WO2010056092A9 - 유기 골격 구조체 - Google Patents

유기 골격 구조체 Download PDF

Info

Publication number
WO2010056092A9
WO2010056092A9 PCT/KR2009/006769 KR2009006769W WO2010056092A9 WO 2010056092 A9 WO2010056092 A9 WO 2010056092A9 KR 2009006769 W KR2009006769 W KR 2009006769W WO 2010056092 A9 WO2010056092 A9 WO 2010056092A9
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
boron
organic framework
organic
Prior art date
Application number
PCT/KR2009/006769
Other languages
English (en)
French (fr)
Other versions
WO2010056092A3 (ko
WO2010056092A2 (ko
Inventor
정동현
김민경
김대진
최승훈
윤지혜
최상범
조은희
김자헌
Original Assignee
(주)인실리코텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)인실리코텍 filed Critical (주)인실리코텍
Priority to JP2011533121A priority Critical patent/JP5451766B2/ja
Priority to US13/129,515 priority patent/US8692020B2/en
Publication of WO2010056092A2 publication Critical patent/WO2010056092A2/ko
Publication of WO2010056092A9 publication Critical patent/WO2010056092A9/ko
Publication of WO2010056092A3 publication Critical patent/WO2010056092A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/05Cyclic compounds having at least one ring containing boron but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present invention relates to organic framework structures capable of adsorption and desorption and / or storage of gases or organic molecules.
  • Fossil fuels which account for more than 90% of the current energy demand, are nonrenewable and have a limited reserve.
  • fossil fuels not only pollute the environment by releasing air pollutants such as NO x , SO x , dust, etc., but also increase the concentration of carbon dioxide emitted during the combustion of fossil fuels. Weighting.
  • Hydrogen As a new energy source for replacing such fossil fuels, hydrogen, which is widely used as a raw material of chemical products and a process gas of a chemical process, is drawing attention. Hydrogen has the following advantages: First, when hydrogen is used as a raw material, no pollutants are produced except for the generation of a very small amount of NO x during combustion, and it is easy to use hydrogen as fuel by direct combustion or as a fuel cell. Second, hydrogen can be easily hydrogenated as a gas or liquid, and is easily stored in various forms such as high pressure gas, liquid hydrogen, and metal hybride. Third, hydrogen can be produced in large quantities from water, and recycled back into water even after use, so there is no fear of resource depletion. Fourth, hydrogen can be used in almost all fields used in current energy systems such as general fuels, hydrogen vehicles, hydrogen airplanes, fuel cells, and the like from industrial base materials.
  • covalent organic framework is a material formed by connecting atoms such as only hydrogen, boron, carbon, nitrogen, and oxygen by covalent bonds, and may be formed by a condensation reaction of benzene diboronic acid (BDBA).
  • BDBA benzene diboronic acid
  • This covalent organic framework has not only a rigid porous (micoro- and meso-porous) structure but also excellent thermal stability and low density.
  • the specific surface area is larger than that of conventionally known materials such as zeolites and porous silicates.
  • the present inventors recognize that in the case of a covalent organic framework having a plurality of plate-like layers among the known covalent organic frameworks, the distance between the plates is too narrow so that hydrogen is only inserted through the pores and is difficult to be inserted between the layers. It was.
  • the present invention is to introduce a Lewis base to a plurality of plate-like layer formed by chaining a linear or cyclic boron-containing cluster and two or three C 6 ⁇ C 204 aromatic ring groups in a chain between the plate-like layer
  • a Lewis base to a plurality of plate-like layer formed by chaining a linear or cyclic boron-containing cluster and two or three C 6 ⁇ C 204 aromatic ring groups in a chain between the plate-like layer
  • it is intended to provide an organic framework that can adsorb larger amounts of hydrogen by allowing hydrogen to be inserted between the layers as well as the pores.
  • a linear or cyclic boron-containing cluster, two or three C 6 ⁇ C 204 aromatic ring groups are bonded to form a building block (unit), the plurality of units formed by chain connection with other adjacent units Plate-like layer; And a Lewis base coordinated to a boron-containing cluster in the plate-like layer.
  • the present invention provides an adsorbent containing the above-described organic skeleton structure, and a catalyst.
  • the organic skeletal structure according to the present invention is a Lewis in a boron-containing cluster of a plurality of plate-like layer formed by connecting linear or cyclic boron-containing clusters and units consisting of two or three C 6 -C 204 aromatic ring groups in series.
  • a Lewis base By coordinating the base, the distance between the plate layers is widened due to the Lewis base coordinated to the plate layer such that a large amount of hydrogen can be inserted between the pores and the layers to adsorb a large amount of hydrogen.
  • the organic framework according to the present invention can be used as a hydrogen storage medium having excellent storage performance because it can adsorb irreversibly or reversibly due to the Lewis base bonded to the plate-like layer.
  • 1 is a cross-sectional view schematically showing the organic skeleton structure of the present invention.
  • FIG. 2 is a three-dimensional illustration of an organic framework according to an example of the present invention.
  • COF- 1 organic skeleton structure
  • Figure 4 is a diagram showing the distance between the plate-like layers in the organic skeleton structure according to the present invention.
  • FIG. 5 is an infrared spectrum of the organic framework (PCOF-1) and the control group (COF-1) prepared in Example 1.
  • FIG. 5 is an infrared spectrum of the organic framework (PCOF-1) and the control group (COF-1) prepared in Example 1.
  • FIG. 6 is a thermogravimetric analysis (TGA) graph of the organic framework construct (PCOF-1) and the control group (COF-1) prepared in Example 1.
  • TGA thermogravimetric analysis
  • FIG. 7 is a graph showing powder x-ray diffraction (PXRD) analysis of the organic framework (PCOF-1) and the control group (COF-1) prepared in Example 1.
  • PXRD powder x-ray diffraction
  • Example 8 is a graph showing hydrogen gas adsorption-desorption characteristics of the organic framework (PCOF-1) and the control (COF-1) prepared in Example 1.
  • the linear or cyclic boron-containing cluster contains a boron, a linear or cyclic molecule consisting of a covalent bond of atoms other than boron to each of two reaction sites of the effective reaction site of the boron it means.
  • the aromatic ring group includes not only an aromatic ring hydrocarbon, a heterocyclic aromatic compound, and a multicyclic aromatic compound, but also a functional group in which two or more aromatic rings are bonded by a direct bond, a single bond, or the like, and two or more reaction sites. It means a functional group having a.
  • a covalent organic framework is a porous material formed by covalent bonding of atoms such as hydrogen, boron, carbon, nitrogen, and oxygen.
  • covalent organic frameworks are materials in which linear or cyclic boron-containing clusters and respective building blocks comprising aromatic ring groups are covalently linked.
  • two linear or cyclic boron-containing clusters formed by covalent bonds of atoms belonging to groups 15 and / or 16 of the periodic table such as oxygen or nitrogen with respect to the boron atoms are the same or different.
  • covalently bonded to three aromatic ring groups (such as a phenylene group) and the covalently bonded aromatic ring group has a network structure which is covalently linked to another at least one linear or cyclic boron-containing cluster and connected in series.
  • the covalent organic framework structure formed in this way not only has a rigid porous structure, but also has a low density and good thermal stability.
  • covalent organic skeleton structure two-dimensional plane such as COF-1 [(C 3 H 2 BO) 6 ⁇ C 9 H 12 ) 1 ] or COF-5 [C 9 H 4 BO 2 ]
  • covalent organic skeleton structure having a network structure (hereinafter referred to as 'two-dimensional covalent organic skeleton structure').
  • the two-dimensional covalent organic scaffold structure unlike other covalent organic scaffold structure (hereinafter referred to as three-dimensional covalent organic skeletal structure ') and linear or cyclic boron-containing clusters and C 6
  • Each unit including an aromatic ring group of ⁇ C 204 has a plurality of plate-shaped layers formed by chain connection, and each plate-like layer is densely stacked due to the interaction between the plate-like layers ( 3).
  • the two-dimensional covalent organic framework has a higher binding energy with hydrogen than the three-dimensional covalent organic framework, the hydrogen adsorption amount is small because there are fewer sites that can adsorb hydrogen. .
  • the size of pores formed therein is large enough to allow molecules larger in size than hydrogen gas to pass therethrough,
  • the distance is very narrow due to the interaction between the plate layers.
  • the distance between layers [atom to the plane of each layer, the distance between the centers (ex. Boron, carbon, etc.)] (L 1) is about 3 (See FIG. 4).
  • the interlayer distance L 2 is substantially smaller than 3 ⁇ .
  • hydrogen gas hydrogen molecules
  • hydrogen molecules with a kinetic diameter of about 2.89 kPa cannot be easily inserted between the layers. Accordingly, when hydrogen is adsorbed and stored using a two-dimensional covalent organic framework, hydrogen can only be inserted through pores, and is difficult to be inserted between layers.
  • the two-dimensional covalent organic framework has a smaller amount of hydrogen adsorption than the three-dimensional covalent organic framework, and it has a lower ratio than that of zeolites and porous silicates that are used as hydrogen storage media.
  • the hydrogen adsorption amount is not large.
  • the adsorption of hydrogen is physical adsorption, hydrogen adsorbed to the organic framework can be desorbed due to a change in ambient temperature or pressure, thereby degrading efficiency as a hydrogen storage medium.
  • guest molecules such as hydrogen
  • guest molecules can be inserted between the plate layers as well as the pores, so that the adsorption amount of the guest molecules can be improved.
  • the organic framework according to the present invention comprises two or three C, which are the same or different in linear or cyclic boron-containing clusters. 6 ⁇ C 204
  • the monomer formed by covalent bonding of an aromatic ring group includes a plurality of plate-like layers formed by covalently bonding with at least one other unit adjacent to each other. Lewis bases are coordinated. At this time, the coordination bond of the boron atom and the Lewis base may be bonded in the vertical direction of the plate-like layer.
  • the distance between the lamellar layer and the adjacent lamellar layers is about 4 to 15 mm wider than that of the two-dimensional covalent organic framework known in the art. You lose. As the distance between the layers is about 4 to 15 kPa, hydrogen can be easily inserted between the layers as well as the pores formed therein, thereby allowing a large amount of hydrogen to be adsorbed to the organic framework of the present invention. In addition, since the organic skeletal structure of the present invention has a specific surface area of 300 m 2 / g to 2300 m 2 / g, a large amount of hydrogen can be adsorbed and stored.
  • the void space existing between the plate-like layer and the plate-like layer is regularly or irregularly partitioned by Lewis bases which are regularly or irregularly coordinated to the plate-like layer in the vertical direction of the plate-like layer.
  • Multiple compartment spaces are formed between the layers.
  • the partition space thus formed may be a space (or site) where hydrogen inserted into the organic framework is adsorbed and stored. At this time, the hydrogen adsorbed in the compartment space is physically adsorbed as in the conventionally known covalent organic framework structure.
  • the present invention unlike the conventionally known covalent organic skeleton structure by appropriately selecting the type of Lewis base coordinated to the plate-like layer, even though the adsorption of hydrogen is physical adsorption, the ambient pressure or temperature is changed.
  • the organic framework of the present invention can adsorb hydrogen irreversibly. For this reason, the organic framework of the present invention can be used as a storage medium having excellent storage performance.
  • the linear or cyclic boron-containing cluster has two groups selected from the group consisting of Groups 15 and 16 on the periodic table at each of two reaction sites among the effective reaction sites of the boron centered on the boron (B).
  • Atoms (ex. N, P, O, S, etc.) may be formed by combining, wherein two atoms bonded to the reaction site of the boron may be the same or different.
  • Lewis bases since the boron atoms can accept electron pairs, Lewis bases having unshared electron pairs can be coordinated to the boron atoms, thereby increasing the interlayer distance. At this time, the coordination bond of the Lewis base and boron may be bonded in the vertical direction of the plate-like layer.
  • Such linear or cyclic boron containing clusters may be represented by the following formula (1) or (2):
  • Q 1 to Q 5 are each independently atoms belonging to group 15 or group 16 of the periodic table;
  • the R 1 to R 5 each independently represent hydrogen, C 1 ⁇ C 12 alkyl group, C 6 ⁇ C 12 aryl (aryl) is a group, or a halogen of, but at least one of Q 1 to Q 5 is part of a group 16 In the case of an atom, any one or more of R 1 to R 5 linked to the group 16 atom is absent.
  • linear or cyclic boron-containing clusters represented by such chemical formulas include , , Etc., but is not limited thereto.
  • linear or cyclic boron-containing clusters of the invention form a unit by covalently bonding two or three C 6 -C 204 aromatic ring groups, which are the same or different.
  • the aromatic ring group of C 6 ⁇ C 204 may be represented by a formula selected from Formula 3, Formula 4, Formula 5, and Formula 6, but is not limited thereto:
  • D 1 to D 33 are each independently hydrogen, C 1 ⁇ C 12 alkyl group, C 6 ⁇ C 12 aryl (aryl) group, or selected from the group consisting of halogen in the It may be.
  • Examples of the unit represented by Formula 7 include a unit represented by the following Formula 7a, a unit represented by the following Formula 7b, and the like.
  • Q 4 , Q 5 , R 4 and R 5 are the same as defined in Formula 2; D 1 to D 10 are the same as defined in Chemical Formulas 3 and 4.
  • Examples of the unit represented by Formula 8 include, but are not limited to, a unit represented by Formula 8a:
  • the linear or cyclic boron of the C 6 ⁇ C 204 aromatic ring group constituting the unit (first unit) represented by the formula (7) or (8) constitutes the first unit
  • a linear or cyclic boron-containing cluster constituting another neighboring unit (second unit) in the same form as the first unit is covalently bonded
  • the linear boron-containing cluster of the second unit is the first monomer. It may be chained in a manner that is covalently bonded to the C 6 ⁇ C 204 aromatic ring group of another neighboring unit (third unit) of the same type as the one unit.
  • the plate-shaped layer thus formed may have various forms.
  • the plate-like layer of the present invention is formed by a chain bond of units represented by the formula (7) it may be represented by the following formula (9):
  • Examples of the plate-like layer represented by the formula (9) include a plate-like layer represented by the following formula (9a), a plate-like layer represented by the formula (9b), but are not limited thereto.
  • the plate-like layer of the present invention is formed by a chain bond of the units represented by the formula (8) may be represented by the following formula (10):
  • Q 4 , Q 5 , R 4 and R 5 are the same as defined in Formula 2; D 1 to D 4 are the same as defined in Chemical Formula 3.
  • Examples of the plate-like layer represented by Formula 10 include a plate-like layer represented by the following Formula 10a, but are not limited thereto.
  • the organic framework according to the invention comprises, in addition to the plate-like layer described above, a Lewis base (2) coordinated to a linear or cyclic boron-containing cluster in the plate-like layer (1).
  • the Lewis base coordinated to the boron atoms in the boron-containing cluster may be bonded in the vertical direction of the plate-like layer (see FIG. 1).
  • pyridine 2 is coordinated in a vertical direction to the plate-like layer 1 represented by the above formula (9a) as a Lewis base (see Fig. 2).
  • This invention differs from conventional two-dimensional covalent organic frameworks (see FIG. 3) consisting only of plate-like layers.
  • the Lewis base is bonded to the plate-like layer, resulting in a larger gap (size of gap: about 4 to 15 mm 3) between the plate-like layers than in the case where no Lewis base is present.
  • the gap is large enough to allow the insertion of hydrogen gas (kinetic diameter: about 2.89 kPa). Hydrogen can be easily inserted.
  • the empty spaces between the layers are regularly or irregularly partitioned, and the inserted hydrogen may be adsorbed and stored in the partitioned spaces.
  • the Lewis base used in the present invention is not particularly limited as long as it is a substance capable of giving off a lone pair, but is preferably a compound containing one or more atoms belonging to groups 14 and 15.
  • the Lewis base may be a heterocyclic compound containing one or more atoms selected from the group consisting of N, P, O and S, but is not limited thereto.
  • Lewis bases include pyridine, 4-cyanopyridine, 4-dialkylaminopyridine, 4,4'-bipyridine, pyrazine, pyridazine, pyrimidine, 2-methylpyrazine, pyrazol, imidazole, purine, 7-azaindole, quinoline, isoquinoline, quinoxaline , 1,4-diazabicyclo (2.2.2) octane, quinuclidine, 1,3,5-triazine, hexamethyleneteramine, piperidine, piperazine, pyrrolidine, morpholine, tetrahydrofuran, 1,4-dioxane, 1,8-naphthylene disulfide This is not restrictive.
  • the organic framework of the present invention can be prepared by the following method, but is not limited thereto.
  • the organic skeletal structure produced at this time is semicrystal or crystalline.
  • the organic skeletal structure is reacted with a Lewis base and a Lewis base in the presence of a solvent selected from mesitylene, 1,4-dioxane, and mixtures thereof, represented by a formula selected from the following formulas (11), (12) and (13):
  • a solvent selected from mesitylene, 1,4-dioxane, and mixtures thereof, represented by a formula selected from the following formulas (11), (12) and (13):
  • the boron-containing compound benzene diboronic acid (BDBA) when the boron-containing compound benzene diboronic acid (BDBA) is reacted with pyridine in the presence of a solvent mesitylene, the -B-OH portion of one BDBA and the -B-OH portion of another BDBA are reacted with pyridine.
  • the plate-like layer (1) represented by the above formula (9a) is formed in a laminated structure by the condensation polymerization reaction of the liver, the pyridine (2) at the boron atom in the plate-like layer (1) by the chemical reaction between the BDBA and pyridine, which is a Lewis base, is formed. Coordinated in the vertical direction of the plate-like layer can form an organic skeleton structure in which the distance between the plate-like layer is widened unlike the conventional (see Fig. 2).
  • the organic framework is a reaction of the boron-containing compound, aromatic polyalcohol and Lewis base represented by the formula selected from Formula 11, 12 and 13 in the presence of a solvent selected from mesitylene, 1,4-dioxane and mixtures thereof It can be prepared by.
  • a solvent selected from mesitylene, 1,4-dioxane and mixtures thereof It can be prepared by.
  • the boron-containing compound benzene diboronic acid (BDBA), aromatic polyalcohol hexahydroxy triphenylene (HHTP) and pyridine are reacted.
  • the condensation polymerization reaction between the -B-OH portion of one BDBA and the -B-OH portion of another BDA, and / or the -B-OH portion of one BDBA and the -OH portion of one HHTP is represented by Formula 10a.
  • a pyridine 2 is coordinated to the boron atoms in the plate-like layer 1 in a vertical direction of the plate-like layer by a chemical reaction between the BDBA and pyridine, which is a Lewis base.
  • an organic framework having a wider distance between the plate layers may be formed.
  • the organic skeletal structure of the present invention is (i) a dispersion by dispersing a boron-containing compound represented by the formula selected from the formulas (11), (12) and (13) in a solvent selected from mesitylene, 1,4-dioxane and mixtures thereof.
  • Forming a first dispersion); (ii) adding a Lewis base to the first dispersion to form a dispersion (second dispersion); And (iii) may be prepared by a method comprising the step of heating the second dispersion, but is not limited thereto.
  • the preparation method may further disperse the aromatic polyalcohol when the first dispersion is formed.
  • the manufacturing method may further include dispersing the first dispersion by an ultrasonic apparatus after the forming of the first dispersion.
  • the content of the solvent used in the present invention may be about 1 to 3 ml. If the content of the solvent is less than 1 ml, the reaction may be too slow and the reaction may not occur. If the content of the solvent is more than 3 ml, the reaction may proceed rapidly to form a non-porous polymer.
  • boron-containing compound represented by the formula selected from Formulas 11, 12, and 13 dispersed in such a solvent include Benzene diboronic acid (BDBA), Biphenyl-4,4'-diboronic acid (BPDA), Tolane-4, 4'-diboronic acid, Stilbene-4,4'-diboronic acid, 1,3,5-benzenetriboronic acid (BTBA), 1,3,5-benzenetris (4-phenylboronic acid) (BTPA), 1,4-phenylenediboranediamine , biphenyl-4,4'-diyldiboranediamine, but is not limited thereto.
  • BDBA Benzene diboronic acid
  • BPDA Biphenyl-4,4'-diboronic acid
  • Tolane-4, 4'-diboronic acid Stilbene-4,4'-diboronic acid
  • BTBA 1,3,5-benzenetriboronic acid
  • BTPA 1,3,5-benzenetris (4-phenyl
  • Such boron-containing compounds may be dispersed in the solvent in an amount of about 50 to 250 parts by weight based on 100 parts by weight of the solvent.
  • the condensation condensation reaction is more likely to occur, it is possible to prevent the formation of a non-porous polymer or oligomer.
  • the present invention may disperse an aromatic polyalcohol in a solvent to form a first dispersion.
  • the content of the mixed solute of the boron-containing compound and the aromatic polyalcohol is the same as that of the above-described boron-containing compound.
  • Non-limiting examples of aromatic polyalcohols usable in the present invention include hexahydroxy triphenylene, benzene-1,4-diol, Biphenyl-4,4'-diol and the like.
  • the boron-containing compound or aromatic polyalcohol in the dispersion can be uniformly dispersed in the first dispersion using an ultrasonic device.
  • the ultrasonic device is used under the condition of Ultrasonic frequency of about 40 kHz.
  • a Lewis base is added to the first dispersion to form a dispersion (hereinafter referred to as a 'second dispersion').
  • the content of the Lewis base added may range from about 3 to 10 parts by weight based on 100 parts by weight of the solvent. If the content of the Lewis base is less than 3 parts by weight, the reaction may occur only in a part of the plate-like layer, and if the content of the Lewis base is more than 10 parts by weight, the coordination reaction between the Lewis base and boron proceeds rapidly, and The reaction can only occur at the surface portion of the semicrystalline particles.
  • the formed second dispersion is heated so that the chemical reaction between the boron-containing compound and the Lewis base can occur at the same time as the condensation reaction between the boron-containing compounds.
  • the heating temperature is suitably in the range of about 40 to 160 ° C. If the heating temperature of the second dispersion is too low, the reaction may not occur because it does not receive the energy required for the chemical reaction between the boron-containing compound and the Lewis base, and if the heating temperature is too high, the reaction proceeds quickly and the oligomer Can be formed.
  • the heating is preferably carried out in a sealed state of the first dispersion.
  • the organic framework according to the present invention can be used as an adsorbent for adsorbing or storing a large amount of gas or organic materials.
  • gas include ammonia, carbon dioxide, carbon monoxide, hydrogen, amines, methane, oxygen, argon, nitrogen, and the like.
  • organic materials include methane, ethane, propane, butane, pentane, hexane, Organic materials containing C 1 to C 12 , such as cyclohexane, methanol, ethanol, propanol, isopropanol, benzene, toluene, and the like.
  • the organic framework of the present invention also includes a catalyst (meaning that it includes a catalyst carrier), a sensor, a separator, a desiccant, an ion exchange material, a molecular sieve (separator), a material for chromatography, and a molecule.
  • a catalyst meaning that it includes a catalyst carrier
  • a sensor meaning that it includes
  • the organic skeletal structure (PCOF-1) of Example 1 showed the same characteristic peak of the control (COF-1). From this, it can be seen that the organic layered structure PCOF-1 of Example 1 has a plate-like layer having the same structure as the conventional organic skeleton structure COF-1. In addition, in the case of the organic skeleton structure (PCOF-1) of Example 1, the peak which was not seen in the conventional organic skeleton structure exists, and it was inferred that the Lewis base couple
  • thermogravimetric analysis TGA was performed, the results are shown in FIG. At this time, COF-1 [(C3H 2 BO) 6 .C 9 H 12 ) 1 ] (Covalent Organic Framework-1, Science 2005, 310 , 1166) was used.
  • the control (COF-1) begins to thermally decompose from the temperature portion of about 400 ° C.
  • the organic framework structure (PCOF-1) of Example 1 starts from the temperature portion of about 500 ° C. Pyrolysis began to occur. From these results, it was confirmed that the organic skeleton structure according to the present invention, in which the Lewis base is coordinated between the plate-like layers, has superior thermal stability as compared to the conventional two-dimensional planar organic skeleton structure.
  • the organic framework (PCOF-1) of Example 1 unlike the control (COF-1) by introducing a Lewis base pyridine, a new adsorption site is generated, since the adsorption energy of the adsorption site generated at this time is high hydrogen It is considered that the adsorption amount of is increased.
  • the interlayer distance was defined as the distance between the planes of boron atoms of each layer from the planes of boron atoms of neighboring layers. Specifically, for a hexagonal planar layer of any six boron atoms, the coordinates of its center were calculated and then the vertical distance from this point to the central coordinates of the neighboring hexagonal planar layers was calculated. The interlayer distance was about 7.6 kPa as a result of the calculation.

Abstract

본 발명은 선형 또는 환형의 붕소 함유 클러스터에 2개 또는 3개의 C6~C204의 방향족 고리기가 공유결합되어 단위체(Building Block)를 이루고, 상기 단위체가 인접한 다른 단위체와 연쇄적으로 연결되어 형성된 다수의 판상 층; 및 상기 판상 층 내 붕소 함유 클러스터에 배위 결합된 루이스 염기를 포함하는 유기 골격 구조체에 대한 것이다.

Description

유기 골격 구조체
본 발명은 가스 또는 유기 분자의 흡탈착 및/또는 저장이 가능한 유기 골격 구조체에 관한 것이다.
현재 사용되는 에너지 수요의 90 % 이상을 차지하고 있는 화석연료는 재생이 불가능하며, 그 매장량이 한정되어 있다. 또한, 화석연료는 사용시 NOx, SOx, 분진 등과 같은 대기오염물질을 배출하여 환경을 오염시킬 뿐만 아니라, 최근에는 화석연료의 연소시 배출되는 이산화탄소의 대기 중 농도 증가로 인해 지구 온난화의 우려를 가중시키고 있다.
이러한 화석연료를 대체하기 위한 새로운 에너지원으로서, 화학제품의 원료 및 화학공정의 공정가스로 널리 사용되고 있는 수소가 주목을 받고 있다. 수소는 다음과 같은 장점을 가지고 있다. 첫째, 수소는 원료로 사용할 경우, 연소시 극소량의 NOx 발생을 제외하고는 공해 물질이 생성되지 않으며, 직접 연소에 의한 연료로서 또는 연료전지 등의 연료로서 사용이 간편하다. 둘째, 수소는 가스나 액체로서 쉽게 수소할 수 있으며, 고압가스, 액체수소, Metal hybride 등의 다양한 형태로 저장이 용이하다. 셋째, 수소는 물로부터 다량 생산될 수 있으며, 사용 후에도 다시 물로 재순환되어 자원고갈의 염려가 없다. 넷째, 수소는 산업용의 기초 재료로부터 일반 연료, 수소 자동차, 수소 비행기, 연료전지 등 현재 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 수 있다.
다만, 이러한 수소를 이용하기 위해서는 다량의 수소를 용이하게 저장할 수 있는 매체가 필요하다. 이에 따라, 최근 수소저장 매체를 개발하기 위해 수소저장합금, 카본나노튜브, 제올라이트 등에 대한 연구가 진행되고 있다. 그러나, 상기 수소저장합금의 경우, 저장물질과 수소분자가 결합에너지가 매우 높은 화학흡착으로 결합되기 때문에, 결합된 수소를 방출하는데 또 다른 에너지를 필요로 하는 문제점이 있다. 또, 상기 카본나노튜브나 제올라이트 등은 수소저장합금과 달리 저장물질과 수소분자가 결합에너지가 매우 낮은 물리흡착으로 결합되기 때문에 상온·상압에서 수소 저장능이 매우 낮은 문제점이 있다.
최근 University of California, Berkeley의 Yaghi 교수 연구팀은 공유결합성 유기 골격 구조체(Covalent Organic Framework, COF)에 대하여 발표하였다(US 2006/0154807 A1). 상기 공유결합성 유기 골격 구조체는 오직 수소, 붕소, 탄소, 질소, 산소 등과 같은 원자들이 공유 결합으로 연결되어 형성된 물질로서, benzene diboronic acid(BDBA)의 축합 반응에 의하여 형성될 수 있다. 이러한 공유결합성 유기 골격 구조체는 단단한 다공성(micoro- and meso-porous) 구조를 가질 뿐만 아니라, 열적 안정성이 우수하며, 밀도도 낮다. 또한, 종래 알려진 제올라이트, 다공성 실리케이트(porous silicates) 등의 물질보다 비표면적이 크다.
따라서, 이러한 공유결합성 유기 골격 구조체를 새로운 수소저장 매체로서 이용하기 위한 연구가 진행되고 있다.
본 발명자들은 종래 알려진 공유결합성 유기 골격 구조체 중에서 다수의 판상 층을 갖는 공유결합성 유기 골격 구조체의 경우, 판상 층간 거리가 너무 좁아서 수소가 기공을 통해서만 삽입될 뿐 층과 층 사이로 삽입되기 어렵다는 것을 인식하였다.
이에, 본 발명은 선형 또는 환형의 붕소 함유 클러스터와 2개 또는 3개의 C6~C204의 방향족 고리기를 포함하는 단위체들이 연쇄적으로 연결되어 형성된 다수의 판상 층에 루이스 염기를 도입하여 판상 층간의 거리를 적절하게 넓힘으로써, 수소가 기공뿐만 아니라 층과 층 사이로도 삽입될 수 있도록 하여 보다 많은 양의 수소를 흡착할 수 있는 유기 골격 구조체를 제공하고자 한다.
본 발명은 선형 또는 환형의 붕소 함유 클러스터에 2개 또는 3개의 C6~C204의 방향족 고리기가 결합되어 단위체(Building Block)를 이루고, 상기 단위체가 인접한 다른 단위체와 연쇄적으로 연결되어 형성된 다수의 판상 층; 및 상기 판상 층 내 붕소 함유 클러스터에 배위 결합된 루이스 염기를 포함하는 유기 골격 구조체를 제공한다.
또, 본 발명은 전술한 유기 골격 구조체를 함유하는 흡착체, 및 촉매를 제공한다.
본 발명에 따른 유기 골격 구조체는 선형 또는 환형의 붕소 함유 클러스터와 2개 또는 3개의 C6~C204의 방향족 고리기로 이루어진 단위체들이 서로 연쇄적으로 연결되어 형성된 다수의 판상 층의 붕소 함유 클러스터에 루이스 염기를 배위결합시킴으로써, 상기 판상 층들 간의 거리가 상기 판상 층에 배위결합된 상기 루이스 염기로 인해 넓혀져 다량의 수소가 기공 및 층들 사이로 삽입될 수 있어 다량의 수소를 흡착할 수 있다.
또한, 본 발명에 따른 유기 골격 구조체는 상기 판상의 층에 결합된 루이스 염기로 인해 수소를 비가역적 또는 가역적으로 흡착할 수 있어 우수한 저장성능을 갖는 수소 저장 매체로 이용될 수 있다.
도 1은 본 발명의 유기 골격 구조체를 모식적으로 나타낸 단면도이다.
도 2는 본 발명의 일례에 따른 유기 골격 구조체를 3차원적으로 나타낸 그림이다.
도 3은 종래 알려진 유기 골격 구조체(COF-1)를 3차원적으로 나타낸 그림이다.
도 4는 본 발명에 따른 유기 골격 구조체 내 판상 층들 간의 거리를 나타낸 그림이다.
도 5는 실시예 1에서 제조된 유기 골격 구조체(PCOF-1) 및 대조군(COF-1)의 적외선 스펙트럼(infrared spectrum)이다.
도 6은 실시예 1에서 제조된 유기 골격 구조체(PCOF-1) 및 대조군(COF-1)의 열중량분석(Thermogravimetric Analysis: TGA) 그래프이다.
도 7은 실시예 1에서 제조된 유기 골격 구조체(PCOF-1) 및 대조군(COF-1)의 분말 X선 회절(Powder x-ray diffraction, PXRD) 분석을 나타낸 그래프이다.
도 8은 실시예 1에서 제조된 유기 골격 구조체(PCOF-1) 및 대조군(COF-1)의 수소 가스 흡착-탈착 특성을 나타낸 그래프이다.
이하, 본 발명을 상세하게 설명하면 다음과 같다.
본 발명에서, 선형 또는 환형의 붕소 함유 클러스터(boron-containing cluster)는 붕소를 함유하되, 상기 붕소의 유효한 반응자리 중 2개의 반응자리 각각에 붕소 이외 다른 원자가 공유결합되어 이루어진 선형 또는 환형의 분자를 의미한다.
또, 본 발명에서 방향족 고리기는 방향족 고리 탄화수소, 헤테로고리 방향족 화합물, 여러고리 방향족 화합물뿐만 아니라, 상기 2개 이상의 방향족 고리가 직접결합, 단일 결합 등으로 결합된 작용기도 포함하고, 2개 이상의 반응 자리를 갖고 있는 작용기를 의미한다.
일반적으로 공유결합성 유기 골격 구조체(Covalent Organic Framework. COF)는 수소, 붕소, 탄소, 질소, 산소 등의 원자가 공유결합되어 형성된 다공성 물질이다. 예를 들어, 종래 알려진 공유결합성 유기 골격 구조체는 선형 또는 환형의 붕소 함유 클러스터와 방향족 고리기를 포함하는 각각의 단위체(building block)가 공유결합으로 연결되어 이루어진 물질이다.
구체적으로, 공유결합성 유기 골격 구조체에서, 붕소 원자를 중심으로 산소나 질소와 같은 주기율표상의 15족 및/또는 16족에 속하는 원자가 공유결합되어 형성된 선형 또는 환형의 붕소 함유 클러스터는 동일 또는 상이한 2개 또는 3개의 방향족 고리기(ex. 페닐렌기 등)와 공유결합되고, 상기 공유결합된 방향족 고리기가 또 다른 1개 이상의 선형 또는 환형의 붕소 함유 클러스터와 공유결합되어 연쇄적으로 연결된 네트워크 구조를 갖는다.
보다 구체적으로, 일 단위체(제1 단위체)를 구성하는 방향족 고리기는 상기 제1 단위체를 구성하는 선형 또는 환형의 붕소 함유 클러스터뿐만 아니라, 이웃한 다른 단위체(제2 단위체)를 구성하는 선형 또는 환형의 붕소 함유 클러스터와 공유결합되고, 상기 제2 단위체의 선형 또는 환형의 붕소 함유 클러스터는 또 다른 단위체(제3 단위체)의 방향족 고리기와 공유결합되는 방식으로 연쇄적으로 연결될 수 있다.
이러한 방식으로 형성된 공유결합성 유기 골격 구조체는 단단한 다공성 구조를 가질 뿐만 아니라, 낮은 밀도 및 우수한 열적 안정성을 갖는다.
이때, 종래 알려진 공유결합성 유기 골격 구조체 중에서, COF-1 [(C3H2BO)6·C9H12)1] 혹은 COF-5 [C9H4BO2] 등과 같이 2차원의 평면 네트워크 구조를 갖는 공유결합성 유기 골격 구조체(이하, '2차원의 공유결합성 유기 골격 구조체'라 함)가 있다. 구체적으로, 상기 2차원의 공유결합성 유기 골격 구조체는, 다른 공유결합성 유기 골격 구조체(이하, 3차원의 공유결합성 유기 골격 구조체'라 함)와 달리 선형 또는 환형의 붕소 함유 클러스터와 C6~C204의방향족 고리기를 포함하는 각각의 단위체가 연쇄적으로 연결됨으로써 형성된 판상의 층을 다수 개 가지며, 이러한 상기 판상의 층들 간의 상호작용으로 인해 각 판상의 층들이 조밀하게 적층된 구조를 갖는다(도 3 참조).
이러한 2차원의 공유결합성 유기 골격 구조체는 3차원의 공유결합성 유기 골격 구조체에 비해 수소와의 결합에너지가 높음에도 불구하고, 수소를 흡착할 수 있는 자리(site) 등이 적어서 수소 흡착량이 작다.
특히, 상기 적층 구조를 갖는 2차원의 공유결합성 유기 골격 구조체의 경우, 내부에 형성된 기공의 크기는 수소 가스보다 크기가 큰 분자가 통과할 수 있을 정도로 큰 반면, 상기 판상 층과 판상 층 사이의 거리가 판상 층들간의 상호 작용으로 인해 매우 좁다. 예컨대, COF-1의 경우, 내부에 형성된 기공의 크기는 약 15 Å인 반면, 층간 거리 [각 층의 평면을 이루는 원자(ex. 붕소, 탄소 등) 중심 간의 거리](L1)가 약 3 Å이다(도 4 참조). 다만, 이때 각 층의 평면을 이루는 원자들의 반데르발스 반지름(Van der Waals radius)(r)을 고려하면, 실질적으로 층간 거리(L2)는 3 Å보다 작게 된다. 그렇기 때문에, kinetic diameter가 약 2.89 Å인 수소 가스(수소 분자)는 층들 사이로 용이하게 삽입될 수 없다. 따라서, 2차원의 공유결합성 유기 골격 구조체를 이용하여 수소를 흡착·저장할 때, 수소는 기공을 통해서만 삽입될 수 있을 뿐, 층과 층 사이로 삽입되기 어렵다.
이러한 이유로 인해, 2차원의 공유결합성 유기 골격 구조체는 3차원의 공유결합성 유기 골격 구조체에 비해 수소 흡착량이 작을 뿐만 아니라, 종래 수소저장 매체로 이용되던 제올라이트나 다공성 실리케이트(porous silicates)에 비해 비표면적이 큼에도 불구하고 수소 흡착량이 크지 않다. 게다가, 상기 수소의 흡착이 물리흡착이기 때문에, 주변의 온도나 압력 변화로 인해 상기 유기 골격 구조체에 흡착된 수소가 탈착될 수 있어 수소저장 매체로서의 효율이 떨어지는 문제점이 있었다.
당 업계에서는 층상 화합물의 일종인 흑연을 이용하여 수소를 흡착시, 흑연의 층간 거리가 약 6 Å일 때 가장 많은 양의 수소가 흡착될 수 있다고 예상하고 있다.
이에, 본 발명에서는 상기 2차원의 공유결합성 유기 골격 구조체 내 판상의 층들 간의 거리를 넓히기 위하여, 층간 거리를 넓히면서 수소와 같은 게스트 분자(guest molecule)와의 상호작용력의 크기를 증대시킬 수 있는 인자로 루이스 염기(Lewis base)를 상기 판상의 층 내 선형 또는 환형의 붕소 함유 클러스터에 배위결합시킴으로써, 게스트 분자가 기공뿐만 아니라 판상의 층들 사이로도 삽입될 수 있어 게스트 분자의 흡착량이 향상될 수 있다.
구체적으로, 본 발명에 따른 유기 골격 구조체는, 선형 또는 환형의 붕소 함유 클러스터에 동일 또는 상이한 2개 또는 3개의 C6~C204의 방향족 고리기가 공유결합되어 형성된 단위체가 인접한 1개 이상의 다른 단위체와 공유결합하여 형성된 판상의 층을 다수 개 포함하고 있으며, 상기 각각의 판상의 층 내 선형 또는 환형의 붕소 함유 클러스터의 붕소 원자에는 루이스 염기가 배위결합되어 있다. 이때, 상기 붕소 원자와 루이스 염기의 배위결합은 상기 판상 층의 수직 방향으로 결합될 수 있다.
이렇게 각각의 판상의 층에 배위결합되어 있는 루이스 염기로 인해서, 판상의 층과 인접한 판상의 층 사이의 거리는 약 4 내지 15 Å 정도로 종래 알려진 2차원의 공유결합성 유기 골격체의 층간 거리보다 더 넓어지게 된다. 이렇게 층간 거리가 약 4 내지 15 Å이 됨으로써, 수소는 내부에 형성된 기공뿐만 아니라 층들 사이로도 용이하게 삽입될 수 있고, 이로 인해 본 발명의 유기 골격 구조체에 다량의 수소가 흡착될 수 있다. 또한, 본 발명의 유기 골격 구조체는 비표면적이 300 m2/g 내지 2300 m2/g 이기 때문에, 다량의 수소를 흡착·저장할 수 있다.
게다가, 판상의 층과 판상의 층 사이에 존재하는 빈 공간이, 상기 판상의 층에 판상 층의 수직 방향으로 규칙 또는 불규칙적으로 배위결합된 루이스 염기에 의해서 규칙 또는 불규칙적으로 구획되고, 이로 인해 판상의 층들 사이에는 다수의 구획 공간(compartment space)이 형성되게 된다. 이렇게 형성된 구획 공간은 유기 골격 구조체 내로 삽입된 수소가 흡착되고 저장되는 공간(또는 자리(site))이 될 수 있다. 이때, 상기 구획 공간에 흡착된 수소는 종래 알려진 공유결합성 유기 골격 구조체와 마찬가지로 물리흡착 된다. 다만, 본 발명의 경우, 상기 판상 층들에 배위 결합되는 루이스 염기의 종류를 적절하게 선택하여 종래 알려진 공유결합성 유기 골격 구조체와 달리, 수소의 흡착이 물리흡착임에도 불구하고 주변의 압력이나 온도가 변화되더라도 흡착된 수소가 탈착되는 것을 억제할 수 있다. 즉, 본 발명의 유기 골격 구조체는 수소를 비가역적으로도 흡착할 수 있다. 이로 인해, 본 발명의 유기 골격 구조체는 우수한 저장성능을 갖는 저장 매체로서 이용될 수 있다.
본 발명의 유기 골격 구조체에서, 선형 또는 환형의 붕소 함유 클러스터는 붕소(B)를 중심으로 상기 붕소의 유효한 반응자리 중 2개의 반응자리 각각에 주기율표 상의 15족 및 16족으로 이루어진 군에서 선택된 2개의 원자(ex. N, P, O, S 등)가 결합되어 이루어진 것일 수 있으며, 이때 상기 붕소의 반응자리에 결합되는 2개의 원자는 동일하거나 상이할 수 있다. 여기서, 상기 붕소 원자가 전자쌍을 수용할 수 있기 때문에, 비공유 전자쌍을 가지고 있는 루이스 염기가 상기 붕소 원자에 배위결합되고, 이로 인해 층간 거리가 넓어질 수 있다. 이때, 상기 루이스 염기와 붕소의 배위결합은 상기 판상 층의 수직 방향으로 결합될 수 있다.
이러한 선형 또는 환형의 붕소 함유 클러스터는 하기 화학식 1 또는 화학식 2로 표시될 수 있다:
화학식 1
Figure PCTKR2009006769-appb-C000001
화학식 2
Figure PCTKR2009006769-appb-C000002
상기 화학식 1 및 2에서, Q1 내지 Q5는 각각 독립적으로 주기율표 상의 15족 또는 16족에 속하는 원자이며; R1 내지 R5는 각각 독립적으로 수소, C1~C12의 알킬기, C6~C12의 아릴(aryl)기, 또는 할로겐이며, 다만 Q1 내지 Q5 중 어느 하나 이상이 16족에 속하는 원자일 경우 해당 16족 원자에 연결된 R1 내지 R5 중 어느 하나 이상은 부존재한다.
이와 같은 화학식으로 표시되는 선형 또는 환형의 붕소 함유 클러스터의 예로는
Figure PCTKR2009006769-appb-I000001
,
Figure PCTKR2009006769-appb-I000002
,
Figure PCTKR2009006769-appb-I000003
등이 있는데, 이에 제한되지 않는다.
본 발명의 선형 또는 환형의 붕소 함유 클러스터는 동일 또는 상이한 2개 또는 3개의 C6~C204의 방향족 고리기와 공유결합하여 단위체를 이룬다.
상기 C6~C204의 방향족 고리기는 하기 화학식 3, 화학식 4, 화학식 5, 및 화학식 6 중에서 선택된 화학식으로 표시될 수 있는데, 이에 제한되지 않는다:
화학식 3
Figure PCTKR2009006769-appb-C000003
화학식 4
Figure PCTKR2009006769-appb-C000004
화학식 5
Figure PCTKR2009006769-appb-C000005
화학식 6
Figure PCTKR2009006769-appb-C000006
상기 화학식 3, 4, 5 및 6에서, 상기 D1 내지 D33은 각각 독립적으로 수소, C1~C12의 알킬기, C6~C12의 아릴(aryl)기, 또는 할로겐으로 이루어진 군에서 선택된 것일 수 있다.
이와 같은 화학식으로 표시되는 C6~C204의 방향족 고리기의 비제한적인 예로는,
Figure PCTKR2009006769-appb-I000004
,
Figure PCTKR2009006769-appb-I000005
,
Figure PCTKR2009006769-appb-I000006
,
Figure PCTKR2009006769-appb-I000007
등이 있다.
전술한 바와 같은 선형 또는 환형의 붕소 함유 클러스터와 동일 또는 상이한 2개 또는 3개의 C6~C204의 방향족 고리기가 공유결합됨으로써, 다양한 형태의 단위체가 형성될 수 있다.
만약, 상기 화학식 1로 표시되는 환형의 붕소 함유 클러스터 1개가 상기 화학식 3으로 표시되는 C6~C204의 방향족 고리기 3개와 공유결합될 경우에는, 하기 화학식 7로 표시되는 단위체가 형성될 수 있다.
화학식 7
Figure PCTKR2009006769-appb-C000007
상기 화학식 7에서, 상기 Q1 내지 Q3, 및 R1 내지 R3은 상기 화학식 1에서 정의된 바와 동일하고; 상기 D1 내지 D4는 상기 화학식 3에서 정의된 바와 동일하다.
이러한 화학식 7로 표시되는 단위체의 예로는 하기 화학식 7a로 표시되는 단위체, 하기 화학식 7b로 표시되는 단위체 등이 있는데, 이에 제한되지 않는다:
[화학식 7a]
Figure PCTKR2009006769-appb-I000008
[화학식 7b]
Figure PCTKR2009006769-appb-I000009
또 만약, 상기 화학식 2로 표시되는 선형의 붕소 함유 클러스터 3개가 상기 화학식 3으로 표시되는 C6~C204의 방향족 고리기 3개 및 상기 화학식 4로 표시되는 C6~C204의 방향족 고리기 1개와 공유결합될 경우에는, 하기 화학식 8으로 표시되는 단위체가 형성될 수 있다:
화학식 8
Figure PCTKR2009006769-appb-C000008
상기 화학식 8에서, 상기 Q4, Q5, R4 및 R5는 상기 화학식 2에서 정의된 바와 동일하고; 상기 D1 내지 D10은 상기 화학식 3 및 4에서 정의한 바와 동일하다.
이러한 화학식 8로 표시되는 단위체의 예로는 하기 화학식 8a로 표시되는 단위체가 있는데, 이에 제한되지 않는다:
[화학식 8a]
Figure PCTKR2009006769-appb-I000010
본 발명에 따른 유기 골격 구조체의 판상 층은, 상기 화학식 7 또는 8로 표시되는 단위체(제1단위체)를 구성하는 C6~C204의 방향족 고리기가 상기 제1 단위체를 구성하는 선형 또는 환형의 붕소 함유 클러스터뿐만 아니라, 상기 제1 단위체와 동일한 형태의 이웃한 다른 단위체(제2 단위체)를 구성하는 선형 또는 환형의 붕소 함유 클러스터가 공유결합되고, 상기 제2 단위체의 선형의 붕소 함유 클러스터가 상기 제1 단위체와 동일한 형태의 이웃한 또 다른 단위체(제3 단위체)의 C6~C204의 방향족 고리기와 공유결합되는 방식으로 연쇄적으로 연결될 수 있다. 이렇게 형성된 판상의 층은 다양한 형태를 가질 수 있다.
만약, 본 발명의 판상 층이 상기 화학식 7로 표시되는 단위체들의 연쇄적 결합에 의하여 형성될 경우에는 하기 화학식 9로 표시될 수 있다:
[규칙 제91조에 의한 정정 30.03.2010] 
화학식 9
Figure WO-DOC-CHEMICAL-9
상기 화학식 9에서, 상기 Q1 내지 Q3, 및 R1 내지 R3은 상기 화학식 1에서 정의한 바와 동일하고; 상기 D1 내지 D4는 상기 화학식 3에서 정의한 바와 동일하다.
상기 화학식 9로 표시되는 판상 층의 예로는 하기 화학식 9a로 표시하는 판상의 층, 화학식 9b로 표시되는 판상의 층 등이 있는데, 이에 제한되지 않는다:
[화학식 9a]
Figure PCTKR2009006769-appb-I000011
[화학식 9b]
Figure PCTKR2009006769-appb-I000012
또 만약, 본 발명의 판상 층이 상기 화학식 8로 표시되는 단위체들의 연쇄적 결합에 의하여 형성된 경우에는 하기 화학식 10으로 표시될 수 있다:
[규칙 제91조에 의한 정정 30.03.2010] 
화학식 10
Figure WO-DOC-CHEMICAL-10
상기 화학식 10에서, 상기 Q4, Q5, R4 및 R5는 상기 화학식 2에서 정의한 바와 동일하고; 상기 D1 내지 D4는 상기 화학식 3에서 정의한 바와 동일하다.
상기 화학식 10으로 표시되는 판상 층의 예로는 하기 화학식 10a로 표시하는 판상의 층이 있는데, 이에 제한되지 않는다:
[화학식 10a]
[규칙 제91조에 의한 정정 30.03.2010] 
Figure WO-DOC-FIGURE-80
본 발명에 따른 유기 골격 구조체는, 전술한 판상의 층 이외에, 상기 판상의 층(1) 내 선형 또는 환형의 붕소 함유 클러스터에 배위결합된 루이스 염기(2)를 포함한다. 이때, 상기 붕소 함유 클러스터 내 붕소 원자에 배위결합된 루이스 염기는 상기 판상 층의 수직방향으로 결합될 수 있다(도 1 참조). 예를 들어, 상기 화학식 9a로 표시되는 판상의 층(1)에, 루이스 염기로서 피리딘(2)이 수직방향으로 배위결합되어 있다(도 2 참조). 이러한 본 발명은 오직 판상의 층으로만 이루어진 종래의 2차원의 공유결합성 유기 골격 구조체(도 3 참조)와 다르다.
이렇게 루이스 염기가 판상의 층에 결합됨으로써, 판상의 층들 간에는 루이스 염기가 존재하지 않은 경우보다 큰 갭(gap)(갭의 크기: 약 4 내지 15 Å)이 생기게 된다. 이로써, 판상의 층을 이루는 원자의 반데르발스 반지름(Van der Waals radius)을 고려하더라도, 상기 갭의 크기가 수소 가스(kinetic diameter: 약 2.89 Å)가 삽입될 만큼 충분히 크기 때문에, 이러한 갭을 통해 수소가 용이하게 삽입될 수 있다. 또한, 상기 루이스 염기로 인해 층들 사이의 빈 공간은 규칙적 또는 불규칙적으로 구획되고, 이렇게 구획된 공간에는 삽입된 수소가 흡착되어 저장될 수 있다.
본 발명에서 사용되는 루이스 염기는 비공유 전자쌍을 내어줄 수 있는 물질이라면 특별히 제한되지 않으나, 14족, 15족에 속하는 하나 이상의 원자를 함유하는 화합물인 것이 적절하다. 예를 들어, 상기 루이스 염기는 N, P, O 및 S로 이루어진 군에서 선택된 하나 이상의 원자를 함유하는 헤테로고리 화합물일 수 있는데, 이에 제한되지 않는다.
보다 구체적인 루이스 염기의 예로는, pyridine, 4-cyanopyridine, 4-dialkylaminopyridine, 4,4'-bipyridine, pyrazine, pyridazine, pyrimidine, 2-methylpyrazine, pyrazol, imidazole, purine, 7-azaindole, quinoline, isoquinoline, quinoxaline, 1,4-diazabicyclo(2.2.2)octane, quinuclidine, 1,3,5-triazine, hexamethyleneteramine, piperidine, piperazine, pyrrolidine, morpholine, tetrahydrofuran, 1,4-dioxane, 1,8-naphthylene disulfide 등이 있는데, 이에 제한되지 않는다.
본 발명의 유기 골격 구조체는 하기 방법에 의해서 제조될 수 있는데, 이에 제한되지 않는다. 이때 제조되는 유기 골격 구조체는 반결정 또는 결정이다.
예를 들어, 상기 유기 골격 구조체는 mesitylene, 1,4-dioxane 및 이들의 혼합물에서 선택된 용매의 존재하에서, 하기 화학식 11, 12 및 13 중에서 선택된 화학식으로 표시되는 붕소 함유 화합물과 루이스 염기의 반응에 의하여 제조될 수 있다:
화학식 11
Figure PCTKR2009006769-appb-C000011
화학식 12
Figure PCTKR2009006769-appb-C000012
화학식 13
Figure PCTKR2009006769-appb-C000013
상기 화학식 11, 12 및 13에서, 상기 Ar1은 C6~C204인 아릴기(aryl group) 또는 C6~C204인 헤테로아릴기이고; 상기 Ar2는 C6~C204인 아릴렌기 또는 C6~C204인 헤테로아릴렌기이며; 상기 Ar3는 C6~C204인 아렌트리일기 또는 C6~C204인 헤테로아렌트리일기이고; 상기 E1 내지 E12는 각각 독립적으로 주기율표상의 15족 또는 16족에 속하는 원자이며; 상기 G1 내지 G12는 각각 독립적으로 수소, C1~C12의 알킬기, C6~C12의 아릴기, 또는 할로겐이다.
본 발명의 일례에 따르면, 용매 mesitylene의 존재하에서, 상기 붕소 함유 화합물인 benzene diboronic acid(BDBA)를 피리딘(pyridine)와 반응시키면, 일 BDBA의 -B-OH 부위와 다른 BDBA의 -B-OH 부위 간의 축합 중합 반응에 의해서 상기 화학식 9a로 표시되는 판상 층(1)이 적층 구조로 형성되면서, 상기 BDBA와 루이스 염기인 피리딘 간의 화학반응에 의해서 상기 판상 층(1) 내 붕소 원자에 피리딘(2)이 상기 판상 층의 수직방향으로 배위결합되어 종래와 달리 판상 층들 간의 거리가 넓혀진 유기 골격 구조체가 형성될 수 있다(도 2 참조).
또는, 상기 유기 골격 구조체는 mesitylene, 1,4-dioxane 및 이들의 혼합물에서 선택된 용매의 존재하에서, 상기 화학식 11, 12 및 13 중에서 선택된 화학식으로 표시되는 붕소 함유 화합물, 방향족 폴리알콜 및 루이스 염기의 반응에 의하여 제조될 수 있다. 본 발명의 다른 일례에 따르면, mesitylene와 1,4-dioxane의 혼합 용매의 존재하에서, 상기 붕소 함유 화합물인 benzene diboronic acid(BDBA), 방향족 폴리알콜인 hexahydroxy triphenylene(HHTP) 및 피리딘(pyridine)을 반응시키면, 일 BDBA의 -B-OH 부위와 다른 BDA의 -B-OH 부위, 및/또는 일 BDBA의 -B-OH 부위와 일 HHTP의 -OH 부위 간의 축합 중합 반응에 의해서 상기 화학식 10a로 표시되는 판상 층(1)이 적층 구조로 형성되면서, 상기 BDBA와 루이스 염기인 피리딘 간의 화학반응에 의해서 상기 판상 층(1) 내 붕소 원자에 피리딘(2)이 상기 판상 층의 수직방향으로 배위결합되어 종래와 달리 판상 층들 간의 거리가 넓혀진 유기 골격 구조체가 형성될 수 있다.
구체적으로, 본발명의 유기 골격 구조체는 (i) mesitylene, 1,4-dioxane 및 이들의 혼합물에서 선택된 용매에, 상기 화학식 11, 12 및 13 중에서 선택된 화학식으로 표시되는 붕소 함유 화합물을 분산시켜 분산액(제1 분산액)을 형성하는 단계; (ii) 상기 제1 분산액에 루이스 염기를 첨가하여 분산액(제2 분산액)을 형성하는 단계; 및 (iii) 상기 제2 분산액을 가열하는 단계를 포함하는 방법에 의해서 제조될 수 있는데, 이에 제한되지 않는다. 또한, 상기 제조방법은 상기 제1 분산액 형성시 방향족 폴리알콜을 추가적으로 분산시킬 수 있다. 또한, 상기 제조방법은 상기 제1 분산액 형성 단계 후, 상기 제1 분산액을 초음파 장치에 의하여 분산시키는 단계를 더 포함할 수 있다.
1) 먼저, 본 발명에서 사용되는 용매의 함량은 약 1 내지 3 ㎖ 일 수 있다. 만약, 용매의 함량이 1 ㎖ 미만인 경우에는 반응성이 너무 느려 반응이 일어나지 않을 수 있고, 용매의 함량이 3 ㎖ 초과인 경우에는 빠르게 반응이 진행되어 비다공성 고분자가 형성될 수 있다.
또한, 상기 용매가 mesitylene와 1,4-dioxane의 혼합물일 경우, mesitylene와 1,4-dioxane은 mesitylene : 1,4-dioxane = 1 : 1 ~ 1 : 3 의 부피비율로 혼합되는 것이 바람직하다. 만약, 전체 용매에서 mesitylene의 부피비율이 너무 많다면, 반응물의 용해도가 너무 감소하여 반응이 매우 느리게 진행되거나 혹은 진행되지 않을 수 있다. 한편, 전체 용매에서 mesitylene의 부피 비율이 너무 적다면, 반대로 반응이 너무 빨리 진행되어 일정한 골격구조를 가지지 못하는 비다공성 고분자나 올리고머가 생성될 수 있다.
이러한 용매에 분산되는 상기 화학식 11, 12 및 13 중에서 선택된 화학식으로 표시되는 붕소 함유 화합물의 구체적인 예로는, Benzene diboronic acid(BDBA), Biphenyl-4,4'-diboronic acid(BPDA), Tolane-4,4'-diboronic acid, Stilbene-4,4'-diboronic acid, 1,3,5-benzenetriboronic acid (BTBA), 1,3,5-benzenetris(4-phenylboronic acid)(BTPA), 1,4-phenylenediboranediamine, biphenyl-4,4'-diyldiboranediamine 등이 있는데, 이에 제한되지 않는다.
이러한 붕소 함유 화합물은 용매 100 중량부를 기준으로 약 50 내지 250 중량부의 함량으로 용매에 분산될 수 있다. 이러한 함량으로 붕소 함유 화합물을 사용함으로써, 본 발명에서는 축합 응축반응이 보다 잘 일어나면서, 비다공성 고분자 또는 올리고머가 형성되지 않도록 할 수 있다.
본 발명은 상기 붕소 함유 화합물과 더불어, 방향족 폴리알콜을 용매에 분산시켜 제1 분산액을 형성할 수 있다. 상기 붕소 함유 화합물과 방향족 폴리알콜의 혼합 용질의 함량은 전술한 붕소 함유 화합물의 함량과 동일하다. 이때, 붕소 함유 화합물과 방향족 폴리알콜의 혼합비율은 붕소산 함유 화합물 : 방향족 폴리알콜 = 1 : 1 ~ 3 : 1의 몰 비율인 것이 적절하다.
본 발명에서 사용 가능한 방향족 폴리알콜의 비제한적인 예로는, hexahydroxy triphenylene, benzene-1,4-diol, Biphenyl-4,4'-diol 등이 있다.
본 발명에서는, 선택적으로 상기 제1 분산액을 초음파 장치를 이용하여 분산액 속의 붕소 함유 화합물이나 방향족 폴리알콜을 균일하게 분산시킬 수 있다. 이때, 초음파 장치는 Ultrasonic frequency가 약 40 kHz의 조건하에서 이용되는 것이 적절하다.
2) 이후, 상기 제1 분산액에 루이스 염기를 첨가하여 분산액(이하, '제2 분산액'이라 함)을 형성한다. 이때, 첨가되는 루이스 염기의 함량은 용매 100 중량부를 기준으로 약 3 내지 10 중량부 범위일 수 있다. 만약, 루이스 염기의 함량이 3 중량부 미만이면 판상 층의 일부에서만 반응이 일어날 수 있고, 루이스 염기의 함량이 10 중량부 초과하면 루이스 염기와 붕소와의 배위결합 반응이 빠르게 진행되어 생성된 결정 또는 반결정 입자 표면 부분에서만 반응이 일어날 수 있다.
3) 이어서, 형성된 제2 분산액을, 붕소 함유 화합물들 간의 축합 반응과 동시에 상기 붕소 함유 화합물과 루이스 염기 간의 화학반응이 제대로 일어날 수 있도록, 가열시킨다. 상기 가열온도는 약 40 내지 160 ℃ 범위인 것이 적절하다. 만약, 제2 분산액의 가열 온도가 너무 낮으면, 상기 붕소 함유 화합물과 루이스 염기 간의 화학반응에 필요한 에너지를 받지 못하기 때문에 반응이 일어나지 않을 수 있고, 가열온도가 너무 높으면 반응이 빠르게 진행되어 올리고머가 형성될 수 있다. 상기 가열은 상기 제1 분산액을 밀봉한 상태로 수행하는 것이 적절하다.
본 발명에 따른 유기 골격 구조체는 다량의 가스 또는 유기물질 등을 흡착 또는 저장하는 흡착체로 이용될 수 있다. 상기 가스의 비제한적인 예로는 암모니아, 이산화탄소, 일산화탄소, 수소, 아민, 메탄, 산소, 아르곤, 질소 등이 있고, 상기 유기물질의 비제한적인 예로는 메탄, 에탄, 프로판, 부탄, 펜탄, 헥산, 사이클로 헥산, 메탄올, 에탄올, 프로판올, 이소프로판올, 벤젠, 톨루엔 등 C1~C12 을 포함하는 유기 물질이 있다.
또한, 본 발명의 유기 골격 구조체는 흡착체 이외에, 촉매(촉매용 담지체를 포함하는 의미임), 센서, 분리체, 건조제, 이온 교환 물질, 분자체(분리기), 크로마토그래피용 재료, 분자의 선택적인 방출체 및 흡수체, 분자인식기, 나노 튜브, 나노 반응기 등으로 이용될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 다만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 이들에 의하여 본 발명의 범위가 한정되는 것은 아니다.
[실시예 1]
용매 mesitylene 1.0 ㎖가 담긴 4 ㎖의 유리병에, BDBA(benzene diboronic acid) 25 ㎎(0.15 mmol)을 넣어 분산액을 형성한 후, 초음파 분해장치(Ultrasonic frequency : 40 kHz)를 이용하여 상기 분산액을 1시간 동안 분해시켰다. 이후, 상기 분해된 분산액에 pyridine 0.1 ㎖를 첨가하였다. 이어서, 상기 유리병을 밀봉한 뒤, 온도 85 ℃의 오븐에서 3일간 가열하여 얻어진 흰색의 고체상 분말을 여과시켜 분리하고 아세톤으로 충분히 세척한 후, 진공 상태에서 약 3시간 이상 건조하였다. 원소분석기를 사용하여 상기 얻어진 고체상 분말의 원소 분석 결과는 다음과 같다.
원소 분석: (C3H2BO)6(mesitylene)3(pyridine)2 = C55H58N2O6B6, Calcd. C 72.76 %, H 6.44 %, N 3.09 %. Found. C 72.77 %, H 6.66 %, N 2.98 %.
[실시예 2]
용매 mesitylene 1.0 ㎖ 대신에, 용매 mesitylene 0.5 ㎖와 1,4-dioxnae 0.5 ㎖를 사용하는 것 이외에는 실시예 1과 동일한 방법에 의하여 고체상 분말을 얻었다.
실험예 1 - 유기 골격 구조체의 구조 분석
1. IF 스펙트럼 비교
실시예 1에서 제조된 유기 골격 구조체 내 판상의 층에 루이스 염기가 결합되어 있는지를 확인하기 위하여, 적외선 분광법(infrared Spectroscopy, IR)를 이용하여 실시예 1의 유기 골격 구조체(PCOF-1)의 스펙트럼을 분석하였고, 그 결과를 도 5에 나타내었다. 이때, 대조군으로서 COF-1[(C3H2BO)6·C9H12)1](Covalent Organic Framework-1, Science 2005, 310, 1166)를 사용하였다.
도 5를 살펴보면, 실시예 1의 유기 골격 구조체(PCOF-1)의 경우, 1600 ~ 1430 cm-1 사이에서 피크가 나타나는 반면, 대조군(COF-1)의 경우 상기 Wavenumber 범위에서 피크가 나타나지 않았다. 이때, 상기 Wavenumber 범위(1600 ~ 1430 cm-1 사이)에서 나타나는 피크는 C-C, C-N ring stretching이 있을 경우 나타나는 피크이다. 또한, 실시예 1의 유기 골격 구조체(PCOF-1)의 경우, 748 및 704 cm-1에서 C-H out-of-plane bending이 나타나는 것을 확인 할 수 있다. 이로부터, 실시예 1의 유기 골격 구조체(PCOF-1)의 경우, 종래 유기 골격 구조체(COF-1)와 달리, 판상의 층에 pyridine이 결합되어 있다고 추정할 수 있다.
2. PXRD 패턴 비교
실시예 1에서 제조된 유기 골격 구조체(PCOF-1)에 있어서, 판상의 층에 루이스 염기의 결합 여부를 확인하기 위하여, 분말 x선 회절(Powder x-ray diffraction, PXRD) 분석을 실시하였고, 그 결과를 도 7에 나타내었다. 이때, 대조군으로서 COF-1[(C3H2BO)6·C9H12)1](Covalent Organic Framework-1, Science 2005, 310, 1166)를 사용하였다.
분석 결과, 실시예 1의 유기 골격 구조체(PCOF-1)는 대조군(COF-1)의 특징적인 피크가 동일하게 나타났다. 이로부터, 실시예 1의 유기 골격 구조체(PCOF-1)가 종래 유기 골격 구조체(COF-1)와 동일한 구조를 갖는 판상의 층이 존재하는 것을 알 수 있다. 또한, 실시예 1의 유기 골격 구조체(PCOF-1)의 경우, 종래 유기 골격 구조체에서는 보이지 않던 피크가 존재하며, 이러한 피크로부터 상기 판상의 층에 루이스 염기가 결합되어 있음을 추측할 수 있었다.
실험예 2 - 유기 골격 구조체의 열적 특성 분석
실시예 1에서 제조된 유기 골격 구조체(PCOF-1)의 열적 특성을 측정하기 위하여, 열중량분석(Thermogravimetric Analysis: TGA)을 수행하였고, 그 결과를 도 6에 나타내었다. 이때, 대조군으로서 COF-1[(C3H2BO)6·C9H12)1](Covalent Organic Framework-1, Science 2005, 310, 1166)를 사용하였다.
도 6에서 알 수 있는 바와 같이, 대조군(COF-1)은 약 400 ℃의 온도 부분에서부터 열 분해되기 시작하는 반면, 실시예 1의 유기 골격 구조체(PCOF-1)은 약 500 ℃의 온도 부분에서부터 열 분해되기 시작하였다. 이러한 결과로부터 루이스 염기가 판상 층들 사이에 배위 결합된 본 발명에 따른 유기 골격 구조체의 경우, 종래의 2차원 평면 유기 골격 구조체에 비해 열적 안정성이 우수하다는 것을 확인할 수 있었다.
아울러, 대조군(COF-1)의 경우, 약 225 ℃의 온도 부분에서 약 20 %의 무게 감소가 있는 반면, 실시예 1의 유기 골격 구조체(PCOF-1)는 약 100 ℃의 온도 부분에서 약 48 %의 무게 감소가 있었다. 이때의 무게 감소는 유기 골격 구조체의 합성시 사용되었던 용매가 유기 골격 구조체에 흡착되어 있다가 가열로 인해 증발된 것으로 여겨진다. 이러한 용매의 증발로 인한 무게 감소 비율로부터 실시예 1의 유기 골격 구조체(PCOF-1)가 종래 유기 골격 구조체(COF-1)에 비해 더 많은 양의 guest 분자를 흡착할 수 있음을 간접적으로 예상할 수 있다.
실험예 3 - 유기 골격 구조체의 수소 가스 흡착 특성
실시예 1에서 제조된 유기 골격 구조체(PCOF-1)의 수소 가스 흡착·탈착 모습을 확인하기 위하여, 자동 흡착기(Automatic adsorption instrument)를 사용하여 온도 77 K 및 압력 1 atm의 조건하에서 수소 가스 흡착 실험을 수행하였고, 이 측정결과를 도 8에 나타내었다. 이때, 대조군으로서 COF-1[(C3H2BO)6·C9H12)1] (Covalent Organic Framework-1, Science 2005, 310, 1166)를 사용하였다.
실험 결과, 도 8에서 알 수 있는 바와 같이, 실시예 1의 유기 골격 구조체(PCOF-1)의 경우, 대조군(COF-1)과 달리, 유기 골격 구조체에 수소가 비가역적으로 흡착된 것을 확인할 수 있었다.
또한, 실시예 1의 유기 골격 구조체(PCOF-1)의 수소 흡착량은 P/P0=1.0일 때 약 0.75 wt%인 반면, 대조군(COF-1)의 수소 흡착량은 P/P0=1.0일 때 약 0.55 wt%이었다. 이는 실시예 1의 유기 골격 구조체(PCOF-1)의 경우, 대조군(COF-1)과 달리 루이스 염기인 피리딘이 도입됨으로써, 새로운 흡착자리가 생성되고 이때 생성된 흡착 자리의 흡착 에너지가 높기 때문에 수소의 흡착량이 보다 증대된 것으로 여겨진다.
실험예 4 - 유기 골격 구조체의 기공 크기 및 층간 거리 측정
실시예 1에서 제조된 유기 골격 구조체 내 판상 층들 간의 거리를 측정하기 위하여, 분자모델링 기법을 이용하였으며 실험적인 파라미터가 필요없는 양자역학 계산을 도입하였다. Materials Studio 4.3 패키지의 DMol3 프로그램을 이용하였으며, PBE/DNP 조합을 이용하여 구조를 최적화 하였다. 이때, 층간 거리는 각 층의 붕소(B) 원자들이 이루는 평면으로부터 이웃한 층의 붕소 원자들이 이루는 평면 간의 거리로 하였다. 구체적으로, 임의의 6 개의 붕소 원자들로 이루어진 육각형 평면 층에 있어서, 그 중앙의 좌표를 계산한 후, 이 점으로부터 이웃한 육각형 평면 층의 중앙 좌표까지의 수직 거리를 계산하였다. 계산 결과, 층간 거리는 약 7.6 Å이었다.

Claims (21)

  1. 선형 또는 환형의 붕소 함유 클러스터(boron-containing cluster)에 2개 또는 3개의 C6~C204의 방향족 고리기가 공유결합되어 단위체(Building Block)를 이루고, 상기 단위체가 인접한 다른 단위체와 연쇄적으로 연결되어 형성된 복수의 판상 층; 및
    상기 판상 층 내 붕소 함유 클러스터에 배위 결합된 루이스 염기
    를 포함하는 유기 골격 구조체.
  2. 제1항에 있어서, 상기 판상 층은 인접한 다른 판상 층과의 거리가 4 내지 15 Å 범위인 것이 특징인 유기 골격 구조체.
  3. 제1항에 있어서, 상기 루이스 염기는 상기 붕소 함유 클러스터 내 붕소 원자에 배위결합된 것이 특징인 유기 골격 구조체.
  4. 제1항에 있어서, 상기 붕소 함유 클러스터 내 원자에 배위결합된 루이스 염기는 상기 판상 층의 수직 방향으로 결합된 것이 특징인 유기 골격 구조체.
  5. 제1항에 있어서, 상기 붕소 함유 클러스터는 붕소(B)를 중심으로 상기 붕소에 주기율표 상의 15족 및 16족으로 이루어진 군에서 선택된 2개의 원자가 공유결합되어 이루어진 것이며, 상기 2개의 원자는 동일하거나 상이한 것이 특징인 유기 골격 구조체.
  6. 제5항에 있어서, 상기 붕소에 공유결합된 각 원자는 질소(N), 산소(O), 인(P) 및 황(S)으로 이루어진 군에서 선택된 것이 특징인 유기 골격 구조체.
  7. 제1항에 있어서, 상기 붕소 함유 클러스터는 하기 화학식 1 또는 화학식 2로 표시되는 구조를 갖는 것이 특징인 유기 골격 구조체:
    [화학식 1]
    Figure PCTKR2009006769-appb-I000014
    ; 및
    [화학식 2]
    Figure PCTKR2009006769-appb-I000015
    (상기 화학식 1 및 2에서, Q1 내지 Q5는 각각 독립적으로 주기율표 상의 15족 또는 16족에 속하는 원자이며; R1 내지 R5는 각각 독립적으로 수소, C1~C12의 알킬기, C6~C12의 아릴(aryl)기, 또는 할로겐이며, 다만, Q1 내지 Q5 중 어느 하나 이상이 16족에 속하는 원자일 경우 해당 16족 원자에 연결된 R1 내지 R5 중 어느 하나 이상은 부존재함).
  8. 제1항에 있어서, 상기 C6~C204의 방향족 고리기는 하기 화학식 3 내지 화학식 6 중에서 선택된 화학식으로 표시되는 것이 특징인 유기 골격 구조체:
    [화학식 3]
    Figure PCTKR2009006769-appb-I000016
    ;
    [화학식 4]
    Figure PCTKR2009006769-appb-I000017
    ;
    [화학식 5]
    Figure PCTKR2009006769-appb-I000018
    ; 및
    [화학식 6]
    Figure PCTKR2009006769-appb-I000019
    (상기 화학식 3, 4, 5 및 6 에서, 상기 D1 내지 D33은 각각 독립적으로 수소, C1~C12의 알킬기, C6~C12의 아릴(aryl)기 및 할로겐으로 이루어진 군에서 선택된 것임).
  9. 제1항에 있어서, 상기 단위체는 하기 화학식 7 또는 화학식 8로 표시되는 것이 특징인 유기 골격 구조체:
    [화학식 7]
    Figure PCTKR2009006769-appb-I000020
    ;
    [화학식 8]
    Figure PCTKR2009006769-appb-I000021
    (상기 화학식 7 및 8에서, 상기 Q1 내지 Q5, 및 R1 내지 R5는 제7항에 정의된 바와 동일하고; 상기 D1 내지 D10은 제8항에 정의된 바와 동일함).
  10. [규칙 제91조에 의한 정정 30.03.2010] 
    제1항에 있어서, 상기 판상 층은 하기 화학식 9 또는 화학식 10으로 표시되는 것이 특징인 유기 골격 구조체: [화학식 9]
    Figure WO-DOC-FIGURE-009
    ; 및 [화학식 10]
    Figure WO-DOC-FIGURE-100
    (상기 화학식 9 및 10에서, 상기 Q1 내지 Q5, 및 R1 내지 R5는 제7항에 정의된 바와 동일하고; 상기 D1 내지 D10은 제8항에 정의된 바와 동일함).
  11. 제1항에 있어서, 상기 루이스 염기는 N, P, O 및 S로 이루어진 군에서 선택된 하나 이상을 함유하는 헤테로 고리 화합물인 것이 특징인 유기 골격 구조체.
  12. 제1항에 있어서, 상기 루이스 염기는 pyridine, 4-cyanopyridine, 4-dialkylaminopyridine, 4,4'-bipyridine, pyrazine, pyridazine, pyrimidine, 2-methylpyrazine, pyrazol, imidazole, purine, 7-azaindole, quinoline, isoquinoline, quinoxaline, 1,4-diazabicyclo(2.2.2)octane, quinuclidine, 1,3,5-triazine, hexamethyleneteramine, piperidine, piperazine, pyrrolidine, morpholine, tetrahydrofuran, 1,4-dioxane 및 1,8-naphthylene disulfide로 이루어진 군에서 선택된 것이 특징인 유기 골격 구조체.
  13. 제1항에 있어서, 용매의 존재하에서; i) 하기 화학식 11, 12 및 13 중에서 선택된 화학식으로 표시되는 붕소 함유 화합물과 루이스 염기를 반응시키거나, 또는 ii) 하기 화학식 11, 12 및 13 중에서 선택된 화학식으로 표시되는 붕소 함유 화합물, 방향족 폴리알콜 및 루이스 염기를 반응시켜 제조된 것이 특징인 유기 골격 구조체:
    [화학식 11]
    Figure PCTKR2009006769-appb-I000024
    ;
    [화학식 12]
    Figure PCTKR2009006769-appb-I000025
    ; 및
    [화학식 13]
    Figure PCTKR2009006769-appb-I000026
    (상기 화학식 11, 12 및 13에서, 상기 Ar1은 C6~C204인 아릴기(aryl group) 또는 C6~C204인 헤테로아릴기이고; 상기 Ar2는 C6~C204인 아릴렌기 또는 C6~C204인 헤테로아릴렌기이며; 상기 Ar3는 C6~C204인 아렌트리일기 또는 C6~C204인 헤테로아렌트리일기이고; 상기 E1 내지 E12는 각각 독립적으로 주기율표상의 15족 또는 16족에 속하는 원자이며; 상기 G1 내지 G12는 각각 독립적으로 수소, C1~C12의 알킬기, C6~C12의 아릴기, 또는 할로겐임).
  14. 제13항에 있어서, 상기 용매는 mesitylene, 1,4-dioxane 및 이들의 혼합물에서 선택된 것이 특징인 유기 골격 구조체.
  15. 제13항에 있어서, 상기 붕소 함유 화합물은 bezene diboronic acid(BDBA), Biphenyl-4,4'-diboronic acid(BPDA), Tolane-4,4'-diboronic acid, Stilbene-4,4'-diboronic acid, 1,3,5-benzenetriboronic acid (BTBA), 1,3,5-benzenetris(4-phenylboronic acid)(BTPA), 1,4-phenylenediboranediamine, 및 biphenyl-4,4'-diyldiboranediamine로 이루어진 군에서 선택된 것이고,
    상기 방향족 폴리알콜은 hexahydroxy triphenylene, benzene-1,4-diol 및 Biphenyl-4,4'-diol로 이루어진 군에서 선택된 것이 특징인 유기 골격 구조체.
  16. 제13항에 있어서, 상기 반응 온도는 40 내지 160 ℃ 범위인 것이 특징인 유기 골격 구조체.
  17. 제1항에 있어서, 가스 또는 유기 분자의 흡착, 탈착 또는 이들 모두를 할 수 있는 유기 골격 구조체.
  18. 제17항에 있어서, 센서, 분리체, 건조제, 이온 교환 물질, 분자체, 크로마토그래피용 재료, 분자의 선택적인 방출체 및 흡수체, 분자인식기, 나노 튜브 및 나노 반응기로 이루어진 군에서 선택된 용도로 사용되는 것이 특징인 유기 골격 구조체.
  19. 제1항 내지 제17항 중 어느 한 항에 기재된 유기 골격 구조체를 함유하는 흡착체.
  20. 제19항에 있어서, 상기 흡착체는 암모니아, 이산화탄소, 일산화탄소, 수소, 아민, 메탄, 산소, 아르곤 및 질소로 이루어진 군에서 선택된 가스나 유기 물질을 흡착 또는 저장할 수 있는 것이 특징인 흡착체.
  21. 제1항 내지 제17항 중 어느 한 항에 기재된 유기 골격 구조체를 함유하는 촉매.
PCT/KR2009/006769 2008-11-17 2009-11-17 유기 골격 구조체 WO2010056092A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011533121A JP5451766B2 (ja) 2008-11-17 2009-11-17 有機骨格構造体
US13/129,515 US8692020B2 (en) 2008-11-17 2009-11-17 Organic framework

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080114056 2008-11-17
KR10-2008-0114056 2008-11-17

Publications (3)

Publication Number Publication Date
WO2010056092A2 WO2010056092A2 (ko) 2010-05-20
WO2010056092A9 true WO2010056092A9 (ko) 2010-07-29
WO2010056092A3 WO2010056092A3 (ko) 2010-09-16

Family

ID=42170561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006769 WO2010056092A2 (ko) 2008-11-17 2009-11-17 유기 골격 구조체

Country Status (4)

Country Link
US (1) US8692020B2 (ko)
JP (1) JP5451766B2 (ko)
KR (1) KR101257545B1 (ko)
WO (1) WO2010056092A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099625A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 分子筛scm-24、其合成方法及其用途

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482294B (zh) 2009-06-19 2016-02-03 加利福尼亚大学董事会 复杂的混合配体开放骨架材料
EP2437867A4 (en) 2009-06-19 2012-12-05 Univ California CARBON DIOXIDE DETECTION AND STORAGE WITH OPEN FRAMEWORK
EP2467388A4 (en) 2009-09-25 2014-12-17 Univ California OPEN METAL ORGANIC STRUCTURES WITH EXCEPTIONAL SURFACE AREA AND LARGE GAS STORAGE CAPACITY
EP2585472A4 (en) 2010-07-20 2014-02-12 Univ California FUNCTIONALIZATION OF ORGANIC MOLECULES USING METALLO-ORGANIC (MOF) NETWORKS AS CATALYSTS
CA2812294A1 (en) 2010-09-27 2012-06-21 The Regents Of The University Of California Conductive open frameworks
EP2665733A4 (en) 2011-01-21 2014-07-30 Univ California PREPARATION OF METAL-TRIAZOLATE NETWORKS
JP2014507431A (ja) * 2011-02-04 2014-03-27 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア 金属カテコレート骨格体の製造
ES2645260T3 (es) 2011-10-13 2017-12-04 The Regents Of The University Of California Estructura organometálica con apertura de poro excepcionalmente grande
US9499555B2 (en) * 2012-10-12 2016-11-22 Council Of Scientific And Industrial Research Porous crystalline frameworks, process for the preparation therof and their mechanical delamination to covalent organic nanosheets (CONS)
PT106766B (pt) * 2013-02-06 2017-01-02 Inst Superior Técnico Sensores óticos para deteção de boro baseados na utilização de 2,3,6,7,10,11-hexahidroxitrifenileno ou seus derivados
US10035127B2 (en) 2013-11-04 2018-07-31 The Regents Of The University Of California Metal-organic frameworks with a high density of highly charged exposed metal cation sites
ES2768680T3 (es) 2014-02-19 2020-06-23 Univ California Armazones organometálicos que tienen resistencia a los ácidos, a los disolventes, y térmica
WO2015142944A2 (en) 2014-03-18 2015-09-24 The Regents Of The University Of California Mesoscopic materials comprised of ordered superlattices of microporous metal-organic frameworks
WO2015195179A2 (en) 2014-03-28 2015-12-23 The Regents Of The University Of California Metal organic frameworks comprising a plurality of sbus with different metal ions and/or a plurality of organic linking ligands with different functional groups.
WO2015175348A1 (en) * 2014-05-16 2015-11-19 University Of Houston System Thermally robust, highly porous, and partially fluorinated organic framework with affinity for hydrocarbons, fluorocarbons and freons
US10118877B2 (en) 2014-12-03 2018-11-06 The Regents Of The University Of California Metal-organic frameworks for aromatic hydrocarbon separations
WO2016094663A2 (en) 2014-12-11 2016-06-16 University Of Houston System Adsorption of fluorinated anesthetics within the pores of molecular crystals
KR101669169B1 (ko) * 2014-12-19 2016-10-26 한국생산기술연구원 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도
US10058855B2 (en) 2015-05-14 2018-08-28 The Regents Of The University Of California Redox-active metal-organic frameworks for the catalytic oxidation of hydrocarbons
KR20180088422A (ko) 2015-11-27 2018-08-03 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 직조된 공유결합성 유기 골격체
US11370889B2 (en) * 2018-05-18 2022-06-28 The Regents Of The University Of California Boroxine based dynamic thermosetting polymers
JP2021052033A (ja) * 2019-09-20 2021-04-01 東京エレクトロン株式会社 金属酸化物膜の形成方法及び成膜装置
JP2021052034A (ja) * 2019-09-20 2021-04-01 東京エレクトロン株式会社 金属酸化物膜の形成方法及び成膜装置
CN111019149B (zh) * 2019-12-12 2021-03-16 武汉理工大学 Cof-5一维棒状晶体材料及其制备方法
CN113845658B (zh) * 2021-08-26 2023-04-28 南京理工大学 多孔有机聚合物、制备方法及其应用
CN114230427B (zh) * 2021-12-06 2022-10-04 天津大学 复合燃料、其制备方法及含有其的推进剂
CN114427657A (zh) * 2022-01-30 2022-05-03 北京东方红升新能源应用技术研究院有限公司 一种高压储氢方法及气瓶

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648508A (en) 1995-11-22 1997-07-15 Nalco Chemical Company Crystalline metal-organic microporous materials
US7582798B2 (en) * 2004-10-22 2009-09-01 The Regents Of The University Of Michigan Covalently linked organic frameworks and polyhedra
MX2007012388A (es) * 2005-04-07 2008-03-11 Univ Michigan Adsorcion elevada de gas en una estructura metal-organica microporosa con sitios de metal abiertos.
US8093350B2 (en) 2007-01-03 2012-01-10 Insilicotech Co., Ltd Coordination polymer crystal with porous metal-organic frameworks and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099625A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 分子筛scm-24、其合成方法及其用途
CN111099625B (zh) * 2018-10-25 2021-10-01 中国石油化工股份有限公司 分子筛scm-24、其合成方法及其用途

Also Published As

Publication number Publication date
WO2010056092A3 (ko) 2010-09-16
JP2012506423A (ja) 2012-03-15
KR20100055350A (ko) 2010-05-26
KR101257545B1 (ko) 2013-04-23
WO2010056092A2 (ko) 2010-05-20
US8692020B2 (en) 2014-04-08
US20110230678A1 (en) 2011-09-22
JP5451766B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2010056092A9 (ko) 유기 골격 구조체
Díaz et al. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application
CN101774570B (zh) 一种石墨炔薄膜及其制备方法与应用
Yuan et al. Amine-functionalized poly (ionic liquid) brushes for carbon dioxide adsorption
Zhang et al. Urothermal synthesis of crystalline porous materials
JP5160893B2 (ja) 共有結合性有機骨格及び多面体
US8993806B2 (en) Organic porous materials comprising shape-persistent three-dimensional molecular cage building blocks
WO2018048058A1 (ko) 피리딘계 수소저장 물질을 활용한 수소 저장 및 방출 시스템
WO2021040455A1 (ko) 2종 이상의 리간드를 포함하는, 3차원 다공성 구조를 갖는 신규한 알루미늄-기반 금속-유기 골격체, 이의 제조방법 및 용도
Roques et al. A robust nanoporous supramolecular metal–organic framework based on ionic hydrogen bonds
Yang et al. Synthesis and characterization of pyrrole-containing microporous polymeric networks
Fernandez‐Bartolome et al. A Three‐Dimensional Dynamic Supramolecular “Sticky Fingers” Organic Framework
Zhang et al. A crystalline and stable microporous framework based on the dative B← N bonds
Qiao et al. Fine tailoring the steric configuration of initial building blocks to construct ultramicroporous polycarbazole networks with high CO2 uptake and selectivity of CO2 over N2
Wamba et al. Al‐based Isoreticular Metal‐Organic Frameworks with MIL‐53 Topology as Effective Adsorbents in Methane Purification
Fasano et al. BN‐doped metal–organic frameworks: tailoring 2D and 3D porous architectures through molecular editing of borazines
Liu et al. Covalent organic frameworks anchored with frustrated Lewis pairs for hydrogenation of alkynes with H 2
CN114805187B (zh) 双吡啶基多孔有机笼、笼衍生的共价有机框架及应用
WO2022108319A1 (ko) 수소 제조용 백금-텅스텐 촉매 및 이를 이용한 수소의 제조방법
Xu et al. Microporous organic polymers: synthesis, types, and applications
US7834212B2 (en) Porous substance and process for producing the same
CN114605602A (zh) 一种多级孔共价有机框架化合物及其制备方法与应用
EP2264040A1 (en) Proton-conducting organic materials
WO2017090825A1 (ko) 다이아민-제올라이트 복합체 및 그 제조방법
WO2015012426A1 (ko) 철-치환 혼종다종산이 함침된 메조포러스 셀 형태, 그 제조방법 및 그를 이용한 이산화탄소 분리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826324

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011533121

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13129515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826324

Country of ref document: EP

Kind code of ref document: A2