filter the differential mode interference. .
  • Winding 2 is a multi-turn metal conductive coil. Winding 2 is wound on magnetic core 1 and distributed on both sides of magnetic protrusion 11. When winding 2 is energized, electromagnetic induction magnetic field will be generated, and the magnetic field lines of this magnetic field will pass through two magnetic protrusions 11 , And diverge at the gap 12, causing magnetic flux leakage.
  • two oppositely arranged magnetic protrusions 11 are provided on the toroidal magnetic core 1, and a gap 12 is formed between the two magnetic protrusions 11, and the gap 12 has a relatively large magnetic resistance.
  • the magnetic induction lines generated by the winding 2 diverge in all directions at the gap 12, thereby forming a strong and concentrated magnetic leakage, that is, a strong and concentrated difference Mode inductance.
  • the inductance device provided by the present application can improve the attenuation strength of the inductance device to differential mode interference, and achieve an excellent electromagnetic interference filtering effect.
  • the two magnetic protrusions 11 and the magnetic core 1 are integrally formed.
  • the magnetic protrusion 11 and the magnetic core 1 are integrally formed to save the processing steps of the inductance device, and at the same time, it is beneficial to improve the integrity and tightness of the magnetic protrusion 11 and the magnetic core 1 so that the winding 2 is in the
  • the magnetic lines of induction emitted after power-on can directly pass through the magnetic protrusion 11, and will not cause magnetic leakage due to the loose connection between the magnetic protrusion 11 and the magnetic core 1 or the gap or gap between the magnetic protrusion 11 and the magnetic core 1 unconcentrated.
  • the magnetic lines of induction emitted by the winding 2 can pass through the magnetic protrusion 11 and generate strong and concentrated magnetic leakage at the gap 12, thereby forming a strong
  • the concentrated differential mode inductance enables the inductance device to filter differential mode interference more effectively.
  • the two magnetic protrusions 11 are both arranged in a columnar shape, and the cross-sectional shape of the magnetic protrusion 11 is one of a circle, a rectangle, a diamond, and an ellipse.
  • the magnetic protrusion 11 is arranged in a columnar shape, and the cross-sectional shape of the magnetic protrusion 11 can be one of a circle, a rectangle, a rhombus and an ellipse.
  • the magnetic protrusion 11 is easy to be processed and formed;
  • the columnar structure can concentrate more magnetic lines of induction, which is beneficial to increase the density of magnetic lines of induction passing through the magnetic protrusions 11, thereby enhancing the intensity and concentration of magnetic flux leakage occurring at the gap 12.
  • the shape of the magnetic protrusion 11 may also be a plate shape, a strip shape, etc.
  • the shape of the magnetic protrusion 11 provided in this embodiment is only an optional embodiment, and is not the only limitation on the shape of the magnetic protrusion 11.
  • each magnetic protrusion 11 away from the inner wall of the magnetic core 1 is provided with a concave surface 111.
  • the concave surface 111 has a larger divergence area of the magnetic lines of induction than the flat surface, and the concave surface 111 is easier to converge and concentrate the magnetic lines of induction.
  • the two magnetic protrusions 11 are arranged at one end away from the magnetic core 1
  • the concave surface 111 can make the magnetic leakage at the gap 12 more concentrated, which is beneficial to increase the differential mode inductance at the gap 12 and enhance the attenuation effect of the inductive device on the differential mode interference.
  • the width of the defined gap 12 is L1, and 1mm ⁇ L1 ⁇ 3mm.
  • the width of the gap 12 affects the intensity and concentration of magnetic flux leakage.
  • the width L1 of the gap 12 is greater than or equal to 1 mm and less than or equal to 3 mm, the gap 12 will not cause a small amount of magnetic flux leakage due to its narrow width. Do not think that the width is too wide to cause the leakage magnetic field to be inconcentrated and the magnetic leakage field strength is too weak. In this way, the inductance device can achieve an ideal filtering effect of the differential mode inductance.
  • the distance between the outer wall of the winding 2 facing the magnetic protrusion 11 and the magnetic protrusion 11 is defined as L2, and L2 ⁇ 2mm.
  • a certain interval should be reserved between the winding 2 and the magnetic protrusion 11.
  • the winding process of the winding 2 is limited by the processing technology, and it is difficult to achieve seamless resistance between the winding 2 and the magnetic protrusion 11.
  • Pick up Secondly, a certain interval is reserved between the winding 2 and the magnetic protrusion 11, which is also convenient for the inspection and repair of the magnetic core 1 and the winding 2.
  • magnetic flux leakage will occur at the gap 12, and it is also necessary to ensure that there is a certain space near the gap 12 for the magnetic flux leakage to diverge outward, and the magnetic flux leakage should preferably not act on the magnetic field generated by the winding 2 in reverse.
  • the magnetic core 1 includes two oppositely arranged side posts 13 and two oppositely arranged connecting posts 14; both ends of each connecting post 14 are connected to the two side posts 14 respectively. 13 is connected, the two side pillars 13 and the two connecting pillars 14 are sequentially connected to form a ring; the two magnetic protrusions 11 are respectively arranged on the two connecting pillars 14, and the two windings 2 are wound on the two side pillars 13 respectively.
  • the materials of the side pillars 13 and the connecting pillars 14 are both magnetic metal oxides, such as manganese-zinc ferrite, nickel-zinc ferrite, etc.
  • the two side pillars 13 and the two connecting pillars 14 are One-piece structure.
  • the two side pillars 13 are arranged in parallel, and the two connecting pillars 14 are also arranged in parallel, so that the magnetic core 1 is arranged in a rectangular ring shape, and the two windings 2 are wound on the two side pillars 13 respectively.
  • the connecting column 14 is used to connect the two side columns 13, and the connecting column 14 is provided with a magnetic protrusion 11, and the magnetic protrusion 11 can be integrally formed with the connecting column 14.
  • the distance between any magnetic protrusion 11 and the two side pillars 13 is equal; and/or, the distance between the two magnetic protrusions 11 and any side pillar 13 is the same.
  • the distance between any magnetic protrusion 11 and one of the two side pillars 13 is equal to the distance to the other side pillar 13, that is, the magnetic protrusion 11 is located in the middle of the connecting pillar 14 so that the two side pillars
  • the pillars 13 are arranged symmetrically along the magnetic protrusion 11. In this way, after the two windings 2 are energized, the strength of the magnetic lines of induction passing through the magnetic protrusions 11 from the two windings 2 is equivalent, so that the density of the magnetic lines of induction is relatively uniform, which is beneficial to improve the uniformity of the magnetic flux density. .
  • the distance between the two magnetic protrusions 11 and one of the two side pillars 13 is equal, so that the two magnetic protrusions 11 are arranged directly opposite to each other to ensure stable and concentrated magnetic leakage at the gap 12 to generate sufficient differential mode inductance. In order to achieve a more ideal differential mode interference attenuation effect.
  • the inductance device further includes a base 3, and the magnetic core 1 is provided on one side of the base 3; the base 3 is provided with pins 31 on the side facing away from the magnetic core 1, and the base 3 A wire gap 32 is opened adjacent to the pin 31, and the winding 2 is electrically connected to the pin 31 through the wire gap 32.
  • the material of the base 3 is an insulating material, such as plastic.
  • the wire passing gap 32 is used to pass the wire connecting the winding 2 and the pin 31.
  • Part of the lead wire of the winding 2 can be connected to the pin 31 through the wire gap 32, or by placing an additional wire in the wire gap 32 and connecting the two ends of the wire to the winding 2 and the pin 31 respectively, To realize the electrical connection between the winding 2 and the pin 31.
  • the material of the pin 31 is a conductive metal material, and the pin 31 is used for an external power supply to introduce current into the winding 2 to cause the winding 2 to generate electromagnetic induction and generate an induced magnetic field.
  • the setting of the wire gap 32 provides accommodation space for the wire connecting the winding 2 and the pin 31, avoids the wire connecting the winding 2 and the pin 31 from being exposed, and improves the aesthetics and safety of the inductance device.
  • a positioning block 33 is protrudingly provided on the side of the base 3 facing the magnetic core 1, and the positioning block 33 is at least partially accommodated and limited in the gap 12.
  • the positioning block 33 is made of insulating material, such as plastic, etc.
  • the positioning block 33 may be integrally formed with the base 3, or may be separately formed and connected to the base 3 by bonding or the like.
  • the positioning block 33 and the gap 12 are adapted to each other, so that the positioning block 33 can be at least partially accommodated and confined in the gap 12.
  • the positioning block 33 restricts the magnetic protrusion 11, which can effectively prevent the magnetic core 1 and the magnetic protrusion 11 from being relative to each other.
  • the movement of the base 3 ensures the stability of the structure of the inductive device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本申请公开一种电感装置,其包括:磁芯,呈环形设置,所述磁芯的内壁凸设有两个相对设置的磁凸,两个所述磁凸配合形成间隙;两个绕组,两个所述绕组分别绕制于所述磁芯的两侧,两个所述磁凸和所述间隙位于两个所述绕组之间。本申请提出的电感装置能够对差模干扰进行较强的衰减,能够有效过滤电磁干扰。

Description

电感装置
相关申请的交叉引用
本申请要求于2019年10月12日提交中国专利局、申请号为201921710583.1、申请名称为“电感装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路元件技术领域,特别涉及一种电感装置。
背景技术
共模电感一般采用在闭环磁芯的左右磁柱上缠绕线圈,通过向左右线圈中通入同向共模电流,使左右两个线圈内产生同向的电磁场而增大线圈的感抗,使线圈表现为高阻抗,以衰减共模电流,达到衰减共模干扰的目的。
共模电感中因为线圈的绕制不完整或者不紧密,往往会出现一定量的磁通泄漏,形成差模电感,因此共模电感也具有一定的差模干扰衰减能力。但实际上,一般共模电感中的磁通泄漏比较少,磁通泄漏所带来的的差模感量也比较小,这就使得一般的共模电感的差模干扰衰减能力比较微弱,而共模干扰衰减能力会则较强。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术解决方案
本申请的主要目的是提供一种电感装置,旨在提升共模电感对差模干扰的衰减强度。
为实现上述目的,本申请提供了一种电感装置,包括:
磁芯,呈环形设置,所述磁芯的内壁凸设有两个相对设置的磁凸,两个所述磁凸配合形成间隙;
两个绕组,两个所述绕组绕分别制于所述磁芯的两侧,两个所述磁凸和所述间隙位于两个所述绕组之间。
在本申请的一实施例中,两个所述磁凸与所述磁芯为一体成型结构。
在本申请的一实施例中,两个所述磁凸均呈柱状设置,所述磁凸的横截面形状为圆形、矩形、菱性和椭圆形中的一种。
在本申请的一实施例中,每个所述磁凸远离所述磁芯内壁的一端均设有凹面。
在本申请的一实施例中,定义所述间隙的宽度为L1,1mm≤L1≤3mm。
在本申请的一实施例中,定义所述绕组面向所述磁凸的外壁与所述磁凸之间的距离为L2,L2≥2mm。
在本申请的一实施例中,所述磁芯包括相对设置的两个侧柱和相对设置的两个连接柱;
每一所述连接柱的两端分别与两个所述侧柱连接,两个所述侧柱和两个所述连接柱依次连接成环;
两个所述磁凸分别设于两个所述连接柱,两个所述绕组分别绕制于两个所述侧柱。
在本申请的一实施例中,任一所述磁凸与两个所述侧柱的间距相等;
和/或,两个所述磁凸与任一所述侧柱的间距相等。
在本申请的一实施例中,所述电感装置还包括底座,所述磁芯设于所述底座的一侧;
所述底座背向所述磁芯的一侧设有引脚,所述底座邻近所述引脚开设有过线缺口,所述绕组通过所述过线缺口与所述引脚电连接。
在本申请的一实施例中,所述底座面向所述磁芯的一侧凸设有定位块,所述定位块至少部分容纳并限位于所述间隙内。
在本申请的一实施例中,所述定位块的材质为绝缘材质,所述引脚的材质为导电金属材质。
在本申请的一实施例中,所述底座的材质为绝缘材质,所述引脚的材质为导电金属材质。
在本申请的一实施例中,两个所述磁凸相对设置并互相朝向对方延伸。
本申请技术方案通过在环形磁芯上设置两个相对设置的磁凸,并使两个磁凸之间形成间隙,间隙具有较大的磁阻。当绕组绕制在磁芯的两侧上,并通以电流时,绕组产生的磁感线在间隙处向各个方向发散,从而形成强而集中的漏磁,即形成强而集中的差模电感。以此,本申请提供的电感装置能够提升电感装置对差模干扰的衰减强度,实现优异的电磁干扰过滤效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请电感装置的一种结构示意图;
图2为本申请电感装置磁感线的分布示意图;
图3为本申请电感装置的另一结构示意图;
图4为本申请电感装置的侧视结构示意图;
图5为本申请电感装置的又一结构示意图。
附图标号说明:
标号 名称 标号 名称
1 磁芯 2 绕组
11 磁凸 3 底座
111 凹面 31 引脚
12 间隙 32 过线缺口
13 侧柱 33 定位块
14 连接柱    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。全文中出现的“和/刻”的含义为,包括三个并列的就案,以“A和/或B为例”,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种电感装置,用于过滤电磁干扰,该电磁干扰包括共模干扰和差模干扰。
在本申请实施例中,参照图1并结合图2所示,该电感装置包括磁芯1和两个绕组2,其中,磁芯1呈环形设置,磁芯1的内壁凸设有两个相对设置的磁凸11,两个磁凸11配合形成间隙12;两个绕组2分别绕制于磁芯1的两侧,两个磁凸11和间隙12位于两个绕组2之间。
在实施例中,磁芯1的材质为磁性金属氧化物,比如锰-锌铁氧体、镍-锌铁氧体等,磁芯1呈环形设置,磁芯1围合形成一空腔,磁凸11设于该空腔的内壁。优选地,磁芯1的形状为方框形,以使磁芯1容易成型,同时也使绕组2易于绕制在磁芯1的任意一侧的边框上。
磁凸11为一磁性的凸起结构,磁凸11的材质也为磁性金属氧化物,磁凸11具有高磁导率和高磁通密度的特点,能够有效增加绕组2通电后的磁感应强度,以使绕组2发出的磁感线相对集中地穿过两个磁凸11,并在间隙12处产生集中的漏磁。间隙12的截面形状可以为矩形、圆形、椭圆形等,此处不做限定。
两个磁凸11相对设置并互相朝向对方延伸。间隙12即为两个磁凸11之间的间隙,间隙12具有较强的阻磁能力,即绕组2通电后的发出的磁感线通过间隙12时,将在间隙12处出现朝向各个方向不规律地发散,也即漏磁现象。漏磁集中出现在间隙12处,因而具有较强的强度和较高的密度,以此形成强而集中的差模电感,利用该强而集中的差模电感能够对差模干扰进行有效地过滤。
绕组2即多匝金属导电线圈,绕组2缠绕于磁芯1,分布于磁凸11的两侧,绕组2通电时将产生电磁感应的磁场,该磁场的磁场线将穿过两个磁凸11,并在间隙12处发散,出现漏磁现象。
本实施例方案通过在环形磁芯1上设置两个相对设置的磁凸11,并使两个磁凸11之间形成间隙12,间隙12具有较大的磁阻。当绕组2绕制在磁芯1的两侧并通以电流时,绕组2产生的磁感线在间隙12处向各个方向发散,从而形成强而集中的漏磁,即形成强而集中的差模电感。以此,本申请提供的电感装置能够提升电感装置对差模干扰的衰减强度,实现优异的电磁干扰过滤效果。
在本申请一实施例中,两个磁凸11与磁芯1为一体成型结构。
在实施例中,磁凸11与磁芯1为一体成型结构,以节省本电感装置的加工工序,同时有利于提升磁凸11与磁芯1配合的整体性和紧密性,以使绕组2在通电后发出的磁感线能够直接穿过磁凸11,而不会因为磁凸11与磁芯1连接不紧密或磁凸11与磁芯1之间存在缝隙或缺口造成漏磁,导致漏磁不集中。
通过使磁凸11与磁芯1一体成型,使绕组2通电后,绕组2发出的磁感线能够集中穿过磁凸11,并在间隙12处产生强而集中的漏磁,以此形成强而集中的差模电感,从而使本电感装置能够更有效地对差模干扰进行过滤。
在本申请一实施例中,两个磁凸11均呈柱状设置,磁凸11的横截面形状为圆形、矩形、菱性和椭圆形中的一种。
在本实施例中,磁凸11呈柱状设置,磁凸11的横截面形状可以为圆形、矩形、菱性和椭圆形中的一种,一方面,使磁凸11易于加工成型;另一方面,柱状结构能够集中通过较多的磁感线,有利于提升穿过磁凸11的磁感线密度,从而增强发生在间隙12处的漏磁的强度和集中度。当然,磁凸11的形状还可以为板块状、长条状等,本实施例提供的磁凸11形状仅作为一种可选实施例,并不作为对磁凸11形状的唯一限定。
在本申请一实施例中,如图3所示,每个磁凸11远离磁芯1内壁的一端均设有凹面111。
在本实施例中,凹面111较平面有更大的磁感线发散面积,且凹面111更容易汇聚和集中磁感线,以此,通过在两个磁凸11远离磁芯1的一端的设置凹面111,能够使间隙12处的漏磁更为集中,有利于提升间隙12处的差模感量和增强本电感装置对差模干扰的衰减效果。
在本申请一实施例中,如图1所示,定义间隙12的宽度为L1,1mm≤L1≤3mm。
在本实施例中,间隙12的宽度影响漏磁的强度和集中度,当间隙12的宽度L1大于等于1mm且小于等于3mm时,间隙12不会因为宽度过窄而导致漏磁量少,也不会以为宽度过宽导致漏磁不集中、漏磁强度过弱。以此,使本电感装置能够实现较为理想的差模电感的过滤效果。
在本申请一实施例中,如图1所示,定义绕组2面向磁凸11的外壁与磁凸11之间的距离为L2,L2≥2mm。
在本实施例中,绕组2与磁凸11之间应该保留一定的间隔,首先,受限于加工工艺个绕组2的绕制工艺,难以做到使绕组2和磁凸11之间无缝抵接。其次,绕组2与磁凸11之间保留一定的间隔,也便于对磁芯1和绕组2进行检修。此外,漏磁会在间隙12处产生,也需要保证间隙12的附近有一定的空间供漏磁向外发散,而漏磁最好不要反过来作用于绕组2产生的磁场。故而将绕组2与磁凸11之间间距设置为大于等于2mm,将便于绕组2和磁芯1的检修和维护,同时也给漏磁提供足够的发散空间,有利于漏磁的进一步形成。
在本申请一实施例中,如图1所示,磁芯1包括相对设置的两个侧柱13和相对设置的两个连接柱14;每一连接柱14的两端分别与两个侧柱13连接,两个侧柱13和两个连接柱14依次连接成环;两个磁凸11分别设于两个连接柱14,两个绕组2分别绕制于两个侧柱13。
在本实施例中,侧柱13和连接柱14的材质均为磁性金属氧化物,比如锰-锌铁氧体、镍-锌铁氧体等,两个侧柱13与两个连接柱14为一体成型结构。两个侧柱13平行设置,两个连接柱14也平行设置,以使磁芯1呈矩形环状设置,两个绕组2分别绕制于两个侧柱13上。连接柱14用于连接两个侧柱13,连接柱14上设有磁凸11,磁凸11可与连接柱14一体成型。
在本申请一实施例中,任一磁凸11与两个侧柱13的间距相等;和/或,两个磁凸11与任一侧柱13的间距相等。
在本实施例中,任一磁凸11到两个侧柱13其中之一的间距与到另一个侧柱13的间距相等,即磁凸11位于连接柱14的中间位置,以使两个侧柱13沿磁凸11对称设置。以此,使两个绕组2通电后,两个绕组2发出的穿过磁凸11的磁感线的强度相当,以使磁感线的密度相对均匀,有利于提升漏磁的密度的均匀性。
两个磁凸11到两个侧柱13其中之一的间距相等,以使两个磁凸11相互正对设置,保证间隙12处能够产生稳定而集中的漏磁,以产生足够的差模感量,实现更为理想的差模干扰衰减效果。
在本申请一实施例中,如图4所示,电感装置还包括底座3,磁芯1设于底座3的一侧;底座3背向磁芯1的一侧设有引脚31,底座3邻近引脚31开设有过线缺口32,绕组2通过过线缺口32与引脚31电连接。
在本实施例中,底座3的材质为绝缘材质,比如塑胶等。过线缺口32用于通过连接绕组2和引脚31的线材。绕组2的部分引出线可通过过线缺口32连接至引脚31,或者,通过将额外的导线设置在过线缺口32内,并将该导线的两端分别连接于绕组2和引脚31,来实现绕组2和引脚31的电连接。
引脚31的材质为导电金属材质,引脚31用于外接电源,以将电流引入绕组2,使绕组2发生电磁感应并产生感应磁场。
过线缺口32的设置,给连接绕组2和引脚31的线材提供了容纳空间,避免了连接绕组2和引脚31的线材外露,提升了本电感装置的美观性和安全性。
在本申请一实施例中,如图5所示,底座3面向磁芯1的一侧凸设有定位块33,定位块33至少部分容纳并限位于间隙12内。
在本实施例中,定位块33的材质为绝缘材质,比如塑胶等,定位块33可以与底座3一体成型,也可以是独立成型后通过粘接等方式连接于底座3上的。定位块33与间隙12相互适配,以使定位块33可至少部分容纳并限位于间隙12内,通过定位块33对磁凸11进行限位,可有效防止磁芯1和磁凸11相对于底座3移动,保证了本电感装置结构的稳定性。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (13)

  1. 一种电感装置,其中,包括:
    磁芯,呈环形设置,所述磁芯的内壁凸设有两个相对设置的磁凸,两个所述磁凸配合形成间隙;
    两个绕组,两个所述绕组分别绕制于所述磁芯的两侧,两个所述磁凸和所述间隙位于两个所述绕组之间。
  2. 如权利要求1所述的电感装置,其中,两个所述磁凸与所述磁芯为一体成型结构。
  3. 如权利要求1所述的电感装置,其中,两个所述磁凸均呈柱状设置,所述磁凸的横截面形状为圆形、矩形、菱性和椭圆形中的一种。
  4. 如权利要求1所述的电感装置,其中,每个所述磁凸远离所述磁芯内壁的一端设有凹面。
  5. 如权利要求1所述的电感装置,其中,定义所述间隙的宽度为L1,1mm≤L1≤3mm。
  6. 如权利要求1所述的电感装置,其中,定义所述绕组面向所述磁凸的外壁与所述磁凸之间的距离为L2,L2≥2mm。
  7. 如权利要求1至6中任一项所述的电感装置,其中,所述磁芯包括相对设置的两个侧柱和相对设置的两个连接柱;
    每一所述连接柱的两端分别与两个所述侧柱连接,两个所述侧柱和两个所述连接柱依次连接成环;
    两个所述磁凸分别设于两个所述连接柱,两个所述绕组分别绕制于两个所述侧柱。
  8. 如权利要求7所述的电感装置,其中,任一所述磁凸与两个所述侧柱的间距相等;
    和/或,两个所述磁凸与任一所述侧柱的间距相等。
  9. 如权利要求1至6中任一项所述的电感装置,其中,所述电感装置还包括底座,所述磁芯设于所述底座的一侧;
    所述底座背向所述磁芯的一侧设有引脚,所述底座邻近所述引脚开设有过线缺口,所述绕组通过所述过线缺口与所述引脚电连接。
  10. 如权利要求9所述的电感装置,其中,所述底座面向所述磁芯的一侧凸设有定位块,所述定位块至少部分容纳并限位于所述间隙内。
  11. 如权利要求10所述的电感装置,其中,所述定位块的材质为绝缘材质,所述引脚的材质为导电金属材质。
  12. 如权利要求10所述的电感装置,其中,所述底座的材质为绝缘材质,所述引脚的材质为导电金属材质。
  13. 如权利要求1至6中任一项所述的电感装置,其中,两个所述磁凸相对设置并互相朝向对方延伸。
PCT/CN2020/111744 2019-10-12 2020-08-27 电感装置 WO2021068679A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921710583.1 2019-10-12
CN201921710583.1U CN210606849U (zh) 2019-10-12 2019-10-12 电感装置

Publications (1)

Publication Number Publication Date
WO2021068679A1 true WO2021068679A1 (zh) 2021-04-15

Family

ID=70688708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111744 WO2021068679A1 (zh) 2019-10-12 2020-08-27 电感装置

Country Status (2)

Country Link
CN (1) CN210606849U (zh)
WO (1) WO2021068679A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210606849U (zh) * 2019-10-12 2020-05-22 深圳Tcl数字技术有限公司 电感装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719785A (zh) * 2014-12-04 2016-06-29 深圳振华富电子有限公司 电感器组件及其制造方法
CN109300650A (zh) * 2018-09-28 2019-02-01 珠海科德电子有限公司 共差模一体化扁平电感
CN210606849U (zh) * 2019-10-12 2020-05-22 深圳Tcl数字技术有限公司 电感装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719785A (zh) * 2014-12-04 2016-06-29 深圳振华富电子有限公司 电感器组件及其制造方法
CN109300650A (zh) * 2018-09-28 2019-02-01 珠海科德电子有限公司 共差模一体化扁平电感
CN210606849U (zh) * 2019-10-12 2020-05-22 深圳Tcl数字技术有限公司 电感装置

Also Published As

Publication number Publication date
CN210606849U (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
TWI389149B (zh) Symmetrical leakage inductance adjustable flat transformer
TWI335133B (en) Filter and manufacturing method thereof
JPH0799727B2 (ja) 電磁装置および電磁コア構造
WO2015106594A1 (zh) 混合磁路磁集成电感器
CN103765535A (zh) 电抗器及电气设备
JP2019036649A (ja) インダクタ
WO2021068679A1 (zh) 电感装置
KR102136026B1 (ko) 자속 보조용 페라이트 코어를 이용한 용량 가변형 변압기 구조체 결합구조 및 그 제조 방법
US5103201A (en) Switching mode power transformer
CN208478093U (zh) 绕组结构的变压器
TWM560684U (zh) 變壓器
TW518617B (en) Coil stand structure of transformer
JPS62230012A (ja) コアから成る装置
JPH0520310U (ja) 電磁装置
JPH0456303A (ja) 高周波用インダクタ
CN107025990B (zh) 光纤激光电源用高功率密度变压器
JP2021019104A (ja) リアクトル装置
CN112652466B (zh) 一种铁氧体变压器
TWI724976B (zh) 薄型諧振變壓器漏感調整結構
JP2001052945A (ja) 閉磁路インダクタおよびその製造方法。
CN215933335U (zh) 一种变压器
TWI834136B (zh) 變壓器
JPH11297545A (ja) 給電用チョークコイル
CN212257128U (zh) 一种磁集成变压器
CN219832394U (zh) 一种低损耗高直流偏置磁芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20874527

Country of ref document: EP

Kind code of ref document: A1