WO2010055766A1 - 歯車測定方法 - Google Patents

歯車測定方法 Download PDF

Info

Publication number
WO2010055766A1
WO2010055766A1 PCT/JP2009/068362 JP2009068362W WO2010055766A1 WO 2010055766 A1 WO2010055766 A1 WO 2010055766A1 JP 2009068362 W JP2009068362 W JP 2009068362W WO 2010055766 A1 WO2010055766 A1 WO 2010055766A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
measurement
tooth
measuring
tangent
Prior art date
Application number
PCT/JP2009/068362
Other languages
English (en)
French (fr)
Inventor
直洋 大槻
吉言 ▲柳▼瀬
光一 増尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN200980145290.6A priority Critical patent/CN102216725A/zh
Priority to US13/128,746 priority patent/US20110247436A1/en
Priority to EP09826016A priority patent/EP2365277A1/en
Publication of WO2010055766A1 publication Critical patent/WO2010055766A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/202Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures of gears
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/18Micrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/025Measuring of circumference; Measuring length of ring-shaped articles

Definitions

  • the present invention relates to a gear measuring method for measuring the tooth profile of a gear to be measured.
  • a tooth shape or a tooth is formed with respect to at least one processed gear removed from a processing lot. After measuring the tooth surface shape such as streaks, the accuracy is confirmed, and then the remaining unprocessed lot is processed.
  • a gear processing machine such as a gear forming machine, a hobbing machine, or a gear grinding machine
  • a tooth shape or a tooth is formed with respect to at least one processed gear removed from a processing lot. After measuring the tooth surface shape such as streaks, the accuracy is confirmed, and then the remaining unprocessed lot is processed.
  • the machined gear to be machined is large, it is not possible to give out a defective product, so machining and measurement are repeated several times while finishing the machining allowance, and then finish machining is performed. .
  • Such measurement of the tooth flank shape on the processed gear has been performed by a gear measuring machine separate from the gear processing machine.
  • Patent Document 1 discloses a gear processing machine provided with such a gear measurement device.
  • the involute foundation is controlled while synchronously controlling the movement of the measuring element in the Y-axis direction and the Z-axis direction and the rotation of the processed gear to bring the measuring element into contact with the tooth surface of the processed gear.
  • the tooth profile shape is measured by moving along the tangent of the circle.
  • the present invention solves the above-mentioned problems, and by reducing the moving amount of the measuring element, the moving range of the measuring element at the time of measurement can be reduced, and gear reduction can be achieved. Intended to provide a method.
  • the gear measuring method according to the present invention for solving the above-mentioned problems is
  • the movement of the probe and the rotation of the gear to be measured are controlled in synchronization, and in accordance with the rotation of the gear to be measured, the probe is in contact with one tooth surface or the other tooth surface of the gear to be measured.
  • a gear measurement method for measuring a tooth profile of a measured gear by moving From the reference point on the base circle of the measured gear to one side tangent to the one side contact point rotated at a predetermined rotation angle to one side, and from the reference point on the base circle of the measured gear to the other at the predetermined rotation angle Set the other side tangent line in contact with the other side contact that has been rotated, While measuring the one tooth flank, while moving the measuring element along the one side tangent, Moving the measuring element along the other side tangent line when measuring the other tooth surface; An intersection of the one side tangent and the other side tangent is disposed between the measurement start position and the measurement end position on the one side tangent and the other side tangent.
  • the moving amount of the measuring element can be reduced, so the moving range of the measuring element at the time of measurement becomes small, and the machine can be miniaturized.
  • FIG. 1 is a schematic view of a gear measuring device adopting a gear measuring method according to an embodiment of the present invention. It is the figure which showed the mode of the tooth profile measurement to the workpiece
  • the gear measuring device 1 shown in FIG. 1 measures the tooth profile of a large-sized workpiece (gear to be measured, gear to be processed) W after grinding, as shown in FIG.
  • a base 11 is provided below the gear measuring device 1.
  • a guide rail 12 extending in the horizontal X-axis direction is fixed to the upper surface of the base 11, and a guide rail 13 extending in the horizontal Y-axis direction is slidably supported.
  • the guide rails 12 and 13 are disposed orthogonal to each other, and the guide rail 13 is supported movably in the X-axis direction with respect to the guide rail 12.
  • the guide rail 14 extending in the vertical Z-axis direction is supported by the guide rail 13 so as to be movable in the Y-axis direction.
  • a movable body 15 is supported on the side surface of the guide rail 14 so as to be movable in the Z-axis direction.
  • a measuring device 16 is attached to the moving body 15, and a measuring element 16a is provided at the tip of the measuring device 16.
  • a rotary table 17 is rotatably supported on the upper surface of the base 11 around a vertical workpiece rotation axis C1, and on the upper surface of the rotary table 17, the lower center 18 is coaxial with the rotary table 17. It is provided to be Furthermore, a column 19 is provided upright on the upper surface of the base 11 at the side of the rotary table 17. A center head 20 is supported on the front surface of the column 19 so as to be able to move up and down in the Z-axis direction, and an upper center 21 is rotatably supported at the tip of the center head 20 around a workpiece rotation axis C1.
  • the work W can be held between the lower center 18 and the upper center 21 by lowering the upper center 21 by the center head 20. Then, by rotating the rotary table 17 while holding the work W in this manner, the work W is rotated around the work rotation axis C1.
  • the gear measuring device 1 is provided with an NC device 22 that integrally controls the entire gear measuring device 1.
  • the NC device 22 is connected to, for example, the guide rails 12, 13, 14, the moving body 15, the measuring device 16, the rotary table 17 and the like, and the gear specifications of the workpiece W to be measured and its tooth shape input beforehand. Based on the measurement position, the movement of the measuring instrument 16 (measuring element 16a) in the X-axis, Y-axis, and Z-axis directions and the rotation of the workpiece W around the workpiece rotational axis C1 are synchronously controlled to detect the measuring element 16a. The accuracy measurement of the tooth profile of the workpiece W is performed from the displacement amount.
  • the workpiece W is given gear specifications such that a predetermined gear shape can be obtained.
  • the radius of the base circle Wb is Rb
  • the radius of the base circle Wf is Rf
  • the teeth are toothed.
  • the radius of the front circle Wa is denoted as Ra (see FIG. 4).
  • the workpiece W is slightly rotated around the workpiece rotation axis C1, and the tooth grooves are measured on the measuring device 16
  • the measuring device 16 is driven in the X-axis, Y-axis, and Z-axis directions, and the probe 16a is brought into contact with the intersection with the base circle Wf on the right tooth surface WR of the work W. That is, this intersection point is the measurement start position B on the right flank WR.
  • the measuring instrument 16 is driven in the X-axis and Y-axis directions to move the probe 16a along the tangent L and the rotary table 17 Is driven to rotate the work W to one side.
  • the tangent line L is a tangent line in contact with the contact point A on the base circle Wb of the workpiece W.
  • the tracing stylus 16a is moved in the direction of the teeth (tooth shape) while contacting the right tooth surface WR of the workpiece W, and the tooth profile measurement is started.
  • the difference between the target tooth shape and the measured actual tooth shape is obtained as a tooth shape error, and when there is no tooth shape error, an involute curve or a straight line with zero error is output, while the tooth shape error is In some cases, a curve or straight line that changes in accordance with the unevenness is output.
  • the workpiece W is slightly rotated around the workpiece rotation axis C1, and the teeth groove is measured on the measuring device 16
  • the measuring instrument 16 is driven in the X-axis and Y-axis directions, and the probe 16a is brought into contact with the intersection with the base circle Wf on the left tooth surface WL of the workpiece W. That is, this intersection is the measurement start position B ′ on the left tooth flank WL.
  • the measuring instrument 16 is driven in the X-axis and Y-axis directions to move the probe 16a along the tangent L' and to rotate.
  • the table 17 is driven to rotate the work W to the other.
  • the tangent L ′ is a tangent which is in contact with the contact point A ′ on the base circle Wb of the workpiece W.
  • the tracing stylus 16a is moved in the direction of the teeth (tooth shape) while in contact with the left tooth surface WL of the workpiece W, and the tooth profile measurement is started.
  • the difference between the target tooth shape and the measured actual tooth shape is obtained as a tooth shape error, and when there is no tooth shape error, an involute curve or a straight line with zero error is output, while the tooth shape error is In some cases, a curve or straight line that changes in accordance with the unevenness is output.
  • the measurement of the tooth profile of the right tooth surface WR and the left tooth surface WL of the workpiece W may be started from whichever. Also, for all teeth, measure one tooth surface and then measure the other tooth surface, or measure one tooth surface for each tooth and then measure the other tooth surface. You may Furthermore, as shown in FIG. 2, the above-described tooth profile measurement is similarly performed at a plurality of places in the tooth width direction of each tooth surface.
  • the tangents L and L ' are set as shown below. There is.
  • the method of setting the tangents L and L ′ will be described with reference to FIGS. 3 and 4 as follows.
  • a contact point (reference point) Ao which is in contact with a tangent Lo parallel to the Y-axis direction on the measuring instrument 16 side is set. Then, a position rotated by a predetermined rotation angle ⁇ from the contact point Ao is defined as a contact point A, a tangent line contacting the contact point A is L, and a position rotated by a predetermined rotation angle ⁇ from the contact point Ao is a contact point It is defined as A ', and a tangent in contact with this contact point A' is L '.
  • the amount of movement of the tracing stylus 16a in the XY plane at the time of measurement of the right flank WR is the distance between the measurement start position B and the measurement end position C.
  • intersection of the tangent L 'and the base circle Wf is a measurement start position B' on the left tooth surface WL
  • intersection of the tangent L 'and the top circle Wa is a measurement end position on the left tooth WL Let it be C '. That is, the amount of movement of the probe 16a in the XY plane at the time of measurement of the left tooth flank WL is the distance between the measurement start position B 'and the measurement end position C'.
  • the tangent lines L and L ′ intersect the contact points A and A ′ set at positions rotated by the rotational angle ⁇ in both directions from the contact point Ao, and therefore intersect with each other.
  • the equation (2) can be represented by the following equation (3) when it is expressed using the base circle radius Rb, the base radius Rf, the tip radius Ra, and the rotation angle ⁇ .
  • the rotation angle ⁇ can be determined by deriving the following equation (4) from the equation (3).
  • the movement amount to be the minimum is calculated by the following equation (5). It can be asked.
  • positions rotated by rotational angle ⁇ in both directions from contact point Ao on base circle Wb of workpiece W are respectively designated as contact points A and A ′ and are in contact with contact points A and A ′.
  • the stylus 16a is moved along the tangents L and L 'according to the rotation of the work W, and the intersection M of the tangents L and L' is between the measurement start position B and B 'and the measurement end position C and C'. Since the distance between the measurement end positions C and C ′, which is the amount of movement of the probe 16a in the Y-axis direction, can be shortened by setting the middle point of the probe 16a in the XY plane of the probe 16a. The movement range can be reduced. As a result, even in the case of measuring the tooth profile shape of the large work W, the measurement can be performed in a space-saving manner, and therefore, the machine can be miniaturized.
  • the probe 16a is moved along the tangents L and L 'in accordance with the rotation of the workpiece W to move from the measurement start position B and B' to the measurement end position C and C '.
  • the contact angle with the right tooth flank WR and the left tooth flank WL can always be made constant. This makes it possible to suppress the occurrence of measurement errors.
  • the present invention is applicable to a gear measurement method capable of measuring the tooth surface shape with high accuracy regardless of the size of the gear to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Gear Processing (AREA)

Abstract

 測定子の移動量を小さくすることにより、測定時における測定子の移動範囲を小さくして、機械の小型化を図ることができる歯車測定方法を提供する。 そのため、測定子の移動とワークの回転とを同期制御して、ワークの回転に応じて、測定子をワークの右歯面または左歯面に接触させた状態で直線移動させることにより、その歯形形状を測定する歯車測定方法において、ワークの基礎円上の接点から一方に所定の回転角度αで回転配置した接点に接する接線と、ワークの基礎円上の接点から他方に所定の回転角度αで回転配置した接点に接する接線とを設定し、右歯面の測定時に、測定子を接線に沿って移動させる一方、左歯面の測定時に、測定子を接線に沿って移動させ、前記2つの接線の交点を測定開始位置と測定終了位置との間の中点とする。

Description

歯車測定方法
 本発明は、被測定歯車の歯形形状を測定する歯車測定方法に関する。
 一般に、歯車形削盤やホブ盤、歯車研削盤等の歯車加工機により被加工歯車を加工する場合には、加工ロット中から抜き取った少なくとも1つ以上の被加工歯車に対して、歯形、歯すじ等の歯面形状を測定した後、その精度を確認してから、残りの未加工ロットを加工するようにしている。また、加工する被加工歯車が大形である場合には、不良品を出すことができないため、取り代を残しながら、加工と測定とを数回繰り返した後、仕上げ加工を行うようにしている。このような、被加工歯車に対する歯面形状の測定は、歯車加工機とは別体の歯車測定機により行われていた。
 しかしながら、このように、歯車加工機と歯車測定機とを別々に設けると、これらの間において被加工歯車の付け替え作業が必要となるため、作業性が低下してしまう。そこで、近年、作業性の向上を図ることを目的として、加工後の被加工歯車に対して、機上で歯面形状の測定を行えるようにした歯車加工機が種々提供されている。
 このような、歯車測定装置を備えた歯車加工機は、例えば、特許文献1に開示されている。
特許第2995258号公報
 上記従来の歯車測定装置では、測定子のY軸方向及びZ軸方向への移動と被加工歯車の回転とを同期制御して、その測定子を被加工歯車の歯面に接触させつつインボリュート基礎円の接線に沿って移動させることにより、その歯形形状を測定するようにしている。
 しかしながら、このような、基礎円接線方式を採用して、大形の被加工歯車に対して、その歯形形状を測定しようとすると、特に、測定子のY軸方向への移動量が大きくなってしまう。これにより、測定時における測定子の移動範囲が拡大することになり、歯車測定装置の大型化を招くおそれがある。
 従って、本発明は上記課題を解決するものであって、測定子の移動量を小さくすることにより、測定時における測定子の移動範囲を小さくして、機械の小型化を図ることができる歯車測定方法を提供することを目的とする。
 上記課題を解決する本発明に係る歯車測定方法は、
 測定子の移動と被測定歯車の回転とを同期制御して、被測定歯車の回転に応じて、前記測定子を被測定歯車の一方の歯面または他方の歯面に接触させた状態で直線移動させることにより、被測定歯車の歯形形状を測定する歯車測定方法において、
 被測定歯車の基礎円上の基準点から一方に所定の回転角度で回転配置した一方側接点に接する一方側接線と、被測定歯車の基礎円上の基準点から他方に前記所定の回転角度で回転配置した他方側接点に接する他方側接線とを設定し、
 前記一方の歯面の測定時に、前記測定子を前記一方側接線に沿って移動させる一方、
 前記他方の歯面の測定時に、前記測定子を前記他方側接線に沿って移動させ、
 前記一方側接線と前記他方側接線との交点を、前記一方側接線上及び前記他方側接線上における測定開始位置と測定終了位置との間に配置する
 ことを特徴とする。
 従って、本発明に係る歯車測定方法によれば、測定子の移動量を小さくすることができるので、測定時における測定子の移動範囲が小さくなり、機械の小型化を図ることができる。
本発明の一実施例に係る歯車測定方法を採用した歯車測定装置の概略図である。 測定子によるワークへの歯形測定の様子を示した図である。 測定時における測定子とワークの両歯面との接触の様子を示した図である。 本発明の一実施例に係る歯車測定方法の測定原理を示した図である。
 以下、本発明に係る歯車測定方法について、図面を用いて詳細に説明する。
 図1に示す歯車測定装置1は、図2に示すような、研削後の大形のワーク(被測定歯車,被加工歯車)Wの歯形形状を測定するものである。
 図1に示すように、歯車測定装置1の下部には、基台11が設けられている。この基台11の上面には、水平なX軸方向に延設するガイドレール12が固定されると共に、水平なY軸方向に延設するガイドレール13が摺動可能に支持されている。ガイドレール12,13は直交して配置されており、ガイドレール13はガイドレール12に対してX軸方向に移動可能に支持されている。そして、ガイドレール13には、鉛直なZ軸方向に延在するガイドレール14がY軸方向に移動可能に支持されている。
 ガイドレール14の側面には、移動体15がZ軸方向に昇降可能に支持されている。移動体15には測定器16が装着されており、この測定器16の先端には測定子16aが設けられている。
 また、基台11の上面には、回転テーブル17が鉛直なワーク回転軸C1周りに回転可能に支持されており、この回転テーブル17の上面には、下部センタ18が当該回転テーブル17と同軸になるように設けられている。更に、回転テーブル17の側方における基台11の上面には、コラム19が立設されている。コラム19の前面には、センタヘッド20がZ軸方向に昇降可能に支持されており、このセンタヘッド20の先端には、上部センタ21がワーク回転軸C1周りに回転可能に支持されている。
 即ち、センタヘッド20によって上部センタ21を下降させることにより、下部センタ18と上部センタ21との間でワークWを保持可能となっている。そして、このように、ワークWを保持した状態で、回転テーブル17を回転させることにより、ワークWがワーク回転軸C1周りに回転することになる。
 ここで、歯車測定装置1には、当該歯車測定装置1全体を統合的に制御するNC装置22が設けられている。このNC装置22は、例えば、ガイドレール12,13,14、移動体15、測定器16、回転テーブル17等と接続されており、予め入力された測定すべきワークWの歯車諸元やその歯形測定位置に基づいて、測定器16(測定子16a)のX軸,Y軸,Z軸方向への移動及びワークWのワーク回転軸C1周りの回転を同期制御して、検出した測定子16aの変位量からワークWの歯形形状の精度測定を行うようになっている。
 次に、研削されたワークWの歯形形状の測定方法について、図2乃至図4を用いて説明する。
 先ず、ワークWを研削することにより、このワークWには右歯面WR及び左歯面WLが形成されることになる。なお、ワークWには、所定の歯車形状が得られるような歯車諸元が与えられており、この歯車諸元の中でも、基礎円Wbの半径をRb、歯元円Wfの半径をRf、歯先円Waの半径をRaと示す(図4参照)。次いで、研削後のワークWを下部センタ18と上部センタ21との間で保持したまま、その歯形形状の測定を開始する。
 そして、ワークWの右歯面WRの歯形測定を行う場合には、図3に示すように、先ず、ワークWをワーク回転軸C1周りに僅かに回転させて、その歯溝を測定器16に対向させた後、測定器16をX軸,Y軸,Z軸方向に駆動させて、その測定子16aをワークWの右歯面WR上における歯元円Wfとの交点に接触させる。即ち、この交点が右歯面WRにおける測定開始位置Bとなる。
 次いで、測定子16aを測定開始位置Bに接触させた状態から、測定器16をX軸,Y軸方向に駆動させて、その測定子16aを接線Lに沿うように移動させると共に、回転テーブル17を駆動させて、ワークWを一方に回転させる。なお、詳細は後述するが、接線Lは、ワークWの基礎円Wb上の接点Aに接する接線となっている。
 これにより、測定子16aは、ワークWの右歯面WRに接触しつつ、その歯たけ(歯形)方向に移動することになり、その歯形測定が開始される。このとき、目標歯形形状と測定された実歯形形状との差が歯形誤差として得られることになり、歯形誤差がない場合には、インボリュート曲線または誤差零の直線が出力される一方、歯形誤差がある場合には、その凹凸に応じて変化した曲線または直線が出力されるようになっている。
 そして、測定子16aが、更に右歯面WR上において歯先側へ滑り、右歯面WR上における歯先円Waとの交点に到達すると、歯形測定が終了する。即ち、この交点が右歯面WRにおける測定終了位置Cとなる。
 一方、ワークWの左歯面WLの歯形測定を行う場合には、図3に示すように、先ず、ワークWをワーク回転軸C1周りに僅かに回転させて、その歯溝を測定器16に対向させた後、測定器16をX軸,Y軸方向に駆動させて、その測定子16aをワークWの左歯面WL上における歯元円Wfとの交点に接触させる。即ち、この交点が左歯面WLにおける測定開始位置B'となる。
 次いで、測定子16aを測定開始位置B'に接触させた状態から、測定器16をX軸,Y軸方向に駆動させて、その測定子16aを接線L'に沿うように移動させると共に、回転テーブル17を駆動させて、ワークWを他方に回転させる。なお、詳細は後述するが、接線L'は、ワークWの基礎円Wb上の接点A'に接する接線となっている。
 これにより、測定子16aは、ワークWの左歯面WLに接触しつつ、その歯たけ(歯形)方向に移動することになり、その歯形測定が開始される。このとき、目標歯形形状と測定された実歯形形状との差が歯形誤差として得られることになり、歯形誤差がない場合には、インボリュート曲線または誤差零の直線が出力される一方、歯形誤差がある場合には、その凹凸に応じて変化した曲線または直線が出力されるようになっている。
 そして、測定子16aが、更に左歯面WL上において歯先側へ滑り、左歯面WL上における歯先円Waとの交点に到達すると、歯形測定が終了する。即ち、この交点が左歯面WLにおける測定終了位置C'となる。
 なお、ワークWの右歯面WR及び左歯面WLの歯形測定は、どちらから始めても構わない。また、全ての歯に亘り、一方の歯面を全て測定してから他方の歯面を全て測定したり、1つの歯ごとに、一方の歯面を測定してから他方の歯面を測定したりしてもよい。更に、図2に示すように、上述した歯形測定は、各歯面の歯幅方向において、複数の箇所で同様に行われることになる。
 また、本発明に係る歯車測定方法では、測定子16a(測定器16)のY軸方向への移動量を最小とするために、下記に示すように、接線L,L'の設定を行っている。この接線L,L'の設定方法については、以下の通り、図3及び図4を用いて説明する。
 先ず、ワークWの基礎円Wb上において、測定器16側で、且つ、Y軸方向と平行な接線Loが接する接点(基準点)Aoを設定する。次いで、接点Aoから一方に所定の回転角度αで回転した位置を接点Aと定め、この接点Aに接する接線をLとする一方、接点Aoから他方に所定の回転角度αで回転した位置を接点A'と定め、この接点A'に接する接線をL'とする。
 そして、接線Lと歯元円Wfとの交点を、右歯面WR上の測定開始位置Bとし、接線Lと歯先円Waとの交点を、右歯面WR上の測定終了位置Cとする。即ち、右歯面WRの測定時における測定子16aのX-Y平面内の移動量は、測定開始位置Bと測定終了位置Cとの間の距離となる。
 また、接線L'と歯元円Wfとの交点を、左歯面WL上の測定開始位置B'とし、接線L'と歯先円Waとの交点を、左歯面WL上の測定終了位置C'とする。即ち、左歯面WLの測定時における測定子16aのX-Y平面内の移動量は、測定開始位置B'と測定終了位置C'との間の距離となる。
 なお、接線L,L'は、接点Aoから両方向に回転角度αで回転した位置に設定された接点A,A'に接するため、交差することになり、この交点をMとする。
 ここで、測定子16aのY軸方向への移動量が最小となる条件としては、測定開始位置B(B')と交点Mとの間の距離と、交点Mと測定終了位置C(C')との間の距離とが、同じ距離になるときである。即ち、下記の式(1)に示す関係が成り立つときに、測定子16aのY軸方向への移動量が最小となる。
Figure JPOXMLDOC01-appb-M000001
 また、式(1)に示す関係が成り立つときには、接点A、測定開始位置B、測定終了位置Cの間には、下記の式(2)に示す関係が成り立つことが解る。
Figure JPOXMLDOC01-appb-M000002
 これにより、式(2)を、基礎円半径Rb、歯元円半径Rf、歯先円半径Ra、回転角度αを用いて表すと、下記の式(3)で示すことができる。これにより、式(3)から下記の式(4)を導くことにより、回転角度αを求めることができる。
Figure JPOXMLDOC01-appb-M000003
 そして、測定子16aのY軸方向への移動量は、測定終了位置Cと測定終了位置C'との間の距離となることから、下記の式(5)により、その最小となる移動量を求めることができる。
Figure JPOXMLDOC01-appb-M000004
 従って、本発明に係る歯車測定方法によれば、ワークWの基礎円Wb上の接点Aoから
両方向に回転角度αで回転した位置をそれぞれ接点A,A'とし、この接点A,A'に接する接線L,L'に沿ってワークWの回転に応じて測定子16aを移動させ、この接線L,L'の交点Mを測定開始位置B,B'と測定終了位置C,C'との間の中点とすることにより、測定子16aのY軸方向への移動量である測定終了位置C,C'間の距離を短くすることができるので、測定子16aのX-Y平面内での移動範囲を小さくすることができる。この結果、大形のワークWの歯形形状を測定する場合であっても、省スペースで測定を行うことができるので、機械の小型化を図ることができる。
 また、ワークWの回転に応じて測定子16aを接線L,L'に沿って移動させることにより、測定開始位置B,B'から測定終了位置C,C'にかけて、測定子16aとワークWの右歯面WR及び左歯面WLとの接触角度を常に一定にすることができる。これにより、測定誤差の発生を抑制することができる。
 本発明は、被測定歯車の大きさに関わらず、高精度にその歯面形状を測定することができる歯車測定方法に適用可能である。
                                                                                    

Claims (1)

  1.  測定子の移動と被測定歯車の回転とを同期制御して、被測定歯車の回転に応じて、前記測定子を被測定歯車の一方の歯面または他方の歯面に接触させた状態で直線移動させることにより、被測定歯車の歯形形状を測定する歯車測定方法において、
     被測定歯車の基礎円上の基準点から一方に所定の回転角度で回転配置した一方側接点に接する一方側接線と、被測定歯車の基礎円上の基準点から他方に前記所定の回転角度で回転配置した他方側接点に接する他方側接線とを設定し、
     前記一方の歯面の測定時に、前記測定子を前記一方側接線に沿って移動させる一方、
     前記他方の歯面の測定時に、前記測定子を前記他方側接線に沿って移動させ、
     前記一方側接線と前記他方側接線との交点を、前記一方側接線上及び前記他方側接線上における測定開始位置と測定終了位置との間に配置する
     ことを特徴とする歯車測定方法。
                                                                                        
PCT/JP2009/068362 2008-11-12 2009-10-27 歯車測定方法 WO2010055766A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980145290.6A CN102216725A (zh) 2008-11-12 2009-10-27 齿轮测量方法
US13/128,746 US20110247436A1 (en) 2008-11-12 2009-10-27 Gear measurement method
EP09826016A EP2365277A1 (en) 2008-11-12 2009-10-27 Method of measuring gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289434 2008-11-12
JP2008289434A JP2010117196A (ja) 2008-11-12 2008-11-12 歯車測定方法

Publications (1)

Publication Number Publication Date
WO2010055766A1 true WO2010055766A1 (ja) 2010-05-20

Family

ID=42169902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068362 WO2010055766A1 (ja) 2008-11-12 2009-10-27 歯車測定方法

Country Status (7)

Country Link
US (1) US20110247436A1 (ja)
EP (1) EP2365277A1 (ja)
JP (1) JP2010117196A (ja)
KR (1) KR20110079718A (ja)
CN (1) CN102216725A (ja)
TW (1) TW201026415A (ja)
WO (1) WO2010055766A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562256A (zh) * 2017-11-29 2018-09-21 中国航发沈阳黎明航空发动机有限责任公司 一种齿形中部不完整圆弧端齿齿顶高测量方法
CN109654978A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘齿面形状深度误差检测方法
CN109654984A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘对中心轴线的同轴度误差检测方法
CN109654986A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘对端面平行度误差检测方法
CN109654979A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘齿面形状深度误差检测装置
CN109654985A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘检测装置
CN109654983A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘对同轴度和分度均布误差检测装置
CN109764833A (zh) * 2019-01-04 2019-05-17 中国航发南方工业有限公司 检测方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010122680A1 (ja) * 2009-04-24 2012-10-25 株式会社東京テクニカル インボリュート歯車の歯形測定方法
JP5255012B2 (ja) 2010-04-02 2013-08-07 三菱重工業株式会社 歯車測定装置の校正方法
DE102010023728A1 (de) * 2010-06-14 2011-12-15 Liebherr-Verzahntechnik Gmbh Verfahren zum Herstellen einer Mehrzahl von identischen Zahnrädern mittles abspanender Bearbeitung
JP5854661B2 (ja) * 2011-06-28 2016-02-09 三菱重工業株式会社 形状測定用測定子の校正方法
EP2653826B1 (en) * 2012-04-19 2020-02-19 General Electric Technology GmbH Measuring tool for a disc coil
DE202012011761U1 (de) * 2012-11-27 2013-01-11 Horst Knäbel Vorrichtung zur Überprüfung eines Kettenrades
WO2015166035A1 (en) * 2014-05-02 2015-11-05 Marposs Societa' Per Azioni Apparatus and method for checking the position and/or dimensions of a workpiece
CN103994744B (zh) * 2014-06-06 2017-02-15 陕西法士特齿轮有限责任公司 一种齿形测量方法
KR101640427B1 (ko) * 2014-06-11 2016-08-09 기어테크 주식회사 기어측정기의 측정 헤드
JP6537915B2 (ja) * 2015-07-27 2019-07-03 Ntn株式会社 ピッチ円錐角測定方法及び測定装置
JP6862636B2 (ja) * 2016-04-06 2021-04-21 株式会社ジェイテクト 歯車の測定方法及び測定装置
EP3255373B1 (de) * 2016-06-09 2019-04-24 Klingelnberg AG Berührungsmessung an der zahnflanke eines zahnradbauteils
DE102017000072A1 (de) * 2017-01-05 2018-07-05 Liebherr-Verzahntechnik Gmbh Verfahren zum automatischen Bestimmen der geometrischen Abmessungen eines Werkzeuges in einer Verzahnmaschine
US20190301971A1 (en) * 2018-04-02 2019-10-03 Hota Industrial Mfg. Co., Ltd. Taiwan Science Park Branch Automatic System for Processing and Testing Gears
DE102019104812A1 (de) * 2019-02-26 2020-08-27 KAPP NILES GmbH & Co. KG Verfahren zum Schleifen oder Polieren eines Zahnrads oder eines Werkstücks mit einem zahnradähnlichen Profil in einer Schleif- oder Poliermaschine
DE102019104891B3 (de) * 2019-02-26 2020-03-12 Liebherr-Verzahntechnik Gmbh Verfahren zum Kalibrieren eines Messtasters in einer Verzahnmaschine
CN113029060B (zh) * 2021-04-30 2022-11-11 西安法士特汽车传动有限公司 一种齿形定位方法及齿形定位控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896208A (ja) * 1981-12-04 1983-06-08 Mitsubishi Heavy Ind Ltd 歯形誤差測定方法
JPS63307313A (ja) * 1987-05-26 1988-12-15 クリンゲルンベルク ゼーネ コマンディートゲゼルシャフト 歯車の歯面の形状を検査する方法並びに装置
JPH02194311A (ja) * 1989-01-24 1990-07-31 Mitsubishi Heavy Ind Ltd 歯形誤差測定方法
JPH09178461A (ja) * 1995-12-27 1997-07-11 Osaka Seimitsu Kikai Kk 歯車の歯厚測定方法
JP2995258B2 (ja) 1991-10-24 1999-12-27 住友重機械工業株式会社 歯車測定方法および歯車測定兼用歯車研削盤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896208A (ja) * 1981-12-04 1983-06-08 Mitsubishi Heavy Ind Ltd 歯形誤差測定方法
JPS63307313A (ja) * 1987-05-26 1988-12-15 クリンゲルンベルク ゼーネ コマンディートゲゼルシャフト 歯車の歯面の形状を検査する方法並びに装置
JPH02194311A (ja) * 1989-01-24 1990-07-31 Mitsubishi Heavy Ind Ltd 歯形誤差測定方法
JP2995258B2 (ja) 1991-10-24 1999-12-27 住友重機械工業株式会社 歯車測定方法および歯車測定兼用歯車研削盤
JPH09178461A (ja) * 1995-12-27 1997-07-11 Osaka Seimitsu Kikai Kk 歯車の歯厚測定方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562256A (zh) * 2017-11-29 2018-09-21 中国航发沈阳黎明航空发动机有限责任公司 一种齿形中部不完整圆弧端齿齿顶高测量方法
CN109654978A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘齿面形状深度误差检测方法
CN109654984A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘对中心轴线的同轴度误差检测方法
CN109654986A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘对端面平行度误差检测方法
CN109654979A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘齿面形状深度误差检测装置
CN109654985A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘检测装置
CN109654983A (zh) * 2019-01-04 2019-04-19 中国航发南方工业有限公司 鼠牙盘对同轴度和分度均布误差检测装置
CN109764833A (zh) * 2019-01-04 2019-05-17 中国航发南方工业有限公司 检测方法
CN109654983B (zh) * 2019-01-04 2020-12-25 中国航发南方工业有限公司 鼠牙盘对同轴度和分度均布误差检测装置
CN109654985B (zh) * 2019-01-04 2021-01-01 中国航发南方工业有限公司 鼠牙盘检测装置
CN109764833B (zh) * 2019-01-04 2021-01-01 中国航发南方工业有限公司 检测方法
CN109654984B (zh) * 2019-01-04 2021-01-01 中国航发南方工业有限公司 鼠牙盘对中心轴线的同轴度误差检测方法

Also Published As

Publication number Publication date
US20110247436A1 (en) 2011-10-13
CN102216725A (zh) 2011-10-12
TW201026415A (en) 2010-07-16
JP2010117196A (ja) 2010-05-27
KR20110079718A (ko) 2011-07-07
EP2365277A1 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2010055766A1 (ja) 歯車測定方法
US7083496B2 (en) Gear grinding machine
CN109465502B (zh) 用于剃齿的方法和设备
US20110179659A1 (en) Method of measuring an involute gear tooth profile
US9539659B2 (en) Gear machining apparatus
KR102559309B1 (ko) 창성 기계 가공 공구를 측정하기 위한 방법 및 장치
JP2019206071A (ja) ワークの面取り加工装置
CN105921823B (zh) 一种摆线齿轮的数控蜗杆砂轮磨削方法
JP5957872B2 (ja) 加工方法および加工装置
JP2019206071A5 (ja)
JP5479254B2 (ja) 歯車研削盤
CN105636732A (zh) 内齿轮加工设备及内齿轮加工方法
US20170008106A1 (en) Method of producing a toothed workpiece having a modified surface geometry
JP6606967B2 (ja) 歯車加工装置及び歯車加工方法
CN105555451A (zh) 轮廓量规、装备有轮廓量规的测量装置以及测量方法
KR101200171B1 (ko) 5축 cνc 가공기계를 이용한 드럼 캠의 황삭가공을 위한 후처리방법
JP5854661B2 (ja) 形状測定用測定子の校正方法
JP3986320B2 (ja) 歯車加工方法及び装置
KR20160146419A (ko) 5축 cnc 가공기계를 이용한 롤러기어캠의 가공방법
JPH05296703A (ja) 内歯歯車の歯形測定装置
JP5691622B2 (ja) 砥石旋回中心測定方法および砥石旋回中心測定装置
JP3760109B2 (ja) かさ状歯車の中間製品と加工工具との位置決め方法および装置
JP3898437B2 (ja) 溝加工方法及びその実施に直接使用する加工装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145290.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009826016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 937/MUMNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117010654

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13128746

Country of ref document: US