WO2010055829A1 - 三次元細胞培養体の生体シグナルの検出方法及び検出キット - Google Patents

三次元細胞培養体の生体シグナルの検出方法及び検出キット Download PDF

Info

Publication number
WO2010055829A1
WO2010055829A1 PCT/JP2009/069124 JP2009069124W WO2010055829A1 WO 2010055829 A1 WO2010055829 A1 WO 2010055829A1 JP 2009069124 W JP2009069124 W JP 2009069124W WO 2010055829 A1 WO2010055829 A1 WO 2010055829A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
layer
cell
cell culture
protein
Prior art date
Application number
PCT/JP2009/069124
Other languages
English (en)
French (fr)
Inventor
松崎典弥
明石満
岡野和宣
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to JP2010537775A priority Critical patent/JP5130376B2/ja
Priority to US13/128,360 priority patent/US8828679B2/en
Priority to EP09826077.1A priority patent/EP2357251B1/en
Priority to CN200980144966.XA priority patent/CN102209788B/zh
Publication of WO2010055829A1 publication Critical patent/WO2010055829A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5032Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on intercellular interactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Definitions

  • the present invention relates to a method for detecting a biological signal of a three-dimensional cell culture and a detection kit used therefor.
  • Cells exhibit various functions and have a function of transmitting information in order to function normally as a living body.
  • Examples of techniques for observing the state of a cell, the signal produced by the cell, the response of the cell to drugs, etc. include, for example, a technique for extracting and analyzing DNA or protein from the cell after applying some stimulus to the cell, Technology that measures the substance to be produced and the substance present on the cell surface or inside using a fluorescent compound (Patent Document 1) and optical culture while culturing cells on a cell culture microarray on which electrodes are arranged
  • Patent Document 2 for measuring a cell shape or measuring a change in cell potential, either manually or electrochemically.
  • Non-Patent Document 3 a technique for forming a three-dimensional laminate by alternately repeating extracellular matrix formation and cell layer formation
  • Patent Document 3 Non-Patent Documents 1 and 2
  • Non-patent document 4 a technology for stacking cells using a chitosan thin film
  • Non-Patent Document 5 a technique in which a fluid is poured into a flow path and laminated.
  • the present invention provides a method for detecting a biological signal of a three-dimensional cell culture.
  • the present invention includes preparing a three-dimensional cell culture body including at least two cell layers stacked and sensor particles capable of detecting a biological signal, and optically observing the sensor particles.
  • the present invention relates to a method for detecting a biological signal of a three-dimensional cell culture.
  • a biological signal of a three-dimensionally stacked cell culture can be easily detected.
  • an effect that a response as a tissue or a response as a cell in the tissue can be evaluated in vitro is preferably achieved.
  • FIG. 1A and 1B are schematic views showing an example of a three-dimensional cell culture in the present invention.
  • FIG. 2A is an example of an observation photograph of the sensor particle dispersion.
  • FIG. 2B is an example of an observation photograph of the sensor particle dispersion.
  • FIG. 2C is an example of an observation photograph of the sensor particle dispersion.
  • FIG. 2D is an example of an observation photograph of the sensor particle dispersion.
  • FIG. 2E is an example of an observation photograph of the sensor particle dispersion.
  • FIG. 2F is an example of an observation photograph of the sensor particle dispersion.
  • FIG. 3A is an example of a microscopic observation photograph of a three-dimensional cell culture.
  • FIG. 3B is an example of a microscopic observation photograph of a three-dimensional cell culture.
  • FIG. 3A is an example of a microscopic observation photograph of a three-dimensional cell culture.
  • FIG. 3B is an example of a microscopic observation photograph of a three-dimensional cell
  • FIG. 3C is an example of a microscopic observation photograph of the reference example.
  • FIG. 3D is an example of a microscopic observation photograph of the reference example.
  • FIG. 4A is an example of a microscopic observation photograph of a three-dimensional cell culture.
  • FIG. 4B is an example of a fluorescence spectrum of sensor particles in a three-dimensional cell culture.
  • FIG. 4C is an example of a microscopic observation photograph of the cell culture of the reference example.
  • FIG. 4D is an example of the fluorescence spectrum of the sensor particles in the cell culture of the reference example.
  • FIG. 5A is an example of the fluorescence spectrum of the calcium ion responsive sensor particles prepared in the example.
  • FIG. 5B is an example of the fluorescence spectrum of the pH sensor particles produced in the example.
  • the biological signal of the three-dimensional cell culture is, for example, a biological signal produced by a cell cultured in three dimensions, and the cells constituting the three-dimensional cell culture can be used alone or in two-dimensional cell culture.
  • a biological signal to be produced and a biological signal to be produced specifically as a cell of a three-dimensional cell culture are included.
  • the biological signal of the three-dimensional cell culture includes a biological signal produced in a biological tissue that is a model target (imitation target) of the three-dimensional cell culture.
  • the present invention if a three-dimensional cell culture body including at least two cell layers stacked and sensor particles capable of detecting a biological signal is used, for example, the cells are produced from the cells in the three-dimensional cell culture stacked. This is based on the knowledge that the biological signal and the like can be observed. That is, the present invention provides a three-dimensional cell culture body including at least two stacked cell layers and sensor particles capable of detecting biological signals, and optically observes the sensor particles.
  • the present invention relates to a method for detecting a biological signal of a three-dimensional cell culture.
  • the biological signal detection method for a three-dimensional cell culture of the present invention for example, the diffusion position of a biological signal specifically produced in a biological tissue can be identified and detected quantitatively, thereby It is possible to test whether or not the cell culture body can form a tissue body equivalent to the living tissue. Further, according to the biological signal detection method for a three-dimensional cell culture of the invention, for example, the influence of various substances on the biological tissue can be examined using the three-dimensional cell culture as a tissue model.
  • the biological signal detection method of the three-dimensional cell culture of the present invention is, for example, a test / screening after administration / testing on safety and pharmacokinetics using conventional laboratory animals and before administration to humans, or The effect of being able to be an alternative test / inspection / screening for testing / inspection / screening using laboratory animals is preferably achieved.
  • the substance that acts as a biological signal of the three-dimensional cell culture is, for example, a substance that the cells constituting the three-dimensional cell culture are produced alone or as a biological signal during two-dimensional cell culture, three-dimensional cell culture
  • a substance that is specifically produced as a biological signal as a body cell and a substance that is produced as a biological signal in a biological tissue to be modeled (mimetic object), such as hormones, autocidal, neurotransmitters, cell growth factors, Examples include cytokines, physiologically active substances, enzymes, and various ions.
  • nitric oxide (NO), Zn 2+ , Ca 2+ , OH radical, protein tyrosine phosphatase, active oxygen, Mg 2+ , Cl ⁇ , caspase, phosphodiesterase, OCl ⁇ , histamine, dopamine, Noradrenaline, serotonin, hydrogen peroxide and the like can be mentioned.
  • sensor particles capable of detecting a biological signal include, for example, particles capable of detecting the above-described substance acting as a biological signal, and preferably react or bind specifically to the biological signal substance. It is possible to include particles that are capable of changing light emission characteristics such as fluorescence characteristics by reaction or binding with a biological signal substance. In addition, the sensor particle capable of detecting a biological signal is preferably a particle having no cytotoxicity.
  • the sensor particles can enhance the sensor function from the viewpoint that the substance having the sensor function can be locally concentrated and / or the sensitivity of the quantitative evaluation can be improved and / or the local change can be detected. It is preferable to include a substance having a carrier and a carrier that carries the substance, and more preferably, a substance having a sensor function is carried in the carrier.
  • the “substance having a sensor function” means, for example, a functional substance whose fluorescence characteristics such as excitation wavelength, fluorescence wavelength, and fluorescence intensity change by specifically reacting or binding to a substance acting as a biological signal. including.
  • a substance having a sensor function can be appropriately selected by those skilled in the art according to the type of biological signal substance to be detected.
  • substances having a sensor function capable of detecting NO include 4,5-diaminofluorescein (DAF-2) (H. Kojima et al., Anal. Chem. 1998, 70, 2446.), diaminorhodamine (DAR-4M , DAR-4MAM), 2,3-diaminonaphtalene (DAN), Diaminocyanine (DAC), DAMBO- pH and the like.
  • DAF-2 4,5-diaminofluorescein
  • DAR-4M diaminorhodamine
  • DAN 2,3-diaminonaphtalene
  • DAC Diaminocyanine
  • Examples of the substance having a sensor function capable of detecting Ca 2+ include 1- [6-Amino-2- (5-carboxy-2-oxazolyl) -5-benzofuranyloxy] -2- (2-amino-5-methylphenoxy). ) ethane-N, N, N ', N'-tetraacetic acid, pentapotassium salt (Fura-2 (1)), 1- [2-Amino-5- (2,7-dichloro-6-hydroxy-3-oxo -9-xanthenyl) phenoxy] -2- (2-amino-5-methylphenoxy) ethane-N, N, N ', N'-tetraacetic acid (Fluo-3 (2)) (A.
  • Examples of the substance having a sensor function capable of detecting Zn 2+ include Dipicolycyanin (DIPCY), 1- [2- [5- (Dimethylamino) -1-naphthalenesulfonamido] ethyl] -1,4,7,10-tetraazacyclododecane, Examples include tetrahydrochloride, dihydrate (Dansylaminoethyl-cyclen), ZnAF-2F, ZnAF 2 DA, and the like.
  • DIPCY Dipicolycyanin
  • 1- [2- [5- (Dimethylamino) -1-naphthalenesulfonamido] ethyl] -1,4,7,10-tetraazacyclododecane Examples include tetrahydrochloride, dihydrate (Dansylaminoethyl-cyclen), ZnAF-2F, ZnAF 2 DA, and the like.
  • Examples of the substance having a sensor function capable of detecting chloride ions include N-Ethoxycarbonylmethyl-6-methoxyquinolinium bromide (MQAE).
  • Examples of the substance having a sensor function capable of detecting OH radical and peroxynitrite include Hydroxyphenyl Fluorescein (HPF) and Aminophenyl Fluorescein (APF).
  • the basic polymer layer and the acidic polymer layer are alternately laminated on the surface of the carrier carrying the substance having the sensor function. More preferably, it is that a plurality of basic polymer layers and acidic polymer layers are alternately laminated, and further preferably includes four or more basic polymer layers and acidic polymer layers, which are alternately formed. It has been done.
  • a preferred embodiment of the sensor particles in the present invention is a substance having a sensor function, a support supporting the substance having a sensor function, and a basic polymer layer and an acidic polymer alternately stacked on the surface of the support.
  • a more preferred form of sensor particles may allow detection of biological signals at low concentrations (eg, nanomolar order) calculated by the cells.
  • the support supporting a substance having a sensor function is alternately brought into contact with the base polymer solution and the acidic polymer solution. It can be produced by layering.
  • LBL alternate lamination
  • a basic polymer and an acidic polymer a biocompatible thing is preferable, for example.
  • the basic polymer include chitosan, chitin, polylysine, polydiallyldimethylammonium chloride and the like.
  • the acidic polymer examples include dextran sulfate, polyglutamic acid, polyaspartic acid, polystyrene sulfonic acid, polyacrylic acid, and polymethacrylic acid. Further, a polymer having a positive charge may be used as the basic polymer, and a polymer having a negative charge may be used as the acidic polymer. Examples of the combination of the basic polymer and the acidic polymer include a combination of polylysine and dextran sulfate, and a combination of chitosan and dextran sulfate, among which biocompatibility, low toxicity, and sensor function.
  • a combination of chitosan and dextran sulfate is preferable from the viewpoint of efficiently preventing the outflow of the contained substances.
  • the basic polymer and the acidic polymer can permeate the biological signal substance, and are preferably biodegradable.
  • the carrier is not particularly limited as long as it can support a substance having a sensor function, and preferably, a substance having a sensor function can be carried inside the carrier, for example, porous materials such as silica, alumina, calcium phosphate, etc. Particles, and mesoporous silica is preferable from the viewpoint of improving the support stability and detection sensitivity of the sensor particles.
  • the amount of the substance having the sensor function in the sensor particle is 0.1 pg or more and 100 ⁇ g or less per sensor particle from the viewpoint of locally concentrating the substance having the sensor function in the three-dimensional cell culture. Preferably, it is 1 pg or more and 1 ⁇ g or less.
  • the size (particle size) of the sensor particle can be appropriately determined according to the size of the cell, but is, for example, 5 ⁇ m or less, preferably 3 ⁇ m or less, more preferably 2 ⁇ m from the viewpoint of the size between the cell and the cell layer. From the viewpoint of sufficiently detecting a biological signal and / or carrying a substance having a sensor function, it is, for example, 200 nm or more, preferably 500 nm or more, and further, sensor particles are not taken into cells and are not intercellular. From the viewpoint of stably holding the film, it is more preferably 1 ⁇ m or more, and further preferably 1.6 ⁇ m or more.
  • the size (particle size) of the sensor particles is preferably 200 nm to 5 ⁇ m, and preferably 500 nm to 3 ⁇ m from the viewpoint of improving the intercellular retention stability of the sensor particles and improving the loading of the substance having the sensor function. More preferably, 1 to 2 ⁇ m is more preferable, and 1.6 to 2 ⁇ m is even more preferable.
  • the number of cell layers laminated on the three-dimensional cell culture is not particularly limited, but is preferably 3 layers or more, more preferably 4 layers or more, from the viewpoint of exerting properties and functions equivalent to those of biological tissues such as humans. More preferably, it is 5 layers or more, More preferably, it is 6 layers or more.
  • the upper limit of the number of cells to be stacked is not particularly limited, and is, for example, 100 layers or less, 50 layers or less, 40 layers or less, 20 layers or less, 10 layers or less, and the like.
  • Examples of the cells contained in the three-dimensional cell culture include human cells and / or non-human animal cells and / or cells derived therefrom.
  • the animal other than human is not particularly limited, and examples thereof include primates (eg, rhesus monkeys), mice, rats, dogs, and the like. From the viewpoint of exerting properties and functions equivalent to those of human biological tissues, human cells or cells derived therefrom are preferred.
  • the cell type is not particularly limited, and adhesion of hepatocytes, vascular endothelial cells, fibroblasts, epidermis cells, epithelial cells, mammary cells, muscle cells, nerve cells, tissue stem cells, embryonic stem cells, bone cells, immune cells, etc. Sex cells.
  • One type of cell may be used, or two or more types may be used.
  • the number of cells in the three-dimensional cell culture may be one or two or more cell layers.
  • the uppermost layer is a cell layer of vascular endothelial cells, and a plurality of cell layers thereunder are cell layers of smooth muscle cells.
  • the combination of cell layers is not limited to these.
  • the three-dimensional cell culture in the present invention preferably contains an extracellular matrix in addition to the cells and sensor particles.
  • the extracellular matrix for example, fills the space outside the cell in the living body, and functions in a living body that fulfills functions such as a skeletal role, a role of providing a scaffold, and / or a role of holding a biological factor.
  • a substance that can perform functions such as a skeletal role, a role of providing a scaffold, and / or a role of retaining a biological factor in in vitro cell culture.
  • the extracellular matrix in the present invention is a protein or polymer having an RGD sequence (hereinafter referred to as “having an RGD sequence” from the viewpoint of ease of forming operation, ease of thickness adjustment, and efficiency of three-dimensional cell culture.
  • a substance formed by a combination of a protein or a polymer that interacts with the first substance having the RGD sequence (hereinafter also referred to as an “interacting second substance”), Alternatively, a protein or polymer having a positive charge (hereinafter, also referred to as “first substance having a positive charge”) and a protein or polymer having a negative charge (hereinafter, “second substance having a negative charge”). It is preferable that a substance formed in combination with (also referred to as) is included.
  • “interact” means, for example, electrostatic interaction, hydrophobic interaction, hydrogen bond, charge transfer interaction, covalent bond formation, specific interaction between proteins, van der It is preferable to mean that the first substance and the second substance are close enough to be bonded, adhered, adsorbed, or exchanged of electrons chemically and / or physically due to the Waals force or the like.
  • the RGD sequence in the first substance having the RGD sequence refers to a generally known “Arg-Gly-Asp” sequence.
  • “having an RGD sequence” may originally have an RGD sequence, or may be a chemical combination of RGD sequences.
  • the first substance having an RGD sequence is preferably biodegradable and preferably water-soluble.
  • the protein having an RGD sequence include conventionally known adhesive proteins, and specifically include fibronectin, vitronectin, laminin, cadherin, collagen, and the like.
  • the protein having an RGD sequence may be, for example, collagen, gelatin, albumin, globulin, proteoglycan, enzyme, antibody or the like to which the RGD sequence is bound.
  • the polymer having an RGD sequence include naturally-derived polymers and synthetic polymers.
  • naturally derived polymers having an RGD sequence include water-soluble polypeptides, low molecular weight peptides, polyamino acids such as polylysine, polyesters, sugars such as chitin and chitosan, polyurethanes, polycarbonates, polyamides, and copolymers thereof. Is mentioned.
  • Examples of the synthetic polymer having an RGD sequence include polymers or copolymers having an RGD sequence such as linear, graft, comb, dendritic, and star.
  • Examples of the polymer or copolymer include poly (N-isopropylacrylamide-co-polyacrylic acid), polyamidoamine dendrimer, polyethylene oxide, poly ⁇ -caprolactam, polyacrylamide, poly (methyl methacrylate- ⁇ -polymethacrylate). Acid oxyethylene) and the like.
  • the interacting second substance is preferably biodegradable and preferably water-soluble.
  • examples of the protein that interacts with the first substance having an RGD sequence include collagen, gelatin, proteoglycan, integrin, enzyme, and antibody.
  • examples of the polymer that interacts with the first substance having the RGD sequence include naturally-derived polymers and synthetic polymers.
  • Examples of naturally-derived polymers that interact with the first substance having an RGD sequence include, for example, water-soluble polypeptides, low-molecular peptides, elastin, polyamino acids, polyesters, sugars such as heparin, heparan sulfate, and dextran sulfate, polyurethane, polyamide , Polycarbonate, and copolymers thereof.
  • Examples of the synthetic polymer that interacts with the first substance having the RGD sequence include polymers or copolymers having an RGD sequence such as a linear type, a graft type, a comb type, a dendritic type, and a star type.
  • polymer or copolymer examples include polyacrylic acid, polymethacrylic acid, polyethylene glycol-graft-polyacrylic acid, poly (N-isopropylacrylamide-co-polyacrylic acid), polyamidoamine dendrimer, polyethylene oxide, poly and ⁇ -caprolactam, polyacrylamide, poly (methyl methacrylate- ⁇ -polyoxyethylene methacrylate), and the like.
  • the combination of the first substance having the RGD sequence and the second substance that interacts is not particularly limited, and may be a combination of different substances that interact with each other.
  • a combination of fibronectin and gelatin, laminin and gelatin, fibronectin and dextran sulfate, polylysine and elastin, fibronectin and collagen, laminin and collagen, vitronectin and collagen, RGD-bound collagen or RGD-bound gelatin and collagen or gelatin and the like can be mentioned.
  • a combination of fibronectin and gelatin, or a combination of laminin and gelatin is preferable, and a combination of fibronectin and gelatin is more preferable.
  • sequence, and the 2nd substance to interact may be one each, respectively, and may use 2 or more types together in the range which shows interaction.
  • the protein having a positive charge is preferably a water-soluble protein, for example.
  • the water-soluble protein include basic collagen, basic gelatin, lysozyme, cytochrome c, peroxidase, and myoglobin sugar.
  • the polymer having a positive charge include naturally-derived polymers and synthetic polymers. Examples of naturally derived polymers include water-soluble polypeptides, low molecular peptides, polyamino acids, polyesters, sugars such as chitin and chitosan, polyurethanes, polyamides, polycarbonates, and copolymers thereof.
  • polyamino acids examples include polylysine such as poly ( ⁇ -lysine) and poly ( ⁇ -lysine), polyarginine, polyhistidine and the like.
  • synthetic polymer examples include polymers or copolymers of linear type, graft type, comb type, dendritic type, star type and the like.
  • polymer or copolymer examples include polydiallyldimethylammonium chloride, polyallylamine hydrochloride, polyethyleneimine, polyvinylamine, and polyamideamine dendrimer.
  • a water-soluble protein is preferable as the protein having a negative charge.
  • the water-soluble protein include acidic collagen, acidic gelatin, albumin, globulin, catalase, ⁇ -lactoglobulin, thyroglobulin, ⁇ -lactalbumin, ovalbumin and the like.
  • the polymer having a negative charge examples include naturally-derived polymers and synthetic polymers.
  • Examples of the naturally-derived polymer include water-soluble polypeptides, low-molecular peptides, polyamino acids such as poly ( ⁇ lysine), dextran sulfate, polyester, polyurethane, polyamide, polycarbonate, and copolymers thereof.
  • Examples of the synthetic polymer include polymers or copolymers of linear type, graft type, comb type, dendritic type, star type and the like.
  • Examples of the polymer or copolymer include polyester, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyacrylamide methylpropane sulfonic acid, and terminal carboxylated polyethylene glycol.
  • Examples of the combination of the first substance having a positive charge and the second substance having a negative charge include, for example, a combination of chitosan and dextran sulfate, a combination of polyallylamine hydrochloride and polystyrene sulfonic acid, and polydiallyldimethylammonium chloride. And a combination of polystyrene sulfonic acid and the like.
  • the first substance having a positive charge and the second substance having a negative charge may each be one kind, or two or more kinds may be used in combination within a range showing an interaction.
  • a component of the extracellular matrix in the present invention it is preferable to use a component contained in a natural (that is, in vivo) extracellular matrix from the viewpoint of mimicking a tissue of a living body. Therefore, it may not contain chitosan, which is a component that does not exist in humans, which may be used as an alternative component of human extracellular matrix.
  • the three-dimensional cell culture body is, for example, from the viewpoint that a plurality of types of cells can be freely stacked and / or the thickness of the cell layer and / or extracellular matrix is easy to control.
  • the cell culture body includes an extracellular matrix at least between cell layers, and a cell-containing solution is disposed to form a cell layer, and the first liquid and the second liquid are alternately disposed to form an extracellular matrix.
  • the sensor particles capable of detecting the biological signal are disposed by a manufacturing method, the first liquid containing the first liquid and the first liquid
  • a combination of the liquid content is a combination of a protein or polymer having an RGD sequence and a protein or polymer interacting with the protein or polymer having RGD, or a protein or polymer having a positive charge It is preferably a combination of a negatively charged protein or polymer.
  • the three-dimensional cell culture used in the biological signal detection method for a three-dimensional cell culture of the present invention may be formed on a substrate.
  • the substrate is not particularly limited, and conventionally known materials such as glass, various polymers, filter paper, metal, and hydrogel can be appropriately used.
  • the layer in contact with the substrate in the three-dimensional cell culture may be an extracellular matrix layer or a cell layer. If the cell layer cannot be used as a scaffold, the three-dimensional cell culture It is preferable to dispose the above-mentioned extracellular matrix in the region for disposing or to apply a conventionally known coating for cell culture.
  • the sensor particles are arranged under the lowermost cell layer, in the cell layer, and in at least one layer above the uppermost cell layer in the three-dimensional cell culture. It is preferable that From the viewpoint of facilitating identification of biosignal production sites and diffusion sites, sensor particles may be placed either below the bottom cell layer, above the top cell layer, or between the cell layers. Well, from the viewpoint that the spatial diffusion and dynamic image of biological signals can be observed with one 3D cell culture body, the cell layer below the lowermost layer, above the uppermost cell layer, and between the cell layers. Sensor particles may be arranged in a plurality of layers.
  • the cell layer below the cell layer, the cell layer, and the cell layer above the uppermost cell layer from the viewpoint of facilitating identification of the diffusion point of the biological signal, the cell layer below the cell layer, the cell layer, and the cell layer above the uppermost cell layer.
  • a method for detecting a biological signal of a three-dimensional cell culture using a plurality of three-dimensional cell cultures will be described by taking a three-dimensional cell culture in which five cell layers are stacked as an example.
  • the lowermost layer is the first layer and the uppermost layer is the fifth layer.
  • the cells of the third layer 6 types of sensor particles are disposed between the cell layer of the fourth layer, the cell layer of the fourth layer, the cell layer of the fifth layer, or the cell layer of the fifth layer.
  • the biological signal that can be detected by the sensor particles is a biological signal that is specifically produced from the cells in the fifth layer, the living body in the three-dimensional cell culture body in which the sensor particles are arranged below the first cell layer.
  • a signal is detected, it can be confirmed that the biological signal produced by the cells in the fifth layer has diffused to the first layer.
  • the three-dimensional cell culture body in which the sensor particles are arranged between the cell layer of the second layer and the cell layer of the third layer a biological signal is detected, but the sensor particles are placed under the cell layer of the first layer.
  • a biological signal is not detected in the arranged three-dimensional cell culture body, it can be confirmed that the biological signal is diffused to the vicinity of the cell layer of the second layer, but is not diffused to the subsequent cell layers.
  • the optical observation of the sensor particle includes visualization and / or digitization of the biological signal.
  • the optical observation method of the sensor particle those skilled in the art can appropriately select a detection means in the contained sensor particle, for example.
  • the detection means include a fluorescence microscope, a confocal laser microscope, a fluorescence spectrophotometer, a confocal spectrophotometer, and an ultraviolet-visible spectrophotometer.
  • a confocal laser microscope or the like for example, a biological signal produced by a cell can be visualized and imaged.
  • the diffusion and / or localization of a specific signal molecule produced by a cell is visualized. can do.
  • the biological signal detection method for a three-dimensional cell culture of the present invention can be a powerful tool in research on differentiation induction or tissue formation in regenerative medicine, for example.
  • “Visualizing a biological signal” includes, for example, observing sensor particles in a three-dimensional cell culture and / or capturing an image of the fluorescence microscope using a fluorescence microscope, a confocal laser microscope, or the like.
  • To digitize a biological signal means, for example, a fluorescence spectrum or an absorption spectrum of a sensor particle in a three-dimensional cell culture using a fluorescence spectrophotometer, a confocal spectrophotometer, an ultraviolet-visible spectrophotometer, or the like. Etc., and preferably can be quantified using these spectra.
  • a biological signal can be quantified by specifying a diffusion position of the biological signal using a confocal laser microscope and measuring a spectrum at the position.
  • FIGS. 1A and 1B An embodiment of a biological signal detection method for a three-dimensional cell culture of the present invention and a three-dimensional cell culture used therewith will be described with reference to FIGS. 1A and 1B.
  • the present invention is not limited to the following embodiments.
  • FIG. 1A is a drawing schematically showing an example of the configuration of a three-dimensional cell culture used for the biological signal detection method for a three-dimensional cell culture of the present invention.
  • a three-dimensional cell culture body 1 shown in FIG. 1A is formed on a substrate 2.
  • the three-dimensional cell culture body 1 includes sensor particles 3, cell layers 4 to 7, and extracellular matrix layers 8 to 11, and the cell layers 4 to 7 are laminated via the extracellular matrix layers 8 to 11.
  • the sensor particles 3 are disposed in the extracellular matrix layers 8-11.
  • the types of cells in the cell layers 4 to 7 may be the same or different.
  • the sensor particles 3 may be sensor particles having the same sensor function or may be sensor particles having different sensor functions. When sensor particles having different sensor functions are used, a plurality of types of biological signals can be detected.
  • Sensor particles having different sensor functions include, for example, sensor particles that detect different types of biological signals, different types of sensor particles that detect the same biological signals, and the like.
  • FIG. 1B is an example of a configuration of a three-dimensional cell culture body of a blood vessel model, and four cell layers 24 to 27 are laminated on a base 2.
  • the uppermost cell layer 27 is a cell layer of vascular endothelial cells, and the plurality of cell layers 24 to 26 therebelow are cell layers of smooth muscle cells. Between each cell layer, extracellular matrix 28 to 31 and sensor particles 40 capable of detecting NO are arranged.
  • NO biological signal
  • NO biological signal 41
  • NO is transmitted through the blood vessel model (arrow), and only sensor particles that receive NO emit light.
  • the optical change of the sensor particles for example, the production of biological signals (NO) and signal transmission from vascular endothelial cells can be locally detected in a blood vessel model.
  • the sensor capable of detecting a biological signal is in the form of particles, local detection of the biological signal becomes easier. Further, by performing optical observation of the sensor particles over time, for example, spatial diffusion and dynamic images of biological signals can be observed.
  • NO biological signals
  • the biological signal detection method for a three-dimensional cell culture of the present invention can detect, for example, a biological signal produced in a biological tissue that is a model target (imitation target) of the three-dimensional cell culture. Can be used for evaluation as an organizational model. Therefore, the present invention, in still another aspect, detects a biological signal using the biological signal detection method for a three-dimensional cell culture of the present invention, and controls cell activity based on the detection result of the biological signal.
  • the present invention relates to a method for evaluating a three-dimensional cell culture including analysis.
  • the method for evaluating a three-dimensional cell culture of the present invention can be a powerful tool in research on differentiation induction or tissue formation in regenerative medicine, for example.
  • analysis of cell activity includes, for example, identification of a diffusion position of a biological signal, quantification of the biological signal, and the like.
  • the method for evaluating a three-dimensional cell culture of the present invention specifies a diffusion position of a biological signal specifically produced in a biological tissue and / or quantitatively detects a biological signal produced specifically. If necessary, it may include evaluating whether or not the three-dimensional cell culture can form a tissue equivalent to the living tissue based on these results.
  • the specification and quantification of the diffusion position can be performed by, for example, a fluorescence microscope, a confocal laser microscope, a fluorescence spectrophotometer, a confocal spectrophotometer, an ultraviolet-visible spectrophotometer, or the like.
  • the present invention in still another aspect, contacting the three-dimensional cell culture with a substance selected from the group consisting of a compound, a pharmaceutical composition, a cosmetic, and a food that is a test substance;
  • the present invention relates to a method for evaluating a test substance on a living body, which comprises detecting a biological signal of a three-dimensional cell culture using the biological signal detection method for a three-dimensional cell culture of the invention.
  • the evaluation method of the present invention for example, tests, inspections, and screenings relating to safety and pharmacokinetics in the fields of medicine, pharmaceuticals, cosmetics, foods, and the environment can be performed.
  • the effect of obtaining a highly reliable result more reflecting the human living body with respect to the test / inspection / screening is preferably achieved.
  • detection of a biological signal includes, for example, specifying a diffusion position of the biological signal, quantifying the biological signal, and the like.
  • evaluation of the test substance on the living body includes, for example, the influence of the test substance on the living body.
  • the detection of the biological signal may be performed, for example, before, at the time of contact, or after the contact between the three-dimensional cell culture body and the test substance, or may be performed in all, or from before contact to after contact. May be performed over time.
  • the “test kit” includes a product including at least one of a reagent, a material, a tool, and a device used for a predetermined test, and an instruction (instruction manual) for the test.
  • the present invention provides a detection kit (hereinafter, also referred to as “detection kit of the present invention”) used in the detection method of the present invention, which detects at least two stacked cell layers and a biological signal.
  • detection kit of the present invention used in the detection method of the present invention, which detects at least two stacked cell layers and a biological signal.
  • the present invention relates to a detection kit having a three-dimensional cell culture containing possible sensor particles. According to the detection kit of the present invention, the biological signal detection method for a three-dimensional cell culture of the present invention can be performed more simply.
  • the detection kit of the present invention can be used, for example, for visualization of cell functions, imaging of biological signals such as identification of diffusion positions, and quantitative analysis.
  • the three-dimensional cell culture contained in the detection kit is the same as that used in the detection method of the present invention described above.
  • the detection kit may further include an instruction manual describing a method for detecting a biological signal of the three-dimensional cell culture.
  • the present invention provides a method for producing a three-dimensional cell culture (hereinafter also referred to as “the production method of the present invention”), wherein a cell-containing solution is disposed to form a cell layer, Forming the extracellular matrix by alternately arranging the first liquid and the second liquid; laminating the cell layer by alternately forming the extracellular matrix and the cell layer; and Including sensor particles capable of detecting a biological signal in at least one layer below the lower cell layer, between the cell layers, and above the uppermost cell layer, the contents of the first liquid and the second liquid
  • a three-dimensional structure including at least two stacked cell layers that can be used in the biological signal detection method for a three-dimensional cell culture of the present invention and sensor particles capable of detecting a biological signal.
  • Cell cultures can be produced.
  • the present invention in yet another aspect, relates to a three-dimensional cell culture body comprising at least two stacked cell layers produced by the production method of the present invention and sensor particles capable of detecting biological signals.
  • the sensor particles may be disposed under the lowermost cell layer, in the cell layer, and in at least one layer above the uppermost cell layer in the three-dimensional cell culture. preferable.
  • Extracellular matrix formation The formation of the extracellular matrix in the production method of the present invention is performed, for example, by alternately arranging the first liquid and the second liquid in the cell layer on the substrate.
  • positioning of a 1st liquid and a 2nd liquid can be performed by making a 1st liquid and a 2nd liquid contact, for example. For example, it can be performed by coating, dipping, dropping, spraying, and the like.
  • the thickness of the extracellular matrix thin film formed by arranging the first liquid and the second liquid once is about 1 to 20 nm, and a desired thickness can be obtained by repeatedly arranging the first liquid and the second liquid.
  • An extracellular matrix layer can be formed.
  • an extracellular matrix layer having a thickness of 1 to 1000 nm, preferably 1 to 300 nm, more preferably 5 to 100 nm can be formed.
  • the inclusion contained in the first liquid can be selected from the first substance having the above RGD sequence and the first substance having a positive charge.
  • the inclusion contained in the second liquid can be selected from the above-described interacting second substance and the second substance having a negative charge. Preferred combinations of the contents of the first liquid and the contents of the second liquid are also as described above.
  • the content of the first liquid or the content of the second liquid refers to a substance that is dissolved and / or dispersed in the liquid medium of each liquid.
  • the first liquid and the second liquid can be prepared by, for example, dissolving or dispersing the first substance and the second substance in a solvent or a dispersion medium, respectively.
  • the content of the first substance in the first liquid and the content of the second substance in the second liquid are, for example, preferably 0.0001 to 1% by mass, more preferably 0.01 to 0.5% by mass, and still more preferably. Is 0.02 to 0.1 mass%.
  • the solvent or dispersion medium (hereinafter also simply referred to as “solvent”) in the first liquid and the second liquid is not particularly limited, and examples thereof include aqueous solvents such as water and buffer solutions.
  • the buffer include Tris buffer such as Tris-HCl buffer, phosphate buffer, HEPES buffer, citrate-phosphate buffer, glycylglycine-sodium hydroxide buffer, Britton-Robinson buffer GTA buffer or the like can be used.
  • the pH of the solvent is not particularly limited, but is, for example, 3 to 11, preferably 6 to 8, and more preferably 7.2 to 7.4.
  • the first liquid and the second liquid further contain salts such as sodium chloride, calcium chloride, sodium hydrogen carbonate, sodium acetate, sodium citrate, potassium chloride, sodium hydrogen phosphate, magnesium sulfate, sodium succinate and the like. Also good.
  • One kind of salt may be contained, or two or more kinds of salts may be contained.
  • Both the first liquid and the second liquid may contain a salt, or either one may contain a salt.
  • the salt concentration is not particularly limited, but is, for example, 1 ⁇ 10 ⁇ 6 to 2M, preferably 1 ⁇ 10 ⁇ 4 to 1M, more preferably 1 ⁇ 10 ⁇ 4 to 0.05M.
  • the first liquid and the second liquid may further include, for example, a cell growth factor, a cytokine, a chemokine, a hormone, a physiologically active peptide, a therapeutic agent for a disease, a preventive agent, an inhibitor, an antibacterial agent, an anti-inflammatory agent, etc.
  • a pharmaceutical composition or the like may be contained.
  • the cell layer formation in the production method of the present invention is performed by placing a cell-containing solution on a predetermined region on the substrate and / or an extracellular matrix formed on the predetermined region.
  • the arrangement of the cell-containing solution can be performed in the same manner as the first liquid and the second liquid.
  • Incubation conditions are not particularly limited and can be appropriately determined depending on the cells.
  • the temperature is, for example, 4 to 60 ° C., preferably 20 to 40 ° C., more preferably 30 to 37 ° C.
  • the time is, for example, 1 to 168 hours, preferably 3 to 24 hours. More preferably, it is 3 to 12 hours.
  • the culture medium used for cell culture is not particularly limited, and can be appropriately determined according to the cells. For example, Eagle's MEM medium, Dulbecco's Modified Eagle medium (DMEM), Modified Eagle medium (MEM), Minimum Essential medium, RDMI, GlutaMax medium, serum-free medium, and the like can be used.
  • the cell concentration in the cell-containing solution is preferably (1.0) ⁇ 10 4 to (1.0) ⁇ 10 9 cells / mL, more preferably (1.0) ⁇ from the viewpoint of increasing the efficiency of cell layer formation. 10 5 to (1.0) ⁇ 10 8 cells / mL, more preferably (1.0) ⁇ 10 6 to (1.0) ⁇ 10 7 cells / mL.
  • the medium for the cell-containing solution the above-mentioned medium and / or Tris buffer, phosphate buffer, HEPES, PBS, or the like can be used.
  • the sensor particles may be contained in the first liquid, the second liquid, and the cell-containing solution and disposed in the three-dimensional cell culture body, or dispersed in another solvent, for example, the cell layer of the lowermost layer. You may arrange
  • the solvent in which the sensor particles are dispersed for example, the solvent described above can be used as the solvent used in the first liquid, the second liquid, and the cell-containing solution.
  • the location where the sensor particles are arranged can be appropriately determined depending on the purpose.
  • the sensor particles may be arranged throughout the three-dimensional cell culture body or locally.
  • the sensor particles may be sensor particles having the same sensor function, or may be sensor particles having different sensor functions. When sensor particles having different sensor functions are used, a plurality of types of biological signals can be detected.
  • the mesoporous silica particles supporting DAF-2 were washed, and alternately with a chitosan solution (1 mg / mL chitosan, 1 M NaCl, pH 1) and a dextran sulfate solution (1 mg / mL dextran sulfate, 1 M NaCl, pH 7). Soaked.
  • sensor particles were produced in which six layers of chitosan layers and dextran sulfate layers were alternately laminated on the surface of the mesoporous silica particles.
  • the thickness of the chitosan / dextran sulfate layer laminated on the silica surface was about 130 nm, and the average particle diameter of the obtained sensor particles was about 1.8 ⁇ m.
  • NOC-7 (1-Hydroxy-2-oxo-3- (N-methyl-3-3aminopropyl) -3-methyl-1-triazene) as a NO donor is dissolved in 50 mM Tris buffer (pH 7.4). A NOC-7 solution (50 nM NOC-7) was prepared. Subsequently, the NOC-7 solution was added to the sensor particle dispersion (0.5 M NaCl, pH 7), and the sensor particle dispersion before and after the addition of the NOC-7 solution was observed with a phase contrast microscope and a fluorescence microscope. The results are shown in FIGS. 2A to F.
  • FIGS. 2A to 2C are a digital camera photograph, a phase contrast micrograph ( ⁇ 40), and a fluorescence micrograph ( ⁇ 40), respectively, of the sensor dispersion before addition of the NOC solution.
  • FIGS. 2D to 2F are a fluorescence micrograph digital camera photograph, a phase contrast micrograph ( ⁇ 40), and a fluorescence micrograph ( ⁇ 40), respectively, of the sensor dispersion after addition of the NOC solution. As shown in FIGS. 2A to 2F, since the sensor particles exhibit strong fluorescence in the presence of NO, it was confirmed that NO could be detected by the sensor particles.
  • HUVEC human umbilical vein endothelial cells
  • SMC human smooth muscle cells
  • extracellular matrix and sensor particles were arranged between the SMC layer and the HUVEC layer.
  • a three-dimensional cell culture was prepared. First, a base film solution (0.2 mg / mL fibronectin, 50 mM Tris buffer (pH 7.4)) was immersed on the base to form a base film on the base. Next, an SMC cell-containing solution (4.0 ⁇ 10 4 cells / mL human smooth muscle cells, 50 mM Tris buffer (pH 7.4)) is placed on the base film, and a cell culture incubator (37 ° C., 5%).
  • the sensor particles are arranged on the extracellular matrix, and further, a HUVEC cell-containing solution (6.0 ⁇ 10 4 cells / mL human umbilical vein endothelial cells, 50 mM Tris buffer (pH 7.4)) is arranged. Then, the cells were allowed to adhere (HUVEC layer) by culturing overnight in a cell culture incubator (37 ° C., 5% CO 2 ).
  • a HUVEC cell-containing solution 6.0 ⁇ 10 4 cells / mL human umbilical vein endothelial cells, 50 mM Tris buffer (pH 7.4)
  • a cell culture body in which a HUVEC layer was formed on a substrate and sensor particles were arranged on the surface thereof was produced.
  • the base film was formed on the base by immersing the base film solution on the base.
  • a HUVEC cell-containing solution was placed on the base film, and the cells were adhered by culturing overnight in a cell culture incubator (37 ° C., 5% CO 2 ) (HUVEC layer).
  • sensor particles were arranged on the surface of the HUVEC layer.
  • the above-mentioned thing was used for the base film solution and the HUVEC cell-containing solution.
  • FIGS. 3A to 3D The obtained three-dimensional cell culture and the cell culture of the reference example were observed with a phase contrast microscope and a confocal laser microscope.
  • the micrographs are shown in FIGS. 3A to 3D. F-actin was stained with phalloidin rhodamine, and cell nuclei were stained with DAPI (4'6-diamino-2-2phenylidole).
  • FIG. 3A shows a phase contrast micrograph ( ⁇ 60) of a three-dimensional cell culture
  • FIG. 3B shows a confocal fluorescence micrograph ( ⁇ 60) of the three-dimensional cell culture
  • FIG. 3C shows a reference example.
  • a phase contrast micrograph ( ⁇ 60) of the cell culture is shown, and FIG.
  • FIG. 3D shows a confocal fluorescence micrograph ( ⁇ 60) of the cell culture of Reference Example. Note that the photograph in FIG. 3B was taken in focus so that the SMC layer and the sensor particles disposed between the layers could be observed.
  • the circular particles indicated by white arrows are sensor particles, and in FIGS. 3B and 3D, the sensor particles emit light in yellow-green.
  • the NOC-7 solution was dropped onto the three-dimensional cell culture and the cell culture of the reference example, and the sensor particles were observed using a confocal laser microscope and the fluorescence spectrum was measured. The results are shown in FIGS. 4A to 4D.
  • the NOC-7 solution used was the same as that used for detecting the sensor particles.
  • 4A shows a confocal fluorescence micrograph ( ⁇ 40) of the three-dimensional cell culture
  • FIG. 4B shows the fluorescence spectrum of the three-dimensional cell culture
  • FIG. 4C shows the confocal of the cell culture of the reference example.
  • a fluorescence micrograph ( ⁇ 40) is shown
  • FIG. 4D shows the fluorescence spectrum of the cell culture of Reference Example.
  • the photograph in FIG. 4A was taken with a focus so that the SMC layer and the sensor particles arranged between the SMC layer and the HUVEC layer can be observed.
  • the mesoporous silica particles loaded with each responding substance were washed, and alternately in a chitosan solution (1 mg / mL chitosan, 1 M NaCl, pH 1) and a dextran sulfate solution (1 mg / mL dextran sulfate, 1 M NaCl, pH 7). Soaked.
  • sensor particles were produced in which six layers of chitosan layers and dextran sulfate layers were alternately laminated on the surface of the mesoporous silica particles.
  • the thickness of the chitosan / dextran sulfate layer laminated on the silica surface was about 130 nm, and the average particle diameter of the obtained sensor particles was about 1.8 ⁇ m.
  • the present invention is useful in fields such as pharmaceuticals, pharmaceuticals, cosmetics, foods, regenerative medicine, and environmental conservation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

三次元細胞培養体の生体シグナルを検出する方法を提供する。積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体を準備すること、及び、センサー粒子を光学的に観察することを含む三次元細胞培養体の生体シグナルの検出方法である。三次元細胞培養体は、RGD配列を有するタンパク質若しくは高分子と前記RGDを有するタンパク質若しくは高分子と相互作用するタンパク質若しくは高分子との組み合わせ、又は、正の電荷を有するタンパク質若しくは高分子と負の電荷を有するタンパク質若しくは高分子の組み合わせを含む細胞外マトリックスを含む三次元細胞培養体であることが好ましい。

Description

三次元細胞培養体の生体シグナルの検出方法及び検出キット
 本発明は、三次元細胞培養体の生体シグナルの検出方法及びそれに用いる検出キットに関する。
 細胞は、多様な機能を発揮し、生体として正常に機能するために情報を伝達する機能を有する。
 細胞の状態、細胞が産出するシグナル、薬物等に対する細胞の応答等を観察する技術としては、例えば、細胞に何らかの刺激を与えた後、細胞からDNAやタンパク質を抽出して解析する技術、細胞が産出する物質や、細胞表面や内部に存在する物質を、蛍光化合物等を用いて測定する技術(特許文献1)、及び、電極等が配置された細胞培養マイクロアレイ上で細胞を培養しながら、光学的又は電気化学的に細胞の形状観察や細胞電位の変化を計測する技術(特許文献2)等がある。
 一方、細胞を三次元に積層する技術としては、細胞外マトリックス形成と細胞層形成とを交互に繰り返して三次元積層体を形成する技術(特許文献3、非特許文献1及び2)、予めシート状に培養した二次元培養細胞シートを積層する細胞シート技術(非特許文献3)、キトサン薄膜を使用して細胞を積層する技術(非特許文献4)、及び、細胞と細胞外マトリックスを含むマイクロ流体を流路に流し込んで積層する技術(非特許文献5)等がある。
特開2007-279015号公報 特開2006-42671号公報 特開2007-228921号公報
M. Matsusaki et al., Angew. Chem. Int. Ed. 2007, 46, 4689. Y. Nakahara et al., J. Biomater Sci. Polymer Edn. 2007, 18, 1565. T. Okano et al., Circ Res. 2002, 90. 40. C.C. Co et al., J. Am. Chem. Soc. 2005, 127, 1598. W. Tan. Et al., Biomaterials 2004, 25,1355.
 しかしながら、従来の方法では、細胞単独の応答を評価することはできても、組織としての応答あるいは組織中の細胞としての応答を生体外で評価することはできなかった。また、細胞より産出された生体シグナルの拡散位置の特定や定量的な評価もできなかった。そこで、本発明は、三次元細胞培養体の生体シグナルを検出する方法を提供する。
 本発明は、積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体を準備すること、及び、前記センサー粒子を光学的に観察することを含む三次元細胞培養体の生体シグナルの検出方法に関する。
 本発明によれば、例えば、三次元に積層された細胞培養体の生体シグナルを容易に検出することができる。また、本発明によれば、例えば、組織としての応答あるいは組織中の細胞としての応答を生体外で評価することができるという効果を好ましくは奏する。
図1A及びBは、本発明における三次元細胞培養体の一例を示す模式図である。 図2Aは、センサー粒子分散液の観察写真の一例である。 図2Bは、センサー粒子分散液の観察写真の一例である。 図2Cは、センサー粒子分散液の観察写真の一例である。 図2Dは、センサー粒子分散液の観察写真の一例である。 図2Eは、センサー粒子分散液の観察写真の一例である。 図2Fは、センサー粒子分散液の観察写真の一例である。 図3Aは、三次元細胞培養体の顕微鏡観察写真の一例である。 図3Bは、三次元細胞培養体の顕微鏡観察写真の一例である。 図3Cは、参考例の顕微鏡観察写真の一例である。 図3Dは、参考例の顕微鏡観察写真の一例である。 図4Aは、三次元細胞培養体の顕微鏡観察写真の一例である。 図4Bは、三次元細胞培養体におけるセンサー粒子の蛍光スペクトルの一例である。 図4Cは、参考例の細胞培養体の顕微鏡観察写真の一例である。 図4Dは、参考例の細胞培養体におけるセンサー粒子の蛍光スペクトルの一例である。 図5Aは、実施例で作製したカルシウムイオン応答センサー粒子の蛍光スペクトルの一例である。 図5Bは、実施例で作製したpHセンサー粒子の蛍光スペクトルの一例である。
 [三次元細胞培養体の生体シグナル]
 本発明において、三次元細胞培養体の生体シグナルは、例えば、三次元に培養した細胞が産出する生体シグナルであって、三次元細胞培養体を構成する細胞が、単独又は二次元細胞培養時において産出する生体シグナル、及び、三次元細胞培養体の細胞として特異的に産出する生体シグナルを含む。さらに、三次元細胞培養体の生体シグナルは、その三次元細胞培養体のモデル対象(模倣対象)となる生体組織において産出される生体シグナルを含む。
 本発明は、積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体を用いれば、例えば、三次元に積層された細胞培養体において細胞から産出される生体シグナル等を観察できるという知見に基づく。すなわち、本発明は、積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体を準備すること、及び、前記センサー粒子を光学的に観察することを含む三次元細胞培養体の生体シグナルの検出方法に関する。
 本発明の三次元細胞培養体の生体シグナル検出方法によれば、例えば、生体組織において特異的に産出される生体シグナルの拡散位置を特定して定量的に検出することができ、それにより三次元細胞培養体がその生体組織と同等の組織体を形成し得たか否かの検査を行うことができる。また、発明の三次元細胞培養体の生体シグナル検出方法によれば、例えば、三次元細胞培養体を組織モデルとして使用し、様々な物質が生体組織に与える影響を調べることができる。本発明の三次元細胞培養体の生体シグナル検出方法は、例えば、従来の実験動物を用いた安全性や薬物動態に関する試験・検査の後であってヒトに投与する前の検査・スクリーニング、又は、実験動物を用いた試験・検査・スクリーニングの代替試験・検査・スクリーニングになり得るという効果を好ましくは奏する。
 本発明において、三次元細胞培養体の生体シグナルとして作用する物質としては、例えば、三次元細胞培養体を構成する細胞が単独又は二次元細胞培養時において生体シグナルとして産出する物質、三次元細胞培養体の細胞として生体シグナルとして特異的に産出する物質、そのモデル対象(模倣対象)となる生体組織において生体シグナルとして産出される物質を含み、例えば、ホルモン、オータコイド、神経伝達物質、細胞増殖因子、サイトカイン、生理活性物質、酵素、各種イオン等が挙げられる。より具体的には、例えば、一酸化窒素(NO)、Zn2+、Ca2+、OHラジカル、タンパク質チロシンホスファターゼ、活性酸素、Mg2+、Cl、カスパーゼ、ホスホジエラスターゼ、OCl、ヒスタミン、ドーパミン、ノルアドレナリン、セロトニン、過酸化水素等が挙げられる。
 [センサー粒子]
 本発明において「生体シグナルを検出可能なセンサー粒子」とは、例えば、上述する生体シグナルとして作用する物質を検出できる粒子を含み、好適には、生体シグナル物質と特異的に反応又は結合することが可能であり、かつ、生体シグナル物質との反応又は結合によって蛍光特性等の発光特性が変化する粒子を含み得る。また、生体シグナルを検出可能なセンサー粒子は、細胞毒性のない粒子であることが好ましい。
 センサー粒子は、例えば、センサー機能を有する物質を局所的に濃縮できること、及び/又は、定量評価の感度を向上できること、及び/又は、局所的な変化を検出可能になるという観点から、センサー機能を有する物質とそれを担持する担持体とを含むことが好ましく、より好ましくはセンサー機能を有する物質が担持体内に担持されていることである。本発明において「センサー機能を有する物質」とは、例えば、生体シグナルとして作用する物質と特異的に反応又は結合することにより、励起波長、蛍光波長、蛍光強度等の蛍光特性が変化する機能性物質を含む。
 センサー機能を有する物質は、当業者であれば、検出する生体シグナル物質の種類に応じて適宜選択できる。NOを検出可能なセンサー機能を有する物質としては、例えば、4,5-diaminofluorescein(DAF-2)(H. Kojima et al., Anal. Chem. 1998, 70, 2446.)、diaminorhodamine(DAR-4M、DAR-4MAM)、2,3-diaminonaphtalene(DAN)、Diaminocyanine(DAC)、DAMBO-pH等が挙げられる。Ca2+を検出可能なセンサー機能を有する物質としては、例えば、1-[6-Amino-2-(5-carboxy-2-oxazolyl)-5-benzofuranyloxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid, pentapotassium salt(Fura-2(1))、1-[2-Amino-5-(2,7-dichloro-6-hydroxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid(Fluo-3(2))(A. Takahashi et al., Physiol. Rev. 1999, 79, 1089.)等が挙げられる。Zn2+を検出可能なセンサー機能を有する物質としては、例えば、Dipicolycyanin(DIPCY)、1-[2-[5-(Dimethylamino)-1-naphthalenesulfonamido]ethyl]-1,4,7,10-tetraazacyclododecane, tetrahydrochloride, dihydrate(Dansylaminoethyl-cyclen)、ZnAF-2F、ZnAF 2 DA等が挙げられる。塩化物イオンを検出可能なセンサー機能を有する物質としては、例えば、N-Ethoxycarbonylmethyl-6-methoxyquinolinium bromide(MQAE)等が挙げられる。OHラジカル,パーオキシナイトライトを検出可能なセンサー機能を有する物質としては、例えば、Hydroxyphenyl Fluorescein(HPF)、Aminophenyl Fluorescein(APF)等が挙げられる。
 センサー粒子は、センサー機能を有する物質を担持体に安定に担持できるという観点から、センサー機能を有する物質を担持する担持体の表面に塩基性ポリマー層及び酸性ポリマー層が交互に積層されていることが好ましく、より好ましくは、塩基性ポリマー層及び酸性ポリマー層が交互に複数積層されていることであり、さらに好ましくは塩基性ポリマー層及び酸性ポリマー層をそれぞれ4層以上含み、それらが交互に形成されていることである。
 したがって、本発明におけるセンサー粒子の好ましい一形態は、センサー機能を有する物質と、センサー機能を有する物質を担持する担持体と、前記担持体の表面に交互に積層された塩基性ポリマー層及び酸性ポリマー層とを含み、前記担持体が多孔性粒子であるセンサー粒子である。この形態のセンサー粒子であれば、センサー粒子表面の電荷と後述する細胞外マトリックスとの電気的相互作用により、センサー粒子を安定に細胞外マトリックスに固定化することができ、三次元細胞培養体の表面及び内部における生体シグナルをより精度よく検出できる。より好ましい形態のセンサー粒子は、細胞が算出する低濃度(例えば、ナノモルオーダー)の生体シグナルの検出を可能とし得る。
 担持体表面の塩基性ポリマー層及び酸性ポリマー層は、例えば、交互積層(LBL)法を用い、センサー機能を有する物質を担持させた担持体を塩基ポリマー液及び酸性ポリマー液に交互に接触させて重層することにより作製できる。塩基性ポリマー及び酸性ポリマーとしては、例えば、生体適合性のものが好ましい。塩基性ポリマーとしては、例えば、キトサン、キチン、ポリリジン、ポリジアリルジメチルアンモニウムクロライド等が挙げられる。酸性ポリマーとしては、例えば、デキストラン硫酸、ポリグルタミン酸、ポリアスパラギン酸、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸等が挙げられる。また、塩基性ポリマーとして、正の電荷を有する高分子を使用してもよく、酸性ポリマーとして、負の電荷を有する高分子を使用してもよい。塩基性ポリマーと酸性ポリマーとの組み合わせとしては、例えば、ポリリジン及びデキストラン硫酸との組み合わせ、キトサンとデキストラン硫酸との組み合わせ等が挙げられ、中でも、生体適合性であり毒性が少なく、かつ、センサー機能を有する物質の流出を効率的に防止できる観点から、キトサンとデキストラン硫酸との組み合わせが好ましい。塩基性ポリマー及び酸性ポリマーは、生体シグナル物質を透過可能であり、好ましくは生分解性である。担持体は、センサー機能を有する物質を担持可能なものであればよく、好ましくは担持体の内部にセンサー機能を有する物質を担持可能なものであり、例えば、シリカ、アルミナ、リン酸カルシウム等の多孔性粒子が挙げられ、センサー粒子の担持安定性向上及び検出感度向上の観点からは、メソポーラスシリカが好ましい。
 センサー粒子におけるセンサー機能を有する物質の担持量は、三次元細胞培養体においてセンサー機能を有する物質を局所的に濃縮して配置するという観点から、センサー粒子1個当たり、0.1pg以上100μg以下が好ましく、より好ましくは1pg以上1μg以下である。
 センサー粒子の大きさ(粒径)は、細胞の大きさに応じて適宜決定できるが、細胞及び細胞層間の大きさの観点から、例えば、5μm以下であり、好ましくは3μm以下、より好ましくは2μm以下であり、生体シグナルを十分に検出し及び/又はセンサー機能を有する物質を担持させる観点から、例えば、200nm以上であり、好ましくは500nm以上であり、さらにセンサー粒子が細胞に取り込まれずに細胞層間に安定に保持させる観点から、より好ましくは1μm以上であり、さらに好ましくは1.6μm以上である。よって、センサー粒子の大きさ(粒径)は、センサー粒子の細胞間保持安定性向上の観点、並びに、センサー機能を有する物質の担持量向上の観点から、200nm~5μmが好ましく、500nm~3μmがより好ましく、1~2μmがさらに好ましく、1.6~2μmがさらにより好ましい。
 [細胞層]
 三次元細胞培養体に積層される細胞層の数は特に制限されないが、ヒト等の生体組織とより同等の性質・機能を発揮させる観点から、3層以上が好ましく、より好ましくは4層以上、さらに好ましくは5層以上、さらにより好ましくは6層以上である。積層される細胞数の上限は特に制限されないが、例えば、100層以下、50層以下、40層以下、20層以下、10層以下等である。
 三次元細胞培養体に含まれる細胞としては、ヒト及び/又はヒト以外の動物の細胞及び/又はそれらに由来する細胞が挙げられる。ヒト以外の動物としては、特に限定されず、例えば、霊長類(アカゲザル等)、マウス、ラット、イヌ等が挙げられる。ヒトの生体組織とより同等の性質・機能を発揮させる観点からは、ヒトの細胞又はそれに由来する細胞が好ましい。
 細胞の種類も特に制限されず、肝細胞、血管内皮細胞、線維芽細胞、表皮細胞、上皮細胞、乳腺細胞、筋細胞、神経細胞、組織幹細胞、胚性幹細胞、骨細胞及び免疫細胞等の接着性細胞が挙げられる。細胞は、一種類でもよいし、二種類以上を用いてもよい。
 三次元細胞培養体における細胞は、一種類でもよいし、二種類以上の細胞層であってもよい。例えば、血管モデルの三次元細胞培養体を形成する場合、最上層を血管内皮細胞の細胞層とし、その下の複数の細胞層を平滑筋細胞の細胞層とすることが考えられる。細胞層の組み合わせはこれらに限定されない。
 [細胞外マトリックス]
 本発明における三次元細胞培養体は、細胞及びセンサー粒子の他に、細胞外マトリックスを含むことが好ましい。本発明において、細胞外マトリックスは、例えば、生体内で細胞の外の空間を充填し、骨格的役割、足場を提供する役割、及び/又は、生体因子を保持する役割等の機能を果たす生体内物質を含み、さらに、in vitro細胞培養において骨格的役割、足場を提供する役割、及び/又は、生体因子を保持する役割等の機能を果たしうる物質を含む。
 本発明における細胞外マトリックスは、形成作業の容易性、厚みの調整の容易性、及び、三次元細胞培養の効率化の観点から、RGD配列を有するタンパク質若しくは高分子(以下、「RGD配列を有する第1物質」ともいう)と前記RGD配列を有する第1物質と相互作用するタンパク質若しくは高分子(以下、「相互作用する第2物質」ともいう)との組み合わせで形成される物質を含むこと、又は、正の電荷を有するタンパク質若しくは高分子(以下、「正の電荷を有する第1物質」ともいう)と負の電荷を有するタンパク質若しくは高分子(以下、「負の電荷を有する第2物質」ともいう)との組み合わせで形成される物質を含むことが好ましい。ここで、本発明において、「相互作用する」とは、例えば、静電的相互作用、疎水性相互作用、水素結合、電荷移動相互作用、共有結合形成、タンパク質間の特異的相互作用、ファンデルワールス力等により、化学的及び/又は物理的に、第1物質と第2物質とが結合、接着、吸着又は電子の授受が可能な程度に近接することを意味することが好ましい。
 (RGD配列を有する第1物質)
 RGD配列を有する第1物質、すなわち、RGD配列を有するタンパク質若しくは高分子における前記RGD配列とは、一般に知られている「Arg-Gly-Asp」配列をいう。本発明において「RGD配列を有する」とは、元来、RGD配列を有するものでもよいし、RGD配列が化学的に結合されたものであってもよい。RGD配列を有する第1物質は、生分解性であることが好ましく、また、水溶性であることが好ましい。RGD配列を有するタンパク質としては、例えば、従来公知の接着性タンパク質が挙げられ、具体的には、フィブロネクチン、ビトロネクチン、ラミニン、カドヘリン、コラーゲン等が挙げられる。また、RGD配列を有するタンパク質は、例えば、RGD配列を結合させたコラーゲン、ゼラチン、アルブミン、グロブリン、プロテオグリカン、酵素、抗体等であってもよい。RGD配列を有する高分子としては、例えば、天然由来高分子及び合成高分子が挙げられる。RGD配列を有する天然由来高分子としては、例えば、水溶性ポリペプチド、低分子ペプチド、ポリリジン等のポリアミノ酸、ポリエステル、キチンやキトサン等の糖、ポリウレタン、ポリカーボネート、ポリアミド、及びこれらの共重合体等が挙げられる。RGD配列を有する合成高分子としては、例えば、直鎖型、グラフト型、くし型、樹状型、星型等のRGD配列を有するポリマー又は共重合体が挙げられる。前記ポリマー又は共重合体としては、例えば、ポリ(N-イソプロピルアクリルアミド-co-ポリアクリル酸)、ポリアミドアミンデンドリマー、ポリエチレンオキサイド、ポリε-カプロラクタム、ポリアクリルアミド、ポリ(メタクリル酸メチル-γ-ポリメタクリル酸オキシエチレン)等が挙げられる。
 (相互作用する第2物質)
 相互作用する第2物質は、生分解性であることが好ましく、また、水溶性であることが好ましい。相互作用する第2物質のうち、RGD配列を有する第1物質と相互作用するタンパク質としては、例えば、コラーゲン、ゼラチン、プロテオグリカン、インテグリン、酵素、抗体等が挙げられる。また、RGD配列を有する第1物質と相互作用する高分子としては、例えば、天然由来高分子及び合成高分子が挙げられる。RGD配列を有する第1物質と相互作用する天然由来高分子としては、例えば、水溶性ポリペプチド、低分子ペプチド、エラスチン、ポリアミノ酸、ポリエステル、ヘパリンやヘパラン硫酸、デキストラン硫酸等の糖、ポリウレタン、ポリアミド、ポリカーボネート、及びこれらの共重合体等が挙げられる。RGD配列を有する第1物質と相互作用する合成高分子としては、例えば、直鎖型、グラフト型、くし型、樹状型、星型等のRGD配列を有するポリマー又は共重合体が挙げられる。前記ポリマー又は共重合体としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリエチレングリコール-グラフト-ポリアクリル酸、ポリ(N-イソプロピルアクリルアミド-co-ポリアクリル酸)、ポリアミドアミンデンドリマー、ポリエチレンオキサイド、ポリε-カプロラクタム、ポリアクリルアミド、ポリ(メタクリル酸メチル-γ-ポリメタクリル酸オキシエチレン)等が挙げられる。
 RGD配列を有する第1物質と相互作用する第2物質との組み合わせとしては、特に制限されず、相互作用する異なる物質の組み合わせであればよい。例えば、フィブロネクチンとゼラチン、ラミニンとゼラチン、フィブロネクチンとデキストラン硫酸、ポリリジンとエラスチン、フィブロネクチンとコラーゲン、ラミニンとコラーゲン、ビトロネクチンとコラーゲン、RGD結合コラーゲン又はRGD結合ゼラチンとコラーゲン又はゼラチン等の組み合わせが挙げられる。中でも、フィブロネクチンとゼラチン、ラミニンとゼラチンの組み合わせが好ましく、より好ましくはフィブロネクチンとゼラチンとの組み合わせである。なお、RGD配列を有する第1物質及び相互作用する第2物質は、それぞれ一種類ずつでもよいし、相互作用を示す範囲で二種類以上をそれぞれ併用してもよい。
 (正の電荷を有する第1物質)
 正の電荷を有する第1物質のうち、正の電荷を有するタンパク質としては、例えば、水溶性タンパク質が好ましい。水溶性タンパク質としては、例えば、塩基性コラーゲン、塩基性ゼラチン、リゾチーム、シトクロムc、ペルオキシダーゼ、ミオグロビン糖が挙げられる。正の電荷を有する第1物質のうち、正の電荷を有する高分子としては、例えば天然由来高分子及び合成高分子が挙げられる。天然由来高分子としては、例えば、水溶性ポリペプチド、低分子ペプチド、ポリアミノ酸、ポリエステル、キチンやキトサン等の糖、ポリウレタン、ポリアミド、ポリカーボネート、及びこれらの共重合体等が挙げられる。ポリアミノ酸としては、ポリ(α-リジン)、ポリ(ε-リジン)等のポリリジン、ポリアルギニン、ポリヒスチジン等が挙げられる。合成高分子としては、例えば、直鎖型、グラフト型、くし型、樹状型、星型等のポリマー又は共重合体が挙げられる。前記ポリマー又は共重合体としては、例えば、ポリジアリルジメチルアンモニウムクロライド、ポリアリルアミンハイドロクロライド、ポリエチレンイミン、ポリビニルアミン、ポリアミドアミンデンドリマー等が挙げられる。
 (負の電荷を有する第2物質)
 負の電荷を有する第2物質のうち、負の電荷を有するタンパク質としては、例えば、水溶性タンパク質が好ましい。水溶性タンパク質としては、例えば、酸性コラーゲン、酸性ゼラチン、アルブミン、グロブリン、カタラーゼ、β-ラクトグロブリン、チログロブリン、α-ラクトアルブミン、卵白アルブミン等が挙げられる。負の電荷を有する第2の物質のうち、負の電荷を有する高分子としては、天然由来高分子及び合成高分子が挙げられる。天然由来高分子としては、例えば、水溶性ポリペプチド、低分子ペプチド、ポリ(βリジン)等のポリアミノ酸、デキストラン硫酸、ポリエステル、ポリウレタン、ポリアミド、ポリカーボネート、及びこれらの共重合体等が挙げられる。合成高分子としては、例えば、直鎖型、グラフト型、くし型、樹状型、星型等のポリマー又は共重合体が挙げられる。前記ポリマー又は共重合体としては、例えば、ポリエステル、ポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリアクリルアミドメチルプロパンスルホン酸、末端カルボキシ化ポリエチレングリコール等が挙げられる。
 正の電荷を有する第1物質と負の電荷を有する第2物質との組み合わせとしては、例えば、キトサンとデキストラン硫酸との組み合わせ、ポリアリルアミンハイドロクロライドとポリスチレンスルホン酸との組み合わせ、ポリジアリルジメチルアンモニウムクロライドとポリスチレンスルホン酸との組み合わせ等が挙げられる。なお、正の電荷を有する第1物質及び負の電荷を有する第2物質は、それぞれ、一種類ずつでも良いし、相互作用を示す範囲で二種類以上をそれぞれ併用してもよい。
 また、本発明における細胞外マトリックスの成分としては、より生体の組織を模倣するという観点から、天然の(すなわち、生体内の)細胞外マトリックスに含まれる成分を使用することが好ましく、同様の観点から、ヒトの細胞外マトリックスの代替成分の一つとして使用されることがある、ヒトに存在しない成分であるキトサンを含まなくてもよい。
 本発明において、三次元細胞培養体は、例えば、複数種類の細胞を自在に積層でき、及び/又は、細胞層及び/又は細胞外マトリックスの厚みの制御が容易であるという観点から、前記三次元細胞培養体は、少なくとも細胞層間に細胞外マトリックスを含み、かつ、細胞含有溶液を配置して細胞層を形成すること、第1液と第2液とを交互に配置して細胞外マトリックスを形成すること、前記細胞外マトリックスの形成及び前記細胞層の形成を交互に行うことにより前記細胞層を積層すること、及び、積層された細胞層において最下層の細胞層の下、最上層の細胞層の上、及び細胞層間の少なくとも一層に、前記生体シグナルを検出可能なセンサー粒子を配置することを含む製法により製造されうるものであって、前記第1液の含有物と第2液の含有物との組み合わせが、RGD配列を有するタンパク質若しくは高分子と前記RGDを有するタンパク質若しくは高分子と相互作用するタンパク質若しくは高分子との組み合わせ、又は、正の電荷を有するタンパク質若しくは高分子と負の電荷を有するタンパク質若しくは高分子の組み合わせであることが好ましい。本発明の三次元細胞培養体の生体シグナル検出方法において使用する三次元細胞培養体は、基体上に形成されたものであってもよい。前記基体としては、特に制限されず、例えば、ガラス、各種ポリマー、ろ紙、金属、ハイドロゲル等の従来公知の材料を適宜使用できる。
 三次元細胞培養体のうち基体と接触する層は、細胞外マトリックスの層であってもよく、細胞層であってもよく、基体を細胞層が足場とできない場合には、三次元細胞培養体を配置する領域に上述の細胞外マトリックスを配置するか、従来公知の細胞培養のためのコーティングを施すことが好ましい。
 本発明の三次元細胞培養体の生体シグナル検出方法において、センサー粒子は、三次元細胞培養体において最下層の細胞層の下、細胞層間、及び、最上層の細胞層の上の少なくとも一層に配置されていることが好ましい。生体シグナルの産出箇所や拡散箇所の特定が容易になるという観点から、最下層の細胞層の下、最上層の細胞層の上、及び、細胞層間のいずれか一層にセンサー粒子を配置してもよく、また、1つの三次元細胞培養体で生体シグナルの空間的拡散や動態像を観察できるという観点から、最下層の細胞層の下、最上層の細胞層の上、及び、細胞層間のうち複数の層にセンサー粒子を配置してもよい。
 本発明の三次元細胞培養体の生体シグナル検出方法において、生体シグナルの拡散箇所の特定が容易になるという観点から、最下層の細胞層の下、細胞層間、及び、最上層の細胞層の上のいずれか一層にセンサー粒子が配置された複数の三次元細胞培養体であって、センサー粒子が配置された層が異なる複数の三次元細胞培養体を準備し、複数の三次元細胞培養体それぞれについてセンサー粒子を光学的に観察することが好ましく、観察結果に基づき、生体シグナルの挙動解析を行ってもよい。
 複数の三次元細胞培養体を用いた三次元細胞培養体の生体シグナル検出方法について、細胞層が5層積層された三次元細胞培養体の場合を例にとり説明する。以下の例において、最下層を第1層、最上層を第5層とする。まず、第1層の細胞層の下、第1層の細胞層と第2層の細胞層との間、第2層の細胞層と第3層の細胞層との間、第3層の細胞層と第4層の細胞層との間、第4層の細胞層と第5層の細胞層との間、第5層の細胞層の上のいずれかにセンサー粒子が配置された6種類の三次元細胞培養体を準備する。ついで、6種類の三次元細胞培養体すべてに、例えば、被検物質等の何らかの刺激を与え、そして、センサー粒子を光学的に観察する。センサー粒子が検出可能な生体シグナルが、第5層の細胞から特異的に産出される生体シグナルである場合に、第1層の細胞層の下にセンサー粒子を配置した三次元細胞培養体において生体シグナルが検出された場合、第5層の細胞で産出された生体シグナルが、第1層まで拡散したことが確認できる。一方、第2層の細胞層と第3層の細胞層との間にセンサー粒子を配置した三次元細胞培養体では生体シグナルが検出されたが、第1層の細胞層の下にセンサー粒子を配置した三次元細胞培養体において生体シグナルが検出されなかった場合、生体シグナルは第2層の細胞層付近までは拡散されるが、それ以降の細胞層には拡散されないことが確認できる。
 本発明の三次元細胞培養体の生体シグナル検出方法において、センサー粒子の光学的な観察は、生体シグナルを可視化及び/又は数値化することを含むことが好ましい。センサー粒子の光学的な観察方法は、当業者であれば、例えば、含有されるセンサー粒子において適宜検出手段を選択できる。検出手段としては、例えば、蛍光顕微鏡、共焦点レーザー顕微鏡、蛍光分光光度計、共焦点分光光度計、紫外-可視分光光度計等が挙げられる。共焦点レーザー顕微鏡等を使用することにより、例えば、細胞が産出した生体シグナルを可視化してイメージングすることができ、好ましくは、細胞が産出した特定のシグナル分子の拡散及び/又は局在化を可視化することができる。このため、本発明の三次元細胞培養体の生体シグナル検出方法は、例えば、再生医療における分化誘導又は組織形成に関する研究における強力なツールになりうる。「生体シグナルを可視化する」とは、例えば、蛍光顕微鏡や共焦点レーザー顕微鏡等を用いて三次元細胞培養体におけるセンサー粒子を観察すること及び/又はその蛍光顕微鏡画像を撮像することを含む。また、「生体シグナルを数値化する」とは、例えば、蛍光分光光度計や共焦点分光光度計、紫外-可視分光光度計等を用いて三次元細胞培養体におけるセンサー粒子の蛍光スペクトルや吸収スペクトル等を測定することを含み、好ましくはこれらのスペクトルを用いて定量化することを含み得る。また、例えば、共焦点レーザー顕微鏡を用い、生体シグナルの拡散位置を特定し、その位置におけるスペクトルを測定することにより生体シグナルを定量化することもできる。
 本発明の三次元細胞培養体の生体シグナル検出方法及びそれに用いる三次元細胞培養体の一実施形態を図1A及びBを用いて説明する。但し、本発明は以下の実施形態に制限されない。
 図1Aは、本発明の三次元細胞培養体の生体シグナル検出方法に使用する三次元細胞培養体の構成の一例を概略的に示す図面である。図1Aに示す三次元細胞培養体1は、基体2上に形成されている。三次元細胞培養体1は、センサー粒子3、細胞層4~7、細胞外マトリックス層8~11を含み、細胞外マトリックス層8~11を介して細胞層4~7が積層されている。また、センサー粒子3は、細胞外マトリックス層8~11に配置されている。上述の通り、細胞層4~7における細胞の種類は同一であってもよいし、異なっていてもよい。また、センサー粒子3は、同一のセンサー機能を有するセンサー粒子であってもよいし、異なるセンサー機能を有するセンサー粒子であってもよい。異なるセンサー機能を有するセンサー粒子を使用した場合は、複数種類の生体シグナルを検出できる。異なるセンサー機能を有するセンサー粒子は、例えば、異なる種類の生体シグナルを検出するセンサー粒子、同一の生体シグナルを検出する異なる種類のセンサー粒子等を含む。
 つぎに、本発明の三次元細胞培養体の生体シグナル検出方法を、血管モデルにおける血管内皮細胞のシグナル伝達の検出を例にとり説明する。図1Bは、血管モデルの三次元細胞培養体の構成の一例であって、基体2上に4層の細胞層24~27が積層されている。最上層の細胞層27は血管内皮細胞の細胞層であり、その下の複数の細胞層24~26は平滑筋細胞の細胞層である。各細胞層の間には、細胞外マトリックス28~31及びNOを検出可能なセンサー粒子40が配置されている。血管内皮細胞から生体シグナル(NO)41が産出されると、NOは血管モデル内を伝達され(矢印)、NOを受け取ったセンサー粒子のみが発光する。このセンサー粒子の光学的変化を観察することにより、例えば、血管モデルにおいて血管内皮細胞からの生体シグナル(NO)の産出やシグナル伝達を局所的に検出することができる。また、生体シグナルを検出可能なセンサーが粒子状であるため、生体シグナルの局所的な検出がより容易になる。また、センサー粒子の光学的観察を経時的に行うことによって、例えば、生体シグナルの空間的拡散や動態像を観察できる。また、血管モデルにおいて血管内皮細胞からの生体シグナル(NO)の産出やシグナル伝達を局所的に検出することにより、例えば、血管モデルである三次元培養体の品質検査や、血管に対する薬剤等の影響を評価することができる。
 さらに、DAF-2の代わりにカルシウムイオンに応答するFura-4Fを本センサー粒子に担持させることで、血管モデルにおける平滑筋細胞の収縮や心筋モデルにおける心筋細胞の収縮を評価でき、動脈硬化や心筋梗塞に対する治療薬剤の応答評価に応用することができる。また、pH変化に応答するseminaphtho-rhodafluor-1-dye (SNARF-1)を本センサー粒子に担持させることで、癌や炎症反応への治療薬剤の応答を評価することができる。
 [評価方法]
 本発明の三次元細胞培養体の生体シグナル検出方法は、例えば、三次元細胞培養体のモデル対象(模倣対象)となる生体組織において産出される生体シグナルを検出できるから、三次元細胞培養体の組織モデルとしての評価に使用できる。したがって、本発明は、さらにその他の態様において、本発明の三次元細胞培養体の生体シグナル検出方法を用いて生体シグナルを検出すること、及び、前記生体シグナルの検出結果に基づき、細胞の活動を解析することを含む三次元細胞培養体の評価方法に関する。本発明の三次元細胞培養体の評価方法は、例えば、再生医療における分化誘導又は組織形成に関する研究における強力なツールになりうる。
 本発明の三次元細胞培養体の評価方法において、細胞活動の解析は、例えば、生体シグナルの拡散位置の特定、生体シグナルの定量化等を含む。本発明の三次元細胞培養体の評価方法は、生体組織において特異的に産出される生体シグナルの拡散位置を特定すること、及び/又は、特異的に産出される生体シグナルを定量的に検出することを含み、必要に応じて、これらの結果に基づき三次元細胞培養体がその生体組織と同等の組織体を形成し得たか否かを評価することを含んでいてもよい。拡散位置の特定及び定量化は、例えば、蛍光顕微鏡、共焦点レーザー顕微鏡、蛍光分光光度計、共焦点分光光度計、紫外-可視分光光度計等により行うことができる。
 また、本発明は、さらにその他の態様において、三次元細胞培養体と、被検物質である化合物、医薬組成物、化粧品及び食品からなる群から選択される物質とを接触させること、及び、本発明の三次元細胞培養体の生体シグナル検出方法を用いて三次元細胞培養体の生体シグナルを検出することを含む被検物質の生体に対する評価方法に関する。本発明の評価方法によれば、例えば、医薬、製薬、化粧品、食品及び環境等の分野における安全性や薬物動態に関する試験・検査・スクリーニングを行うことができる。また、本発明の被検物質の生体に対する評価方法によれば、例えば、それらの試験・検査・スクリーニングについてヒトの生体をより反映した信頼性の高い結果を得られるという効果を好ましくは奏する。本発明の被検物質の生体に対する評価方法において、生体シグナルの検出は、例えば、生体シグナルの拡散位置を特定すること、生体シグナルを定量化すること等を含む。本発明において「被検物質の生体に対する評価」とは、例えば、被検物質が生体に与える影響を含む。
 生体シグナルの検出は、例えば、三次元細胞培養体と被検物質との接触前、接触時、接触後のいずれにおいて行ってもよいし、すべてにおいて行ってもよく、また、接触前から接触後において経時的に行ってもよい。
 [検出キット]
 本発明において「検査キット」とは、所定の検査に用いる試薬、材料、用具、及び装置、並びに、その検査についての説明書(取扱説明書)の少なくとも1つを含む製品を含む。本発明は、その他の態様において、本発明の検出方法に用いる検出キット(以下、「本発明の検出キット」ともいう)であって、積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体を有する検出キットに関する。本発明の検出キットによれば、本発明の三次元細胞培養体の生体シグナル検出方法をより簡便に行うことができる。本発明の検出キットは、例えば、細胞機能の可視化や、拡散位置の特定等の生体シグナルのイメージング、定量解析等に使用できる。検出キットに含まれる三次元細胞培養体は、上述した本発明の検出方法で使用するものと同様である。また、前記検出キットは、さらに、三次元細胞培養体の生体シグナルの検出方法等が記載された取扱説明書等を含んでいてもよい。
 [三次元細胞培養体の製造方法]
 本発明は、さらにその他の態様において、三次元細胞培養体の製造方法(以下、「本発明の製造方法」ともいう)であって、細胞含有溶液を配置して細胞層を形成すること、第1液と第2液とを交互に配置して細胞外マトリックスを形成すること、前記細胞外マトリックスの形成及び前記細胞層の形成を交互に行うことにより前記細胞層を積層すること、及び、最下層の細胞層の下、細胞層間、及び、最上層の細胞層の上の少なくとも一層に、生体シグナルを検出可能なセンサー粒子を配置することを含み、前記第1液の含有物と第2液の含有物との組み合わせが、RGD配列を有するタンパク質若しくは高分子と前記RGDを有するタンパク質若しくは高分子と相互作用するタンパク質若しくは高分子との組み合わせ、又は、正の電荷を有するタンパク質若しくは高分子と負の電荷を有するタンパク質若しくは高分子の組み合わせである、三次元細胞培養体の製造方法に関する。
 本発明の製造方法によれば、本発明の三次元細胞培養体の生体シグナル検出方法に使用可能な積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体を製造できる。したがって、本発明は、さらにその他の態様において、本発明の製造方法により製造された、積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体に関する。本発明の三次元細胞培養体において、センサー粒子は、三次元細胞培養体において最下層の細胞層の下、細胞層間、及び、最上層の細胞層の上の少なくとも一層に配置されていることが好ましい。
 [細胞外マトリックス形成]
 本発明の製造方法における細胞外マトリックス形成は、例えば、基体上の細胞層に、第1液と第2液とを交互に配置することにより行う。第1液及び第2液の配置は、例えば、第1液及び第2液を接触させることにより行うことができる。例えば、塗布、浸漬、滴下、噴霧等により行うことができる。
 第1液及び第2液を1回ずつ配置して形成される細胞外マトリックス薄膜の厚みは、約1~20nmであり、第1液及び第2液の配置を繰り返し行うことによって所望の厚みの細胞外マトリックス層を形成できる。また、第1液及び第2液のそれぞれに含まれる第1物質及び第2物質の含有量によって形成する細胞外マトリックス層の厚みを調節してもよい。これらの方法により、例えば、厚みが1~1000nm、好ましくは1~300nm、より好ましくは5~100nmの細胞外マトリックス層を形成できる。
 第1液に含有される含有物は、上述したRGD配列を有する第1物質及び正の電荷を有する第1物質から選択して使用できる。第2液に含有される含有物は、上述した相互作用する第2物質及び負の電荷を有する第2物質から選択して使用できる。第1液の含有物及び第2液の含有物の好ましい組み合わせも上述の通りである。ここで、第1液の含有物又は第2液の含有物とは、各液の液媒体に溶解及び/又は分散して含まれる物質をいう。
 第1液及び第2液は、例えば、上記第1物質及び上記第2物質をそれぞれ溶媒又は分散媒体に溶解又は分散させることによって調製できる。第1液における第1物質の含有量及び第2液における第2物質の含有量は、例えば、0.0001~1質量%が好ましく、より好ましくは0.01~0.5質量%、さらに好ましくは0.02~0.1質量%である。
 第1液及び第2液における溶媒又は分散媒体(以下、単に「溶媒」ともいう)は、特に制限されないが、水や緩衝液等の水性溶媒が挙げられる。緩衝液としては、例えば、Tris-HCl緩衝液等のTris緩衝液、リン酸緩衝液、HEPES緩衝液、クエン酸-リン酸緩衝液、グリシルグリシン-水酸化ナトリウム緩衝液、Britton-Robinson緩衝液、GTA緩衝液等が使用できる。溶媒のpHは、特に制限されないが、例えば、3~11であり、好ましくは6~8、より好ましくは7.2~7.4である。
 第1液及び第2液は、さらに、塩化ナトリウム、塩化カルシウム、炭酸水素ナトリウム、酢酸ナトリウム、クエン酸ナトリウム、塩化カリウム、リン酸水素ナトリウム、硫酸マグネシウム、コハク酸ナトリウム等の塩を含有していてもよい。塩は、一種類でもよいし二種類以上含有していてもよい。第1液及び第2液の双方が塩を含有していてもよいし、いずれか一方が塩を含有していてもよい。塩濃度は、特に制限されないが、例えば、1×10-6~2Mであり、好ましくは1×10-4~1M、より好ましくは1×10-4~0.05Mである。
 第1液及び第2液は、必要に応じて、さらに、例えば、細胞成長因子、サイトカイン、ケモカイン、ホルモン、生理活性ペプチド、疾患の治療剤、予防剤、抑制剤、抗菌剤、抗炎症剤等の医薬組成物等を含有してもよい。
 [細胞層形成]
 本発明の製造方法における細胞層形成は、基体上の所定の領域及び/又は所定の領域に形成された細胞外マトリックスに細胞含有溶液を配置することにより行う。細胞含有溶液の配置は、第1液及び第2液と同様にして行うことができる。
 細胞層形成において、細胞含有溶液の配置後、一定時間インキュベーションすることが好ましい。このインキュベーションにより、配置された細胞が二次元(平面方向)に増殖して単層の細胞を形成しやすくなる。インキュベーションの条件は、特に制限されず、細胞に応じて適宜決定できる。一般的な条件としては、温度は、例えば、4~60℃、好ましくは20~40℃、より好ましくは30~37℃であり、時間は、例えば、1~168時間、好ましくは3~24時間、より好ましくは3~12時間である。また、細胞培養に使用する培地も特に制限されず、細胞に応じて適宜決定できる。例えば、Eagle’s MEM培地、Dulbecco’s Modified Eagle培地(DMEM)、Modified Eagle培地(MEM)、Minimum Essential培地、RDMI、GlutaMax培地、無血清培地等が使用できる。
 細胞含有溶液おける細胞濃度は、細胞層形成の効率化の観点から、(1.0)×10~(1.0)×10cells/mLが好ましく、より好ましくは(1.0)×10~(1.0)×10cells/mL、さらに好ましくは(1.0)×10~(1.0)×10cells/mLである。細胞含有溶液の媒体としては、上述の培地、及び/又はトリス緩衝液、リン酸緩衝液、HEPES、PBS等が使用できる。
 [センサー粒子の配置]
 センサー粒子は、例えば、第1液、第2液及び細胞含有溶液に含有させて三次元細胞培養体内に配置してもよいし、その他の溶媒に分散させて、例えば、最下層の細胞層の下、細胞層間、及び、最上層の細胞層の上に配置してもよい。センサー粒子を分散させる溶媒は、例えば、第1液、第2液及び細胞含有溶液に使用する上記溶媒として上述して溶媒が使用できる。センサー粒子の配置箇所は、目的に応じて適宜決定でき、例えば、全体に三次元細胞培養体全体にまんべんなく配置してもよいし、局所的に配置してもよい。また、センサー粒子は、同一のセンサー機能を有するセンサー粒子であってもよいし、異なるセンサー機能を有するセンサー粒子であってもよい。異なるセンサー機能を有するセンサー粒子を使用した場合は、複数種類の生体シグナルを検出できる。
 以下、実施例を用いて本発明をさらに説明する。ただし、本発明は以下の実施例に限定して解釈されない。
 [センサー粒子の作製]
 担持体としてメソポーラスシリカ粒子(平均粒径:1.6μm)、センサー機能を有する物質としてNO検出発光物質である4,5-diaminofluorescein(DAF-2)を使用した。まず、メソポーラスシリカ粒子を、25μM DAF-2溶液に24時間浸漬した。これにより、DAF-2をメソポーラスシリカ粒子内部に担持させた。ついで、DAF-2を担持したメソポーラスシリカ粒子を洗浄し、そして、キトサン溶液(1mg/mLキトサン、1M NaCl、pH1)とデキストラン硫酸溶液(1mg/mLデキストラン硫酸、1M NaCl、pH7)とに交互に浸漬させた。キトサン溶液とデキストラン硫酸溶液との交互浸漬を6回繰り返し、これにより、メソポーラスシリカ粒子表面に、キトサン層とデキストラン硫酸層が交互に6層ずつ積層されたセンサー粒子を作製した。シリカ表面に積層されたキトサン/デキストラン硫酸層の厚みは、約130nmであり、得られたセンサー粒子の平均粒径は、約1.8μmであった。
 上記センサー粒子によりNOを検出できることを確認した。まず、NOドナーとなるNOC-7(1-Hydroxy-2-oxo-3-(N-methyl-3-3aminopropyl)-3-methyl-1-triazene)を50mM トリス緩衝液(pH7.4)に溶解し、NOC-7溶液(50nM NOC-7)を調製した。ついで、NOC-7溶液をセンサー粒子分散液(0.5M NaCl、pH7)に添加し、NOC-7溶液の添加前後におけるセンサー粒子分散液を位相差顕微鏡及び蛍光顕微鏡で観察した。その結果を、図2A~Fに示す。図2A~Cは、それぞれ、NOC溶液添加前のセンサー分散液のデジタルカメラ写真、位相差顕微鏡写真(×40)、蛍光顕微鏡写真(×40)である。図2D~Fは、それぞれ、NOC溶液添加後のセンサー分散液の蛍光顕微鏡写真デジタルカメラ写真、位相差顕微鏡写真(×40)、蛍光顕微鏡写真(×40)である。図2A~Fに示すように、センサー粒子が、NO存在下で強い蛍光を示すことから、上記センサー粒子によりNOを検出できることが確認できた。
 [三次元細胞培養体の作製]
 以下のようにして、基体上にヒト平滑筋細胞(SMC)上にヒト臍帯静脈内皮細胞(HUVEC)が積層され、SMC層とHUVEC層との間に細胞外マトリックス及びセンサー粒子が配置された。三次元細胞培養体を作製した。まず、基体上に、下地膜用溶液(0.2mg/mLフィブロネクチン、50mMトリス緩衝液(pH7.4))を浸漬して基体上に下地膜を形成した。つぎに、下地膜上に、SMC細胞含有液(4.0×10cells/mL ヒト平滑筋細胞、50mMトリス緩衝液(pH7.4))を配置し、細胞培養インキュベーター(37℃、5%CO)で一晩培養することで細胞を接着させた(SMC層)。つぎに、細胞外マトリックス形成用第1液(0.2mg/mLフィブロネクチン、50mMトリス緩衝液(pH7.4))及び細胞外マトリックス形成用第2液(0.2mg/mLゼラチン、50mMトリス緩衝液(pH7.4))を浸漬した。第1液(フィブロネクチン)及び第2液(ゼラチン)の浸漬を交互に10回繰り返すことで、SMC層表面にフィブロネクチン-ゼラチンの薄膜(細胞外マトリックス)を形成した。その後すぐに、細胞外マトリックス上に、センサー粒子を配置し、さらに、HUVEC細胞含有液(6.0×10cells/mL ヒト臍帯静脈内皮細胞、50mMトリス緩衝液(pH7.4))を配置し、細胞培養インキュベーター(37℃、5%CO)で一晩培養することで細胞を接着させた(HUVEC層)。
 また、参考例として、基体上にHUVEC層が形成され、その表面にセンサー粒子が配置された細胞培養体を作製した。まず、基体上に、下地膜用溶液を浸漬して基体上に下地膜を形成した。つぎに、下地膜上に、HUVEC細胞含有液を配置し、細胞培養インキュベーター(37℃、5%CO)で一晩培養することで細胞を接着させた(HUVEC層)。そして、HUVEC層表面にセンサー粒子を配置した。なお、下地膜用溶液及びHUVEC細胞含有液は、上述のものを使用した。
 得られた三次元細胞培養体及び参考例の細胞培養体を位相差顕微鏡及び共焦点レーザー顕微鏡で観察した。その顕微鏡写真を図3A~Dに示す。なお、F-アクチンはファロイジン ローダミンで、細胞核はDAPI(4’6-diamino-2-2phenylidole)でそれぞれ染色した。図3Aは、三次元細胞培養体の位相差顕微鏡写真(×60)を示し、図3Bは、三次元細胞培養体の共焦点蛍光顕微鏡写真(×60)を示し、図3Cは、参考例の細胞培養体の位相差顕微鏡写真(×60)を示し、図3Dは、参考例の細胞培養体の共焦点蛍光顕微鏡写真(×60)を示す。なお、図3Bの写真は、SMC層及び層間に配置したセンサー粒子を観察できるように焦点を合わせて撮影した。図3A及びCにおいて、白矢印で示す円形のものがセンサー粒子であり、図3B及びDにおいて、黄緑色に発光しているのがセンサー粒子である。
 図3Dの写真には、HUVEC由来の敷石状の細胞とセンサー粒子とが確認された。一方、図3Bの写真には、SMCに特徴的な伸長した形態の細胞及びセンサー粒子が確認されたが、SMC層上に積層されているHUVEC由来の敷石状の細胞は確認できなかった。このように、図3Bの写真ではHUVEC層が確認できなかったことから、センサー粒子は、SMC層及びHUVEC層との間に担持されていることが確認できた。また、図3B及びDに示すように、SMC及びHUVECのいずれの細胞についても、細胞の形態に変化が見られていなかった。このことから、三次元細胞培養体に配置したセンサー粒子は、細胞(SMC及びHUVEC)に影響を与えず、細胞毒性がないことが確認できた。
 [三次元細胞培養体の生体シグナルの検出]
 NOC-7溶液を上記三次元細胞培養体及び参考例の細胞培養体に滴下し、センサー粒子の共焦点レーザー顕微鏡を用いた観察及び蛍光スペクトル測定を行った。その結果を図4A~Dに示す。なお、NOC-7溶液は、センサー粒子の検出に使用したものと同様のものを使用した。図4Aは、三次元細胞培養体の共焦点蛍光顕微鏡写真(×40)を示し、図4Bは、三次元細胞培養体の蛍光スペクトルを示し、図4Cは、参考例の細胞培養体の共焦点蛍光顕微鏡写真(×40)を示し、図4Dは、参考例の細胞培養体の蛍光スペクトルを示す。なお、図4Aの写真は、SMC層、及び、SMC層とHUVEC層との間に配置したセンサー粒子を観察できるように焦点を合わせて撮影した。
 図4Aの写真には、SMCに特徴的な伸長した形態の細胞及びセンサー粒子が確認できたが、SMC層上に積層されたHUVEC由来の敷石状の細胞は確認できなかった。このため、センサー粒子は、SMC層及びHUVEC層との間に担持されていることが確認できた。また、黄緑色の蛍光を示していることから、層間に担持したセンサー粒子によってNOを検出できることが確認できた。
 図4B及びDのいずれにおいても、515nm付近にピークが現れた。このピークは、センサー粒子に担持されたDAF-2がNOを受け取ったことによりDAF-2T(triazolflorescein)に変化したことを示す。したがって、三次元細胞培養体に配置したセンサー粒子によりNOを検出できること、センサー粒子のスペクトルを測定できることが確認できた。また、三次元細胞培養体に配置したセンサー粒子内のDAF-2T(センサー機能を有する物質)のスペクトルを測定できることから、三次元細胞培養体の生体シグナルを定量的に評価できると考えられる。
 [カルシウム応答センサー粒子及びpH応答センサー粒子の作製]
 担持体としてメソポーラスシリカ粒子(平均粒径:1.6μm)、センサー機能を有する物質としてカルシウムイオン応答物質であるFura-4Fと、pH応答物質であるSNARF-1を使用した。まず、メソポーラスシリカ粒子を、24μM Fura-4F溶液とSNARF-1溶液に、各24時間ずつ浸漬した。これにより、各応答物質をメソポーラスシリカ粒子内部に担持させた。ついで、各応答物質を担持したメソポーラスシリカ粒子を洗浄し、そして、キトサン溶液(1mg/mLキトサン、1M NaCl、pH1)とデキストラン硫酸溶液(1mg/mLデキストラン硫酸、1M NaCl、pH7)とに交互に浸漬させた。キトサン溶液とデキストラン硫酸溶液との交互浸漬を6回繰り返し、これにより、メソポーラスシリカ粒子表面に、キトサン層とデキストラン硫酸層が交互に6層ずつ積層されたセンサー粒子を作製した。シリカ表面に積層されたキトサン/デキストラン硫酸層の厚みは、約130nmであり、得られたセンサー粒子の平均粒径は、約1.8μmであった。
 上記センサー粒子によりカルシウムイオンとpH変化を検出できることを確認した。1Mの塩化カルシウム溶液(50mM トリス緩衝液、pH7.4)に、Fura-4Fを担持したセンサー粒子を濃度がおよそを1mg/mLになるように溶解し、蛍光スペクトルを測定した。その結果を図5Aに示す。カルシウムイオンが存在する時だけ発光することが確認された。また、pH変化を以下の手順で検出した。pHを5.3および8.5に調整した50mM 燐酸二水素カリウム緩衝液に、1mg/mLの濃度でSNARF-1を担持したセンサー粒子分散液を溶解し、蛍光スペクトルを測定した。その結果を図5Bに示す。酸性条件下(pH5.3)では580nmに強い蛍光が観察され、また、塩基性条件下(pH8.5)では640nmに蛍光が観察された。これらの結果より、カルシウムイオンやpH変化に応答して蛍光発光するセンサー粒子の作製が確認された。
 上述した通り、本発明は、例えば、医薬、製薬、化粧品、食品、再生医療、環境保全等の分野において有用である。
1,21 三次元細胞培養体
2 基体
3,40 センサー粒子
4~7,24~27 細胞層
8~11,28~31 細胞外マトリックス
41 生体シグナル(NO分子)

Claims (13)

  1. 積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体を準備すること、及び、
    前記センサー粒子を光学的に観察することを含む、三次元細胞培養体の生体シグナルの検出方法。
  2. 前記センサー粒子は、センサー機能を有する物質と、センサー機能を有する物質を担持する担持体と、前記担持体の表面に交互に積層された塩基性ポリマー層及び酸性ポリマー層とを含み、前記担持体が多孔性粒子である、請求項1記載の検出方法。
  3. 前記センサー粒子の光学的な観察は、前記生体シグナルを可視化及び/又は数値化することを含む、請求項1記載の検出方法。
  4. 前記センサー粒子は、最下層の細胞層の下、細胞間、及び、最上層の細胞層の上の少なくとも一層に配置されている、請求項1から3のいずれかに記載の検出方法。
  5. 前記三次元細胞培養体は、細胞外マトリックスを含み、
    前記細胞外マトリックスは、RGD配列を有するタンパク質若しくは高分子と前記RGDを有するタンパク質若しくは高分子と相互作用するタンパク質若しくは高分子との組み合わせ、又は、正の電荷を有するタンパク質若しくは高分子と負の電荷を有するタンパク質若しくは高分子の組み合わせを含む、請求項1から4のいずれかに記載の検出方法。
  6. 前記三次元細胞培養体は、少なくとも細胞層間に細胞外マトリックスを含み、
    前記三次元細胞培養体は、細胞含有溶液を配置して細胞層を形成すること、第1液と第2液とを交互に配置して細胞外マトリックスを形成すること、前記細胞外マトリックスの形成及び前記細胞層の形成を交互に行うことにより前記細胞層を積層すること、及び、最下層の細胞層の下、細胞層間、及び、最上層の細胞層の上の少なくとも一層に前記生体シグナルを検出可能なセンサー粒子を配置することを含む製法により製造されうるものであって、
    前記第1液の含有物と第2液の含有物との組み合わせが、RGD配列を有するタンパク質若しくは高分子と前記RGDを有するタンパク質若しくは高分子と相互作用するタンパク質若しくは高分子との組み合わせ、又は、正の電荷を有するタンパク質若しくは高分子と負の電荷を有するタンパク質若しくは高分子の組み合わせである、請求項1から5のいずれかに記載の検出方法。
  7. 前記センサー粒子は、センサー機能を有する物質と、センサー機能を有する物質を担持する担持体と、前記担持体の表面に交互に積層された塩基性ポリマー層及び酸性ポリマー層とを含む、請求項1記載の検出方法。
  8. 請求項1から7のいずれかに記載の検出方法に用いる検出キットであって、
    積層された少なくとも2層の細胞層と、生体シグナルを検出可能なセンサー粒子とを含む三次元細胞培養体を有する、検出キット。
  9. 前記三次元細胞培養体は、少なくとも細胞層間に細胞外マトリックスを含み、
    前記三次元細胞培養体は、細胞含有溶液を配置して細胞層を形成すること、第1液と第2液とを交互に配置して細胞外マトリックスを形成すること、前記細胞外マトリックスの形成及び前記細胞層の形成を交互に行うことにより前記細胞層を積層すること、及び、最下層の細胞層の下、細胞層間、及び、最上層の細胞層の上の少なくとも一層に前記生体シグナルを検出可能なセンサー粒子を配置することを含む製法により製造されうるものであって、
    前記第1液の含有物と第2液の含有物との組み合わせが、RGD配列を有するタンパク質若しくは高分子と前記RGDを有するタンパク質若しくは高分子と相互作用するタンパク質若しくは高分子との組み合わせ、又は、正の電荷を有するタンパク質若しくは高分子と負の電荷を有するタンパク質若しくは高分子の組み合わせである、請求項8記載の検出キット。
  10. 前記センサー粒子は、センサー機能を有する物質と、センサー機能を有する物質を担持する担持体と、前記担持体の表面に交互に積層された塩基性ポリマー層及び酸性ポリマー層とを含む、請求項8又は9に記載の検出キット。
  11. 細胞含有溶液を配置して細胞層を形成すること、
    第1液と第2液とを交互に配置して細胞外マトリックスを形成すること、
    前記細胞外マトリックスの形成及び前記細胞層の形成を交互に行うことにより前記細胞層を積層すること、及び、
    最下層の細胞層の下、細胞層間、及び、最上層の細胞層の上の少なくとも一層に、生体シグナルを検出可能なセンサー粒子を配置することを含み、
    前記第1液の含有物と第2液の含有物との組み合わせが、RGD配列を有するタンパク質若しくは高分子と前記RGDを有するタンパク質若しくは高分子と相互作用するタンパク質若しくは高分子との組み合わせ、又は、正の電荷を有するタンパク質若しくは高分子と負の電荷を有するタンパク質若しくは高分子の組み合わせである、三次元細胞培養体の製造方法。
  12. 請求項1から7のいずれかに記載の検出方法を用いて生体シグナルを検出すること、及び
    前記生体シグナルの検出結果に基づき、細胞の活動を解析することを含む、三次元細胞培養体の評価方法。
  13. 三次元細胞培養体と、被検物質である化合物、医薬組成物、化粧品及び食品からなる群から選択される物質とを接触させること、及び、
    請求項1から7のいずれかに記載の検出方法を用いて三次元細胞培養体の生体シグナルを検出することを含む、被検物質の生体に対する評価方法。
PCT/JP2009/069124 2008-11-11 2009-11-10 三次元細胞培養体の生体シグナルの検出方法及び検出キット WO2010055829A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010537775A JP5130376B2 (ja) 2008-11-11 2009-11-10 三次元細胞培養体の生体シグナルの検出方法及び検出キット
US13/128,360 US8828679B2 (en) 2008-11-11 2009-11-10 Method and kit for detecting biological signal of three-dimensional cell culture material
EP09826077.1A EP2357251B1 (en) 2008-11-11 2009-11-10 Method and kit for detecting biological signal of three-dimensional cell culture material
CN200980144966.XA CN102209788B (zh) 2008-11-11 2009-11-10 三维细胞培养物的生物信号的检测方法及检测试剂盒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289011 2008-11-11
JP2008289011 2008-11-11

Publications (1)

Publication Number Publication Date
WO2010055829A1 true WO2010055829A1 (ja) 2010-05-20

Family

ID=42169964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069124 WO2010055829A1 (ja) 2008-11-11 2009-11-10 三次元細胞培養体の生体シグナルの検出方法及び検出キット

Country Status (5)

Country Link
US (1) US8828679B2 (ja)
EP (1) EP2357251B1 (ja)
JP (1) JP5130376B2 (ja)
CN (1) CN102209788B (ja)
WO (1) WO2010055829A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220570A (ja) * 2009-03-25 2010-10-07 Sumitomo Bakelite Co Ltd 細胞積層方法
US20150250925A1 (en) * 2012-09-04 2015-09-10 Biomedical Technology Hybrid Co., Ltd. Artificial skin tissue, artificial skin model and manufacturing method therefor
US10073085B2 (en) 2011-03-29 2018-09-11 Osaka University Method for producing artificial skin model, and artificial skin model
JP2019054781A (ja) * 2017-09-22 2019-04-11 株式会社リコー 粒子含有三次元組織体、及び粒子含有三次元組織体の収縮計測方法
JPWO2019087829A1 (ja) * 2017-11-06 2020-11-26 コニカミノルタ株式会社 候補物質が生体の活性に与える影響を評価する方法、生分解性粒子、キット、および候補物質が生体の活性に与える影響を評価するシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006559B1 (en) * 2013-05-31 2019-11-06 iHeart Japan Corporation Layered cell sheet incorporating hydrogel
TWI512101B (zh) * 2013-11-19 2015-12-11 Univ Nat Taiwan 三維細胞培養結構及其製造方法
JP6797389B1 (ja) * 2019-04-01 2020-12-09 凸版印刷株式会社 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042671A (ja) 2004-08-04 2006-02-16 Onchip Cellomics Consortium 電極付細胞培養マイクロアレーおよび電気的細胞計測法
WO2007035301A1 (en) * 2005-09-16 2007-03-29 Ge Healthcare Bio-Sciences Corp. Cell migration assay
JP2007082528A (ja) * 2005-08-25 2007-04-05 Fujifilm Corp 高分子膜を用いた重層化細胞培養物
JP2007228921A (ja) 2006-03-02 2007-09-13 Osaka Univ 三次元組織の製造方法およびそれに用いる細胞外マトリックスの製造方法。
JP2007279015A (ja) 2006-08-22 2007-10-25 Seimei Kagaku Kenkyu Center 細胞活動検出用センサー及び細胞活動検出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967086B2 (en) * 1991-04-18 2005-11-22 Becton Dickinson And Company Method for determining the presence or absence of respiring cells on a three-dimensional scaffold
US6001643A (en) * 1997-08-04 1999-12-14 C-Med Inc. Controlled hydrodynamic cell culture environment for three dimensional tissue growth
JP2002233567A (ja) 2000-12-06 2002-08-20 Mitsuo Ochi 移植用組織等価物及びその製造方法
EP1626278A3 (en) 2004-08-03 2006-06-21 OnChip Cellomics Consortium Cellomics system
JP2007267727A (ja) 2006-07-20 2007-10-18 Seimei Kagaku Kenkyu Center 細胞解析用チップ、細胞解析用システム及び細胞解析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042671A (ja) 2004-08-04 2006-02-16 Onchip Cellomics Consortium 電極付細胞培養マイクロアレーおよび電気的細胞計測法
JP2007082528A (ja) * 2005-08-25 2007-04-05 Fujifilm Corp 高分子膜を用いた重層化細胞培養物
WO2007035301A1 (en) * 2005-09-16 2007-03-29 Ge Healthcare Bio-Sciences Corp. Cell migration assay
JP2007228921A (ja) 2006-03-02 2007-09-13 Osaka Univ 三次元組織の製造方法およびそれに用いる細胞外マトリックスの製造方法。
JP2007279015A (ja) 2006-08-22 2007-10-25 Seimei Kagaku Kenkyu Center 細胞活動検出用センサー及び細胞活動検出方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A. TAKAHASHI ET AL., PHYSIOL. REV, vol. 79, 1999, pages 1089
C. C. CO ET AL., J. AM. CHEM. SOC., vol. 127, 2005, pages 1598
H. KOJIMA ET AL., ANAL. CHEM., vol. 70, 1998, pages 2446
M. MATSUSAKI ET AL., ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 4689
See also references of EP2357251A4 *
T. OKANO ET AL., CIRC RES., vol. 90, 2002, pages 40
W TAN. ET AL., BIOMATERIALS, vol. 25, 2004, pages 1355
Y NAKAHARA ET AL., J. BIOMATER SCI. POLYMER EDN., vol. 18, 2007, pages 1565

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220570A (ja) * 2009-03-25 2010-10-07 Sumitomo Bakelite Co Ltd 細胞積層方法
US10073085B2 (en) 2011-03-29 2018-09-11 Osaka University Method for producing artificial skin model, and artificial skin model
US20150250925A1 (en) * 2012-09-04 2015-09-10 Biomedical Technology Hybrid Co., Ltd. Artificial skin tissue, artificial skin model and manufacturing method therefor
JP2019054781A (ja) * 2017-09-22 2019-04-11 株式会社リコー 粒子含有三次元組織体、及び粒子含有三次元組織体の収縮計測方法
JPWO2019087829A1 (ja) * 2017-11-06 2020-11-26 コニカミノルタ株式会社 候補物質が生体の活性に与える影響を評価する方法、生分解性粒子、キット、および候補物質が生体の活性に与える影響を評価するシステム
JP7328654B2 (ja) 2017-11-06 2023-08-17 コニカミノルタ株式会社 候補物質が生体の活性に与える影響を評価する方法、生分解性粒子、キット、および候補物質が生体の活性に与える影響を評価するシステム

Also Published As

Publication number Publication date
EP2357251A4 (en) 2012-08-08
CN102209788B (zh) 2016-01-20
US8828679B2 (en) 2014-09-09
CN102209788A (zh) 2011-10-05
US20110217726A1 (en) 2011-09-08
EP2357251B1 (en) 2014-09-24
EP2357251A1 (en) 2011-08-17
JPWO2010055829A1 (ja) 2012-04-12
JP5130376B2 (ja) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5130376B2 (ja) 三次元細胞培養体の生体シグナルの検出方法及び検出キット
Brüggemann Nanoporous aluminium oxide membranes as cell interfaces
Cheng et al. Three-dimensional polymer scaffolds for high throughput cell-based assay systems
US11535828B2 (en) Three-dimensional tissue
JP6608281B2 (ja) 薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法
US20160097766A1 (en) Assay supports comprising a peg support, said support attached from a peg solution in cloud point (theta solvent) conditions
EP2894219B1 (en) Artificial skin tissue, artificial skin model and manufacturing method therefor
Demina et al. Fluorescent convertible capsule coding systems for individual cell labeling and tracking
JP5670020B2 (ja) 三次元細胞培養体チップ及びその使用方法
Kilic et al. Biomimetic lipid bilayers on solid surfaces: models for biological interactions
JPWO2003074691A1 (ja) 細胞およびリポソームの固定化体とその固定化方法
CA3043708A1 (en) Chip platforms for microarray 3d bioprinting
JP6341553B2 (ja) 三次元組織体及びその製造方法
Jiang et al. bFGF and poly‐RGD cooperatively establish biointerface for stem cell adhesion, proliferation, and differentiation
Singh et al. Highly ordered anodic porous alumina membrane and its surface modification approaches for biomedical application
WO2013039112A1 (ja) 二次元培養細胞を三次元培養又は生体内と同様に活性化する方法及びその利用
Kiryukhin et al. Arrays of Biocompatible and Mechanically Robust Microchambers Made of Protein–Polyphenol–Clay Multilayer Films
WO2011088401A2 (en) Development of a high-throughput screen for the identification of novel antifungal drug candidates
JP5884218B2 (ja) 腫瘍組織モデルの製造方法
Stoffels et al. Plasmonic microcarriers for sensing and cell expansion
Ishihara et al. Enhanced and specific internalization of polymeric nanoparticles to cells
LABRIOLA et al. TISSUEENGINEERING ANDREGENERATIVEMEDICINE
WO2014026271A1 (en) Surface chemical gradients
WO2017199820A1 (en) Three-dimensional tissue

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144966.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010537775

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13128360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009826077

Country of ref document: EP