WO2010053133A1 - リードフレーム及びその製造方法及びそれを用いた半導体発光装置 - Google Patents

リードフレーム及びその製造方法及びそれを用いた半導体発光装置 Download PDF

Info

Publication number
WO2010053133A1
WO2010053133A1 PCT/JP2009/068921 JP2009068921W WO2010053133A1 WO 2010053133 A1 WO2010053133 A1 WO 2010053133A1 JP 2009068921 W JP2009068921 W JP 2009068921W WO 2010053133 A1 WO2010053133 A1 WO 2010053133A1
Authority
WO
WIPO (PCT)
Prior art keywords
back surface
area
lead
resin
lead frame
Prior art date
Application number
PCT/JP2009/068921
Other languages
English (en)
French (fr)
Inventor
吉岡 修
仁 本村
塚本 健人
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009045460A external-priority patent/JP5304314B2/ja
Priority claimed from JP2009120675A external-priority patent/JP5304431B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020107029799A priority Critical patent/KR101257581B1/ko
Priority to CN2009801249733A priority patent/CN102077371B/zh
Publication of WO2010053133A1 publication Critical patent/WO2010053133A1/ja
Priority to US12/737,678 priority patent/US8841692B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Definitions

  • the present invention relates to a lead frame that carries and mounts an LED (Light Emitting Diode), a manufacturing method thereof, and a semiconductor light emitting device using the lead frame.
  • LED Light Emitting Diode
  • a lead frame for carrying and mounting an electronic element such as a semiconductor integrated circuit or an LED light emitting element is a lead made of a copper thin plate, an alloy thin plate such as iron-nickel, or an alloy thin plate such as copper-nickel-tin.
  • the lead frame is manufactured by photoetching from one or both sides of the metal material using an etchant such as ferric chloride. Alternatively, it is manufactured by a punching method using a press die.
  • the lead frame includes a pad portion (island portion) for mounting a semiconductor integrated circuit and an LED element, and an inner lead portion and an out lead portion that are insulated and separated from the pad portion.
  • the inner lead portion is electrically connected to the electronic element.
  • the out lead portion is electrically connected to the outside and extends from the inner lead portion.
  • the lead frame has a mounting portion (mounting surface) for mounting an electronic element on the surface side of the pad portion.
  • a lead frame has a heat radiation part (heat radiation plate) for dissipating drive heat generated from an electronic element body such as an LED light emitting element or environmental conditions around the electronic element on the back side of the pad. It has been. That is, in the lead frame, heat is radiated from the heat radiation part on the back surface side of the pad part or the outer lead part to the outside world side so that heat is not accumulated on the electronic element side.
  • Patent Documents 1 to 5 describe a technique for mounting an electronic light emitting element such as an LED on a carrier, and a heat dissipation technique for preventing heat storage on the light emitting element.
  • the heat dissipation characteristics are good and the reliability is excellent, but there is a disadvantage that the price is high.
  • the epoxy resin that is the base material of the printed circuit board has a drawback of poor heat dissipation.
  • a printed board in which a metal plate made of Cu (copper) or Al (aluminum) is inserted into the inner layer of the board must be employed.
  • a process of applying a light reflective ceramic ink to the light reflecting surface of the substrate on which the light emitting element is mounted is required. It was.
  • the printed circuit board other than the ceramic substrate or the lead frame substrate system is not only inferior in heat dissipation characteristics, but also has a complicated manufacturing method and process as compared with the manufacturing method of the semiconductor light emitting device using the ceramic substrate. There were drawbacks.
  • the present invention has been made in view of the above problems, and as a substrate for carrying an LED light emitting device (LED chip), the light emitting device lead frame substrate having both high heat dissipation performance and high optical gain. It is an object of the present invention to provide an inexpensive manufacturing method and a semiconductor light emitting device using the manufacturing method.
  • LED chip LED light emitting device
  • the light emitting device lead frame substrate having both high heat dissipation performance and high optical gain. It is an object of the present invention to provide an inexpensive manufacturing method and a semiconductor light emitting device using the manufacturing method.
  • the invention according to claim 1 of the present invention includes at least one pad portion 2 having an LED chip mounting surface A on which the LED chip 10 is mounted, and an electrical connection area C for electrical connection with the LED chip.
  • a lead frame having a stepped portion or a tapered portion E for holding a filled resin during molding.
  • an area S3 of the electrical connection area C of the lead portion 2a and the pad portion 2 facing the electrical connection area C are provided.
  • the relationship between the heat dissipation back surface B and the area S4 of the heat dissipation back surface D in the same plane is 0 ⁇ S3 ⁇ S4, and the lead portion 2a between the electrical connection area C and the heat dissipation back surface D
  • the lead frame has a stepped portion or a tapered portion E that holds the filling resin at the time of molding, extending from the electrical connection area C toward the heat dissipating back surface D.
  • the invention according to claim 3 of the present invention includes at least one pad portion 2 having an LED chip mounting surface A on which the LED chip 10 is mounted, and an electrical connection area C for electrical connection with the LED chip.
  • a lead frame having a lead portion 2a having the same plane, the area S1 of the mounting surface A of the pad portion 2 and the area S2 of the heat dissipating back surface B facing the mounting surface A
  • the relationship is 0 ⁇ S1 ⁇ S2
  • the pad portion 2 is composed of an upper structure having the mounting surface A and a lower structure which is integral with the upper structure and has the heat dissipating back surface B.
  • a stepped portion or a tapered portion E holding the filling resin at the time of molding, spreading from the mounting surface A toward the heat dissipating back surface B. Release It spreads from use backside B toward the mounting surface A, a lead frame and having a stepped portion or a tapered portion E1 holds the fill resin during molding.
  • an area S3 of the electrical connection area C of the lead portion 2a and the pad portion 2 facing the electrical connection area C are provided.
  • the relationship between the heat radiation back surface D and the area S4 of the heat radiation back surface D in the same plane is 0 ⁇ S3 ⁇ S4, and the lead portion 2a includes the upper structure having the electrical connection area C and the upper structure.
  • a lower structure having the heat dissipating back surface D, and a filling resin at the time of molding that extends from the electrical connection area C toward the heat dissipating back surface D is held on the side surface portion of the upper structure.
  • the pad portion 2 and the lead portion 2a are formed as a single unit frame having the front and back surfaces in the same plane, and each unit frame is mutually connected.
  • a lead frame connected in a vertical and horizontal direction with one or a plurality of tie bars and arranged in a multi-faceted manner.
  • the lead frame is characterized in that the surface height of the tie bar is set to a low level, and the tie bar is set to be thinner than the pad portion 2 and the lead portion 2a.
  • a photoresist pattern for forming a mounting surface A having an area S1 of the pad portion 2 is formed on the surface of a plate-like metal material for a lead frame, and the metal Forming a photoresist pattern for forming a heat-dissipating back surface B having an area S2 facing the mounting surface A of the pad portion 2 on the back surface of the material, and etching the front and back surfaces of the metal material
  • the relationship between the area S1 of the mounting surface A of the pad portion 2 and the area S2 of the heat dissipating back surface B is 0 ⁇ S1 ⁇ S2
  • the mounting surface A and the heat dissipating back surface B are A stepped portion or a tapered portion E that holds the filling resin at the time of molding is formed on the side surface portion of the pad portion in the middle, extending from the mounting surface A toward the heat dissipating back surface B.
  • the surface of the metal material when patterning a photoresist for forming the mounting surface A, the surface of the metal material is When forming a photoresist pattern for forming the electrical connection area C composed of the area S3 of the lead portion 2a and patterning the photoresist for forming the heat radiating back surface B, the back surface of the metal material is formed.
  • a lead frame manufacturing method is characterized in that a portion E is formed.
  • a photoresist pattern for forming a mounting surface A having an area S1 of the pad portion 2 on the surface of a plate-like metal material for a lead frame, and the metal Forming a photoresist pattern for forming a heat-dissipating back surface B having an area S2 facing the mounting surface A of the pad portion 2 on the back surface of the material, and etching the front and back surfaces of the metal material
  • the relationship between the area S1 of the mounting surface A of the pad portion 2 and the area S2 of the heat dissipating back surface B is 0 ⁇ S1 ⁇ S2, and the pad portion 2 has the mounting surface A.
  • An upper structure and a lower structure that is integral with the upper structure and has the heat dissipation back surface B, and spreads from the mounting surface A toward the heat dissipation back surface B on the side surface of the upper structure.
  • a stepped portion or a tapered portion E for holding the filling resin at the time of molding is formed, and the filling resin at the time of molding that spreads from the heat dissipating back surface B toward the mounting surface A is held on the side surface portion of the lower structure.
  • a method of manufacturing a lead frame is characterized by forming a stepped portion or a tapered portion E1.
  • the surface of the metal material is When the photoresist for forming the electrical connection area C composed of the area S3 of the lead portion 2a is patterned and the photoresist for forming the heat radiating back surface B is formed, the back surface of the metal material is formed.
  • the lead portion is formed by patterning a photoresist for forming a heat-dissipating back surface D having an area S4 facing the electrical connection area C of the lead portion 2a, and etching from both front and back surfaces of the metal material.
  • the relationship between the area S3 of the electrical connection area C of 2a and the area S4 of the back surface C for heat dissipation is S3 ⁇ S4, and the lead portion 2a
  • An upper structure having an air connection area C and a lower structure integrated with the upper structure and having the heat dissipating back surface D.
  • a stepped portion or a taper-shaped portion E that holds the filling resin at the time of molding is formed to expand toward the rear surface D, and is formed on the side surface of the lower structure from the heat dissipating back surface D toward the electrical connection area C.
  • the lead frame manufacturing method is characterized by forming a stepped portion or a tapered portion E1 that holds the filled resin during molding.
  • the pad portion 2 and the lead portion 2a are each formed as a single unit frame having the front and back surfaces in the same plane.
  • the lead frame is characterized in that, among the surface heights of both surfaces, the surface height of the tie bar is set to be low, and the thickness of the tie bar is set to be thinner than the pad portion 2 and the lead portion 2a. It is a manufacturing method.
  • At least one pad portion 2 having a surface A for mounting an LED chip on which an IC chip such as the LED chip 10 is mounted, and electricity for electrical connection with the LED chip.
  • a lead frame provided with a lead portion 2a having a general connection area C on the same plane extends from the mounting surface A to the heat dissipating back surface B opposite to the mounting surface A by a filling resin in the thickness direction.
  • a semiconductor light emitting device that is molded and coated with a transparent resin including the LED chip and the electrical connection area C on the upper surface side of the mounting surface A of the pad portion.
  • the relationship between the area S1 of the mounting surface A and the area S2 of the heat dissipating back surface B is 0 ⁇ S1 ⁇ S2, and the path between the mounting surface A and the heat dissipating back surface B is the same.
  • a stepped portion or a tapered portion E from the mounting surface A toward the heat dissipating back surface B, and the filling resin is held by the stepped portion or the tapered portion E.
  • the semiconductor light emitting device is characterized in that
  • At least one pad portion 2 having a surface A for mounting an LED chip on which an IC chip such as the LED chip 10 is mounted, and electricity for electrical connection with the LED chip.
  • a lead frame provided with a lead portion 2a having a general connection area C on the same plane extends from the mounting surface A to the heat dissipating back surface B opposite to the mounting surface A by a filling resin in the thickness direction.
  • a semiconductor light emitting device that is molded and coated with a transparent resin including the LED chip and the electrical connection area C on the upper surface side of the mounting surface A of the pad portion.
  • the relationship between the area S1 of the mounting surface A and the area S2 of the heat dissipating back surface B is 0 ⁇ S1 ⁇ S2, and the pad portion has an upper structure having the mounting surface A; A step structure or a taper-shaped portion that is integral with the part structure and has a lower structure having the heat dissipating back surface B, and is formed on the side surface of the upper structure from the mounting surface A toward the heat dissipating back surface B.
  • the semiconductor light emitting device is characterized by being held by tapered portions E and E1.
  • an area S3 of the electrical connection area C of the lead portion 2a and the pad portion opposed to the electrical connection area C. 2 is 0 ⁇ S3 ⁇ S4
  • the lead portion 2a between the electrical connection area C and the heat dissipating back surface D is 0 ⁇ S3 ⁇ S4.
  • the filling resin has a stepped portion or a tapered shape.
  • the semiconductor light emitting device is held by the part E.
  • an area S3 of the electrical connection area C of the lead portion 2a and the pad portion facing the electrical connection area C are provided.
  • 2 is 0 ⁇ S3 ⁇ S4
  • the lead portion 2a includes an upper structure having the electrical connection area C, and the upper portion of the upper surface of the heat dissipating surface D.
  • Filling resin at the time of resin molding which is integrated with a structure and includes a lower structure having the heat radiation back surface D, and spreads from the electrical connection area C toward the heat radiation back surface D on the side surface of the upper structure.
  • a step for holding a filling resin at the time of resin molding which has a stepped portion or a tapered portion E for holding the resin and expands from the heat dissipating back surface D toward the electrical connection area C on the side surface portion of the lower structure.
  • Jo portion or has a tapered portion E1 the filling resin is a semiconductor light emitting device characterized by being retained in each of the step-like portion or the tapered portion E, E1.
  • a relationship between the light refractive index n1 of the filling resin and the light refractive index n2 of the transparent resin is set to n1> n2.
  • the invention according to claim 16 of the present invention is the semiconductor light emitting device according to claim 11, wherein fine particles with improved reflectance characteristics are added to the filling resin.
  • the invention according to claim 17 of the present invention is a lead frame in which the upper structure on the front surface side and the lower structure on the back surface side are integrated and formed of a plurality of structures separated from each other, wherein the lead frame is , Formed between and outside the plurality of structures, and having a filling resin having the same thickness as the lead frame, and the upper structure includes a pad portion 2 and a lead portion 2a separated from the pad portion 2.
  • the lower structure includes a heat dissipating part 3 integrated with the pad part 2 and a heat dissipating part 3a integrated with the lead part 2a, and an area S1 of the surface of the pad part 2;
  • the relationship between the area S2 of the back surface of the heat radiating portion 3 is 0 ⁇ S1 ⁇ S2, and the relationship between the area S3 of the surface of the lead portion 2a and the area S4 of the back surface of the heat radiating portion 3a is 0 ⁇ S3 ⁇ S4.
  • a stepped portion or a taper that has a stepped portion or a tapered portion that spreads from the front side to the backside of the frame, and a stepped portion or a taper that spreads from the backside to the front side of the front lead frame on the side surface of each of the lower structures.
  • the lead frame is provided with an inner peripheral surface of an inclined surface facing the pad portion outside the pad portion 2 and the lead portion 2a on the surface side and integrated with the filling resin.
  • a lead frame having a light reflecting ring 4a for light reflection formed and protruding from the filling resin.
  • an inclination angle of the inner peripheral surface of the light reflecting ring 4a with respect to the surface of the pad portion 2 is not less than 30 degrees and not more than 85 degrees. This is a lead frame.
  • the filling resin is a light diffusing resin in which a powdery additive is mixed with a resin, and a light refractive index is 2 or more.
  • the pad portion 2 and the lead portion 2a are defined as one unit frame having the front and back surfaces in the same plane, and each unit frame is mutually connected.
  • a lead frame connected in a vertical and horizontal direction with one or a plurality of tie bars and arranged in a multi-faceted manner, wherein each of the pad portion 2, the lead portion 2a and the tie bar has a surface height on the front surface, back surface, or both front and back surfaces.
  • the lead frame is characterized in that the surface height of the tie bar is set to a low level, and the tie bar is set to be thinner than the pad portion 2 and the lead portion 2a.
  • the chip mounting surface A composed of the area S1 of the pad portion 2 and the electrical connection area C composed of the area S3 of the lead portion 2a are formed on the surface of the lead frame metal material.
  • a pattern of a photoresist to be formed is formed, and on the back surface of the metal material, a heat dissipating back surface B having an area S2 facing the chip mounting surface A and an area S4 facing the electrical connection area C are disposed.
  • a pattern of a photoresist forming D is formed, and etching processing is performed from both the front and back surfaces of the metal material, whereby the area S1 of the chip mounting surface A of the pad portion 2 and the area S2 of the heat dissipation back surface B The relationship is 0 ⁇ S1 ⁇ S2, and the relationship between the area S3 of the electrical connection area C and the area S4 of the heat dissipating back surface D is 0 ⁇ S3 ⁇ S4.
  • the heat dissipating part 3 having the heat dissipating back surface B of the lower structure is integrally formed, and the lead part 2a having the electric connection area C of the upper structure and the heat dissipating part 3a having the heat dissipating back surface D of the lower structure are integrated.
  • the upper structure and the lower structure are formed by installing an integral structure having the upper structure and the lower structure in a mold for molding, filling the mold with resin, and molding the mold.
  • a filling resin having the same thickness as that of the integral structure is formed around the integral structure of the upper structure and the lower structure, and at the same time as the filling resin is formed, the pad portion 2 is formed on the chip mounting surface A side.
  • a light reflecting ring 4a for light reflection having an inner peripheral surface of a slope facing the chip mounting surface A side is formed outside the lead portion 2a so as to protrude from the filling resin as an integral structure with the filling resin.
  • the invention according to claim 22 of the present invention is the lead frame manufacturing method according to claim 21, wherein the pad portion 2 and the lead portion 2a are formed as a single unit frame having the front and back surfaces of the same plane.
  • a manufacturing method of a lead frame in which unit frames are connected to each other by one or a plurality of tie bars in the vertical and horizontal directions and arranged in a multi-faceted manner, each of which includes a front surface and a back surface of the pad part 2, the lead part 2a, and the tie bar.
  • the lead is characterized in that the surface height of the tie bar is set to be lower among the surface heights of both the front and back surfaces, and the thickness of the tie bar is set to be thinner than the pad portion 2 and the lead portion 2a. It is a manufacturing method of a frame.
  • a lead frame formed of a plurality of structures in which the upper structure on the front surface side and the lower structure on the rear surface side are integrated and separated from each other, and the plurality of the lead frames. And a filling resin having the same thickness as the lead frame, and the upper structure includes a pad portion 2 and a lead portion 2a separated from the pad portion 2.
  • the lower structure includes a heat radiating portion 3 integrated with the pad portion 2 and a heat radiating portion 3a integrated with the lead portion 2a, and a surface of the lead frame is provided on a side surface portion of each upper structure.
  • a stepped portion or a tapered portion extending in the direction from the side to the backside, and a stepped portion or a tapered portion extending in the direction from the backside of the front lead frame to the surface side is provided on the side surface portion of each of the lower structures.
  • a light reflecting ring for reflecting light that has an inner peripheral surface of an inclined surface facing the pad portion outside the pad portion 2 and the lead portion 2a, is formed integrally with the filling resin, and protrudes from the filling resin.
  • an LED chip is mounted on the surface of the pad portion 2, an electrode of the LED chip is electrically connected to the lead portion 2a, covers the LED chip, and the inner part of the light reflecting ring 4a
  • a semiconductor light-emitting device is characterized in that a transparent resin in contact with a peripheral surface is formed.
  • the relationship between the surface area S1 of the pad portion 2 and the area S2 of the back surface of the heat radiating portion 3 is 0 ⁇ S1 ⁇ .
  • the relationship between the surface area S3 of the lead portion 2a and the area S4 of the back surface of the heat radiating portion 3a is 0 ⁇ S3 ⁇ S4.
  • the filling resin is a light diffusing resin in which a powdery additive is mixed with a resin, and a light refractive index is 2 or more.
  • the relationship between the area S1 of the LED chip mounting surface A of the pad portion 2 in the lead frame for a semiconductor light emitting device and the area S2 of the heat radiating back surface B facing the mounting surface A is expressed as 0 ⁇ S1 ⁇ .
  • S2 the relationship between the area S3 of the electrical connection area C and the area S4 of the heat dissipation back surface D facing the electrical connection area C is set to 0 ⁇ S3 ⁇ S4, and the area of the heat dissipation back surface B is set to the mounting surface It is wider than A and is manufactured with a heat radiating back surface D wider than the electrical connection area C. For this reason, high heat dissipation performance can be obtained on the back side of the lead frame.
  • a stepped portion or a tapered portion for holding the filling resin at the time of resin molding is formed on the front side or both front and back sides of the LED lead frame. For this reason, reliable adhesion between the lead frame and the filling resin molded around the lead frame to fix the lead frame is obtained, separation of the lead frame from the filling resin, and filling resin from the lead frame. There is an effect that it is possible to prevent the detachment and the like and improve the reliable detachment resistance.
  • the light emitted from the LED chip 10 is efficiently emitted to the outside by using a resin having a high light reflectance as the filling resin and giving the filling resin or the surface thereof a high light reflectance. It becomes possible to make it.
  • the relationship between the light refractive index n1 of the filling resin and the light refractive index n2 of the transparent resin formed so as to cover the LED light emitting device is set to n1> n2, so that the filling resin 4 and the transparent resin 4 are transparent.
  • the reflectance at the interface with the resin 5 can be increased, and a high light reflectance can be obtained at the filling resin or its surface.
  • the present invention forms the light reflecting ring integrally formed with the filling resin by molding the filling resin using a mold in which the concave portion for the light reflecting ring is formed.
  • a separate light reflecting ring is formed on the filling resin, if the joint surface between the filling resin and the light reflecting ring becomes an interface, and the bonding strength between the two at the interface is weak, the light reflecting ring is easily peeled off from the filling resin. It was. In particular, peeling is likely to occur when water vapor generated from the filling resin or the light reflecting ring diffuses to the interface or when water vapor in the surrounding atmosphere diffuses to the interface.
  • the filling resin and the light reflection ring are integrated.
  • a resin having a high light reflectance is used for the filling resin and the light reflecting ring integrated with the filling resin, and the light refractive index of the light reflecting ring integrated with the filling resin and the filling resin is emitted. It is set larger than the optical refractive index of the transparent resin covering the element. Thereby, the light reflectance in the boundary surface of filling resin and a light reflection ring, and transparent resin can be increased. Therefore, a high light reflectance can be obtained at the filling resin and the light reflecting ring or the surface thereof, and the light emitted from the light emitting element (LED chip) can be efficiently reflected and emitted to the outside.
  • LED chip light emitting element
  • FIG. 1 is a top view of a semiconductor light emitting device manufactured using a lead frame according to a first embodiment of the present invention.
  • 1 is a back view of a semiconductor light emitting device manufactured using a lead frame according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 1. Sectional drawing along the VV line of FIG. The schematic cross section for demonstrating the function of the filling resin concerning the LED element in the 1st Embodiment of this invention.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1, showing a semiconductor light emitting device manufactured using the lead frame in the second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 1, showing a semiconductor light emitting device manufactured using the lead frame according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG. 1, showing a semiconductor light emitting device manufactured using the lead frame according to the second embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 13, showing a semiconductor light emitting device manufactured using the lead frame in the fourth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along line XV-XV in FIG. 13, showing a semiconductor light emitting device manufactured using the lead frame in the fourth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the line XVI-XVI in FIG. 13, showing a semiconductor light emitting device manufactured using the lead frame in the fourth embodiment of the present invention. Sectional drawing of an example of the resin mold to the lead frame using a metal mold
  • the lead frame 1 in the present embodiment is formed by punching a metal plate-like substrate using a press die. That is, as shown in FIGS. 3 and 5, the lead frame 1 is formed by performing a punching process using a press die on a metal plate-like substrate having a thickness t1.
  • the lead frame 1 includes an upper structure pattern having a thickness t2 on the front surface side (mounting surface side of the light emitting element 10) and a lower structure pattern having a thickness t3 on the back surface side. Since these upper structure and lower structure are produced from the same metal thin plate, they are integrated.
  • the lead frame 1 is made of a copper thin plate, an alloy thin plate such as iron-nickel or a metal thin plate such as copper-nickel-tin. However, it is preferable to use copper or a copper alloy having a high thermal conductivity as the metal material because the heat dissipation of the lead frame 1 is improved. Moreover, not only these but metal materials, such as an aluminum alloy, can also be used.
  • the pattern of the upper structure having a thickness t2 of the lead frame 1, which is thinner than the thin metal plate having the thickness t ⁇ b> 1, includes the pad portion 2 and one to a plurality of ones. And a lead portion 2a.
  • the lead portion 2a is separated from the pad portion 2 and is formed adjacent to the pad portion 2 at a predetermined interval.
  • the pattern of the lower structure having a thickness t ⁇ b> 3 is a heat radiating portion 3 (heat radiating plate) integrated with the pad portion 2 on the back surface side of the pad portion 2.
  • a heat dissipating part 3a heat dissipating plate integrated with the lead part 2a on the back side of the lead part 2a.
  • W has shown an example of the wire (gold wire).
  • This wire is connected by wire bonding between the light emitting element (LED chip) 10 mounted on the chip mounting surface A of the pad portion 2 and the electrical connection area C of the lead portion 2a, and these are electrically connected. is doing.
  • the surface (upper surface) of the pad portion 2 is a mounting surface A having an area S ⁇ b> 1 for mounting the LED chip 10.
  • the outer surface (back surface) of the heat radiating portion 3 on the back surface side facing the pad portion 2 is a heat radiating back surface B (heat radiating plate) having an area S2 for dissipating heat from the back surface side of the pad portion 2 to the outside. . That is, the heat radiating part 3 functions to dissipate drive heat generated from the LED chip 10 body and heat due to ambient environment conditions of the LED chip 10 so that heat is not accumulated in the LED chip 10.
  • the lead portion 2a is formed simultaneously with the formation of the pad portion 2 at the time of punching using a press die on the base material.
  • the surface of the lead portion 2a is an electrical connection area (wire bonding area) C having an area S3 subjected to silver plating or the like. Thereby, the connectivity can be improved when the LED chip 10 and the lead portion 2a are electrically connected by wire bonding or chip bonding.
  • the outer surface (back surface) of the heat radiating portion 3a on the back surface facing the lead portion 2a is a heat radiating back surface D (heat radiating plate) having an area S4.
  • the mounting surface A of the pad portion 2 and the electrical connection area C of the lead portion 2a are formed from the same lead frame substrate (for example, a plate-like substrate). Further, the heat dissipating back surface B of the pad portion 2 and the heat dissipating back surface D of the lead portion 2a are formed from the same plate-like substrate. For this reason, the surface of the mounting surface A and the surface of the electrical connection area C and the surface of the heat dissipating back surface B and the surface of the heat dissipating back surface D are in the same plane.
  • the electrical connection area C of the lead portion 2a is connected to the LED light emitting element 10 mounted on the mounting surface A of the pad portion 2 by wire bonding or chip bonding.
  • the electrical connection area C is a region where a wire for connecting to the LED chip 10 mounted on the mounting surface A of the pad portion 2 is bonded, a connection electrode formed on the LED chip 10 and solder. It is comprised from the area
  • the plating formed in the electrical connection area C described above may be gold plating or palladium plating instead of silver plating. Further, it is also possible to perform base plating such as Ni (nickel) plating having excellent heat diffusibility before performing silver plating, gold plating, and palladium plating on the electrical connection area C surface. Furthermore, in order to mount and connect the semiconductor light emitting device LE to the external substrate, the rear surface for heat dissipation may be subjected to underplating such as silver plating, gold plating, palladium plating, Ni (nickel) plating or the like.
  • the relationship between the area S1 of the mounting surface A of the pad portion 2 and the area S2 of the heat dissipating back surface B is S1 ⁇ S2. That is, the area of the heat radiating back surface B is set larger than the area of the mounting surface A.
  • the relationship between the area S3 of the wire bonding area C of the lead part 2a and the area S4 of the back surface D for heat dissipation is S3 ⁇ S4. That is, the area of the heat radiation back surface D is set larger than the area of the wire bonding area C.
  • the side surface portion of the pad portion 2 between the mounting surface A of the pad portion 2 and the heat dissipating back surface B of the heat dissipating portion 3 is directed from the mounting surface A to the heat dissipating back surface B ( It is formed as a stepped portion or a tapered portion E that extends from the front surface side to the back surface side of the lead frame 1.
  • a line drawn from the front surface A toward the back surface B with respect to the stepped portion or the tapered portion E of the side surface portion has a bent or curved shape.
  • the stepped portion or the tapered portion E can hold the resin to be filled later by mold filling so as not to drop out from the frame front side to the back side.
  • the side surface portion of the lead portion 2a between the area C of the lead portion 2a and the heat radiation back surface D is in the direction from the area C to the heat radiation back surface D (from the front surface side to the back surface of the lead frame 1). It is formed as a stepped portion or a tapered portion E extending in the direction of the side.
  • a line drawn from the area C in the direction of the back surface D with respect to the stepped portion or the tapered portion E of the side surface portion has a bent or curved shape.
  • the stepped portion or the tapered portion E can hold the resin to be filled later by mold filling so as not to drop out from the frame front side to the back side.
  • a punching process using a press die is performed on an alloy thin plate such as iron-nickel or a plate-like metal material for a lead frame made of a metal alloy such as copper-nickel-tin.
  • a penetration part is formed in a metal material. That is, as shown in FIGS. 1 to 5, the pad portion 2 and the heat radiating portion 3 in which the relationship between the area S1 of the mounting surface A and the area S2 of the heat radiating back surface B is S1 ⁇ S2, and the electrical connection area C
  • the lead frame 1 including the lead portion 2a and the heat radiating portion 3a in which the relationship between the area S3 and the area S4 of the heat radiating back surface D satisfies S3 ⁇ S4 is formed.
  • the mounting is provided on the side surface portion of the pad portion 2 between the mounting surface A and the heat radiating back surface B.
  • a stepped portion or a tapered portion E extending from the front surface A to the heat dissipating back surface B is formed.
  • a stepped portion or a tapered portion E extending from the electrical connection area C in the direction of the heat dissipation back surface D is formed on the side surface portion of the lead portion 2a between the electrical connection area C and the heat dissipation back surface D. Is done.
  • the stepped portion or the tapered portion E can hold a resin (filled resin) filled during molding.
  • the lead frame 1 according to the present embodiment may be formed by a photo-etching method using a photoresist, as will be described later.
  • the lead frame 1 is loaded into a concave portion of a mold in which a concave portion having a predetermined internal shape (for example, a concave portion having the same depth t1 as the thickness t1 of the lead frame material) is formed in advance.
  • the mold generally has a two-sheet configuration of a plate-shaped upper mold 40 serving as a lid and a lower mold 41.
  • the lower mold 41 is formed with a concave portion 43 communicating with an injection port 42 for injecting the molten resin 4 as an internal space. It is possible to load the lead frame 1 (multi-sided lead frame ML) into the recess 43. After loading the lead frame 1 into the recess 43 of the lower mold 41, the upper mold 40 is united with the lower mold 41 and clamped.
  • the filled resin 4 heated and melted is injected into the recess 43 (internal space) from the injection port 42.
  • a resin-filled lead frame formed by filling the filled lead frame 1 (multi-faced lead frame ML) with the filling resin 4 is obtained.
  • the filling resin 4 having the same thickness as the thickness t1 of the lead frame 1 is formed.
  • each surface of the mounting surface A and the heat radiating back surface B, and each surface of the electrical connection area C and the heat radiating back surface D are exposed from the filling resin to the outer surface. In this way, a lead frame for a semiconductor light emitting device in which the filling resin is filled between the pad portion 2 and the lead portion 2A is formed.
  • the suspension lead 20 shown in FIGS. 1 and 2 is for preventing the pad portion 2 and the lead portion 2a from falling out of the metal material after punching using a press die. For this reason, the suspension lead 20 is formed to keep the pad portion 2 and the lead portion 2a connected to the metal material for a necessary period. Therefore, by cutting the suspension leads 20, individual lead frames (one unit frame described later) can be obtained. In each sectional view, illustration of the suspension lead 20 is omitted. The lead frame can be separated by cutting the connecting portion between the suspension lead 20 and the metal material. The cutting time of the suspension lead 20 may be set appropriately after mounting the LED chip or after resin molding.
  • the semiconductor light emitting device includes one or more pad portions 2 on which the LED chip 10 is mounted and a lead portion having an electrical connection area C for electrical connection with the LED chip 10.
  • the lead frame 1 is provided with 2a on the same plane.
  • the lead frame 1 extends from the LED chip mounting surface A of the pad portion 2 to the heat radiating back surface B of the heat radiating portion 3 facing the mounting surface A, and from the electrical connection area C of the lead portion 2a to the area C.
  • the heat treatment part 3a has a heat radiation back surface D and is molded by the resin 4 in the thickness direction.
  • the transparent resin 5 is covered in layers including the LED chip 10 and the electrical connection area C on the upper surface side of the mounting surface A of the pad portion 2 and the upper surface side of the electrical connection area C of the lead portion 2a.
  • the transparent material 5 is layered, but may be dome-shaped.
  • the lead frame 1 has, for example, a shape in which a pad portion 2 having a smaller area (area in the plan view of FIG. 1) than the heat radiating portion 3 protrudes from the heat radiating portion 3 having a pedestal shape.
  • the lead portion 2a having a smaller area than the heat radiating portion 3a is projected from the heat radiating portion 3a.
  • a heat radiation part can be set widely and it can be set as the LED element excellent in heat dissipation.
  • the side surface of the pad portion 2 and the lead portion 2a between the mounting surface A and the heat dissipating back surface B and between the electrical connection area C and the heat dissipating back surface D are formed from the mounting surface A.
  • a stepped portion or a tapered portion E extending from the heat dissipating back surface B and the electrical connection area C in the direction of the heat dissipating back surface D is formed. Therefore, when the resin 4 is melted and molded, and after the molding, the resin 4 is held by the stepped portion or the tapered portion E, and the contact area between the resin 4 and the lead frame is large. Become. Therefore, the filled resin 4 and the lead frame are firmly adhered. Thereby, it is possible to prevent the lead frame from dropping from the resin 4 or the resin 4 from dropping from the lead frame.
  • the LED element 10 emits light in a state where it is embedded in the layer of the transparent resin 5. For this reason, when the light emitted from the LED element 10 is emitted from the transparent resin 5 to the outside, it is important to provide high light gain. Therefore, as a transparent resin 5, for example, a resin having good transparency such as an acrylic resin (polymetamethyl acrylate resin) is naturally selected. Furthermore, the inventor particularly proposes to use a resin having high reflectivity at the boundary surface between the filling resin 4 and the transparent resin 5 as the filling resin 4.
  • the resin 4 desirably has a high light reflectance, but it is also desirable to have heat resistance, light resistance, thermal conductivity, and high light diffusivity. Therefore, as the resin 4, for example, epoxy resin, modified epoxy resin, silsesquioxane resin, silicone resin, acrylic resin, polycarbonate resin, aromatic polyester resin (unsaturated polyester resin), polyamide resin, polyphthalamide Organic polymer materials such as (PPA), liquid crystal polymer (LCP), and cycloolefin resins are desirable.
  • One type of resin or a mixed resin of a plurality of types of resins may be used.
  • the relationship between the light refractive index n1 of the filling resin 4 and the light refractive index n2 of the transparent resin 5 By setting the relationship between the light refractive index n1 of the filling resin 4 and the light refractive index n2 of the transparent resin 5 to n1> n2, a high light reflectance can be obtained at the boundary surface between the resin 4 and the transparent resin 5. it can. Further, as the difference in refractive index between the resin 4 and the transparent resin 5 is larger, higher reflection can be performed. However, the refractive index of the resin is approximately 2 or less, and there is a limit to increasing the refractive index difference only with the resin.
  • the resin 4 a light diffusing resin in which an additive such as a powdery substance or a granular substance is mixed with a resin mainly composed of the above-mentioned one kind of resin or a mixed resin of plural kinds of resins is used. Suggest to do. Thereby, the refractive index n of the resin 4 can be made 2 or more. Therefore, high reflectivity at the interface between the resin 4 and the transparent resin 5 can be obtained.
  • the additive added to the resin 4 include fine particles such as SiO 2 , TiO 2 , Al 2 O 3 , zirconium oxide, a ceramic material, or a mixture thereof.
  • the mixing ratio of the additive to the main resin can be set as appropriate. For example, 1% to 20% or more.
  • the light L emitted from the LED chip 10 travels through the transparent resin 5 and is emitted to the outside. However, a part of the light emitted from the LED chip 10 is reflected at the boundary of the transparent resin 5 in contact with the outside (air) (reflected light M (total reflection light, semi-reflection light, etc. in FIG. 6)). Thereafter, the reflected light M reaches the surface of the filling resin 4. At this time, when the resin 4 has a high light reflectance, the reflected light M can be reflected again on the surface of the resin 4 (re-reflected light N in FIG. 6). That is, the re-reflected light N can be emitted from the LED element. On the other hand, when the filling resin does not have a reflectance, the reflected light M enters the filling resin as it is and is not emitted from the LED element.
  • the reflected light M can be changed to the re-reflected light N on the plated surface. For this reason, it is more preferable in using the light emitted from the LED chip 10 efficiently.
  • the surface of the resin 4 is more preferable to coat the surface of the resin 4 with a ceramic ink or the like having an excellent light reflectivity in order to efficiently use the light emitted from the LED chip 10.
  • the lead frame 1 in the present embodiment is formed by photoetching a metal thin plate-like substrate. That is, as shown in FIGS. 7, 8, and 9, the lead frame 1 is formed by photoetching a metal thin plate base material having a thickness t ⁇ b> 1 from both sides.
  • the lead frame 1 includes an upper structure pattern having a thickness t2 on the front surface side (mounting surface side of the light emitting element 10) and a lower structure pattern having a thickness t3 on the back surface side. Since these upper structure and lower structure are produced from the same metal thin plate, they are integrated.
  • the lead frame 1 is made of a plate-like copper thin plate, an alloy thin plate such as iron-nickel or a metal thin plate such as copper-nickel-tin. However, it is preferable to use copper or a copper alloy having a high thermal conductivity as the metal material because the heat dissipation of the lead frame 1 is improved. Moreover, not only these but metal materials, such as an aluminum alloy, can also be used.
  • the pattern of the upper structure of the lead frame 1 having a thickness t2 that is thinner than the thin metal plate having the thickness t1 includes the pad portion 2 and one or more lead portions 2a. And. The lead portion 2a is separated from the pad portion 2 and is formed adjacent to the pad portion 2 at a predetermined interval. Further, as shown in FIGS. 7, 8 and 9, the pattern of the lower structure having the thickness t3 is formed by the heat radiation part 3 (heat radiation plate) integrated with the pad part 2 on the back side of the pad part 2 and the leads. A heat dissipating part 3a (heat dissipating plate) integrated with the lead part 2a is provided on the back side of the part 2a. In addition, in FIG.
  • W has shown an example of the wire (gold wire).
  • This wire is connected by wire bonding between the light emitting element (LED chip) 10 mounted on the chip mounting surface A of the pad portion 2 and the electrical connection area C of the lead portion 2a, and these are electrically connected. is doing.
  • the surface (upper surface) of the pad portion 2 is a mounting surface A having an area S1 for mounting the LED chip 10.
  • the outer surface (back surface) of the heat radiating portion 3 on the back surface side facing the pad portion 2 is a heat radiating back surface B (heat radiating plate) having an area S2 for dissipating heat from the back surface side of the pad portion 2 to the outside. . That is, the heat radiating part 3 functions to dissipate drive heat generated from the LED chip 10 body and heat due to ambient environment conditions of the LED chip 10 so that heat is not accumulated in the LED chip 10.
  • the lead portion 2a is formed simultaneously with the formation of the pad portion 2 at the time of photoetching processing to the lead frame base material.
  • the surface of the lead portion 2a is an electrical connection area (wire bonding area) C having an area S3 subjected to silver plating or the like. Thereby, the connectivity can be improved when the LED chip 10 and the lead portion 2a are electrically connected by wire bonding or chip bonding.
  • the outer surface (back surface) of the heat radiating portion 3a on the back surface facing the lead portion 2a is a heat radiating back surface D (heat radiating plate) having an area S4.
  • the mounting surface A of the pad portion 2 and the surface of the electrical connection area C of the lead portion 2a are formed from the same lead frame substrate (for example, a plate-like substrate). Further, the heat dissipating back surface B of the pad portion 2 and the heat dissipating back surface D of the lead portion 2a are formed from the same plate-like substrate. For this reason, the surface of the mounting surface A and the surface of the electrical connection area C, and the surface of the heat dissipating back surface B and the surface of the heat dissipating back surface D are in the same plane.
  • the electrical connection area C of the lead portion 2a is connected to the LED light emitting element 10 mounted on the mounting surface A of the pad portion 2 by wire bonding or chip bonding.
  • the electrical connection area C is a region where a wire for connecting to the LED chip 10 mounted on the mounting surface A of the pad portion 2 is bonded, a connection electrode formed on the LED chip 10 and solder. It is comprised from the area
  • the plating formed in the electrical connection area C described above may be gold plating or palladium plating instead of silver plating. Further, it is also possible to perform base plating such as Ni (nickel) plating having excellent heat diffusibility before performing silver plating, gold plating, and palladium plating on the electrical connection area C surface. Furthermore, in order to mount and connect the semiconductor light emitting device LE to the external substrate, the rear surface for heat dissipation may be subjected to underplating such as silver plating, gold plating, palladium plating, Ni (nickel) plating or the like.
  • the relationship with S2 is 0 ⁇ S1 ⁇ S2.
  • the pad portion 2 constitutes an upper structure having a mounting surface A.
  • the heat dissipating part 3 (heat dissipating plate) constitutes a lower structure having a heat dissipating back surface B.
  • This lower structure is integrally formed with the upper structure in the lower part (the back side of the pad portion 2) facing the upper structure.
  • the lower structure and the upper structure have, for example, a shape in which a pad portion 2 having a smaller area (area in the plan view of FIG. 1) than the heat radiating portion 3 protrudes from a base-like heat radiating portion 3.
  • the side surface portion of the upper structure which is the pad portion 2 between the mounting surface A and the heat dissipating back surface B, holds the resin filled at the time of resin molding spreading from the mounting surface A to the heat dissipating back surface B. Therefore, a stepped portion or a tapered portion E is formed.
  • the side surface of the lower structure which is the heat radiating part 3 (heat radiating plate)
  • the relationship between the area S3 of the electrical connection area C of the lead portion 2a of the lead frame 1 and the area S4 of the heat radiation back surface D of the heat radiation portion 3a facing the electrical connection area C is 0 ⁇ S3 ⁇ S4.
  • the heat radiation effect is improved by providing the heat radiation portion 3a integrated on the back surface of the lead portion 2a and increasing the heat radiation surface of the heat radiation portion 3a.
  • the electrical connection area C is formed on the same surface as the mounting surface A of the pad portion 2
  • the heat dissipating back surface D is formed on the same surface as the heat dissipating back surface B of the pad portion 2.
  • the lead portion 2 a constitutes an upper structure having an electrical connection area C.
  • the heat dissipating part 3a heat dissipating plate
  • the lower structure and the upper structure have, for example, a shape in which a lead portion 2a having a smaller area (area in the plan view of FIG. 1) than the heat radiating portion 3a protrudes from a base-like heat radiating portion 3a.
  • the side surface portion of the upper structure which is the lead portion 2a between the electrical connection area C and the heat radiation back surface D, is filled during resin molding that extends from the electrical connection area C in the direction of the heat radiation back surface D.
  • a stepped portion or a tapered portion E is formed to hold the resin.
  • the side surface portion of the lower structure which is the heat radiating portion 3 (heat radiating plate)
  • a tapered portion for holding the resin filled at the time of resin molding, which extends from the heat radiating back surface D to the electrical connection area C. E1 is formed.
  • the above-mentioned stepped portion or tapered portion E and tapered portion E1 hold the resin that will be filled later by mold filling so as not to fall off the frame.
  • the resin can be held on the lead frame so as not to drop off in the direction of the front surface side and the back surface side.
  • the lead frame 1 applies a photoresist (photosensitive resin) to the front and back surfaces of the lead frame metal plate, and performs pattern exposure and development processing on the photoresist. After the resist pattern is formed, the resist non-formed portion is formed by photoetching from both sides using an etchant such as ferric chloride.
  • the lead frame 1 includes a pad portion 2 for mounting the LED element and a lead portion 2a that is separated from the pad portion 2 in an insulated state.
  • a photoresist (photosensitive resin) is applied to the surface of a metal material for a lead frame having a thickness of t1, which is made of an alloy sheet such as iron-nickel or a metal sheet such as copper-nickel-tin, and a photoresist layer is formed. It is formed.
  • the pattern is exposed on the photoresist layer through a photomask for pattern exposure having a predetermined pattern. By this pattern exposure, a pattern for forming the mounting surface A composed of the area S1 of the pad portion 2 and the electrical connection area C composed of the area S3 of the lead portion 2a is exposed.
  • the photoresist layer is developed and, if necessary, hardened.
  • the photoresist is removed leaving a portion to be the mounting surface A of the pad portion 2 and the electrical connection area C of the lead portion 2a. That is, a resist pattern is formed in a portion where the mounting surface A of the pad portion 2 on one surface side (front side) of the metal material and a portion where the electrical connection area C of the lead portion 2a is formed.
  • a series of processes such as pattern exposure and development are performed.
  • the pattern exposure the pattern for forming the heat radiation back surface B having the area S2 (S1 ⁇ S2) and the heat radiation back surface D having the area S4 (S3 ⁇ S4) is exposed, and thereafter, development, hardening processing, and the like are performed. Is called.
  • the photoresist is removed leaving a portion that becomes the heat radiating back surface B of the pad portion 2 and a portion that becomes the heat radiating back surface D of the lead portion 2a.
  • a resist pattern is formed in a part where the heat-dissipating back surface B is formed and a part where the heat-dissipating back surface D is formed.
  • a resin film for corrosion resistance is attached to the back surface of the metal material.
  • an etching process half etching process
  • an etchant such as ferric chloride.
  • the photoresist non-formation portion on the surface of the metal material is etched to a predetermined depth (for example, thickness t2 shown in FIGS. 7 and 8).
  • cleaning is performed, and a corrosion-resistant resin film is attached to the surface of the metal material.
  • the corrosion-resistant resin film on the back surface of the metal material is peeled off, and an etching process (half etching process) is performed from the back surface side of the metal material using an etchant such as ferric chloride.
  • an etching process half etching process
  • the photoresist non-forming portion on the back surface of the metal material is etched to a predetermined depth (for example, thickness t3 shown in FIGS. 7 and 8).
  • a predetermined depth for example, thickness t3 shown in FIGS. 7 and 8.
  • a penetration part is formed in the metal part in which the resist pattern respectively corresponding to the surface of a metal material and a back surface is not formed. That is, as shown in FIGS. 7 to 9, the pad portion 2 and the heat radiating portion 3 in which the relationship between the area S1 of the mounting surface A and the area S2 of the heat radiating back surface B is S1 ⁇ S2, and the electrical connection area C
  • the etching process is performed once on each of the front and back surfaces, a total of two times, but the metal material may be etched by one etching performed simultaneously from the front and back surfaces.
  • the lead frame 1 in which the taper direction is reversed on the front and back surfaces of the metal material is obtained. That is, when the tapered portion E expands from the upper surface to the lower surface, the tapered portion E1 expands from the lower surface to the upper surface. As shown in the figure, the side surfaces of the tapered portion E and the tapered portion E1 may be bent or curved. In the lead frames each having a reverse taper shape on the front and back surfaces, as will be described later, it is possible to prevent the resin from dropping off from the plate-shaped lead frame.
  • the lead frame 1 is loaded into a concave portion of a mold in which a concave portion having a predetermined internal shape (for example, a concave portion having the same depth t1 as the thickness t1 of the lead frame material) is formed in advance.
  • the mold generally has a two-sheet configuration of a plate-shaped upper mold 40 serving as a lid and a lower mold 41.
  • the lower mold 41 is formed with a concave portion 43 communicating with an injection port 42 for injecting the molten resin 4 as an internal space. It is possible to load the lead frame 1 (multi-sided lead frame ML) into the recess 43. After loading the lead frame 1 into the recess 43 of the lower mold 41, the upper mold 40 is united with the lower mold 41 and clamped.
  • the filled resin 4 heated and melted is injected into the recess 43 (internal space) from the injection port 42.
  • a resin-filled lead frame formed by filling the filled lead frame 1 (multi-faced lead frame ML) with the filling resin 4 is obtained.
  • the filling resin 4 having the same thickness as the thickness t1 of the lead frame 1 is formed.
  • each surface of the mounting surface A and the heat radiating back surface B, and each surface of the electrical connection area C and the heat radiating back surface D are exposed from the filling resin to the outer surface. In this way, a lead frame for a semiconductor light emitting device in which the filling resin is filled between the pad portion 2 and the lead portion 2A is formed.
  • the suspension leads 20 shown in FIGS. 1 and 2 are for preventing the pad portion 2 and the lead portion 2a from falling off the metal material. Therefore, when the lead frame of the second embodiment is obtained. It is desirable to form also.
  • the suspension lead 20 is formed to keep the pad portion 2 and the lead portion 2a connected to a metal material for a necessary period. Therefore, by cutting the suspension leads 20, individual lead frames (one unit frame described later) can be obtained.
  • illustration of the suspension lead 20 is abbreviate
  • the lead frame can be separated by cutting the connecting portion between the suspension lead 20 and the metal material. The cutting time of the suspension lead 20 may be set appropriately after mounting the LED chip or after resin molding.
  • the semiconductor light emitting device LE includes one or a plurality of pad portions 2 on which the LED chip 10 is mounted, and a lead portion 2 a having an electrical connection area C for electrical connection with the LED chip 10. Is provided on the same plane.
  • the lead frame 1 extends from the LED chip mounting surface A of the pad portion 2 to the heat radiating back surface B of the heat radiating portion 3 facing the mounting surface A, and from the electrical connection area C of the lead portion 2a to the area C.
  • the heat treatment part 3a has a heat radiation back surface D and is molded by the resin 4 in the thickness direction.
  • the transparent resin 5 is covered in layers including the LED chip 10 and the electrical connection area C on the upper surface side of the mounting surface A of the pad portion 2 and the upper surface side of the electrical connection area C of the lead portion 2a.
  • the transparent material 5 is layered, but may be dome-shaped.
  • the relationship between the area S1 of the mounting surface A of the pad portion 2 and the area S2 of the heat dissipating back surface B of the heat radiating portion 3 is set to 0 ⁇ S1 ⁇ S2, and the area S3 of the wire bonding area C and the heat radiating of the heat radiating portion 3a.
  • the relationship with the area S4 of the back surface D for use is set to 0 ⁇ S3 ⁇ S4. Further, by molding the lead frame 1 with a filling resin so as to have the same thickness t1 as the lead frame 1, the heat-dissipating back surface B and the heat-dissipating back surface D are each exposed from the filling resin.
  • the taper portion E of the upper structure has a taper that extends from, for example, the upper surface toward the lower surface
  • the taper portion E1 of the lower structure has, for example, a taper that extends from the lower surface to the upper surface. Tapered to expand. That is, the taper directions of the upper structure and the lower structure are opposite to each other. Therefore, a portion where the tapered portion of the upper structure and the tapered portion of the lower structure merge becomes a convex portion in a side view.
  • a portion of the filling resin 4 sandwiched between the pad portion 2 and the heat radiating portion 3 and the lead portion 2a and the heat radiating portion 3a has a portion corresponding to the convex portion.
  • the filling resin 4 has a constricted part between the upper part (part on the upper structure side) and the lower part (part on the lower structure side).
  • the cross-sectional shape of the resin 4 is, for example, an hourglass shape having a constricted portion.
  • the resin 4 has a portion having a diameter larger than that of the constricted portion, and the contact area between the filling resin 4 and the lead frame 1 is increased at the portion having a large diameter, and the adhesion between the lead frame and the filling resin is increased.
  • the resin 4 having an hourglass shape has a constricted portion, and a convex portion, which is a portion where both tapered portions of the lead frame meet, meshes with the constricted portion of the filling resin 4. That is, the constricted portion of the filling resin is held by the convex portion. For this reason, it is possible to prevent the resin 4 from dropping from the lead frame 1.
  • This structure is particularly effective in preventing the resin 4 from dropping in the thickness direction (front surface direction and back surface direction) of the lead frame from the lead frame that has been individually cut after filling with the resin into a plate shape. It can be said that.
  • the lead frame of this embodiment can be formed at a low cost by a general photoetching method, it is possible to supply an inexpensive lead frame.
  • the LED element 10 emits light in a state where it is embedded in the layer of the transparent resin 5. For this reason, when the light emitted from the LED element 10 is emitted from the transparent resin 5 to the outside, it is important to provide high light gain. Therefore, as a transparent resin 5, for example, a resin having good transparency such as an acrylic resin (polymetamethyl acrylate resin) is naturally selected. Furthermore, the inventor particularly proposes to use a resin having high reflectivity at the boundary surface between the filling resin 4 and the transparent resin 5 as the filling resin 4.
  • the resin 4 desirably has a high light reflectance, but it is also desirable to have heat resistance, light resistance, thermal conductivity, and high light diffusivity. Therefore, as the resin 4, for example, epoxy resin, modified epoxy resin, silsesquioxane resin, silicone resin, acrylic resin, polycarbonate resin, aromatic polyester resin (unsaturated polyester resin), polyamide resin, polyphthalamide Organic polymer materials such as (PPA), liquid crystal polymer (LCP), and cycloolefin resins are desirable.
  • One type of resin or a mixed resin of a plurality of types of resins may be used.
  • the relationship between the light refractive index n1 of the filling resin 4 and the light refractive index n2 of the transparent resin 5 can be obtained. It can. Further, as the difference in refractive index between the resin 4 and the transparent resin 5 is larger, higher reflection can be performed. However, the refractive index of the resin is approximately 2 or less, and there is a limit to increasing the refractive index difference only with the resin.
  • the filling resin 4 a light diffusing resin obtained by mixing an additive such as a powdery substance or a granular substance with a resin mainly composed of the above-mentioned one kind of resin or a mixed resin of plural kinds of resins. Suggest to use. Thereby, the refractive index n of the resin 4 can be made 2 or more. Therefore, high reflectivity at the interface between the resin 4 and the transparent resin 5 can be obtained.
  • the additive added to the resin 4 include fine particles such as SiO 2 , TiO 2 , Al 2 O 3 , zirconium oxide, a ceramic material, or a mixture thereof.
  • the mixing ratio of the additive to the main resin can be set as appropriate. For example, 1% to 20% or more.
  • the light L emitted from the LED chip 10 travels through the transparent resin 5 and is emitted to the outside. However, a part of the light emitted from the LED chip 10 is reflected at the boundary of the transparent resin 5 in contact with the outside (air) (reflected light M (total reflection light, semi-reflection light, etc. in FIG. 6)). Thereafter, the reflected light M reaches the surface of the filling resin 4. At this time, if the resin 4 has a high light reflectance, the reflected light M can be reflected again on the surface of the resin 4 (re-reflected light N in FIG. 6). That is, the re-reflected light N can be emitted from the semiconductor light emitting device. On the other hand, when the filling resin does not have a reflectance, the reflected light M enters the filling resin as it is and is not emitted from the LED element.
  • the reflected light M can be changed to the re-reflected light N on the plated surface. For this reason, it is more preferable in using the light emitted from the LED chip 10 efficiently.
  • the surface of the resin 4 is more preferable to coat the surface of the resin 4 with a ceramic ink or the like having an excellent light reflectivity in order to efficiently use the light emitted from the LED chip 10.
  • the pad portion 2 and the lead portion 2a of the lead frame 1 are formed as a single unit frame whose front and back surfaces are the same plane (FIG. 10).
  • the dotted line Z indicates one unit frame).
  • the lead frame for a semiconductor light emitting device is manufactured by using a multi-faced lead frame ML in which a plurality of one unit frames are arranged in the vertical and horizontal directions on a sheet-like or strip-like metal material.
  • a lattice-like frame portion called a tie bar 30 is formed.
  • the tie bar 30 can prevent the lead frame 1 from being detached from the metal material after etching or punching using a press die.
  • One unit frame is formed so as to be connected to the tie bar 30 in the region of the opening of the tie bar 30 that is a frame portion.
  • the unit frame and the tie bar 30 are connected via the suspension lead 20 branched from the tie bar 30.
  • one unit frame and the tie bar 30 may be directly connected without forming the suspension lead 20.
  • the tie bar 30 and the suspension lead 20 are formed in the same manner as the pad portion 2 and the lead portion 2a when the pad portion 2 and the lead portion 2a are formed by etching or punching using a press die. Formed. That is, the metal material portion where the tie bar 30 and the suspension lead 20 are formed is formed by forming a photoresist, or the portion corresponding to the tie bar 30 and the suspension lead 20 is left at the time of punching using a press die. Is formed. Each unit frame is separated from the metal material by cutting and cutting the suspension lead 20 or the tie bar 30. Note that the lead frame as one unit frame may be either the lead frame of the first embodiment or the second embodiment described above.
  • the pad portion 2 and the lead portion 2a of the upper structure of each unit frame formed in the multi-faced lead frame ML are formed on the lower structure of thickness t3.
  • the height from the back surface of the lower structure to the upper surfaces of the pad portion 2 and the lead portion 2a is t1 which is the same as the thickness of the metal material.
  • the surface height (thickness) of the suspension lead 20 and the tie bar 30 is set to a low level (for example, the same thickness as the thickness t3 of the heat radiating part 3 and the heat radiating part 3a). That is, the thickness of the suspension lead 20 and the tie bar 30 is set to be thinner than the thickness t1 of the metal material.
  • the suspending lead 20 and the tie bar 30 having a reduced thickness are half-etched on the metal material portions to be the suspending lead 20 and the tie bar 30 when the pad portion 2 and the lead portion 2a are formed by etching the metal material. It can be formed by doing. That is, the suspension lead 20 formation photoresist and the tie bar 30 formation photoresist are formed on one surface side of the metal material portion where the suspension lead 20 and the tie bar 30 are to be formed (for example, on the surface side of the heat dissipating portions 3 and 3a). Then, as described above, the etching for forming the pad portion 2 and the lead portion 2a is performed from both sides of the metal material.
  • the suspension lead 20 formation photoresist and the tie bar 30 formation photoresist Is formed on the surface (LED chip mounting surface, electrical connection area) side.
  • the lead frame of the first embodiment is formed by punching using a press die, the thickness of the portion corresponding to the suspension lead 20 and the tie bar 30 is set to the thickness t3 when pressing the metal material. You can press it.
  • the flat lead frame ML in which a plurality of lead frames 1 are manufactured by photoetching is loaded into a mold for manufacturing a lead frame for a semiconductor light emitting device as described above. Is done. Thereafter, the resin 4 is filled in the recess (internal space) in the mold and molded. As a result, as shown in FIG. 11B, the mounting surface A and the heat radiating back surface B are filled with the resin 4 so that the electrical connection area C and the heat radiating back surface D are exposed from the resin 4, respectively.
  • the semiconductor light emitting device lead frame ML is formed.
  • the lead frame ML for the semiconductor light emitting device is cut to obtain a separated 1 unit frame.
  • the cutting time of the semiconductor light emitting device lead frame ML is not limited to after the resin molding, but may be set after the LED chip is mounted or after the transparent resin is formed.
  • resin molding is performed on the multifaceted semiconductor light emitting device lead frame ML, resin is injected into a mold having a recess (internal space).
  • the resin sequentially flows from one unit frame in the vicinity of the resin injection port to one unit frame in a part away from the injection port, and is resin-molded.
  • the front surface surface for mounting the LED chip, the surface of the electrical connection area
  • the back surface back surface for heat dissipation
  • the depth of the recess is made equal to the thickness of the lead frame so that the resin does not adhere to the front and back surfaces. That is, by making the depth of the recess (the height of the internal space) the same as the thickness of the lead frame, when the lead frame is loaded into the mold, the front and back surfaces of the lead frame are respectively the upper mold. It comes into close contact with the surface of the lower mold and the surface of the lower mold. Thereby, when resin is inject
  • the suspension lead 20 and the tie bar 30 obstruct or block the resin flow.
  • the multifaceted semiconductor light emitting device lead frame ML a portion that is not resin-molded is generated.
  • the part not filled with resin becomes a part having bubbles, and the quality of the lead frame for a semiconductor light-emitting device, and hence the quality of the semiconductor light-emitting device is deteriorated. Therefore, when there are many parts having bubbles, the lead frame for a semiconductor light emitting device is discarded as a defective product.
  • the thicknesses of the suspension leads 20 and the tie bars 30 are made thin, for example, to be the same as the thickness t3 of the heat dissipating part 3 and the heat dissipating part 3a, which are lower structures. For this reason, when the filling resin is injected, the resin flows through a gap formed between the suspension lead 20 and the tie bar 30 and the mold. Thereby, the flow of the resin is not hindered or blocked. As a result, in the multi-sided semiconductor light emitting device lead frame ML of the present embodiment, it becomes possible to mold a filling resin having no bubbles into the lead frame, thereby improving the quality of the semiconductor light emitting device lead frame. It becomes possible.
  • the manufacturing yield increases, and as a result, the manufacturing cost of the lead frame for a semiconductor light emitting device can be reduced.
  • the suspension lead 20 and the tie bar 30 are cut with a cutting blade.
  • the thickness is thin, the load applied to the cutting blade at the time of cutting is reduced. Life can be extended.
  • the light reflectance can be improved by filling the above-described filling resin having a high light reflectance so as not to have bubbles. For example, when bubbles exist on the surface of the filling resin 4, a recess is formed on the surface of the filling resin 4, and light incident on the recess does not reflect in a desired direction.
  • the suspension lead 20 and the tie bar 30 having the same thickness as the heat radiating portion are provided on the back surface side (surface side of the lower structure portion) of the lead frame.
  • the suspension lead 20 and the tie bar 30 having the same thickness as the upper structure portion may be provided on the surface side).
  • a lead frame 1 which is a metal part of a lead frame molded with resin is formed by photo-etching a metal thin plate-like base material from the front side and the back side. That is, as shown in FIGS. 14 and 16, the lead frame 1 includes an upper structure pattern having a thickness t2 on the front surface side and a lower structure pattern having a thickness t3 on the back surface side. And has an integral structure.
  • the patterns of the upper structure and the lower structure are formed by subjecting a metal plate-like substrate having a thickness of t1 to photo-etching (half-etching described above) from both sides.
  • the pattern of the superstructure having a thickness t2 of the lead frame 1 includes a pad portion 2 and one or more lead portions 2a that are separated from each other and are adjacent to each other at a predetermined interval.
  • the pattern of the lower structure of thickness t3 includes a heat radiating portion 3 that is integrated with the pad portion 2 on the back surface side, and a heat radiating portion 3a that is integrated with the lead portion 2a on the back surface side.
  • W has shown an example of the wire. This wire is provided by wire bonding between the light emitting element 10 mounted on the chip mounting surface A of the pad portion 2 and the electrical connection area C of the lead portion 2a.
  • the lead frame of the present embodiment includes an upper structure pad portion 2 having a thickness t ⁇ b> 2 formed at one or a plurality of locations for mounting the LED chip 10, and a pad.
  • the heat radiation part 3 of the lower structure of the thickness t3 integral with the part 2 is provided.
  • the pad portion 2 which is an upper structure has a chip mounting surface A.
  • the heat dissipating part 3 (heat dissipating plate) of the lower structure integrated with the back surface of the pad part 2 has a heat dissipating back surface B. As shown in FIG.
  • the area S1 of the LED chip mounting surface A of the pad portion 2 of the lead frame 1 and the heat dissipation portion 3 facing the chip mounting surface A are dissipated.
  • the relationship with the area S2 of the back surface B is 0 ⁇ S1 ⁇ S2. That is, the area of the heat-dissipating back surface B is set larger than the area of the chip mounting surface A.
  • the pad portion 2 having a smaller area (area in the plan view of FIG. 13) than the heat radiating portion 3 protrudes from the heat radiating portion 3 having a pedestal shape.
  • the front surface (upper surface) of the pad portion 2 is a chip mounting surface A having an area S1 for mounting the LED chip 10, and the heat radiation portion on the back surface facing the pad portion 2 of the upper structure.
  • the outer surface 3 is a back surface B for heat dissipation having an area S2.
  • the lead frame 1 of the present embodiment is similar to FIG. 14 in that the lead structure 2a has an upper structure with a thickness t2, and the heat dissipation section has a lower structure with a thickness t3.
  • the structure in which 3a is integrated is provided at one or more places apart from the structure having the pad portion 2.
  • the surface of the lead portion 2 a is the same height as the chip mounting surface A of the pad portion 2.
  • the surface of the lead portion 2a includes a wire bonding region where a wire for connecting to the LED chip 10 is bonded, a region bonded to the electrode via the connection electrode formed on the LED chip 10 and solder, and the like,
  • the electrical connection area C has This electrical connection area C is subjected to silver plating or the like in order to improve connectivity when electrical connection between the LED chip 10 and the lead portion 2a is performed by wire bonding or chip bonding, and the area thereof is S3. It is.
  • the front surface (back surface) of the heat radiating portion 3 a is a heat radiating back surface D (heat radiating plate) facing the electrical connection area C and having the same height as the heat radiating back surface B of the pad portion 2.
  • the area of the heat dissipating back surface D is S4.
  • the chip mounting surface A of the pad portion 2 and the surface of the electrical connection area C of the lead portion 2a are formed from the same plate-like substrate, they are on the same plane and have a height. Are the same.
  • the wire W is connected to the electrical contact area C of the lead part 2a by wire bonding, or the chip is connected by chip bonding, and the LED chip 10 mounted on the chip mounting surface A of the pad part 2 is electrically connected. Connected.
  • the lead portion 2 a of the lead frame 1 has an electrical connection area C on the same surface as the chip mounting surface A of the pad portion 2.
  • the heat dissipating part 3 a having a lower structure integrated with the lead part 2 a has a heat dissipating back surface D on the same surface as the heat dissipating back surface B of the heat dissipating part 3.
  • the relationship between the area S3 of the electrical connection area C and the area S4 of the back surface D for heat dissipation is 0 ⁇ S3 ⁇ S4. That is, the area of the heat radiating back surface D is set to be larger than the area of the electrical connection area C to be wire bonded.
  • the lead portion 2a having a smaller area (area in the plan view of FIG. 13) than the heat radiating portion 3 protrudes from the pedestal heat radiating portion 3a.
  • a stepped portion or a taper-shaped portion E extending from the electrical connection area C in the direction of the heat dissipation back surface D. It is formed and the filling resin 4 at the time of molding is held so as not to fall off in the direction from the frame front side to the back side.
  • a tapered portion E1 extending from the heat dissipating back surface D toward the electrical connection area C is formed on the side surface of the heat dissipating portion 3 (heat dissipating plate) of the lower structure. It is held so as not to fall off from the side to the surface side.
  • the taper portion E of the upper structure expands from the upper surface to the lower surface, for example, and the taper portion E1 of the lower structure expands from the lower surface to the upper surface, for example. . That is, the taper directions of the upper structure and the lower structure are opposite to each other.
  • the filling resin 4 in a portion sandwiched between the pad portion 2 and the heat radiating portion 3, the lead portion 2 a and the heat radiating portion 3 a has an upper surface (surface on the upper structure side) and a lower surface. It has a constricted part between the surface (surface on the lower structure side).
  • the cross-sectional shape is, for example, an hourglass shape.
  • the lead frame 1 holds the filling resin 4 at the constricted portion of the resin 4. For this reason, it is possible to prevent the resin 4 from dropping from the lead frame 1.
  • the relationship between the area S1 of the LED chip mounting surface A of the pad portion 2 and the area S2 of the heat dissipating back surface B facing the chip mounting surface A is 0 ⁇ S1 ⁇ S2, and the area S3 of the electrical connection area C
  • the relationship with the area S4 of the heat dissipation back surface D is set to 0 ⁇ S3 ⁇ S4.
  • the method for forming the lead frame 1 is as follows. Photoresist is applied to the front and back surfaces of the metal plate for the lead frame, and a resist pattern is formed by pattern exposure to the photoresist and development processing. Thereafter, a so-called photo-etching process (the above-described half-etching process) is performed to etch the metal plate portions exposed from the resist patterns on both the front and back surfaces using an etchant such as ferric chloride. In this way, the lead frame 1 is formed. For this reason, the lead frame 1 includes a pad portion 2 for mounting an LED element, and a lead portion 2a separated from the pad portion 2 in an insulated state.
  • the lead frame in the present embodiment is obtained by the same manufacturing method as in the second embodiment described above. That is, photoetching is performed on the metal material from both the front and back surfaces.
  • the relationship between the area S1 of the mounting surface A and the area S2 of the heat dissipating back surface B is such that the pad part 2 and the heat dissipating part 3 satisfy S1 ⁇ S2, the area S3 of the electrical connection area C, and the heat dissipating back surface D.
  • Ni base plating is performed on the electrical connection area C of the lead portion 2a after etching, and then silver plating, gold plating, or palladium plating is performed thereon.
  • the plating on the electrical connection area C may be performed after a step of filling the lead frame 1 with a filling resin 4 to be described later and molding it. That is, the process may be performed by plating the electrical connection area C exposed from the filling resin 4.
  • the resin 4 is molded by performing molding using a mold on the lead frame 1 formed as described above.
  • a resin-filled lead frame filled with the resin 4 is manufactured so that the electrical connection area C and the heat dissipation back surface D are exposed from the resin 4 respectively.
  • the mold used for molding is formed in advance with a concave portion (for example, a concave portion having the same depth t1 as the thickness t1 of the lead frame material) having a predetermined internal shape in which the lead frame 1 is accommodated.
  • a plate-shaped upper mold 40 and a lower mold 41 serving as a lid are configured as a set of molds.
  • the lower mold 41 is formed with an injection port 42 for injecting the molten resin 4 and a concave portion 43 in which the lead frame 1 (multi-sided lead frame ML) can be loaded as an internal space.
  • the upper mold 40 is formed with a light reflecting ring recess 40a as an inner space on the filling resin 4 as a mold for forming a light reflecting ring 4a described later.
  • the lead frame 1 is loaded into the recess 43 of the lower mold 41.
  • the upper mold 40 is capped with a lid on the lower mold 41.
  • the resin 4 heated and melted is injected from the injection port 42 into the internal space between the recess 43 and the light reflecting ring recess 40a.
  • a resin-filled lead frame obtained by molding the resin 4 on the loaded lead frame 1 is obtained.
  • the upper mold 40 is removed, and the resin-filled lead frame is taken out from the lower mold 41.
  • the resin 4 is filled between the pad portion 2 and the lead portion 2a of the lead frame 1. That is, a resin-filled lead frame in which the chip mounting surface A and the heat radiating back surface B and the electrical connection area C and the heat radiating back surface D are exposed from the resin 4 to the outer surface is formed.
  • the resin 4 extends in the thickness direction of the lead frame 1 from the height of the mounting surface A and the electrical connection area C to the height of the heat dissipating back surface B and the heat dissipating back surface D. Filled.
  • the light reflecting ring 4a is formed so as to protrude from the filling resin 4 as a structure integrated with the filling resin 4 at the time of molding.
  • the light reflecting ring 4a is formed in an annular shape on the resin-filled lead frame between the pad portion 2 and the lead portion 2a and outside in a plan view.
  • the center of the ring is installed at a position near the light emitting part (LED) of the LED chip 10.
  • the cross-sectional shape of the annular ring is such that the inner peripheral surface that is the surface facing the light emitting portion of the LED chip 10 is inclined by 30 to 85 degrees from the surface formed by the chip mounting surface A and the electrical connection area C. It is formed.
  • the shape of the inner peripheral surface of the light reflecting ring 4a having a slope may be a conical surface, an elliptical conical surface, a spherical surface, or a part of a paraboloid so that light can be efficiently reflected. Further, the angle of inclination of the side surface may be appropriately set so that light reflection is performed efficiently.
  • the shape of the light reflecting ring 4a in plan view is not limited to an annular shape, but a plurality of crescents having a center of a circle near the light emitting portion, a part of the annular shape, or the light emitting portion of the LED chip 10 You may form in the elliptical cyclic
  • the light reflecting ring recess 40a is formed in the upper mold 40, and the filling resin 4 injected at the time of molding is molded into the shape of the light reflecting ring 4a.
  • the light reflecting ring 4a has a structure integrated with the resin 4 from the height of the chip mounting surface A and the electrical connection area C to the height of the heat dissipating back surface B and the heat dissipating back surface D. It protrudes from. That is, the light reflecting ring 4a and the resin 4 are integrated, and there is no interface between them. For this reason, the light reflection ring 4a and the main body of the resin 4 are firmly connected and have high adhesion.
  • the light reflection ring 4a since there is no interface between the light reflection ring 4a and the main body of the resin 4, water vapor is not diffused to the interface and is not easily peeled off. Therefore, the light reflection ring 4a with high connection reliability can be obtained. Furthermore, since the light reflecting ring 4a is formed at the same time as the other filling portions of the filling resin 4, only one resin molding is required.
  • the resin melted by heating is poured into the mold. Therefore, if the light reflecting ring 4a is formed by molding after another molding process after the resin 4 is molded, the resin 4 is exposed to heat a plurality of times, resulting in deterioration due to heat.
  • a lead frame can be formed by a single molding. For this reason, it is possible to prevent deterioration due to the heat history of the filling resin 4 caused by heat being applied to the resin 4 each time when molding is performed a plurality of times. Therefore, it is possible to prevent the light reflection characteristics from being lowered due to the thermal deterioration of the resin 4 and to keep the light reflectance high.
  • the resin 4 and the light reflecting ring 4a have heat resistance, light resistance, thermal conductivity, and high light diffusibility. Therefore, as the resin 4 and the light reflecting ring 4a, for example, epoxy resin, modified epoxy resin, silsesquioxane resin, silicone resin, acrylic resin, polycarbonate resin, aromatic polyester resin (unsaturated polyester resin), polyamide resin, etc.
  • Organic polymer materials such as resin, polyphthalamide (PPA), liquid crystal polymer (LCP), and cycloolefin resin are desirable, and one type of resin or a mixed resin of a plurality of types of resins may be used.
  • the resin 4 and the light reflecting ring 4a it is possible to use a light diffusing resin obtained by mixing an additive of a powdery substance with a resin mainly composed of the above-mentioned one kind of resin or a mixed resin of plural kinds of resins. desirable.
  • the additive added to the resin 4 and the light reflecting ring 4a include fine particles such as white powder such as SiO 2 , TiO 2 , Al 2 O 3 , zirconium oxide, lead oxide, ceramic material, or a mixture thereof. It is done.
  • the mixing ratio of the additive to the main resin can be set as appropriate. For example, 1% to 20% or more.
  • Such a filling resin 4 has an effect of increasing the light diffusibility by the additive.
  • the filling resin 4 can have a refractive index n of 2 or more by its additive. Thereby, a refractive index can be made higher than the transparent resin 5 formed on the filling resin 4 later. Due to the difference in refractive index, there is an effect that high reflectivity at the boundary surface between the filling resin 4 and the transparent resin 5 can be obtained.
  • the suspension lead 20 shown in FIG. 13 is for preventing the pad portion 2 and the lead portion 2a from falling out of the metal material after the etching process or after punching using a press die.
  • the pad portion 2 and the lead portion 2a are formed to be connected and held to a metal material for a necessary period. Therefore, the resin-filled lead frame is obtained by cutting the suspension leads 20 after the filling resin 4 is formed. In the cross-sectional view, the suspension lead 20 is not shown. By cutting the connecting portion between the suspension lead 20 and the metal material, the resin-filled lead frame can be separated.
  • the cutting time of the suspension lead 20 may be set after the LED chip 10 is mounted on the resin-filled lead frame or after the transparent resin 5 is molded, but may be set as appropriate.
  • a resin-filled lead frame having 2a on the same plane is obtained.
  • the LED chip 10 is mounted on the resin-filled lead frame thus obtained, and the semiconductor light emitting device LE is manufactured. Further, after the LED chip 10 is mounted on the resin-filled lead frame, the LED chip 10 is electrically connected to the upper surface side from the chip mounting surface A of the pad portion 2 and the upper surface side from the electrical connection area C of the lead portion 2a.
  • a transparent resin 5 that covers the wire W bonded to the connection area C and is in contact with the inner peripheral surface of the light reflecting ring 4a is formed in a layer shape or a dome shape.
  • the thickness of the transparent resin 5 is formed to a thickness that can cover them.
  • a resin having good transparency such as an acrylic resin is used.
  • the relationship between the area S1 of the chip mounting surface A of the pad portion 2 and the area S2 of the heat dissipating back surface B is set to S1 ⁇ S2, and an electrical connection area C for wire bonding to the lead portion 2a.
  • the relationship between the area S3 and the area S4 of the heat dissipating back surface D is set to S3 ⁇ S4.
  • the side surface portion of the pad portion 2 and the lead portion 2a between the chip mounting surface A and the heat radiation back surface B and between the electrical connection area C and the heat radiation back surface D are provided on the heat radiation back surface B.
  • a stepped portion or a tapered portion E extending in the direction of D is exhibited.
  • the chip mounting surface A and the heat dissipation surface are disposed between the chip mounting surface A and the heat dissipation back surface B and between the electrical connection area C and the heat dissipation back surface D.
  • the taper-shaped part E1 which spreads in the direction of the back surface B is exhibited.
  • the lead frame 1 can be formed at a low cost by a general photoetching method, there is an effect that an inexpensive resin-filled lead frame can be obtained.
  • the surface of the light reflecting ring 4a integrated with the filling resin is projected from the filling resin with a slope inclined by 30 to 85 degrees from the surface formed by the chip mounting surface A and the electrical connection area C. For this reason, the contact area of filling resin 4, ie, light reflection ring 4a, and transparent resin layer 5 becomes large compared with the case where light reflection ring 4a does not exist and filling resin 4 is a plane. Thereby, the light reflection ring 4a and the transparent resin layer 5 will adhere
  • the filling resin 4 can make the refractive index n 2 or more by the additive, the relationship between the light refractive index n1 of the filling resin 4 and the light refractive index n2 of the transparent resin 5 is n1> n2. can do. Due to the difference in refractive index, there is an effect that high reflectivity at the boundary surface between the filling resin 4 and the transparent resin 5 can be obtained. The higher the difference in refractive index, the higher the reflection.
  • the refractive index of a normal resin is approximately 2 or less, and there is a limit in increasing the refractive index difference only with the resin.
  • the filler resin 4 of the present embodiment adds fine particles such as SiO 2 , TiO 2 , Al 2 O 3 , zirconium oxide, a ceramic material, or a mixture thereof as an additive.
  • the refractive index of the filling resin 4 can be made 2 or more by adding the mixing ratio of the additive to the main resin, for example, 1% to 20% or more. Thereby, the refractive index difference between the filling resin 4 and the transparent resin 5 can be increased, and there is an effect that high reflectivity at the boundary surface between the filling resin 4 and the transparent resin 5 can be obtained.
  • the light L emitted from the LED chip 10 travels through the transparent resin 5 and is emitted to the outside. However, a part of the light emitted from the LED chip 10 is reflected at the boundary of the transparent resin 5 in contact with the outside (reflected light M in FIG. 18). Thereafter, the reflected light M reaches the surface of the light reflecting ring 4a that is integral with the filling resin 4 and the filling resin 4 and protrudes from the filling resin. At this time, when the filling resin 4 and the light reflecting ring 4a have a high light reflectance, the reflected light M can be reflected again on the surfaces of the filling resin 4 and the light reflecting ring 4a (in FIG. 18). Re-reflected light N). That is, the re-reflected light N can be emitted from the LED element.
  • the inclined surface of the light reflecting ring 4a into an inclined surface inclined by 30 to 85 degrees from the surface formed by the chip mounting surface A and the electrical connection area C, reflection incident on the inclined surface of the light reflecting ring 4a. Light can be efficiently re-reflected. Furthermore, even when the light emitted from the LED chip 10 is directly incident on the inclined surface of the light reflecting ring 4a, the incident light can be efficiently reflected outward.
  • the filling resin 4 a high reflectance, it is possible to efficiently emit the light emitted from the LED chip 10 to the outside.
  • the reflected light M can be changed to the re-reflected light N on the plated surface, and thus emitted from the LED chip 10. It is preferable to efficiently use the light.
  • a portion that covers the LED chip 10 and the wire W bonded to the electrical connection area C and is in contact with the inner peripheral surface of the light reflecting ring 4 a is made light.
  • the transparent resin 5 serving as a reflection surface is formed so as to cover the entire light reflection ring 4a.
  • the transparent resin is coated on a part or all of the inner peripheral surface of the light reflecting ring 4a so that the light reflecting surface where the transparent resin 5 and the inner peripheral surface of the light reflecting ring 4a are in contact has a desired reflectivity. 5 is formed. At that time, the outside of the light reflection ring 4 a may be exposed from the transparent resin 5.
  • FIG. 20A, 20B the lead frame for semiconductor light-emitting devices in the 5th Embodiment of this invention is demonstrated below.
  • the pad portion 2 and the lead portion 2a of the lead frame 1 are defined as one unit frame indicated by a dotted line Z portion.
  • the resin-filled lead frame is manufactured by using a multi-faced lead frame ML in which a plurality of unit frames are arranged in the vertical and horizontal directions on a sheet-like or strip-like metal material.
  • a lattice-shaped frame portion called a tie bar 30 is formed.
  • the tie bar 30 can prevent the lead frame 1 from being detached from the metal material after etching.
  • One unit frame is formed so as to be connected to the tie bar 30 in the region of the opening of the tie bar 30 that is a frame portion.
  • the unit frame and the tie bar 30 are connected via the suspension lead 20 branched from the tie bar 30.
  • one unit frame and the tie bar 30 may be directly connected without forming the suspension lead 20.
  • the tie bar 30 and the suspension lead 20 are formed by the same method as that for forming the pad portion 2 and the lead portion 2a when the pad portion 2 and the lead portion 2a are formed by etching. That is, it is formed by forming a photoresist also on the metal material portion where the tie bar 30 and the suspension lead 20 are formed. Each unit frame is separated from the metal material by cutting and cutting the suspension lead 20 or the tie bar 30.
  • the pad portion 2 and the lead portion 2a of the upper structure of each unit frame formed in the multi-faced lead frame ML are formed on the lower structure of thickness t3.
  • the height from the back surface of the lower structure to the upper surfaces of the pad portion 2 and the lead portion 2a is t1 which is the same as the thickness of the metal material.
  • the thickness of the suspension lead 20 and the tie bar 30 is set to the thickness t3 of the lower structure that is thinner than the thickness t1 of the metal material, and is the same thickness as the heat radiating part 3, the heat radiating part 3a, and the like.
  • the height of the upper surface of the suspension lead 20 and the tie bar 30 with respect to the back surface of the lower structure is set to t3.
  • the metal material is etched, and when the pad portion 2 and the lead portion 2a are formed, half etching is performed on the metal material portion to be the suspension lead 20 and the tie bar 30. It is possible to form by performing.
  • the suspension lead 20 formation photoresist and the tie bar 30 formation photoresist are formed on one surface side (for example, the heat radiation portion side surface) of the metal material portion where the suspension lead 20 and the tie bar 30 are to be formed.
  • the etching for forming the pad portion 2 and the lead portion 2a is performed from both surfaces of the metal material.
  • the suspension leads 20 and tie bars 30 thinned by half-etching on the surface (LED chip mounting surface A, electrical connection area) side the suspension lead 20 formation photoresist and tie bar 30 formation photo are formed.
  • the resist is formed on the surface (LED chip mounting surface A, electrical connection area) side.
  • the flat multi-faced lead frame ML manufactured by photo-etching a plurality of units of a single lead frame 1 is filled with resin as described above with reference to FIG. It is loaded between an upper mold 40 and a lower mold 41 for manufacturing the lead frame 1b. Then, the resin 4 is injected, filled, and molded into the internal space between the recess 43 in the mold and the recess 40a for the light reflecting ring. As a result, as shown in FIG. 20B, the multi-faced lead frame in which the front surface A for chip mounting and the back surface B for heat dissipation, the electrical connection area C and the back surface D for heat dissipation, respectively are exposed and filled with the filling resin 4. ML is formed.
  • the multi-sided lead frame ML is cut, and a separated 1 unit frame is obtained.
  • the cutting timing of the multi-sided lead frame ML is not limited to the cutting process after the resin molding, and the cutting process may be performed after the LED chip is mounted or after the transparent resin is formed. It doesn't matter.
  • the multi-sided lead frame ML When resin molding is performed on the multi-sided lead frame ML, the multi-sided lead is placed in the lower mold 41 having the recess 43 for installing the multi-sided lead frame ML and in the upper mold 40 having the light reflecting ring recess 40a. A frame ML is installed. Then, the filling resin 4 is injected into the space between the upper mold 40 and the lower mold 41 from the resin injection port 42 formed in the lower mold 41. When the filling resin 4 is injected into the mold, the resin is sequentially transferred from one unit frame in the vicinity of the resin injection port 42 to one unit frame in a part away from the injection port in the multi-faced lead frame ML. Flows and is resin-molded.
  • the depth of the recess 43 (the height of the internal space) of the lower mold 41 is formed to be the same as the thickness of the lead frame.
  • the suspension lead 20 and the tie bar 30 prevent the resin flow or damming and resin molding is not performed on the multi-faced lead frame ML.
  • the part not filled with the resin 4 becomes a part having air bubbles, and the quality of the resin-filled lead frame 1b, and hence the quality of the semiconductor light emitting device LE is deteriorated, and in some cases, it may be discarded as a defective product. There's a problem.
  • the thickness of the suspension lead 20 and the tie bar 30 is reduced to the same height as the thickness t3 of the heat radiating portion 3 and the heat radiating portion 3a which are the lower structures.
  • the filling resin 4 is injected, the resin flows through a gap formed between the suspension lead 20 and the tie bar 30 and the mold. Thereby, the flow of the resin is not hindered or blocked.
  • the multi-sided lead frame ML can be molded without bubbles in the filling resin 4, and the quality of the resin-filled lead frame 1b can be improved. Further, since there is no defective product, there is an effect that the manufacturing yield can be increased, and as a result, the manufacturing cost of the resin-filled lead frame 1b can be reduced.
  • the thickness thereof is thin, so that the load applied to the cutting blade during cutting can be reduced, and the life of the cutting blade can be extended.
  • the light reflectance can be improved. For example, when bubbles exist on the surface of the filling resin including the light reflecting ring 4a, a recess is formed on the surface of the filling resin, and light incident on the recess does not reflect in a desired direction. For this reason, the light emitted from the semiconductor light emitting device is reduced.
  • the resin surface filled with resin is flat so as not to have bubbles, incident light is reflected in a desired direction. Thereby, reflected light can be efficiently emitted from the light emitting device.
  • the suspension lead 20 and the tie bar 30 having the same thickness as the lower structure are provided on the lower structure side (rear surface side) of the lead frame, but the upper structure side (front surface side) of the lead frame. ) May be provided with the suspension lead 20 and the tie bar 30 having the same thickness as the upper structure portion.
  • SYMBOLS 1 ... Lead frame, 1b ... Resin filling lead frame, 2 ... Pad part, 2a ... Lead part, 3 ... Heat radiation part, 3a ... Heat radiation part, 4 ... (Filling) resin, 4a ... Light reflection ring, 5 ... Transparent resin, DESCRIPTION OF SYMBOLS 10 ... LED chip (light emitting element), 20 ... Suspension lead, 30 ... Tie bar, 40 ... Upper die, 40a ... Recess for light reflection ring, 41 ... Lower die, 42 ... Injection port, 43 ... Recess, A ... Chip Mounting surface, B ... Back surface for heat dissipation, C ... Electrical connection area, D ...
  • E Back surface for heat dissipation, E ... Stepped portion or tapered portion, E1 ... Tapered portion (or square chamfered portion), L ... LED light emission , LE ... semiconductor light emitting device, M ... reflected light, ML ... multi-sided lead frame, N ... re-reflected light, W ... wire, Z ... 1 unit frame.

Abstract

 リードフレームは、LEDチップを搭載するLEDチップ搭載用表面(A)を有する1乃至複数箇所のパッド部(2)と、前記LEDチップと電気的接続を行う電気的接続エリア(C)を有するリード部(2a)とを同一平面に備えている。前記パッド部の前記搭載用表面の面積S1と、前記搭載用表面と対向する放熱用裏面(B)の面積S2との関係が0<S1<S2である。リードフレームは、前記搭載用表面と前記放熱用裏面との間における前記パッド部の側面部に、前記搭載用表面から前記放熱用裏面に向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部(E)を有している。

Description

リードフレーム及びその製造方法及びそれを用いた半導体発光装置
 本発明は、LED(Light Emitting Diode)を担持、搭載するリードフレーム及びその製造方法及びそれを用いた半導体発光装置に関する。
 一般的に、半導体集積回路やLED発光素子などの電子素子を担持、搭載するためのリードフレームは、銅薄板、鉄-ニッケル等の合金薄板、銅-ニッケル-錫等の合金薄板などからなるリードフレーム用金属薄板から製造される。具体的には、リードフレームは、その金属材料の片面又は両面から塩化第二鉄等のエッチャントを用いてフォトエッチング加工されることで製造される。または、プレス金型を用いた打ち抜き法で製造される。このリードフレームは、半導体集積回路やLED素子を搭載するためのパッド部(アイランド部)と、パッド部から絶縁して分離されるインナーリード部及びアウトリード部とを備えている。インナーリード部は、電子素子と電気的に接続されている。また、アウトリード部は、外部と電気的に接続され、インナーリード部から延在している。
 リードフレームは、パッド部の表面側に電子素子を載置するための搭載部(搭載面)を有する。また、リードフレームは、パッドの裏面側にLED発光素子などの電子素子本体から発生する駆動熱や、電子素子周囲の環境条件による熱を放散させるための放熱部(放熱板)を有するものが知られている。すなわち、リードフレームは、電子素子側に熱が蓄積されないように、パッド部の裏面側の放熱部または、アウトリード部から外界側に熱が放熱されるようになっている。
 半導体集積回路やLED発光素子など電子素子を担持するための基板としては、金属薄板からなるリードフレームを用いたリードフレーム基板以外に、セラミック基板やプリント基板等が使用される。しかし、電子素子を載置するパッド部に形成される放熱部に関しては、その放熱効率の観点から、放熱部の放熱面積がなるべく広いことが望まれている。そして特許文献1~5には、LED等の電子的発光素子の担持体へのマウント技術、及び発光素子に対する蓄熱を防止するための放熱技術が記載されている。
特開2003-8071号公報 特開2003-347600号公報 特開2004-172160号公報 特開2007-220925号公報 特開2008-227166号公報
 LED発光素子を担持、搭載する素子担持体用の基板として、例えば、セラミック基板を用いた場合は、放熱特性は良好であり、信頼性も優秀であるが、価格が高いという欠点があった。また、素子担持体用の基板として、プリント基板を用いた場合は、プリント基板の基材であるエポキシ樹脂が、熱放散性に劣る欠点があった。それを解消するため、基板の内層にCu(銅)、あるいはAl(アルミ)からなる金属板を挿入したプリント基板を採用せざるを得ない。また、LED発光素子から発せられた光を高光反射率で反射し高い光利得を確保するために、発光素子を搭載する基板の光反射表面に光反射性のセラミックインクを塗布する工程を必要としていた。
 また、LED発光素子を担持、搭載する素子担持用の基板として、金属薄板からなるリードフレーム基板を用いる場合、熱放散性に欠けるという欠点の他に、LED発光素子の高い光利得(光照射方向への高い光反射率)を確保する必要があった。このため、発光素子を搭載するリードフレーム基板の光反射面に、特殊な複合樹脂(セラミックインク+Si樹脂)からなる複合材を積層して欠点をカバーする必要がある。また、リードフレーム基板方式を用いているにも関わらず、LED発光素子から実装基板面への放熱面の十分な確保ができず、放熱性能が不足する欠点があった。
 また、セラミック基板以外のプリント基板、あるいはリードフレーム基板方式は、何れも放熱特性が劣るだけでなく、セラミック基板を用いた半導体発光装置の製造方法に比較して、その製法や工程が複雑になる欠点があった。
 本発明は、上記問題点に鑑みなされたものであり、LED発光素子(LEDチップ)を担持、搭載する素子担持用の基板として、高放熱性能と高光利得性を兼ね備えた発光素子用リードフレーム基板、及びその製造方法、及びそれを用いた半導体発光装置を安価に提供することを目的とする。
 本発明の請求項1に係る発明は、少なくともLEDチップ10を搭載するLEDチップ搭載用表面Aを有する1乃至複数箇所のパッド部2と、前記LEDチップと電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレームであって、前記パッド部2の前記搭載用表面Aの面積S1と、前記搭載用表面Aと対向する放熱用裏面Bの面積S2との関係が0<S1<S2であり、前記搭載用表面Aと前記放熱用裏面Bとの間における前記パッド部2の側面部に、前記搭載用表面Aから前記放熱用裏面Bに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有することを特徴とするリードフレームである。
 本発明の請求項2に係る発明は、上記請求項1に係るリードフレームにおいて、前記リード部2aの前記電気的接続エリアCの面積S3と、前記電気的接続エリアCと対向し前記パッド部2の前記放熱用裏面Bと同一平面にある放熱用裏面Dの面積S4との関係が0<S3<S4であり、前記電気的接続エリアCと前記放熱用裏面Dとの間における前記リード部2aの側面部に、前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有することを特徴とするリードフレームである。
 本発明の請求項3に係る発明は、少なくともLEDチップ10を搭載するLEDチップ搭載用表面Aを有する1乃至複数箇所のパッド部2と、前記LEDチップと電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレームであって、前記パッド部2の前記搭載用表面Aの面積S1と、前記搭載用表面Aと対向する放熱用裏面Bの面積S2との関係が0<S1<S2であり、前記パッド部2は前記搭載用表面Aを有する上部構造と、前記上部構造と一体であり、前記放熱用裏面Bを有する下部構造とからなり、前記上部構造の側面部に、前記搭載用表面Aから前記放熱用裏面Bに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有し、前記下部構造の側面部に、前記放熱用裏面Bから前記搭載用表面Aに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を有することを特徴とするリードフレームである。
 本発明の請求項4に係る発明は、上記請求項3に係るリードフレームにおいて、前記リード部2aの前記電気的接続エリアCの面積S3と、前記電気的接続エリアCと対向し前記パッド部2の前記放熱用裏面Bと同一平面にある放熱用裏面Dの面積S4との関係が0<S3<S4であり、前記リード部2aは前記電気的接続エリアCを有する上部構造と、前記上部構造と一体であり、前記放熱用裏面Dを有する下部構造とからなり、前記上部構造の側面部に、前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有し、前記下部構造の側面部に、前記放熱用裏面Dから前記電気的接続エリアCに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を有することを特徴とするリードフレームである。
 本発明の請求項5に係る発明は、上記請求項1に係るリードフレームにおいて、前記パッド部2と前記リード部2aとをその表裏面を同一平面とする1単位フレームとして、各単位フレームが互いに縦横方向に1乃至複数本のタイバーにて連結されて多面付け配列されたリードフレームであって、前記パッド部2、前記リード部2a及び前記タイバーのそれぞれ表面、裏面又は表裏両面の面高さのうち、前記タイバーの面高さが低位に設定され、前記パッド部2及び前記リード部2aよりも前記タイバーの厚さが薄く設定されていることを特徴とするリードフレームである。
 本発明の請求項6に係る発明は、板状のリードフレーム用金属材料の表面に、パッド部2の面積S1からなる搭載用表面Aを形成するためのフォトレジストのパターンを形成し、前記金属材料の裏面に、前記パッド部2の前記搭載用表面Aと対向する面積S2からなる放熱用裏面Bを形成するためのフォトレジストのパターンを形成し、前記金属材料の表裏両面からエッチング加工することで、前記パッド部2の前記搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係が0<S1<S2であって、前記搭載用表面Aと前記放熱用裏面Bとの間における前記パッド部の側面部に前記搭載用表面Aから前記放熱用裏面Bに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを形成することを特徴とするリードフレームの製造方法である。
 本発明の請求項7に係る発明は、上記請求項6に係るリードフレームの製造方法において、前記搭載用表面Aを形成するためのフォトレジストをパターン形成する際に、前記金属材料の表面に、リード部2aの面積S3からなる電気的接続エリアCを形成するためのフォトレジストのパターンを形成し、前記放熱用裏面Bを形成するためのフォトレジストをパターン形成する際に、前記金属材料の裏面に、前記リード部2aの電気的接続エリアCと対向する面積S4からなる放熱用裏面Dを形成するためのフォトレジストのパターンを形成し、前記金属材料の表裏両面からエッチング加工することで、前記リード部2aの前記電気的接続エリアCの面積S3と前記放熱用裏面Cの面積S4との関係が0<S3<S4であって、前記電気的接続エリアCと前記放熱用裏面Dとの間における前記リード部の側面部に前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを形成することを特徴とするリードフレームの製造方法である。
 本発明の請求項8に係る発明は、板状のリードフレーム用金属材料の表面に、パッド部2の面積S1からなる搭載用表面Aを形成するためのフォトレジストのパターンを形成し、前記金属材料の裏面に、前記パッド部2の前記搭載用表面Aと対向する面積S2からなる放熱用裏面Bを形成するためのフォトレジストのパターンを形成し、前記金属材料の表裏両面からエッチング加工することで、前記パッド部2の前記搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係を0<S1<S2とし、かつ、前記パッド部2は、前記搭載用表面Aを有する上部構造と、前記上部構造と一体であって、前記放熱用裏面Bを有する下部構造とからなり、前記上部構造の側面部に、前記搭載用表面Aから前記放熱用裏面Bに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを形成し、前記下部構造の側面部に、放熱用裏面Bから搭載用表面Aに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を形成することを特徴とするリードフレームの製造方法である。
 本発明の請求項9に係る発明は、上記請求項8に係るリードフレームの製造方法において、前記搭載用表面Aを形成するためのフォトレジストをパターン形成する際に、前記金属材料の表面に、リード部2aの面積S3からなる電気的接続エリアCを形成するためのフォトレジストをパターン形成し、前記放熱用裏面Bを形成するためのフォトレジストをパターン形成する際に、前記金属材料の裏面に、前記リード部2aの電気的接続エリアCと対向する面積S4からなる放熱用裏面Dを形成するためのフォトレジストをパターン形成し、前記金属材料の表裏両面からエッチング加工することで、前記リード部2aの前記電気的接続エリアCの面積S3と放熱用裏面Cの面積S4との関係をS3<S4とし、かつ、前記リード部2aは前記電気的接続エリアCを有する上部構造と、前記上部構造と一体であって、前記放熱用裏面Dを有する下部構造とからなり、前記上部構造の側面部に、前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを形成し、前記下部構造の側面部に、前記放熱用裏面Dから前記電気的接続エリアCに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を形成することを特徴とするリードフレームの製造方法である。
 本発明の請求項10に係る発明は、上記請求項6に係るリードフレームの製造方法において、前記パッド部2と前記リード部2aとをその表裏面を同一平面とする1単位フレームとして、各単位フレームが互いに縦横方向に1乃至複数本のタイバーにて連結されて多面付け配列されたリードフレームの製造方法であって、前記パッド部2、前記リード部2a及び前記タイバーのそれぞれ表面、裏面又は表裏両面の面高さのうち、前記タイバーの面高さが低位に設定され、前記パッド部2及び前記リード部2aよりも前記タイバーの厚さが薄く設定されていることを特徴とするリードフレームの製造方法である。
 本発明の請求項11に係る発明は、少なくともLEDチップ10等のICチップを搭載したLEDチップ搭載用表面Aを有する1乃至複数箇所のパッド部2と、前記LEDチップと電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレームを、前記搭載用表面Aから前記搭載用表面Aと対向する放熱用裏面Bに亘って、その厚さ方向に充填樹脂によりモールド加工が施され、前記パッド部の前記搭載用表面Aより上面側に、前記LEDチップ及び前記電気的接続エリアCを含めて透明樹脂が被覆された半導体発光装置であって、前記パッド部の前記搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係が0<S1<S2であり、前記搭載用表面Aと前記放熱用裏面Bとの間における前記パッド部の側面部に、前記搭載用表面Aから前記放熱用裏面Bに向かって段差状部又はテーパー状部Eを有し、前記充填樹脂は、前記段差状部又はテーパー状部Eにて保持されていることを特徴とする半導体発光装置である。
 本発明の請求項12に係る発明は、少なくともLEDチップ10等のICチップを搭載したLEDチップ搭載用表面Aを有する1乃至複数箇所のパッド部2と、前記LEDチップと電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレームを、前記搭載用表面Aから前記搭載用表面Aと対向する放熱用裏面Bに亘って、その厚さ方向に充填樹脂によりモールド加工が施され、前記パッド部の前記搭載用表面Aより上面側に、前記LEDチップ及び前記電気的接続エリアCを含めて透明樹脂が被覆された半導体発光装置であって、前記パッド部の前記搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係が0<S1<S2であり、前記パッド部は前記搭載用表面Aを有する上部構造と、前記上部構造と一体であり、前記放熱用裏面Bを有する下部構造とからなり、前記上部構造の側面部に、前記搭載用表面Aから放前記熱用裏面Bに向かって段差状部又はテーパー状部Eを有し、前記下部構造の側面部に、前記放熱用裏面Bから前記搭載用表面Aに向かって段差状部又はテーパー状部E1を有し、前記充填樹脂は、それぞれの段差状部、テーパー状部E,E1にて保持されていることを特徴とする半導体発光装置である。
 本発明の請求項13に係る発明は、上記請求項11に係る半導体発光装置において、前記リード部2aの前記電気的接続エリアCの面積S3と、前記電気的接続エリアCと対向し前記パッド部2の前記放熱用裏面Bと同一平面にある放熱用裏面Dの面積S4との関係が0<S3<S4であり、前記電気的接続エリアCと放熱用裏面Dとの間における前記リード部2aの側面部に、前記電気的接続エリアCから放熱用裏面Dに向かって拡がる、前記充填樹脂を保持する段差状部又はテーパー状部Eを有し、前記充填樹脂は、段差状部又はテーパー状部Eにて保持されていることを特徴とする半導体発光装置である。
 本発明の請求項14に係る発明は、上記請求項11に係る半導体発光装置において、前記リード部2aの前記電気的接続エリアCの面積S3と、前記電気的接続エリアCと対向し前記パッド部2の前記放熱用裏面Bと同一平面にある放熱用裏面Dの面積S4との関係が0<S3<S4であり、前記リード部2aは前記電気的接続エリアCを有する上部構造と、前記上部構造と一体であり、前記放熱用裏面Dを有する下部構造とからなり、前記上部構造の側面部に、前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、樹脂モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有し、前記下部構造の側面部に、前記放熱用裏面Dから前記電気的接続エリアCに向かって拡がる、樹脂モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を有し、前記充填樹脂は、それぞれの段差状部又はテーパー状部E,E1にて保持されていることを特徴とする半導体発光装置である。
 本発明の請求項15に係る発明は、上記請求項11に係る半導体発光装置において、前記充填樹脂の光屈折率n1と前記透明樹脂の光屈折率n2との関係がn1>n2に設定され、前記充填樹脂を高反射率の樹脂としたことを特徴とする半導体発光装置である。
 本発明の請求項16に係る発明は、上記請求項11に係る半導体発光装置において、前記充填樹脂に反射率特性が向上する微粒子を添加したことを特徴とする半導体発光装置である。
 本発明の請求項17に係る発明は、表面側の上部構造と裏面側の下部構造とが一体となり、かつ、互いに離反した複数の構造体で形成されたリードフレームであって、前記リードフレームは、前記複数の構造体の間及び外側に形成され、前記リードフレームと同じ厚さの充填樹脂を有し、前記上部構造は、パッド部2と、前記パッド部2と離反したリード部2aとを有し、前記下部構造は、前記パッド部2と一体となった放熱部3と、前記リード部2aと一体となった放熱部3aとを有し、前記パッド部2の表面の面積S1と、前記放熱部3の裏面の面積S2との関係が0<S1<S2であり、前記リード部2aの表面の面積S3と、前記放熱部3aの裏面の面積S4との関係が0<S3<S4であり、前記各上部構造の側面部に、前記リードフレームの表面側から裏面側に向かって広がる段差状部又はテーパー状部を有し、前記各下部構造の側面部に、前リードフレームの裏面側から表面側に向かって広がる段差状部又はテーパー状部を有し、前記リードフレームは、前記表面側にあって前記パッド部2及び前記リード部2aの外側に、前記パッド部に面する斜面の内周面を備え、前記充填樹脂と一体に形成され、前記充填樹脂から突出した光反射用の光反射リング4aを有することを特徴とするリードフレームである。
 本発明の請求項18に係る発明は、上記請求項17に係るリードフレームにおいて、前記光反射リング4aの前記内周面の前記パッド部2の表面に対する傾斜角度が30度以上85度以下であることを特徴とするリードフレームである。
 本発明の請求項19に係る発明は、上記請求項17に係るリードフレームにおいて、前記充填樹脂が樹脂に粉状の添加剤を混合した光拡散性樹脂であり光屈折率が2以上であることを特徴とするリードフレームである。
 本発明の請求項20に係る発明は、上記請求項17に係るリードフレームにおいて、前記パッド部2と前記リード部2aとをその表裏面を同一平面とする1単位フレームとして、各単位フレームが互いに縦横方向に1乃至複数本のタイバーにて連結されて多面付け配列されたリードフレームであって、前記パッド部2、前記リード部2a及び前記タイバーのそれぞれ表面、裏面又は表裏両面の面高さのうち、前記タイバーの面高さが低位に設定され、前記パッド部2及び前記リード部2aよりも前記タイバーの厚さが薄く設定されていることを特徴とするリードフレームである。
 本発明の請求項21に係る発明は、リードフレーム用金属材料の表面に、パッド部2の面積S1からなるチップ搭載用表面Aと、リード部2aの面積S3からなる電気接続エリアCとを形成するフォトレジストのパターンを形成し、前記金属材料の裏面に、前記チップ搭載用表面Aに対向する面積S2からなる放熱用裏面Bと、前記電気接続エリアCに対向する面積S4からなる放熱用裏面Dとを形成するフォトレジストのパターンを形成し、前記金属材料の表裏両面からエッチング加工することで、前記パッド部2のチップ搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係を0<S1<S2とし、前記電気的接続エリアCの面積S3と前記放熱用裏面Dの面積S4との関係を0<S3<S4とした、前記金属材料から成る上部構造と下部構造とを有する一体構造を形成し、前記上部構造の側面部に、前記チップ搭載用表面Aから前記放熱用裏面Bに向かって広がる段差状部又はテーパー状部を形成し、前記下部構造の側面部に、前記放熱用裏面Bから前記チップ搭載用表面Aに向かって広がる段差状部又はテーパー状部を形成し、前記上部構造の前記チップ搭載用表面Aを有するパッド部2と前記下部構造の前記放熱用裏面Bを有する放熱部3を一体に形成し、前記上部構造の前記電気接続エリアCを有するリード部2aと下部構造の前記放熱用裏面Dを有する放熱部3aを一体に形成し、モールド成型用の金型に前記上部構造と前記下部構造とを有する一体構造を設置し、前記金型に樹脂を充填してモールド成型することにより、前記上部構造と前記下部構造の一体構造と同じ厚さの充填樹脂を前記上部構造と前記下部構造の一体構造の周囲に形成し、かつ、前記充填樹脂の形成と同時に、前記チップ搭載用表面A側であって前記パッド部2及びリード部2aの外側に、前記チップ搭載用表面A側に面する斜面の内周面を有する光反射用の光反射リング4aを、前記充填樹脂と一体構造として前記充填樹脂から突出させて形成することを特徴とするリードフレームの製造方法である。
 本発明の請求項22に係る発明は、上記請求項21に係るリードフレームの製造方法であって、前記パッド部2と前記リード部2aとをその表裏面を同一平面とする1単位フレームとして、各単位フレームが互いに縦横方向に1乃至複数本のタイバーにて連結されて多面付け配列されたリードフレームの製造方法であって、前記パッド部2、前記リード部2a及び前記タイバーのそれぞれ表面、裏面又は表裏両面の面高さのうち、前記タイバーの面高さが低位に設定され、前記パッド部2及び前記リード部2aよりも前記タイバーの厚さが薄く設定されていることを特徴とするリードフレームの製造方法である。
 本発明の請求項23に係る発明は、表面側の上部構造と裏面側の下部構造とが一体となり、かつ、互いに離反した複数の構造体で形成されたリードフレームと、前記リードフレームの前記複数の構造体の間及び外側に形成され、前記リードフレームと同じ厚さの充填樹脂とを具備し、前記上部構造は、パッド部2と、前記パッド部2と離反したリード部2aとを有し、前記下部構造は、前記パッド部2と一体となった放熱部3と、前記リード部2aと一体となった放熱部3aを有し、前記各上部構造の側面部に、前記リードフレームの表面側から裏面側の方向に広がる段差状部又はテーパー状部を有し、前記各下部構造の側面部に、前リードフレームの裏面側から表面側の方向に広がる段差状部又はテーパー状部を有し、前記表面側にあって前記パッド部2及び前記リード部2aの外側に、前記パッド部に面する斜面の内周面を有し、前記充填樹脂と一体に形成され、前記充填樹脂から突出した光反射用の光反射リング4aを有し、前記パッド部2の表面にLEDチップが搭載され、前記LEDチップの電極が前記リード部2aに電気接続され、前記LEDチップを被覆し、かつ、前記光反射リング4aの前記内周面と接する透明樹脂が形成されていることを特徴とする半導体発光装置である。
 本発明の請求項24に係る発明は、上記請求項23に係る半導体発光装置において、前記パッド部2の表面の面積S1と、前記放熱部3の裏面の面積S2との関係が0<S1<S2であり、前記リード部2aの表面の面積S3と、前記放熱部3aの裏面の面積S4との関係が0<S3<S4であることを特徴とする半導体発光装置である。
 本発明の請求項25に係る発明は、上記請求項23に係る半導体発光装置において、前記充填樹脂が樹脂に粉状の添加剤を混合した光拡散性樹脂であり光屈折率が2以上であり、前記透明樹脂の屈折率より高いことを特徴とする半導体発光装置である。
 本発明によれば、半導体発光装置用リードフレームにおけるパッド部2のLEDチップ搭載用表面Aの面積S1と、搭載用表面Aと対向する放熱用裏面Bの面積S2との関係を0<S1<S2、電気的接続エリアCの面積S3と、電気的接続エリアCと対向する放熱用裏面Dの面積S4との関係を0<S3<S4に設定し、放熱用裏面Bの面積を搭載用表面Aよりも広く、放熱用裏面Dの面積を電気的接続エリアCよりも広くして製造される。このため、リードフレーム裏面側において高い放熱性能が得られる。
 また、LED用リードフレームの表面側また表裏両面側には、樹脂モールド時の充填樹脂を保持するための段差状部又はテーパー状部が形成される。このため、リードフレームと、リードフレームを固定するためにリードフレームの周囲にモールドされる充填樹脂との確実な密着性が得られ、リードフレームと充填樹脂との分離や、リードフレームからの充填樹脂の離脱などを防止して確実な耐離脱性を向上できる効果がある。
 また、本発明によれば、充填樹脂に高光反射率の樹脂を使用し、充填樹脂又はその表面に高い光反射率を持たせることにより、LEDチップ10から発せられた光を効率よく外部に放出させることが可能になる。また、発光素子においては、充填樹脂の光屈折率n1とLED発光素子を覆うように形成される透明樹脂の光屈折率n2との関係をn1>n2に設定することにより、充填樹脂4と透明樹脂5との境界面における反射率を増加させることができ、充填樹脂又はその表面において高い光反射率を得ることができる。
 本発明は、光反射リング用凹部を形成した金型を用いて充填樹脂をモールド成型することで、充填樹脂と一体に形成された光反射リングを形成している。充填樹脂上に別体の光反射リングを形成した場合、充填樹脂と光反射リングとの接合面が界面となり、界面での両者の接合強度が弱い場合、光反射リングが充填樹脂から剥離し易かった。特に、充填樹脂や光反射リングから発生した水蒸気が界面に拡散したり、周辺雰囲気中の水蒸気が界面に拡散した場合に剥離が生じ易いものであった。しかし、本発明では、充填樹脂と光反射リングとを一体化した構造としている。このため、光反射リングと充填樹脂との間に界面は存在せず、両者は強固に接続され密着性が高い。このため、界面に水蒸気が拡散して剥離し易くなることも無くなり、接続信頼性の高い光反射リングが得られる。
 また、本発明によれば、充填樹脂及び充填樹脂と一体構造とした光反射リングに高光反射率の樹脂を使用し、充填樹脂及び充填樹脂と一体構造とした光反射リングの光屈折率を発光素子を被覆する透明樹脂の光屈折率よりも大きく設定している。これにより、充填樹脂及び光反射リングと透明樹脂との境界面における光反射率を増加させることができる。そのため、充填樹脂及び光反射リング又はその表面において高い光反射率を得ることができ、発光素子(LEDチップ)から発せられた光を効率よく反射し外部に放出させることが可能になる。
本発明の第1の実施形態におけるリードフレームを用いて製造した半導体発光素子の上面図。 本発明の第1の実施形態におけるリードフレームを用いて製造した半導体発光素子の裏面図。 図1のIII-III線に沿った断面図。 図1のIV-IV線に沿った断面図。 図1のV-V線に沿った断面図。 本発明の第1の実施形態におけるLED素子に係わる充填樹脂の機能を説明するための模式断面図。 本発明の第2の実施形態におけるリードフレームを用いて製造した半導体発光素子を示すものであり、図1のIII-III線に沿った断面図。 本発明の第2の実施形態におけるリードフレームを用いて製造した半導体発光素子を示すものであり、図1のIV-IV線に沿った断面図。 本発明の第2の実施形態におけるリードフレームを用いて製造した半導体発光素子を示すものであり、図1のV-V線に沿った断面図。 本発明の第3の実施形態におけるタイバーにて連結した多面付け状態のリードフレームを説明する上面図。 図10のモールド前を拡大して示す断面図。 図10を拡大して示す断面図。 金型を用いたリードフレームへの樹脂モールドの一例を説明する断面図。 本発明の第4の実施形態におけるリードフレームを用いて製造した半導体発光装置の上面図。 本発明の第4の実施形態におけるリードフレームを用いて製造した半導体発光装置を示すものであり、図13のXIV-XIV線に沿った断面図。 本発明の第4の実施形態におけるリードフレームを用いて製造した半導体発光装置を示すものであり、図13のXV-XV線に沿った断面図。 本発明の第4の実施形態におけるリードフレームを用いて製造した半導体発光装置を示すものであり、図13のXVI-XVI線に沿った断面図。 金型を用いたリードフレームへの樹脂モールドの一例の断面図。 本発明の第4の実施形態における光反射リングの機能を説明する模式断面図。 本発明の第5の実施形態におけるタイバーにて連結した多面付け状態のリードフレームの上面図。 図19のモールド前を拡大して示す断面図。 図19を拡大して示す断面図。
<第1の実施形態>
 まず、図1乃至図5を参照して、本発明の第1の実施形態について以下に説明する。
 本実施形態におけるリードフレーム1は、金属製の板状の基材にプレス金型を用いた打抜き加工を行うことにより形成される。すなわち、図3及び図5に示すように、リードフレーム1は、金属製の厚さt1の板状の基材にプレス金型を用いた打抜き加工を行うことにより形成される。このリードフレーム1は、表面側(発光素子10の搭載面側)の厚さt2の上部構造のパターンと、裏面側の厚さt3の下部構造のパターンとからなる。これら上部構造と下部構造とは、同じ金属薄板から作り出されるため一体構造になっている。リードフレーム1には、銅薄板、鉄-ニッケル等の合金薄板又は銅-ニッケル-錫等の金属薄板を材料として用いる。しかし、熱伝導率が高い銅又は銅合金を金属材料として用いる方が、リードフレーム1の放熱性が向上するため好ましい。また、これらに限らず、アルミニウム合金等の金属材料を用いることも可能である。
 図1、図3、図4及び図5に示すように、厚さt1の金属薄板より厚みの薄い、リードフレーム1の厚さt2の上部構造のパターンは、パッド部2と、1乃至複数のリード部2aとを備えている。このリード部2aは、パッド部2から分離され、所定の間隔でパッド部2に隣接して形成されている。また、図2、図3、図4及び図5に示すように、厚さt3の下部構造のパターンは、パッド部2の裏面側でパッド部2と一体となった放熱部3(放熱板)と、リード部2aの裏面側でリード部2aと一体となった放熱部3a(放熱板)とを備えている。なお、図5において、Wはワイヤー(金線)の一例を示している。このワイヤーは、パッド部2のチップ搭載用表面Aに搭載した発光素子(LEDチップ)10と、リード部2aの電気的接続エリアCとの間にワイヤーボンディングにより結線され、これらを電気的に接続している。
 図1、図3及び図5に示すように、パッド部2の表面(上面)は、LEDチップ10を搭載するための面積S1の搭載用表面Aとなっている。パッド部2と対向する裏面側の放熱部3の外面(裏面)は、パッド部2の裏面側から外界側に熱を放散させるための面積S2の放熱用裏面B(放熱板)となっている。すなわち、この放熱部3は、LEDチップ10本体から発生する駆動熱やLEDチップ10の周囲環境条件による熱を放散させて、LEDチップ10に熱が蓄積されないように機能する。
 また、図1、図4及び図5に示すように、リード部2aは、基材へのプレス金型を用いた打抜き加工時に、パッド部2の形成と同時に形成される。リード部2aの表面は、銀メッキ等が施された面積S3の電気的接続エリア(ワイヤーボンディングエリア)Cとなっている。これにより、ワイヤーボンディングやチップボンディング等により、LEDチップ10とリード部2aとの電気的接続を行う際に接続性を向上させることができる。リード部2aと対向する裏面側の放熱部3aの外面(裏面)は、面積S4の放熱用裏面D(放熱板)となっている。
 パッド部2の搭載用表面Aと、リード部2aの電気的接続エリアCとは、同一のリードフレーム用基材(例えば、板状基材)から形成される。また、パッド部2の放熱用裏面Bと、リード部2aの放熱用裏面Dとも同一の板状基材から形成される。このため、搭載用表面Aの面と電気的接続エリアCの面、及び放熱用裏面Bの面と放熱用裏面Dの面とはそれぞれ、同一平面内にある。
 また、リード部2aの電気的接続エリアCは、パッド部2の搭載用表面A上に実装されるLED発光素子10に対して、ワイヤーボンディングやチップボンディングにより接続される。このように、電気的接続エリアCは、パッド部2の搭載用表面Aに搭載したLEDチップ10と接続するためのワイヤーがボンディングされる領域や、LEDチップ10に形成された接続用電極と半田などを介してチップボンディグされる領域などから構成されている。
 なお、前述した、電気的接続エリアCに形成されるメッキは、銀メッキに変えて、金メッキ、パラジウムメッキを用いることもできる。また、電気的接続エリアC面に銀メッキ、金メッキ、パラジウムメッキを行う前に、耐熱拡散性に優れたNi(ニッケル)メッキ等の下地メッキを行うことも可能である。さらに、半導体発光装置LEを外部基板に搭載し、接続させるために、放熱用裏面にも、銀メッキ、金メッキ、パラジウムメッキや、Ni(ニッケル)メッキ等の下地メッキを行っても構わない。
 本発明において、図3に示すように、パッド部2の搭載用表面Aの面積S1と、放熱用裏面Bの面積S2との関係が、S1<S2となっている。すなわち、搭載用表面Aの面積よりも放熱用裏面Bの面積が大きくなるように設定されている。また、図4に示すように、リード部2aのワイヤーボンディングエリアCの面積S3と、放熱用裏面Dの面積S4との関係が、S3<S4となっている。すなわち、ワイヤーボンディングエリアCの面積よりも放熱用裏面Dの面積が広くなるように設定されている。
 また、図3に示すように、パッド部2の搭載用表面Aと放熱部3の放熱用裏面Bとの間におけるパッド部2の側面部は、搭載用表面Aから放熱用裏面Bの方向(リードフレーム1の表面側から裏面側の方向)に向かって拡がる、段差状部又はテーパー状部Eとして形成されている。その側面部の段差状部又はテーパー状部Eに対して、表面Aから裏面B方向に引く線は、屈曲又は湾曲した形状となっている。この段差状部又はテーパー状部Eによって、後にモールド充填加工により充填される樹脂をフレーム表面側から裏面側の方向に脱落しないように保持することができるようになっている。
 また、図4に示すように、リード部2aのエリアCと放熱用裏面Dとの間におけるリード部2aの側面部は、エリアCから放熱用裏面Dの方向(リードフレーム1の表面側から裏面側の方向)に拡がる、段差状部又はテーパー状部Eとして形成されている。その側面部の段差状部又はテーパー状部Eに対して、エリアCから裏面D方向に引く線は、屈曲又は湾曲した形状となっている。この段差状部又はテーパー状部Eによって、後にモールド充填加工により充填される樹脂をフレーム表面側から裏面側の方向に脱落しないように保持することができるようになっている。
(リードフレームの製造方法)
 次に、本実施形態のリードフレームの製造方法を説明する。
 まず、鉄-ニッケル等の合金薄板又は銅-ニッケル-錫等の金属合金製の板状のリードフレーム用金属材料に対して、プレス金型を用いた打抜き加工が行われる。これにより、金属材料に貫通部が形成される。すなわち、図1乃至図5に示すように、搭載用表面Aの面積S1と放熱用裏面Bの面積S2との関係がS1<S2となるパッド部2及び放熱部3と、電気的接続エリアCの面積S3と放熱用裏面Dの面積S4との関係がS3<S4となるリード部2a及び放熱部3aとからなるリードフレーム1が形成される。
 このとき、断面視において側面がテーパー状に形成された凹部もしくは凸部を有する金型を用いることにより、搭載用表面Aと放熱用裏面Bとの間におけるパッド部2の側面部に、その搭載用表面Aから放熱用裏面Bの方向に拡がる段差状部又はテーパー状部Eが形成される。同様に、電気的接続エリアCと放熱用裏面Dとの間におけるリード部2aの側面部に、その電気的接続エリアCから放熱用裏面Dの方向に拡がる段差状部又はテーパー状部Eが形成される。この段差状部又はテーパー状部Eにより、モールド時に充填される樹脂(充填樹脂)を保持することができる。
 なお、本実施形態に係るリードフレーム1は、後述するように、フォトレジストを用いたフォトエッチング法にて形成しても構わない。
 次に、リードフレーム1に以下の例に記す一連の樹脂モールド加工を行い、半導体発光装置用リードフレームを得る。
 まず、所定の内部形状とした凹部(例えば、リードフレーム材の厚みt1と同じ深さt1を有する凹部)を予め形成している金型の凹部内に、リードフレーム1が装填される。なお、図12に示すように、金型としては、蓋となる板状の上金型40と、下金型41との2枚構成であるものが一般的である。下金型41には、溶融する樹脂4を注入する注入口42に連通する凹部43が内部空間として形成されている。この凹部43に、リードフレーム1(多面付けリードフレームML)を装填することが可能である。下金型41の凹部43にリードフレーム1を装填後に、上金型40を下金型41に合体して型締めする。
 次に、注入口42から、凹部43(内部空間)内に加熱溶融した充填樹脂4が注入される。これにより、装填されたリードフレーム1(多面付けリードフレームML)に充填樹脂4が充填されて成型された樹脂充填リードフレームが得られる。成型後、冷却して上金型を外し、リードフレーム1を下金型から取り出す。これにより、リードフレーム1の厚さt1と同じ厚さの充填樹脂4が形成される。また、搭載用表面Aと放熱用裏面Bのそれぞれの面、及び、電気的接続エリアCと放熱用裏面Dのそれぞれの面とが各々充填樹脂から外面に露呈される。このようにして、パッド部2とリード部2Aとの間に充填樹脂が充填された半導体発光装置用リードフレームが形成される。
 なお、図1及び図2に示す吊りリード20は、プレス金型を用いた打抜き加工後に、パッド部2及びリード部2aが金属材料から脱落するのを防止するためのものである。このため、吊りリード20は、必要な期間、パッド部2及びリード部2aを金属材料に連結保持しておくために形成されている。したがって、吊りリード20を切断することで、個々のリードフレーム(後述する1単位フレーム)が得られる。なお、各断面図においては、吊りリード20の図示は省略している。吊りリード20と金属材料との連結部を切断して、リードフレームが分離できる。吊りリード20の切断時期は、LEDチップを搭載した後、または、樹脂モールド後が挙げられるが、適宜設定して構わない。
 次に、本実施形態の半導体発光装置について説明する。図1乃至図5に示すように、半導体発光装置は、LEDチップ10を搭載した1乃至複数箇所のパッド部2と、LEDチップ10との電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレーム1を有している。
 リードフレーム1は、パッド部2のLEDチップ搭載用表面Aから搭載用表面Aと対向する放熱部3の放熱用裏面Bに亘って、及びリード部2aの電気的接続エリアCからエリアCと対向する放熱部3aの放熱用裏面Dに亘って、その厚さ方向に、樹脂4によってモールド加工が施されている。
 パッド部2の搭載用表面Aより上面側、及びリード部2aの電気的接続エリアCより上面側に、LEDチップ10及び電気的接続エリアCを含めて、透明樹脂5が層状に被覆されている。なお、図面において、透明材料5は層状としているが、ドーム状であっても構わない。
 リードフレーム1において、パッド部2の搭載用表面Aの面積S1と放熱部3の放熱用裏面Bの面積S2との関係は、0<S1<S2に設定され、ワイヤーボンディングエリアCの面積S3と放熱部3aの放熱用裏面Dの面積S4との関係は、0<S3<S4に設定されている。すなわち、リードフレーム1は、例えば、台座状となった放熱部3から、放熱部3より面積(図1の平面図における面積)が小さいパッド部2が突出された形状を有し、また、台座状となった放熱部3aから、放熱部3aより面積が小さいリード部2aが突出された形状を有している。
 このため、放熱部位が広く設定でき、放熱性に優れたLED素子とすることが出来る。また、その搭載用表面Aと放熱用裏面Bとの間、及び電気的接続エリアCと放熱用裏面Dとの間におけるパッド部2、及びリード部2aの側面部には、搭載用表面Aから放熱用裏面B、及び電気的接続エリアCから放熱用裏面Dの方向に拡がる段差状部又はテーパー状部Eが形成されている。そのため、樹脂4を溶融状態にしてモールド加工する際、及びモールド加工後において、樹脂4が、この段差状部又はテーパー状部Eによって保持され、かつ、樹脂4とリードフレームとの接触面積は大きくなる。そのため、充填された樹脂4とリードフレームとは強固に密着することになる。これにより、樹脂4からのリードフレームの脱落、もしくは、リードフレームからの樹脂4の脱落を防止することができる。
 本実施形態の半導体発光装置において、LED素子10は透明な樹脂5の層内に埋設された状態で発光する。このため、LED素子10から発せられた光を透明樹脂5から外側に出射する際、高い光利得性を持たせることが重要である。そのために、透明樹脂5として、例えば、アクリル系樹脂(ポリメタメチルアクリレート樹脂)などの透明性の良好な樹脂を選定することは勿論である。さらに、本発明者は特に、充填樹脂4として、充填樹脂4と透明樹脂5との境界面において高い反射性を有する樹脂を使用することを提案する。
 樹脂4として、高い光反射率を有することが望ましいが、その他に、耐熱性、耐光性、熱導電性、高い光拡散性を有することも望ましい。そのため、樹脂4として、例えば、エポキシ樹脂、変性エポキシ樹脂、シルセシキオキサン系樹脂、シリコーン樹脂、アクリル樹脂、ポリカーボネイト樹脂、芳香族系ポリエステル樹脂(不飽和ポリエステル樹脂)、ポリアミド系樹脂、ポリフタルアミド(PPA)、液晶ポリマ(LCP)、シクロオレフィン系樹脂などの有機高分子材料が望ましい。なお、1種の樹脂又は、複数種の樹脂の混合樹脂を用いても構わない。
 充填樹脂4の光屈折率n1と透明樹脂5の光屈折率n2との関係を、n1>n2に設定することにより、樹脂4と透明樹脂5との境界面において高い反射率を得ることができる。さらに、樹脂4と透明樹脂5との屈折率の差が大きいほど高い反射を行うことができる。しかし、樹脂の屈折率は概ね2以下であり、樹脂だけで屈折率差を大きくするには限界が有る。そのため、本発明において、樹脂4として、上記の1種の樹脂又は複数種の樹脂の混合樹脂を主体とする樹脂に、粉状物質や粒状物質などの添加剤を混合した光拡散性樹脂を使用することを提案する。これにより、樹脂4の屈折率nを2以上にすることができる。したがって、樹脂4と透明樹脂5との境界面における高い反射性を得ることができる。なお、樹脂4に添加する添加剤としては、例えば、SiO、TiO、Al、酸化ジルコニウム、セラミック材、又はそれらの混合物などの微粒子が上げられる。また、主体樹脂に対する添加剤の混合比率は、適宜に設定することができる。例えば1%~20%、若しくはそれ以上である。
 以下に、充填樹脂4に反射性を持たせることによる効果を説明する。
 図6に示すように、LEDチップ10から発せられた光Lは、透明樹脂5中を進行して外部に放出される。しかし、LEDチップ10から発せられた光の一部は、外部(空気)と接触する透明樹脂5の境界で反射する(図6中の反射光M(全反射光や半反射光など))。その後、反射光Mは、充填樹脂4の表面に到達する。このとき、樹脂4に高い反射率を持たせた場合、反射光Mを樹脂4の表面で再度反射させることが可能になる(図6中の再反射光N)。すなわち、再反射光NをLED素子より放出させることが可能になる。一方、充填樹脂が反射率を持たない場合、反射光Mはそのまま充填樹脂中に進入してしまい、LED素子から放出しなくなる。
 このように、樹脂4に高い反射率を持たせることで、LEDチップ10から発せられた光を効率よく外部に放出させることが可能になる。
 なお、LEDチップ搭載用表面A、電気的接続エリアCに金属メッキを行った場合、メッキ面にて反射光Mを再反射光Nとすることが出来る。このため、LEDチップ10から発せられた光を効率よく利用する上でより好ましい。
 さらに、樹脂4表面に、光反射率の優れたセラミックインクなどをコーティングすることも、LEDチップ10から発せられた光を効率よく利用する上でより好ましい。
<第2の実施形態>
 次に、図7乃至図9を参照して、本発明の第2の実施形態について以下に説明する。
 本実施形態におけるリードフレーム1は、金属製の薄板状の基材をフォトエッチング加工することにより形成される。すなわち、図7、図8及び図9に示すように、リードフレーム1は、厚さt1の金属薄板の基材を両面からフォトエッチング加工することにより形成される。このリードフレーム1は、表面側(発光素子10の搭載面側)の厚さt2の上部構造のパターンと、裏面側の厚さt3の下部構造のパターンとからなる。これら上部構造と下部構造とは、同じ金属薄板から作り出されるため一体構造になっている。リードフレーム1には、板状の銅薄板、鉄-ニッケル等の合金薄板又は銅-ニッケル-錫等の金属薄板を材料として用いる。しかし、熱伝導率が高い銅又は銅合金を金属材料として用いる方が、リードフレーム1の放熱性が向上するため好ましい。また、これらに限らず、アルミニウム合金等の金属材料を用いることも可能である。
 図7、図8及び図9に示すように、厚さt1の金属薄板より厚みの薄い、リードフレーム1の厚さt2の上部構造のパターンは、パッド部2と、1乃至複数のリード部2aとを備えている。このリード部2aは、パッド部2から分離され、所定の間隔でパッド部2に隣接して形成されている。また、図7、図8及び図9に示すように、厚さt3の下部構造のパターンは、パッド部2の裏面側でパッド部2と一体となった放熱部3(放熱板)と、リード部2aの裏面側でリード部2aと一体となった放熱部3a(放熱板)とを備えている。なお、図9において、Wはワイヤー(金線)の一例を示している。このワイヤーは、パッド部2のチップ搭載用表面Aに搭載した発光素子(LEDチップ)10と、リード部2aの電気的接続エリアCとの間にワイヤーボンディングにより結線され、これらを電気的に接続している。
 図7及び図9に示すように、パッド部2の表面(上面)は、LEDチップ10を搭載するための面積S1の搭載用表面Aとなっている。パッド部2と対向する裏面側の放熱部3の外面(裏面)は、パッド部2の裏面側から外界側に熱を放散させるための面積S2の放熱用裏面B(放熱板)となっている。すなわち、この放熱部3は、LEDチップ10本体から発生する駆動熱やLEDチップ10の周囲環境条件による熱を放散させて、LEDチップ10に熱が蓄積されないように機能する。
 また、図8及び図9に示すように、リード部2aは、リードフレーム用基材へのフォトエッチング加工時に、パッド部2の形成と同時に形成される。リード部2aの表面は、銀メッキ等が施された面積S3の電気的接続エリア(ワイヤーボンディングエリア)Cとなっている。これにより、ワイヤーボンディングやチップボンディング等により、LEDチップ10とリード部2aとの電気的接続を行う際に接続性を向上させることができる。リード部2aと対向する裏面側の放熱部3aの外面(裏面)は、面積S4の放熱用裏面D(放熱板)となっている。
 パッド部2の搭載用表面Aと、リード部2aの電気的接続エリアCの面とは、同一のリードフレーム用基材(例えば、板状基材)から形成される。また、パッド部2の放熱用裏面Bと、リード部2aの放熱用裏面Dとも同一の板状基材から形成される。このため、搭載用表面Aの面と電気的接続エリアCの面、及び放熱用裏面Bの面と放熱用裏面Dの面とはそれぞれ、同一平面内にある。
 また、リード部2aの電気的接続エリアCは、パッド部2の搭載用表面A上に実装されるLED発光素子10に対して、ワイヤーボンディングやチップボンディングにより接続される。このように、電気的接続エリアCは、パッド部2の搭載用表面Aに搭載したLEDチップ10と接続するためのワイヤーがボンディングされる領域や、LEDチップ10に形成された接続用電極と半田などを介してチップボンディグされる領域などから構成されている。
 なお、前述した、電気的接続エリアCに形成されるメッキは、銀メッキに変えて、金メッキ、パラジウムメッキを用いることもできる。また、電気的接続エリアC面に銀メッキ、金メッキ、パラジウムメッキを行う前に、耐熱拡散性に優れたNi(ニッケル)メッキ等の下地メッキを行うことも可能である。さらに、半導体発光装置LEを外部基板に搭載し、接続させるために、放熱用裏面にも、銀メッキ、金メッキ、パラジウムメッキや、Ni(ニッケル)メッキ等の下地メッキを行っても構わない。
 図7に示すように、本実施形態のリードフレーム1においては、LEDチップを搭載するLEDチップ搭載用表面Aの面積S1と、搭載用表面Aと対向する放熱部3の放熱用裏面Bの面積S2との関係は、0<S1<S2となっている。このように、リードフレーム1の裏面に放熱面を設け、かつ、放熱面を大きくすることで、放熱効果が向上する。
 また、リードフレーム1において、パッド部2は、搭載用表面Aを有する上部構造を構成している。一方、放熱部3(放熱板)は、放熱用裏面Bを有する下部構造を構成している。この下部構造は、上部構造と対向する下部(パッド部2の裏面側)に、上部構造と一体として形成されている。この下部構造及び上部構造は、例えば、台座状となった放熱部3から、放熱部3より面積(図1の平面図における面積)の小さいパッド部2が突出した形状となっている。
 搭載用表面Aと放熱用裏面Bとの間におけるパッド部2である上部構造の側面部に、その搭載用表面Aから放熱用裏面Bの方向に拡がる、樹脂モールド時に充填された樹脂を保持するための段差状部又はテーパー状部Eが形成されている。一方、放熱部3(放熱板)である下部構造の側面部に、その放熱用裏面Bから搭載用表面Aの方向に拡がる、樹脂モールド時に充填された樹脂を保持するためのテーパー状部E1が形成されている。
 また、図8に示すように、リードフレーム1のリード部2aの電気的接続エリアCの面積S3と、電気的接続エリアCと対向する放熱部3aの放熱用裏面Dの面積S4との関係は、0<S3<S4となっている。このように、リード部2aの裏面に一体となった放熱部3aを設け、かつ、放熱部3aの放熱面を大きくすることで、放熱効果が向上する。
 また、電気的接続エリアCはパッド部2の搭載用表面Aと同一面に形成され、放熱用裏面Dはパッド部2の放熱用裏面Bと同一面に形成されている。
 リードフレーム1において、リード部2aは、電気的接続エリアCを有する上部構造を構成している。一方、放熱部3a(放熱板)は、放熱用裏面Dを有する下部構造を構成している。この下部構造は、上部構造と対向する下部(リード部2aの裏面側)に、上部構造と一体として形成されている。この下部構造及び上部構造は、例えば、台座状となった放熱部3aから、放熱部3aより面積(図1の平面図における面積)の小さいリード部2aが突出した形状となっている。
 また、電気的接続エリアCと放熱用裏面Dとの間におけるリード部2aである上部構造の側面部には、その電気的接続エリアCから放熱用裏面Dの方向に拡がる、樹脂モールド時に充填された樹脂を保持するための段差状部又はテーパー状部Eが形成されている。一方、放熱部3(放熱板)である下部構造の側面部には、その放熱用裏面Dから電気的接続エリアCの方向に拡がる、樹脂モールド時に充填された樹脂を保持するためのテーパー状部E1が形成されている。
 上述した段差状部又はテーパー状部E、及びテーパー状部E1によって、後にモールド充填加工により充填される樹脂をフレームから脱落しないように保持する。特に、表面側及び、裏面側の方向に脱落しないように、樹脂をリードフレームに保持することができるようになっている。
 本実施形態に係るリードフレーム1は、後述するように、リードフレーム用金属板の表裏面にフォトレジスト(感光性樹脂)を塗布し、フォトレジストへのパターン露光と現像処理等をすることにより、レジストパターンを形成した後、その両面から塩化第二鉄等のエッチャントを用いてレジスト非形成部をフォトエッチング加工することにより、形成される。このように形成することで、リードフレーム1は、LED素子を搭載するためのパッド部2と、パッド部2とは絶縁状態に離反しているリード部2aとを備えている。
(リードフレームの製造方法)
 次に、本実施形態のリードフレームの製造方法を説明する。
 まず、鉄-ニッケル等の合金薄板又は銅-ニッケル-錫等の金属薄板からなる、厚さt1のリードフレーム用金属材料の表面に、フォトレジスト(感光性樹脂)が塗布されてフォトレジスト層が形成される。次に、所定のパターンを有するパターン露光用フォトマスクを介してフォトレジスト層にパターンが露光される。このパターン露光により、パッド部2の面積S1からなる搭載用表面A、及びリード部2aの面積S3からなる電気的接続エリアCを形成するためのパターンが露光される。次に、フォトレジスト層に現像、必要に応じて硬膜処理が行われる。これにより、パッド部2の搭載用表面A及びリード部2aの電気的接続エリアCとなる部分を残してフォトレジストが除去される。すなわち、金属材料の一方の面側(表面側)のパッド部2の搭載用表面Aを形成する部位、及び、リード部2aの電気的接続エリアCを形成する部位にレジストパターンが形成される。
 同様に、金属材料の他方の面側(裏面)にもフォトレジストを塗布してフォトレジスト層を形成後、パターン露光、現像等という一連の処理が行われる。パターン露光において、面積S2(S1<S2)の放熱用裏面B、及び面積S4(S3<S4)の放熱用裏面Dを形成するためのパターンが露光され、その後、現像、硬膜処理などが行われる。これにより、パッド部2の放熱用裏面Bとなる部分、及びリード部2aの放熱用裏面Dとなる部分を残して、フォトレジストが除去される。すなわち、放熱用裏面Bを形成する部位、及び、放熱用裏面Dを形成する部位にレジストパターンが形成される。これにより、リードフレーム用金属材料の表裏面にそれぞれ、フォトレジスト非形成部の面積の差分(ΔSP=S2-S1、ΔSP>0、ΔSL=S4-S3、ΔSL>0、)を有するレジストパターンが形成される。
 次に、金属材料の裏面に耐腐食用の樹脂フィルムが貼着される。次に、金属材料の表面側から塩化第二鉄等のエッチャントを用いてエッチング加工処理(ハーフエッチング処理)が行われる。このとき、金属材料の表面のフォトレジスト非形成部が所定の深度(例えば、図7、図8に示す厚さt2)までエッチングされる。その後、洗浄などを行い、金属材料の表面に耐腐食用の樹脂フィルムが貼着される。
 次に、金属材料の裏面の耐腐食用の樹脂フィルムが剥がされ、金属材料の裏面側から、塩化第二鉄等のエッチャントを用いてエッチング加工処理(ハーフエッチング処理)が行われる。このとき、金属材料の裏面のフォトレジスト非形成部が所定の深度(例えば、図7、図8に示す厚さt3)までエッチングされる。このようにして、表裏面からのハーフエッチングで形成されるエッチング深度t2、t3の合計の値を、金属薄板の厚みt1と同じか、もしくは、大きくする。これにより、金属材料の表面、裏面に各々対応するレジストパターンが形成されていない金属部位に貫通部が形成される。すなわち、図7乃至図9に示すように、搭載用表面Aの面積S1と放熱用裏面Bの面積S2との関係がS1<S2となるパッド部2及び放熱部3と、電気的接続エリアCの面積S3と放熱用裏面Dの面積S4との関係がS3<S4となるリード部2a及び放熱部3aとからなるリードフレーム1が形成される。
 上述した説明では、エッチング加工は、表裏の面に各々1回ずつ行い、計2回行っているが、表裏から同時に行う1回のエッチングで金属材料にエッチング加工をしてもよい。
 レジストパターンから露出した金属材料部位にエッチング処理を行うと、レジストパターンから露出した金属材料部位には等方的にエッチングが行われる。そのため、金属材料の表裏両面側から各々エッチング(ハーフエッチング)を行うと、金属材料の表裏面でテーパー方向が逆となったリードフレーム1を得ることになる。すなわち、テーパー状部Eが上面から下面に向かって拡がる場合、テーパー状部E1は下面から上面に向かって拡がる。なお、図示するように、これらテーパー状部E及びテーパー状部E1の側面形状は屈曲又は湾曲した形状となっていても構わない。表裏面で各々逆テーパー状となったリードフレームにおいては、後述するように、板状となったリードフレームからの樹脂の脱落を防止できる。
 次に、リードフレーム1に以下の例に記す一連の樹脂モールド加工を行い、半導体発光装置用リードフレームを得る。
 まず、所定の内部形状とした凹部(例えば、リードフレーム材の厚みt1と同じ深さt1を有する凹部)を予め形成している金型の凹部内に、リードフレーム1が装填される。なお、図12に示すように、金型としては、蓋となる板状の上金型40と、下金型41との2枚構成であるものが一般的である。下金型41には、溶融する樹脂4を注入する注入口42に連通する凹部43が内部空間として形成されている。この凹部43に、リードフレーム1(多面付けリードフレームML)を装填することが可能である。下金型41の凹部43にリードフレーム1を装填後に、上金型40を下金型41に合体して型締めする。
 次に、注入口42から、凹部43(内部空間)内に加熱溶融した充填樹脂4が注入される。これにより、装填されたリードフレーム1(多面付けリードフレームML)に充填樹脂4が充填されて成型された樹脂充填リードフレームが得られる。成型後、冷却して上金型を外し、リードフレーム1を下金型から取り出す。これにより、リードフレーム1の厚さt1と同じ厚さの充填樹脂4が形成される。また、搭載用表面Aと放熱用裏面Bのそれぞれの面、及び、電気的接続エリアCと放熱用裏面Dのそれぞれの面とが各々充填樹脂から外面に露呈される。このようにして、パッド部2とリード部2Aとの間に充填樹脂が充填された半導体発光装置用リードフレームが形成される。
 なお、図1及び図2に示す吊りリード20は、パッド部2及びリード部2aが金属材料から脱落するのを防止するためのものであるため、第2の実施形態のリードフレームを得る際にも形成しておくことが望ましい。吊りリード20は、必要な期間、パッド部2及びリード部2aを金属材料に連結保持しておくために形成されている。したがって、吊りリード20を切断することで、個々のリードフレーム(後述する1単位フレーム)が得られる。なお、第2の実施形態の各断面図においては、吊りリード20の図示は省略している。吊りリード20と金属材料との連結部を切断して、リードフレームが分離できる。吊りリード20の切断時期は、LEDチップを搭載した後、または、樹脂モールド後が挙げられるが、適宜設定して構わない。
 次に、本実施形態の半導体発光装置について説明する。図9に示すように、半導体発光装置LEは、LEDチップ10を搭載した1乃至複数箇所のパッド部2と、LEDチップ10との電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレーム1を有している。
 リードフレーム1は、パッド部2のLEDチップ搭載用表面Aから搭載用表面Aと対向する放熱部3の放熱用裏面Bに亘って、及びリード部2aの電気的接続エリアCからエリアCと対向する放熱部3aの放熱用裏面Dに亘って、その厚さ方向に、樹脂4によってモールド加工が施されている。
 パッド部2の搭載用表面Aより上面側、及びリード部2aの電気的接続エリアCより上面側に、LEDチップ10及び電気的接続エリアCを含めて、透明樹脂5が層状に被覆されている。なお、図面において、透明材料5は層状としているが、ドーム状であっても構わない。
 パッド部2の搭載用表面Aの面積S1と放熱部3の放熱用裏面Bの面積S2との関係は、0<S1<S2に設定され、ワイヤーボンディングエリアCの面積S3と放熱部3aの放熱用裏面Dの面積S4との関係は、0<S3<S4に設定されている。また、リードフレーム1の厚さt1と同じ厚みとなるよう充填樹脂にてリードフレーム1をモールドすることで、放熱用裏面B及び放熱用裏面Dは各々充填樹脂より露出している。このため、放熱部位が広く設定でき、かつ放熱部位の表面が露出することで、放熱性に優れたLED素子とすることが出来る。また、リードフレーム1の側面にテーパー部状E、及びE1が設けられている。このため、樹脂4を溶融状態にしてモールド加工する際、及びモールド加工後において、樹脂4が、この段差状部又はテーパー状部E、E1によって保持される。また、樹脂4とリードフレームとの接触面積は大きくなる。そのため、充填された樹脂4とリードフレームとは強固に密着することになる。これにより、樹脂4からのリードフレームの脱落、もしくは、リードフレームからの樹脂4の脱落を防止することができる
 この点につき、更に説明する。本実施形態の構造としたリードフレーム1において、上部構造のテーパー状部Eのテーパーは例えば上面から下面に向けて拡がるテーパーとなり、下部構造のテーパー状部E1のテーパーは例えば下面から上面に向けて拡がるテーパーとなっている。すなわち、上部構造と下部構造の各々のテーパー方向は逆方向となっている。そのため、上部構造のテーパー部と下部構造のテーパー部とが合流する部位は、側面視で凸部となる。モールド後、パッド部2及び放熱部3と、リード部2a及び放熱部3aとで挟まれた部位の充填樹脂4は、上記凸部に対応する部位が窪む。このため、充填樹脂4は、上側の部位(上部構造側の部位)と下側の部位(下部構造側の部位)との間にくびれた部位を有する。言い換えれば、図9に示すように、樹脂4の断面形状は、例えば、くびれた部位を有する砂時計状となる。樹脂4はくびれ部より径が大きい部分を有し、この径が大きな部分では充填樹脂4とリードフレーム1との接触面積が大きくなりリードフレームと充填樹脂との密着性が増す。また、砂時計状となった樹脂4はくびれ部を有し、リードフレームの両テーパー部が合流する部位である凸部は充填樹脂4のくびれ部に噛み合う。すなわち、充填樹脂のくびれ部は凸部により保持される。このため、樹脂4がリードフレーム1から脱落することを防止できる。かかる構造とすることは、樹脂充填後に個々に断裁され板状となったリードフレームから、リードフレームの厚み方向(表面方向及び裏面方向)に樹脂4が脱落することを防止する上で、特に効果的といえる。
 また、本実施形態のリードフレームは、一般的なフォトエッチング法にて安価に形成することが可能なため、安価なリードフレームの供給を可能としている。
 本実施形態の半導体発光装置において、LED素子10は透明な樹脂5の層内に埋設された状態で発光する。このため、LED素子10から発せられた光を透明樹脂5から外側に出射する際、高い光利得性を持たせることが重要である。そのために、透明樹脂5として、例えば、アクリル系樹脂(ポリメタメチルアクリレート樹脂)などの透明性の良好な樹脂を選定することは勿論である。さらに、本発明者は特に、充填樹脂4として、充填樹脂4と透明樹脂5との境界面において高い反射性を有する樹脂を使用することを提案する。
 樹脂4として、高い光反射率を有することが望ましいが、その他に、耐熱性、耐光性、熱導電性、高い光拡散性を有することも望ましい。そのため、樹脂4として、例えば、エポキシ樹脂、変性エポキシ樹脂、シルセシキオキサン系樹脂、シリコーン樹脂、アクリル樹脂、ポリカーボネイト樹脂、芳香族系ポリエステル樹脂(不飽和ポリエステル樹脂)、ポリアミド系樹脂、ポリフタルアミド(PPA)、液晶ポリマ(LCP)、シクロオレフィン系樹脂などの有機高分子材料が望ましい。なお、1種の樹脂又は、複数種の樹脂の混合樹脂を用いても構わない。
 充填樹脂4の光屈折率n1と透明樹脂5の光屈折率n2との関係を、n1>n2に設定することにより、樹脂4と透明樹脂5との境界面における高い光反射率を得ることができる。さらに、樹脂4と透明樹脂5との屈折率の差が大きいほど高い反射を行うことができる。しかし、樹脂の屈折率は概ね2以下であり、樹脂だけで屈折率差を大きくするには限界が有る。そのため、本発明において、充填樹脂4として、上記の1種の樹脂又は複数種の樹脂の混合樹脂を主体とする樹脂に、粉状物質や粒状物質などの添加剤を混合した光拡散性樹脂を使用することを提案する。これにより、樹脂4の屈折率nを2以上にすることができる。したがって、樹脂4と透明樹脂5との境界面における高い反射性を得ることができる。なお、樹脂4に添加する添加剤としては、例えば、SiO、TiO、Al、酸化ジルコニウム、セラミック材、又はそれらの混合物などの微粒子が上げられる。また、主体樹脂に対する添加剤の混合比率は、適宜に設定することができる。例えば1%~20%、若しくはそれ以上である。
 以下に、充填樹脂4に光反射性を持たせることによる効果を説明する。
 図6に示すように、LEDチップ10から発せられた光Lは、透明樹脂5中を進行して外部に放出される。しかし、LEDチップ10から発せられた光の一部は、外部(空気)と接触する透明樹脂5の境界で反射する(図6中の反射光M(全反射光や半反射光など))。その後、反射光Mは、充填樹脂4の表面に到達する。このとき、樹脂4に高い光反射率を持たせた場合、反射光Mを樹脂4の表面で再度反射させることが可能になる(図6中の再反射光N)。すなわち、再反射光Nを半導体発光装置より放出させることが可能になる。一方、充填樹脂が反射率を持たない場合、反射光Mはそのまま充填樹脂中に進入してしまい、LED素子から放出しなくなる。
 このように、樹脂4に高い光反射率を持たせることで、LEDチップ10から発せられた光を効率よく外部に放出させることが可能になる。
 なお、LEDチップ搭載用表面A、電気的接続エリアCに金属メッキを行った場合、メッキ面にて反射光Mを再反射光Nとすることが出来る。このため、LEDチップ10から発せられた光を効率よく利用する上でより好ましい。
 さらに、樹脂4表面に、光反射率の優れたセラミックインクなどをコーティングすることも、LEDチップ10から発せられた光を効率よく利用する上でより好ましい。
<第3の実施形態>
 次に、図10、図11A、11Bを参照して、本発明の第3の実施形態における半導体発光装置用リードフレームについて以下に説明する。
 図10に示すように、本実施形態における半導体発光装置用リードフレームにおいて、リードフレーム1のパッド部2とリード部2aとを、その表裏面を同一平面とする1単位フレームとする(図10の点線Z部が1単位フレームを示す)。半導体発光装置用リードフレームは、枚葉状あるいは帯状の金属材料に、複数の1単位フレームを互いに縦横方向に配列した多面付けリードフレームMLを用いて製造される。
 図10に示すように、タイバー30と呼称される、例えば格子状の枠部が形成されている。このタイバー30により、エッチング後、もしくは、プレス金型を用いた打ち抜き後にリードフレーム1が金属材料から脱離することを防止することができる。1単位フレームは、枠部であるタイバー30の開口部の領域内にタイバー30と連結するように形成されている。なお、本実施形態では、1単位フレームとタイバー30との連結は、タイバー30から分岐させた吊りリード20を介して行っている。しかし、仕様によっては、吊りリード20を形成せずに、1単位フレームとタイバー30とを直接に連結させることであっても構わない。
 タイバー30、吊りリード20は、エッチング、もしくは、プレス金型を用いた打ち抜きにてパッド部2及びリード部2aを形成する際に、パッド部2及びリード部2aを形成するのと同様の手法にて形成される。すなわち、タイバー30、吊りリード20が形成される金属材料部位にもフォトレジストを形成することにより形成され、または、プレス金型を用いた打ち抜き時に、タイバー30、吊りリード20に相当する部位を残すことで形成される。この吊りリード20、もしくは、タイバー30の部位を切断、断裁することで、金属材料から各1単位フレームを切り離す。なお、1単位フレームとするリードフレームは、上述した実施形態1もしくは実施形態2のリードフレームのいずれであっても構わない。
 図11Aに示すように、多面付けリードフレームMLに形成された各1単位フレームの上部構造のパッド部2及びリード部2aは、厚さt3の下部構造の上に形成されている。このため、下部構造の裏面からパッド部2及びリード部2aの上面までの高さは金属材料の厚みと同一のt1である。本実施形態では、吊りリード20、タイバー30の面高さ(厚さ)は、低位(例えば、放熱部3、放熱部3aの厚さt3と同じ厚さ)に設定されている。すなわち、吊りリード20、タイバー30の厚さは、金属材料の厚さt1より薄く設定されている。このような厚みを薄くした吊りリード20、タイバー30は、金属材料にエッチングを行ってパッド部2及びリード部2aを形成する際に、吊りリード20、タイバー30となる金属材料部位にハーフエッチングを行うことで形成されることが可能である。すなわち、吊りリード20、タイバー30を形成すべき金属材料部位の一方の面側(例えば、放熱部3,3a側の面側)に吊りリード20形成用フォトレジスト、タイバー30形成用フォトレジストが形成された後、上述したようにパッド部2及びリード部2aを形成するためのエッチングを金属材料の両面から行うものである。なお、ハーフエッチングにより厚さを薄くした吊りリード20、タイバー30を表面(LEDチップ搭載用表面、電気的接続エリア)側に形成する場合、吊りリード20形成用フォトレジスト、タイバー30形成用フォトレジストは、表面(LEDチップ搭載用表面、電気的接続エリア)側に形成される。なお、プレス金型を用いた打抜き加工により第1の実施形態のリードフレームを作成する際には、金属材料へのプレス時に、吊りリード20、タイバー30に相当する部位の厚みを、厚さt3にプレスして構わない。
 図10、図11Aに示すように、複数のリードフレーム1がフォトエッチングにて製造された平板状のリードフレームMLは、上述したように、半導体発光装置用リードフレーム製造用の金型内に装填される。その後、樹脂4が金型内の凹部(内部空間)に充填され、成型される。これにより、図11Bに示すように、搭載用表面Aと放熱用裏面Bのそれぞれ、電気的接続エリアCと放熱用裏面Dのそれぞれが樹脂4から露呈するよう樹脂4が充填されて多面付けされた半導体発光装置用リードフレームMLが形成される。
 その後、半導体発光装置用リードフレームMLが切断され、切り離された1単位フレームが得られる。なお、半導体発光装置用リードフレームMLの切断時期は、樹脂モールド後に限らず、LEDチップの搭載後、または、透明樹脂の形成後であっても構わず、適宜設定して構わない。
 多面付けされた半導体発光装置用リードフレームMLに樹脂モールド加工を行う際、凹部(内部空間)を有する金型内に樹脂が注入される。樹脂が注入される際、樹脂の注入口の近傍の1単位フレームから、注入口から離れた部位にある1単位フレームへと、順次に樹脂が流れていき、樹脂モールドされていく。
 ここで、本実施形態の半導体発光装置用リードフレームにおいて、表面(LEDチップ搭載用表面、電気的接続エリア表面)と裏面(放熱用裏面)とは各々充填樹脂から露出されている。そのため、表面と裏面に樹脂が付着しないように、凹部の深さ(内部空間の高さ)はリードフレームの厚みと同一とするものである。すなわち、凹部の深さ(内部空間の高さ)をリードフレームの厚みと同一とすることで、金型内にリードフレームを装填した際に、リードフレームの表面と裏面とは各々、上金型の面と下金型の面とに密着するようになる。これにより、凹部(内部空間)に樹脂を注入した際に、リードフレームの表面と裏面とに樹脂が付着することを防止できる。
 しかし、吊りリード20、タイバー30の厚みが、リードフレームの厚みと同じ程度である場合、吊りリード20、タイバー30が樹脂の流れを妨げる、あるいは、堰き止めることになる。その結果、多面付けされた半導体発光装置用リードフレームMLにおいて、樹脂モールドされなかった部位を生じることになる。樹脂が充填されなかった部位は気泡を有する部位となり、半導体発光装置用リードフレームの品質、ひいては、半導体発光装置の品質が低下することになる。そのため、気泡を有する部位が多い場合は、半導体発光装置用リードフレームは欠陥品として廃棄される。
 一方、本実施形態では、吊りリード20、タイバー30の厚みを、例えば、下部構造である放熱部3、放熱部3aの厚さt3と同じになるように薄くしている。そのため、充填樹脂の注入時に、樹脂は吊りリード20、タイバー30と金型との間に出来た隙間を流れていくことになる。これにより、樹脂の流れを妨げ、あるいは、堰き止めることが無くなる。その結果、本実施形態の多面付けされた半導体発光装置用リードフレームMLにおいて、気泡を有さない充填樹脂をリードフレームに成型することが可能になり、半導体発光装置用リードフレームの品質を良くすることが可能になる。また、欠陥品が無くなるため製造歩留まりが上がり、ひいては、半導体発光装置用リードフレームの製造コストを下げることが可能になる。また、1単位フレームのリードフレーム2を得る際に、吊りリード20、タイバー30を切断刃にて切断するが、厚みが薄くなっているため切断時に切断刃に掛かる負荷が少なくなり、切断刃の寿命を長くすることが出来る。さらに、上述したような光反射率の高い充填樹脂を、気泡を有さないように充填させることにより、光の反射率の向上を図ることができる。例えば、充填樹脂4の表面に気泡が存在した場合、充填樹脂4の表面に凹部が形成され、その凹部に入射する光は所望する方向に反射しない。このため、半導体発光装置から射出される光が少なくなる。しかし、気泡を有さないように充填された樹脂の表面は平坦となるため、入射する光は所望する方向に反射する。これにより、発光装置から効率よく反射光を出すことが可能になる。
 なお、本実施形態では、リードフレームの裏面側(下構造部の面側)に放熱部と同じ厚さとした吊りリード20、タイバー30を設けているが、リードフレームの表面側(上構造部の面側)に上構造部と同じ厚さとした吊りリード20、タイバー30を設けることであっても構わない。
<第4の実施形態>
 次に、図13乃至図16を参照して、本発明の第4の実施形態について以下に説明する。なお、本実施形態において、上記実施形態と同様の点については省略する。
 樹脂にてモールドされたリードフレームの金属部分であるリードフレーム1は、金属製の薄板状の基材を表面側と裏面側からフォトエッチング加工することにより形成される。すなわち、図14及び図16に示すように、リードフレーム1は、表面側の厚さt2の上部構造のパターンと、裏面側の厚さt3の下部構造のパターンとからなり、上部構造と下部構造とは一体構造となっている。これら上部構造及び下部構造のパターンは、金属製の厚さt1の板状の基材を両面からフォトエッチング加工(前述したハーフエッチング加工)することにより形成されたものである。
 リードフレーム1の厚さt2の上部構造のパターンは、パッド部2と、それから分離して所定の間隔で隣接する1乃至複数箇所のリード部2aとを備えている。また、厚さt3の下部構造のパターンは、パッド部2に裏面側で一体である放熱部3と、リード部2aに裏面側で一体である放熱部3aとを備えている。なお、図16において、Wはワイヤーの一例を示している。このワイヤーは、パッド部2のチップ搭載用表面Aに搭載した発光素子10と、リード部2aの電気的接続エリアCとの間をワイヤーボンディングにより設けられている。
 図13、図14及び図16に示すように、本実施形態のリードフレームは、LEDチップ10を搭載するために1乃至複数箇所に形成された厚さt2の上部構造のパッド部2と、パッド部2と一体の厚さt3の下部構造の放熱部3とを備えている。上部構造であるパッド部2にはチップ搭載用表面Aを有する。パッド部2の裏面と一体の下部構造の放熱部3(放熱板)には放熱用裏面Bを有する。図14に示すように、本実施形態の半導体発光装置LEにおいて、リードフレーム1のパッド部2のLEDチップ搭載用表面Aの面積S1と、チップ搭載用表面Aと対向する放熱部3の放熱用裏面Bの面積S2との関係は、0<S1<S2となっている。すなわち、チップ搭載用表面Aの面積よりも放熱用裏面Bの面積が大きくなるように設定される。例えば、台座状となった放熱部3から、放熱部3より面積(図13の平面図における面積)の小さいパッド部2が突出した形状となっている。
 上述したように、パッド部2の表面(上面)は、LEDチップ10を搭載するための面積S1のチップ搭載用表面Aとなっており、上部構造のパッド部2と対向する裏面側の放熱部3の外面は、面積S2の放熱用裏面Bとなっている。この放熱用裏面Bを樹脂4から露出するよう形成することで、この放熱用裏面Bは、LEDチップ10本体から発生する駆動熱やLEDチップ10の周囲環境条件による熱を放散させて、ICチップ10に熱が蓄積されないように、パッド部2裏面側から外界側に熱を放散させる。
 また、図13、図15及び図16に示すように、本実施形態のリードフレーム1は、図14と同様に、上部構造が厚さt2のリード部2aと下部構造が厚さt3の放熱部3aとが一体になった構造を、パッド部2を有する構造と離反させて1乃至複数箇所に備えている。リード部2aの表面は、パッド部2のチップ搭載用表面Aと同じ高さである。このリード部2aの表面は、LEDチップ10と接続するためのワイヤーがボンディングされるワイヤーボンディング領域と、LEDチップ10に形成された接続用電極と半田などを介してチップボンディグされる領域と、を有する電気的接続エリアCとなっている。この電気的接続エリアCは、ワイヤーボンディングやチップボンディング等により、LEDチップ10とリード部2aとの電気的接続を行う際に接続性を向上させるため、銀メッキ等が施され、その面積はS3である。
 また、放熱部3aの表面(裏面)は、電気的接続エリアCと対向して、パッド部2の放熱用裏面Bと同じ高さである放熱用裏面D(放熱板)となっている。この放熱用裏面Dの面積はS4である。
 図16に示すように、パッド部2のチップ搭載用表面Aと、リード部2aの電気的接続エリアCの面とは、同一の板状基材から形成されるため同一平面上にあり高さが同じである。リード部2aの電気的接エリアCには、ワイヤーボンディングでワイヤーWが接続され、あるいは、チップボンディングでチップが接続され、パッド部2のチップ搭載用表面A上に実装されるLEDチップ10と電気的に接続される。
 上部構造のパッド部2の側面部に、その上部構造の表面(チップ搭載用表面A及び電気的接続エリアCを含む面)側から下部構造の放熱部3の裏面(放熱用裏面B及び放熱用裏面Dを含む面)側の方向に拡がる、段差状部又はテーパー状部Eが形成されている。この段差状部又はテーパー状部Eは、樹脂モールド時の充填樹脂4を保持する。一方、下部構造の放熱部3(放熱板)の側面部には、上記テーパー状部Eとは逆テーパーとなった、その下部構造の裏面側から上部構造の表面側の方向に拡がるテーパー状部E1が形成されている。これにより、前述したように、モールド時の充填樹脂4を保持することができる。
 また、図15に示すように、リードフレーム1のリード部2aは、パッド部2のチップ搭載用表面Aと同一面に電気的接続エリアCを有する。一方、リード部2aと一体の下部構造の放熱部3aは、放熱部3の放熱用裏面Bと同一面にある放熱用裏面Dを有する。電気的接続エリアCの面積S3と放熱用裏面Dの面積S4との関係は、0<S3<S4にする。すなわち、ワイヤーボンディングする電気的接続エリアCの面積よりも放熱用裏面Dの面積が大きくなるように設定する。例えば、台座状となった放熱部3aから、放熱部3より面積(図13の平面図における面積)の小さいリード部2aが突出した形状となっている。
 電気的接続エリアCと放熱用裏面Dとの間における上部構造のリード部2aの側面部には、その電気的接続エリアCから放熱用裏面Dの方向に拡がる段差状部又はテーパー状部Eが形成され、モールド時の充填樹脂4をフレーム表面側から裏面側の方向に脱落しないように保持するようにしている。一方、下部構造の放熱部3(放熱板)の側面部には、その放熱用裏面Dから電気的接続エリアCの方向に拡がるテーパー状部E1を形成し、モールド時の充填樹脂4をフレーム裏面側から表面側の方向に脱落しないように保持するようにしている。
  このような構造としたリードフレーム1において、上部構造のテーパー状部Eのテーパーは例えば上面から下面に向けて拡がり、下部構造のテーパー状部E1のテーパーは例えば下面から上面に向けて拡がっている。すなわち、上部構造と下部構造の各々のテーパー方向は逆方向となっている。
そのため、前述したように、例えば、パッド部2及び放熱部3とリード部2a及び放熱部3aとで挟まれた部位の充填樹脂4は、上側の面(上部構造側の面)と下側の面(下部構造側の面)との間にくびれた部位を有する。言い換えれば、図16に示すように、断面形状は、例えば砂時計状となる。リードフレーム1は、樹脂4のくびれ部で充填樹脂4を保持する。このため、リードフレーム1から樹脂4が脱落することを防止できる。
 また、パッド部2のLEDチップ搭載用表面Aの面積S1とチップ搭載用表面Aと対向する放熱用裏面Bの面積S2との関係を0<S1<S2、電気的接続エリアCの面積S3と放熱用裏面Dの面積S4との関係を0<S3<S4に設定する。放熱用裏面Bの面積をチップ搭載用表面Aよりも広く、放熱用裏面Dの面積を電気的接続エリアCよりも広くし、かつ、樹脂4から露出させるため、リードフレーム裏面側における高い放熱性能が得られる。
 このリードフレーム1の形成方法は、次の通りである。リードフレーム用金属板の表裏面にフォトレジストを塗布し、フォトレジストへのパターン露光と現像処理等をすることにより、レジストパターンを形成する。この後、塩化第二鉄等のエッチャントを用いて表裏両面のレジストパターンから露出した金属板部位をエッチング加工する所謂フォトエッチング加工(前述したハーフエッチング加工)を行う。このようにしてリードフレーム1が形成される。このため、リードフレーム1は、LED素子を搭載するためのパッド部2と、パッド部2とは絶縁状態に分離されたリード部2aとを備えている。
(リードフレームの製造方法)
 次に、本実施形態の樹脂にてモールドされたリードフレームの製造方法を説明する。
 ここで、本実施形態におけるリードフレームは、上述した第2に実施形態と同様の製造方法で得られる。すなわち、金属材料に対して、表裏両面からフォトエッチングが行われる。これにより、搭載用表面Aの面積S1と放熱用裏面Bの面積S2との関係がS1<S2となるパッド部2及び放熱部3と、電気的接続エリアCの面積S3と放熱用裏面Dの面積S4との関係がS3<S4となるリード部2a及び放熱部3aとからなるリードフレームが形成される。
 尚、本実施形態のリードフレームにおいては、エッチング後にリード部2aの電気的接続エリアCにNi下地メッキを行い、その上に銀メッキ、あるいは、金メッキ、パラジウムメッキを行う。この電気的接続エリアCへのメッキは、後述する充填樹脂4をリードフレーム1に充填してモールド成型する工程の後に行っても良い。すなわち、充填樹脂4から露出した電気的接続エリアCにメッキする処理により行っても良い。
 次に、このように形成されたリードフレーム1に対し、以下に説明するように、金型を用いたモールド成型を行うことで樹脂4を成型する。これにより、チップ搭載用表面Aと放熱用裏面Bのそれぞれ、電気的接続エリアCと放熱用裏面Dのそれぞれが樹脂4から露呈するように樹脂4が充填された樹脂充填リードフレームを製造する。
 図17に示すように、モールド成型で用いる金型には、リードフレーム1を収める所定の内部形状とした凹部(例えば、リードフレーム材の厚みt1と同じ深さt1を有する凹部)が予め形成されている。この金型は、蓋となる板状の上金型40と下金型41とで1組の金型として構成されている。下金型41には、溶融した樹脂4を注入する注入口42と、内部空間としてリードフレーム1(多面付けリードフレームML)を装填することが可能な凹部43とが形成されている。なお、本実施形態において、上金型40には、充填樹脂4の上部に後述する光反射リング4aを形成するための型となる光反射リング用凹部40aが内部空間として形成されている。
 樹脂モールド成型の手順として、まず、下金型41の凹部43にリードフレーム1が装填される。次に、上金型40で下金型41上に蓋をして型締めする。
 次に、注入口42から、凹部43と光反射リング用凹部40aとの内部空間内に加熱溶融した樹脂4が注入される。これにより、装填されたリードフレーム1に樹脂4をモールド成型した樹脂充填リードフレームが得られる。樹脂4をモールド成型後、上金型40を外し、樹脂充填リードフレームを下金型41から取り出す。これにより、リードフレーム1のパッド部2とリード部2aと間に樹脂4が充填される。すなわち、チップ搭載用表面Aと放熱用裏面B、及び電気的接続エリアCと放熱用裏面Dが樹脂4から外面に露呈した樹脂充填リードフレームが形成される。この樹脂充填リードフレームは、搭載用表面Aと電気的接続エリアCの高さから、それに対向する放熱用裏面Bと放熱用裏面Dの高さまで、リードフレーム1の厚さ方向に、樹脂4が充填される。
 ここで、図13に示すように、光反射リング4aは、モールド時に充填樹脂4と一体化した構造として充填樹脂4から突出して形成される。この光反射リング4aは、樹脂充填リードフレーム上に、パッド部2、リード部2aの間及び外側に平面視で円環状に形成される。この円環の中心は、LEDチップ10の発光部(LED)の近くの位置に設置される。そして、円環の断面形状は、LEDチップ10の発光部に対向する表面である内周面を、チップ搭載用表面Aと電気的接続エリアCの成す面から30度から85度傾斜した斜面として形成される。斜面とした光反射リング4aの内周面の形状は、光を効率よく反射できるように、円錐面、楕円錐面、球面または放物面の一部としてもよい。また、側面の傾斜の角度は、光反射が効率よく行われるよう適宜設定して構わない。なお、この光反射リング4aの平面視での形状は、円環に限定されず、その発光部の近くに円の中心がある複数の三日月形や円環の一部分、あるいはLEDチップ10の発光部を中心にした楕円形の環状に形成しても良い。また、発光部が円環の中心に近ければ、光反射リング4aである円環の中心は発光部から少しずれていても良い。
 上述したように、上金型40には光反射リング用凹部40aを形成しておき、モールド成型時に注入された充填樹脂4を光反射リング4aの形に成型する。このため、光反射リング4aは、チップ搭載用表面Aと電気的接続エリアCの高さから放熱用裏面Bと放熱用裏面Dの高さまでの樹脂4と一体化した構造となって、樹脂4から突出して形成される。すなわち、光反射リング4aと樹脂4とは一体化し、両者の間に界面は存在しない。このため、光反射リング4aと樹脂4の本体とは強固に接続され、密着性が高い。また、光反射リング4aと樹脂4の本体との間に界面が無いので、界面に水蒸気が拡散して剥離し易くなることもない。したがって、接続信頼性の高い光反射リング4aを得ることができる。更に、光反射リング4aは、充填樹脂4の他の充填部分と同時に形成されているため、一回の樹脂モールド成型で済む。
 モールド成型時において、加熱溶融した樹脂が金型内に注入される。そのため、仮に、樹脂4を成型後に、別工程により光反射リング4aをモールド成型で形成した場合、樹脂4は複数回にわたり熱にさらされることになり、熱による劣化が生じる。しかし、本実施形態のリードフレームの製造方法では、モールド成型を複数回繰り返す必要がない。すなわち、1回のモールド成型によりリードフレームを形成することができる。このため、複数回のモールド成型が行われた場合にその都度樹脂4に熱が加わることで生じる充填樹脂4の熱履歴による劣化を防ぐことができる。したがって、樹脂4の熱劣化による光反射特性の低下を防止でき、その光反射率を高く保つことができる。
 このモールド成型で用いる充填樹脂4及び光反射リング4aには、光反射効率の高い白色樹脂を用いるのが望ましい。また、樹脂4及び光反射リング4aは、その他に、耐熱性、耐光性、熱導電性、高い光拡散性を有することも望ましい。そのため、樹脂4及び光反射リング4aとして、例えば、エポキシ樹脂、変性エポキシ樹脂、シルセシキオキサン系樹脂、シリコーン樹脂、アクリル樹脂、ポリカーボネイト樹脂、芳香族系ポリエステル樹脂(不飽和ポリエステル樹脂)、ポリアミド系樹脂、ポリフタルアミド(PPA)、液晶ポリマ(LCP)、シクロオレフィン系樹脂などの有機高分子材料が望ましく、1種の樹脂又は、複数種の樹脂の混合樹脂を用いて構わない。
 また、樹脂4及び光反射リング4aとして、上記の1種の樹脂又は複数種の樹脂の混合樹脂を主体とする樹脂に、粉状物質の添加剤を混合した光拡散性樹脂を使用するのが望ましい。樹脂4及び光反射リング4aに添加する添加剤としては、例えば、SiO、TiO、Al、酸化ジルコニウム、酸化鉛、セラミック材などの白色粉末、又はそれらの混合物などの微粒子が上げられる。主体樹脂に対する添加剤の混合比率は、適宜に設定することができる。例えば1%~20%、若しくはそれ以上である。このような充填樹脂4は、その添加剤により光拡散性を高くできる効果がある。それとともに、充填樹脂4は、その添加剤により屈折率nを2以上にすることができる。それにより、後に充填樹脂4上に形成される透明樹脂5よりも屈折率を高くできる。その屈折率差により、充填樹脂4と透明樹脂5との境界面における高い反射性が得られる効果がある。
 なお、図13に示す吊りリード20は、エッチング加工処理後、もしくは、プレス金型を用いた打ち抜き後に、パッド部2及びリード部2aが金属材料から脱落するのを防止するためのものであり、必要な期間、パッド部2及びリード部2aを金属材料に連結保持しておくために形成されている。したがって、充填樹脂4の形成後に吊りリード20を切断することで、樹脂充填リードフレームが得られる。なお、断面図においては、吊りリード20の図示は省略している。吊りリード20と金属材料との連結部を切断して、樹脂充填リードフレームが分離できる。吊りリード20の切断時期は、樹脂充填リードフレームにLEDチップ10を搭載した後、または、透明樹脂5のモールド成型後が挙げられるが、適宜設定して構わない。
 以上の処理で、図13乃至図16に示すように、LEDチップ10を搭載する1乃至複数箇所のパッド部2と、LEDチップ10との電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えた樹脂充填リードフレームを得る。こうして得た樹脂充填リードフレームにLEDチップ10が搭載されて半導体発光装置LEが製造される。また、樹脂充填リードフレームにLEDチップ10を搭載した後に、パッド部2のチップ搭載用表面Aより上面側、及びリード部2aの電気的接続エリアCより上面側に、LEDチップ10と、電気的接続エリアCにボンディングしたワイヤーWとを被覆し、かつ、光反射リング4aの内周面と接する透明樹脂5が層状又はドーム状に形成される。この透明樹脂5の厚さは、それらを被覆することができる厚さに形成される。透明樹脂5として、例えばアクリル系樹脂などの透明性の良好な樹脂を用いる。それにより、LEDチップ10が透明樹脂層5の層内に埋設された状態で発光する際に、LEDチップ10から発せられた光が透明樹脂5から外側に出射するにあたり高い光利得性を持たせることができる。
 樹脂充填リードフレームにおいて、パッド部2のチップ搭載用表面Aの面積S1と放熱用裏面Bの面積S2との関係は、S1<S2に設定され、リード部2aにワイヤーボンディングする電気的接続エリアCの面積S3と放熱用裏面Dの面積S4との関係は、S3<S4に設定する。これにより、放熱部位が広く設定でき、放熱性に優れた半導体発光装置LEが得られる効果がある。
 また、そのチップ搭載用表面Aと放熱用裏面Bとの間、及び電気的接続エリアCと放熱用裏面Dとの間におけるパッド部2、及びリード部2aの側面部には、放熱用裏面B、Dの方向に拡がる段差状部又はテーパー状部Eを呈している。さらに、チップ搭載用表面Aと放熱用裏面Bとの間、及び電気的接続エリアCと放熱用裏面Dとの間における放熱部3、3aの側面部には、チップ搭載用表面A及び放熱用裏面Bの方向に拡がるテーパー状部E1を呈している。そのため、充填樹脂4を溶融状態にてモールド成型する際、及びモールド成型後は、樹脂4が、この段差状部又はテーパー状部E、及びテーパー状部E1によって保持され、かつ、樹脂4とリードフレームとの接触面積は大きくなる。そのため、樹脂4とリードフレームとは強固に密着することになり、樹脂4からのリードフレームの脱落、もしくは、リードフレームからの樹脂4の脱落を防止できる。このリードフレーム1は、一般的なフォトエッチング法にて安価に形成することが可能なため、安価な樹脂充填リードフレームが得られる効果がある。
 また、充填樹脂と一体となった光反射リング4aの面を、チップ搭載用表面Aと電気的接続エリアCの成す面から30度から85度傾斜した斜面にして充填樹脂から突出させている。このため、光反射リング4aが存在せず、充填樹脂4が平面である場合に比べて、充填樹脂4すなわち光反射リング4aと透明樹脂層5との接触面積が大きくなる。これにより、光反射リング4aと透明樹脂層5とは強固に密着することになり、透明樹脂層5が剥離することを防止することができる。
 また、充填樹脂4は、その添加剤により屈折率nを2以上にすることができるので、充填樹脂4の光屈折率n1と透明樹脂5の光屈折率n2との関係を、n1>n2にすることができる。その屈折率差により、充填樹脂4と透明樹脂5との境界面における高い反射性が得られる効果がある。屈折率の差が大きいほど高い反射を行える。通常の樹脂の屈折率は概ね2以下であり、樹脂だけで屈折率差を大きくするには限界が有る。しかし、本実施形態の充填樹脂4は、添加剤として、SiO、TiO、Al、酸化ジルコニウム、セラミック材、又はそれらの混合物などの微粒子を添加する。この際、主体樹脂に対する添加剤の混合比率を例えば1%~20%、若しくはそれ以上添加することで、充填樹脂4の屈折率を2以上にすることができる。これにより、充填樹脂4と透明樹脂5との屈折率差を大きくすることができ、充填樹脂4と透明樹脂5との境界面における高い反射性が得られる効果がある。
 以下に、充填樹脂4及び光反射リング4aに反射性を持たせることによる効果を説明する。
 図18に示すように、LEDチップ10から発せられた光Lは、透明樹脂5中を進行して外部に放出される。しかし、LEDチップ10から発せられた光の一部は、外部と接触する透明樹脂5の境界で反射する(図18中の反射光M)。その後、反射光Mは、充填樹脂4及び充填樹脂4と一体構造であり充填樹脂から突出する光反射リング4aの表面に到達する。このとき、充填樹脂4及び光反射リング4aに高い光反射率を持たせた場合、反射光Mを充填樹脂4及び光反射リング4aの表面で再度反射させることが可能になる(図18中の再反射光N)。すなわち、再反射光NをLED素子より放出させることが可能になる。
 また、光反射リング4aの傾斜面を、チップ搭載用表面Aと電気的接続エリアCの成す面から30度から85度傾斜した斜面にすることで、光反射リング4aの傾斜面に入射する反射光を効率よく再反射させることが可能になる。さらに、LEDチップ10から発せられた光が直接に光反射リング4aの傾斜面に入射する場合であっても、入射光を効率よく外部に向け反射させることが可能になる。
 このように、充填樹脂4に高い反射率を持たせることで、LEDチップ10から発せられた光を効率よく外部に放出させることが可能となる。また、LEDチップ10のチップ搭載用表面A、電気的接続エリアCに金属メッキを行った場合、メッキ面にて反射光Mを再反射光Nとすることが出来るので、LEDチップ10から発せられた光を効率よく利用するには好ましい。さらに充填樹脂4の表面に、光反射率の優れたセラミックインクなどをコーティングすることも、LEDチップ10から発せられた光を効率よく利用する上で好ましいといえる。
 なお、本実施の形態では、図15に示すように、LEDチップ10と、電気的接続エリアCにボンディングしたワイヤーWとを被覆し、かつ、光反射リング4aの内周面と接する部位を光反射面とする透明樹脂5は、光反射リング4aの全体を被覆するように形成している。しかし、半導体発光装置の仕様によっては、光反射リング4aの全体を透明樹脂で被覆する必要はない。すなわち、透明樹脂5と光反射リング4aの内周面とが接する光反射面に所望する反射性を持たせるように、光反射リング4aの内周面の一部または全部に被覆させて透明樹脂5を形成する。その際、光反射リング4aの外側を透明樹脂5から露出させても構わない。
 <第5の実施形態>
 次に、図19、図20A、20Bを参照して、本発明の第5の実施形態における半導体発光装置用リードフレームについて以下に説明する。
 図19に示すように、本実施形態における樹脂充填リードフレームにおいて、リードフレーム1のパッド部2とリード部2aとを、点線Z部で示す1単位フレームとする。樹脂充填リードフレームは、枚葉状あるいは帯状の金属材料に、複数の1単位フレームを互いに縦横方向に配列した多面付けリードフレームMLを用いて製造される。
 図19に示すように、タイバー30と呼称される、例えば格子状の枠部が形成されている。このタイバー30により、エッチング後にリードフレーム1が金属材料から脱離することを防止することができる。1単位フレームは、枠部であるタイバー30の開口部の領域内にタイバー30と連結するように形成されている。なお、本実施形態では、1単位フレームとタイバー30との連結は、タイバー30から分岐させた吊りリード20を介して行っている。しかし、仕様によっては、吊りリード20を形成せずに、1単位フレームとタイバー30とを直接に連結させることであっても構わない。
 タイバー30、吊りリード20は、エッチングにてパッド部2及びリード部2aを形成する際に、パッド部2及びリード部2aを形成するのと同様の手法にて形成される。すなわち、タイバー30、吊りリード20が形成される金属材料部位にもフォトレジストを形成することにより形成される。この吊りリード20、もしくは、タイバー30の部位を切断、断裁することで、金属材料から各1単位フレームを切り離す。
 図20Aに示すように、多面付けリードフレームMLに形成された各1単位フレームの上部構造のパッド部2及びリード部2aは、厚さt3の下部構造の上に形成されている。このため、下部構造の裏面からパッド部2及びリード部2aの上面までの高さは金属材料の厚みと同一のt1である。本実施形態では、吊りリード20、タイバー30の厚さは、金属材料の厚さt1よりも薄い下部構造の厚さt3に設定され、放熱部3、放熱部3a等と同じ厚さである。すなわち、吊りリード20、タイバー30の上面の下部構造の裏面に対する高さはt3に設定される。この吊りリード20、タイバー30の厚みを薄く形成するには、金属材料にエッチングを行い、パッド部2及びリード部2aを形成する際に、吊りリード20、タイバー30とする金属材料部位にハーフエッチングを行うことで形成することが可能である。すなわち、吊りリード20、タイバー30を形成すべき金属材料部位の一方の面側(例えば、放熱部側の面側)に吊りリード20形成用フォトレジスト、タイバー30形成用フォトレジストが形成される。この後、上述したようにパッド部2及びリード部2aを形成するためのエッチングを金属材料の両面からエッチングされる。なお、ハーフエッチングにより厚さを薄くした吊りリード20、タイバー30を表面(LEDチップ搭載用表面A、電気的接続エリア)側に形成する場合、吊りリード20形成用フォトレジスト、タイバー30形成用フォトレジストは、表面(LEDチップ搭載用表面A、電気的接続エリア)側に形成される。
 図19、図20Aに示すように、1単位のリードフレーム1の複数単位を多面付けしてフォトエッチングにより製造された平坦状の多面付けリードフレームMLは、図17で上述したように、樹脂充填リードフレーム1bの製造用の上金型40と下金型41との間に装填される。そして、樹脂4が金型内の凹部43と光反射リング用凹部40aとの内部空間内に注入、充填されて成型される。これにより、図20Bに示すように、チップ搭載用表面Aと放熱用裏面Bのそれぞれ、電気的接続エリアCと放熱用裏面Dのそれぞれが露呈して充填樹脂4が充填された多面付けリードフレームMLが形成される。
 その後、多面付けリードフレームMLが切断処理され、切り離された1単位フレームが得られる。なお、多面付けリードフレームMLの切断時期は、樹脂モールド後に切断処理することに限らず、LEDチップの搭載後、または、透明樹脂の形成後に切断処理しても構わず、適宜切断時期を設定して構わない。
 多面付けリードフレームMLに樹脂モールド成型を行う際、多面付けリードフレームMLを設置する凹部43を有する下金型41内と、光反射リング用凹部40aを有する上金型40内とに多面付けリードフレームMLが設置される。そして、下金型41に形成した樹脂の注入口42から上金型40と下金型41の間の空間に充填樹脂4が注入される。充填樹脂4が金型に注入される際、多面付けリードフレームMLのうち、樹脂の注入口42の近傍の1単位フレームから、注入口から離れた部位にある1単位フレームへと、順次に樹脂が流れていき、樹脂モールドされていく。
 樹脂モールドの際に多面付けリードフレームML表面と裏面に充填樹脂4が付着しないよう、下金型41の凹部43の深さ(内部空間の高さ)はリードフレームの厚みと同一に形成する。それにより、金型内に多面付けリードフレームMLを装填した際に、多面付けリードフレームMLの表面は上金型40の面に密着させ、裏面は下金型41の面に密着させる。そうすることで、凹部(内部空間)に樹脂を注入した際に、多面付けリードフレームMLの表面と裏面とへの樹脂の付着を防止し、多面付けリードフレームMLの表面(LEDチップ搭載用表面A、電気的接続エリア)と裏面(放熱用裏面)とを各々充填樹脂4から露出させる。
 もし、吊りリード20、タイバー30の厚みが、リードフレームの厚みと同じ程度に厚い場合、吊りリード20、タイバー30が樹脂の流れを妨げる、あるいは、堰き止め、多面付けリードフレームMLに樹脂モールドされない部位を生じる問題を生じる。そうなれば、樹脂4が充填されなかった部位は気泡を有する部位となり、樹脂充填リードフレーム1bの品質、ひいては、半導体発光装置LEの品質が低下し、はなはだしい場合は欠陥品として廃棄する場合もある問題がある。
 この対策のため、本実施形態では、吊りリード20、タイバー30の厚みを、下部構造である放熱部3、放熱部3aの厚さt3と同じ高さとなるまで薄くする。これにより、充填樹脂4の注入時に、樹脂は吊りリード20、タイバー30と金型との間に出来た隙間を流れていくことになる。これにより、樹脂の流れを妨げ、あるいは、堰き止めることが無くなる。その結果、多面付けリードフレームMLに、充填樹脂4に気泡を入れずにモールド成型することが可能になり、樹脂充填リードフレーム1bの品質を良くすることが可能になる。また、欠陥品が無くなるため製造歩留まりを上げることができる効果があり、ひいては、樹脂充填リードフレーム1bの製造コストを下げることが可能になる効果がある。また、吊りリード20、タイバー30を切断刃にて切断する際に、その厚みが薄いため切断時に切断刃に掛かる負荷を少なくでき、切断刃の寿命を長くすることが出来る効果がある。さらに、上述したような反射率の高い充填樹脂を、気泡を有さないように充填させることにより、光の反射率の向上を図ることができる。例えば、光反射リング4aを含む充填樹脂の表面に気泡が存在した場合、充填樹脂表面に凹部が形成され、その凹部に入射する光は所望する方向に反射しない。このため、半導体発光装置から出る光が少なくなる。しかし、気泡を有さないように樹脂を充填した樹脂表面は平坦となるため、入射する光は所望する方向に反射する。これにより、発光装置から効率よく反射光を出すことが可能になる。
 なお、本実施形態では、リードフレームの下構造の側(裏面側)に下部構造の厚さと同じ厚さの吊りリード20とタイバー30を設けているが、リードフレームの上構造の側(表面側)に上構造部の厚さと同じ厚さの吊りリード20とタイバー30を設けるようにしても構わない。
 1…リードフレーム、1b…樹脂充填リードフレーム、2…パッド部、2a…リード部、3…放熱部、3a…放熱部、4…(充填)樹脂、4a…光反射リング、5…透明樹脂、10…LEDチップ(発光素子)、20…吊りリード、30…タイバー、40…上金型、40a…光反射リング用凹部、41…下金型、42…注入口、43…凹部、A…チップ搭載用表面、B…放熱用裏面、C…電気的接続エリア、D…放熱用裏面、E…段差状部又はテーパー状部、E1…テーパー状部(又は角面取り部)、L…LED発光光線、LE…半導体発光装置、M…反射光、ML…多面付けリードフレーム、N…再反射光、W…ワイヤー、Z…1単位フレーム。

Claims (25)

  1.  少なくともLEDチップ10を搭載するLEDチップ搭載用表面Aを有する1乃至複数箇所のパッド部2と、前記LEDチップと電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレームであって、
     前記パッド部2の前記搭載用表面Aの面積S1と、前記搭載用表面Aと対向する放熱用裏面Bの面積S2との関係が0<S1<S2であり、
     前記搭載用表面Aと前記放熱用裏面Bとの間における前記パッド部2の側面部に、前記搭載用表面Aから前記放熱用裏面Bに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有することを特徴とするリードフレーム。
  2.  前記リード部2aの前記電気的接続エリアCの面積S3と、前記電気的接続エリアCと対向し前記パッド部2の前記放熱用裏面Bと同一平面にある放熱用裏面Dの面積S4との関係が0<S3<S4であり、
     前記電気的接続エリアCと前記放熱用裏面Dとの間における前記リード部2aの側面部に、前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有することを特徴とする請求項1に記載のリードフレーム。
  3.  少なくともLEDチップ10を搭載するLEDチップ搭載用表面Aを有する1乃至複数箇所のパッド部2と、前記LEDチップと電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレームであって、
     前記パッド部2の前記搭載用表面Aの面積S1と、前記搭載用表面Aと対向する放熱用裏面Bの面積S2との関係が0<S1<S2であり、
     前記パッド部2は前記搭載用表面Aを有する上部構造と、前記上部構造と一体であり、前記放熱用裏面Bを有する下部構造とからなり、
     前記上部構造の側面部に、前記搭載用表面Aから前記放熱用裏面Bに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有し、
     前記下部構造の側面部に、前記放熱用裏面Bから前記搭載用表面Aに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を有することを特徴とするリードフレーム。
  4.  前記リード部2aの前記電気的接続エリアCの面積S3と、前記電気的接続エリアCと対向し前記パッド部2の前記放熱用裏面Bと同一平面にある放熱用裏面Dの面積S4との関係が0<S3<S4であり、
     前記リード部2aは前記電気的接続エリアCを有する上部構造と、前記上部構造と一体であり、前記放熱用裏面Dを有する下部構造とからなり、
     前記上部構造の側面部に、前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有し、
     前記下部構造の側面部に、前記放熱用裏面Dから前記電気的接続エリアCに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を有することを特徴とする請求項3に記載のリードフレーム。
  5.  前記パッド部2と前記リード部2aとをその表裏面を同一平面とする1単位フレームとして、各単位フレームが互いに縦横方向に1乃至複数本のタイバーにて連結されて多面付け配列されたリードフレームであって、
     前記パッド部2、前記リード部2a及び前記タイバーのそれぞれ表面、裏面又は表裏両面の面高さのうち、前記タイバーの面高さが低位に設定され、前記パッド部2及び前記リード部2aよりも前記タイバーの厚さが薄く設定されていることを特徴とする請求項1に記載のリードフレーム。
  6.  板状のリードフレーム用金属材料の表面に、パッド部2の面積S1からなる搭載用表面Aを形成するためのフォトレジストのパターンを形成し、
     前記金属材料の裏面に、前記パッド部2の前記搭載用表面Aと対向する面積S2からなる放熱用裏面Bを形成するためのフォトレジストのパターンを形成し、
     前記金属材料の表裏両面からエッチング加工することで、前記パッド部2の前記搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係が0<S1<S2であって、前記搭載用表面Aと前記放熱用裏面Bとの間における前記パッド部の側面部に前記搭載用表面Aから前記放熱用裏面Bに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを形成する
     ことを特徴とするリードフレームの製造方法。
  7.  前記搭載用表面Aを形成するためのフォトレジストをパターン形成する際に、前記金属材料の表面に、リード部2aの面積S3からなる電気的接続エリアCを形成するためのフォトレジストのパターンを形成し、
     前記放熱用裏面Bを形成するためのフォトレジストをパターン形成する際に、前記金属材料の裏面に、前記リード部2aの電気的接続エリアCと対向する面積S4からなる放熱用裏面Dを形成するためのフォトレジストのパターンを形成し、
     前記金属材料の表裏両面からエッチング加工することで、前記リード部2aの前記電気的接続エリアCの面積S3と前記放熱用裏面Cの面積S4との関係が0<S3<S4であって、前記電気的接続エリアCと前記放熱用裏面Dとの間における前記リード部の側面部に前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを形成する
     ことを特徴とする請求項6に記載のリードフレームの製造方法。
  8.  リードフレーム用金属材料の表面に、パッド部2の面積S1からなる搭載用表面Aを形成するためのフォトレジストのパターンを形成し、
     前記金属材料の裏面に、前記パッド部2の前記搭載用表面Aと対向する面積S2からなる放熱用裏面Bを形成するためのフォトレジストのパターンを形成し、
     前記金属材料の表裏両面からエッチング加工することで、前記パッド部2の前記搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係を0<S1<S2とし、かつ、前記パッド部2は、前記搭載用表面Aを有する上部構造と、前記上部構造と一体であって、前記放熱用裏面Bを有する下部構造とからなり、前記上部構造の側面部に、前記搭載用表面Aから前記放熱用裏面Bに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを形成し、前記下部構造の側面部に、放熱用裏面Bから搭載用表面Aに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を形成することを特徴とするリードフレームの製造方法。
  9.  前記搭載用表面Aを形成するためのフォトレジストをパターン形成する際に、前記金属材料の表面に、リード部2aの面積S3からなる電気的接続エリアCを形成するためのフォトレジストをパターン形成し、
     前記放熱用裏面Bを形成するためのフォトレジストをパターン形成する際に、前記金属材料の裏面に、前記リード部2aの電気的接続エリアCと対向する面積S4からなる放熱用裏面Dを形成するためのフォトレジストをパターン形成し、
     前記金属材料の表裏両面からエッチング加工することで、前記リード部2aの前記電気的接続エリアCの面積S3と放熱用裏面Cの面積S4との関係をS3<S4とし、かつ、前記リード部2aは前記電気的接続エリアCを有する上部構造と、前記上部構造と一体であって、前記放熱用裏面Dを有する下部構造とからなり、前記上部構造の側面部に、前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを形成し、前記下部構造の側面部に、前記放熱用裏面Dから前記電気的接続エリアCに向かって拡がる、モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を形成することを特徴とする請求項8に記載のリードフレームの製造方法。
  10.  前記パッド部2と前記リード部2aとをその表裏面を同一平面とする1単位フレームとして、各単位フレームが互いに縦横方向に1乃至複数本のタイバーにて連結されて多面付け配列されたリードフレームの製造方法であって、
     前記パッド部2、前記リード部2a及び前記タイバーのそれぞれ表面、裏面又は表裏両面の面高さのうち、前記タイバーの面高さが低位に設定され、前記パッド部2及び前記リード部2aよりも前記タイバーの厚さが薄く設定されていることを特徴とする請求項6に記載のリードフレームの製造方法。
  11.  少なくともLEDチップ10等のICチップを搭載したLEDチップ搭載用表面Aを有する1乃至複数箇所のパッド部2と、前記LEDチップと電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレームを、前記搭載用表面Aから前記搭載用表面Aと対向する放熱用裏面Bに亘って、その厚さ方向に充填樹脂によりモールド加工が施され、前記パッド部の前記搭載用表面Aより上面側に、前記LEDチップ及び前記電気的接続エリアCを含めて透明樹脂が被覆された半導体発光装置であって、
     前記パッド部の前記搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係が0<S1<S2であり、
     前記搭載用表面Aと前記放熱用裏面Bとの間における前記パッド部の側面部に、前記搭載用表面Aから前記放熱用裏面Bに向かって段差状部又はテーパー状部Eを有し、
     前記充填樹脂は、前記段差状部又はテーパー状部Eにて保持されていることを特徴とする半導体発光装置。
  12.  少なくともLEDチップ10等のICチップを搭載したLEDチップ搭載用表面Aを有する1乃至複数箇所のパッド部2と、前記LEDチップと電気的接続を行う電気的接続エリアCを有するリード部2aとを同一平面に備えたリードフレームを、前記搭載用表面Aから前記搭載用表面Aと対向する放熱用裏面Bに亘って、その厚さ方向に充填樹脂によりモールド加工が施され、前記パッド部の前記搭載用表面Aより上面側に、前記LEDチップ及び前記電気的接続エリアCを含めて透明樹脂が被覆された半導体発光装置であって、
     前記パッド部の前記搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係が0<S1<S2であり、
     前記パッド部は前記搭載用表面Aを有する上部構造と、前記上部構造と一体であり、前記放熱用裏面Bを有する下部構造とからなり、
     前記上部構造の側面部に、前記搭載用表面Aから放前記熱用裏面Bに向かって段差状部又はテーパー状部Eを有し、
     前記下部構造の側面部に、前記放熱用裏面Bから前記搭載用表面Aに向かって段差状部又はテーパー状部E1を有し、
     前記充填樹脂は、それぞれの段差状部、テーパー状部E,E1にて保持されていることを特徴とする半導体発光装置。
  13.  前記リード部2aの前記電気的接続エリアCの面積S3と、前記電気的接続エリアCと対向し前記パッド部2の前記放熱用裏面Bと同一平面にある放熱用裏面Dの面積S4との関係が0<S3<S4であり、
     前記電気的接続エリアCと放熱用裏面Dとの間における前記リード部2aの側面部に、前記電気的接続エリアCから放熱用裏面Dに向かって拡がる、前記充填樹脂を保持する段差状部又はテーパー状部Eを有し、
     前記充填樹脂は、段差状部又はテーパー状部Eにて保持されていることを特徴とする請求項11に記載の半導体発光装置。
  14.  前記リード部2aの前記電気的接続エリアCの面積S3と、前記電気的接続エリアCと対向し前記パッド部2の前記放熱用裏面Bと同一平面にある放熱用裏面Dの面積S4との関係が0<S3<S4であり、
     前記リード部2aは前記電気的接続エリアCを有する上部構造と、前記上部構造と一体であり、前記放熱用裏面Dを有する下部構造とからなり、
     前記上部構造の側面部に、前記電気的接続エリアCから前記放熱用裏面Dに向かって拡がる、樹脂モールド時の充填樹脂を保持する段差状部又はテーパー状部Eを有し、
     前記下部構造の側面部に、前記放熱用裏面Dから前記電気的接続エリアCに向かって拡がる、樹脂モールド時の充填樹脂を保持する段差状部又はテーパー状部E1を有し、
     前記充填樹脂は、それぞれの段差状部又はテーパー状部E,E1にて保持されていることを特徴とする請求項11に記載の半導体発光装置。
  15.  前記充填樹脂の光屈折率n1と前記透明樹脂の光屈折率n2との関係がn1>n2に設定され、前記充填樹脂を高反射率の樹脂としたことを特徴とする請求項11に記載の半導体発光装置。
  16.  前記充填樹脂に反射率特性が向上する微粒子を添加したことを特徴とする請求項11に記載の半導体発光装置。
  17.  表面側の上部構造と裏面側の下部構造とが一体となり、かつ、互いに離反した複数の構造体で形成されたリードフレームであって、
     前記リードフレームは、前記複数の構造体の間及び外側に形成され、前記リードフレームと同じ厚さの充填樹脂を有し、
     前記上部構造は、パッド部2と、前記パッド部2と離反したリード部2aとを有し、
     前記下部構造は、前記パッド部2と一体となった放熱部3と、前記リード部2aと一体となった放熱部3aとを有し、
     前記パッド部2の表面の面積S1と、前記放熱部3の裏面の面積S2との関係が0<S1<S2であり、
     前記リード部2aの表面の面積S3と、前記放熱部3aの裏面の面積S4との関係が0<S3<S4であり、
     前記各上部構造の側面部に、前記リードフレームの表面側から裏面側に向かって広がる段差状部又はテーパー状部を有し、
     前記各下部構造の側面部に、前リードフレームの裏面側から表面側に向かって広がる段差状部又はテーパー状部を有し、
     前記リードフレームは、前記表面側にあって前記パッド部2及び前記リード部2aの外側に、前記パッド部に面する斜面の内周面を備え、前記充填樹脂と一体に形成され、前記充填樹脂から突出した光反射用の光反射リング4aを有することを特徴とするリードフレーム。
  18.  前記光反射リング4aの前記内周面の前記パッド部2の表面に対する傾斜角度が30
    度以上85度以下であることを特徴とする請求項17に記載のリードフレーム。
  19.  前記充填樹脂が樹脂に粉状の添加剤を混合した光拡散性樹脂であり光屈折率が2以上であることを特徴とする請求項17に記載のリードフレーム。
  20.  前記パッド部2と前記リード部2aとをその表裏面を同一平面とする1単位フレームとして、各単位フレームが互いに縦横方向に1乃至複数本のタイバーにて連結されて多面付け配列されたリードフレームであって、
     前記パッド部2、前記リード部2a及び前記タイバーのそれぞれ表面、裏面又は表裏両面の面高さのうち、前記タイバーの面高さが低位に設定され、前記パッド部2及び前記リード部2aよりも前記タイバーの厚さが薄く設定されていることを特徴とする請求項17に記載のリードフレーム。
  21.  リードフレーム用金属材料の表面に、パッド部2の面積S1からなるチップ搭載用表面Aと、リード部2aの面積S3からなる電気接続エリアCとを形成するフォトレジストのパターンを形成し、
     前記金属材料の裏面に、前記チップ搭載用表面Aに対向する面積S2からなる放熱用裏面Bと、前記電気接続エリアCに対向する面積S4からなる放熱用裏面Dとを形成するフォトレジストのパターンを形成し、
     前記金属材料の表裏両面からエッチング加工することで、前記パッド部2のチップ搭載用表面Aの面積S1と前記放熱用裏面Bの面積S2との関係を0<S1<S2とし、前記電気的接続エリアCの面積S3と前記放熱用裏面Dの面積S4との関係を0<S3<S4とした、前記金属材料から成る上部構造と下部構造とを有する一体構造を形成し、前記上部構造の側面部に、前記チップ搭載用表面Aから前記放熱用裏面Bに向かって広がる段差状部又はテーパー状部を形成し、前記下部構造の側面部に、前記放熱用裏面Bから前記チップ搭載用表面Aに向かって広がる段差状部又はテーパー状部を形成し、前記上部構造の前記チップ搭載用表面Aを有するパッド部2と前記下部構造の前記放熱用裏面Bを有する放熱部3を一体に形成し、前記上部構造の前記電気接続エリアCを有するリード部2aと下部構造の前記放熱用裏面Dを有する放熱部3aを一体に形成し、
     モールド成型用の金型に前記上部構造と前記下部構造とを有する一体構造を設置し、
     前記金型に樹脂を充填してモールド成型することにより、前記上部構造と前記下部構造の一体構造と同じ厚さの充填樹脂を前記上部構造と前記下部構造の一体構造の周囲に形成し、かつ、前記充填樹脂の形成と同時に、前記チップ搭載用表面A側であって前記パッド部2及びリード部2aの外側に、前記チップ搭載用表面A側に面する斜面の内周面を有する光反射用の光反射リング4aを、前記充填樹脂と一体構造として前記充填樹脂から突出させて形成することを特徴とするリードフレームの製造方法。
  22.  前記パッド部2と前記リード部2aとをその表裏面を同一平面とする1単位フレームとして、各単位フレームが互いに縦横方向に1乃至複数本のタイバーにて連結されて多面付け配列されたリードフレームの製造方法であって、
     前記パッド部2、前記リード部2a及び前記タイバーのそれぞれ表面、裏面又は表裏両面の面高さのうち、前記タイバーの面高さが低位に設定され、前記パッド部2及び前記リード部2aよりも前記タイバーの厚さが薄く設定されていることを特徴とする請求項21に記載のリードフレーム製造方法。
  23.  表面側の上部構造と裏面側の下部構造とが一体となり、かつ、互いに離反した複数の構造体で形成されたリードフレームと、前記リードフレームの前記複数の構造体の間及び外側に形成され、前記リードフレームと同じ厚さの充填樹脂とを具備し、
     前記上部構造は、パッド部2と、前記パッド部2と離反したリード部2aとを有し、
     前記下部構造は、前記パッド部2と一体となった放熱部3と、前記リード部2aと一体となった放熱部3aを有し、
     前記各上部構造の側面部に、前記リードフレームの表面側から裏面側の方向に広がる段差状部又はテーパー状部を有し、
     前記各下部構造の側面部に、前リードフレームの裏面側から表面側の方向に広がる段差状部又はテーパー状部を有し、
     前記表面側にあって前記パッド部2及び前記リード部2aの外側に、前記パッド部に面する斜面の内周面を有し、前記充填樹脂と一体に形成され、前記充填樹脂から突出した光反射用の光反射リング4aを有し、
     前記パッド部2の表面にLEDチップが搭載され、
     前記LEDチップの電極が前記リード部2aに電気接続され、
     前記LEDチップを被覆し、かつ、前記光反射リング4aの前記内周面と接する透明樹脂が形成されていることを特徴とする半導体発光装置。
  24.  前記パッド部2の表面の面積S1と、前記放熱部3の裏面の面積S2との関係が0<S1<S2であり、
     前記リード部2aの表面の面積S3と、前記放熱部3aの裏面の面積S4との関係が0<S3<S4であることを特徴とする請求項23記載の半導体発光装置。
  25.  前記充填樹脂が樹脂に粉状の添加剤を混合した光拡散性樹脂であり光屈折率が2以上であり、前記透明樹脂の屈折率より高いことを特徴とする請求項23に記載の半導体発光装置。
PCT/JP2009/068921 2008-11-07 2009-11-05 リードフレーム及びその製造方法及びそれを用いた半導体発光装置 WO2010053133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107029799A KR101257581B1 (ko) 2008-11-07 2009-11-05 리드 프레임 및 그 제조 방법 및 그것을 이용한 반도체 발광 장치
CN2009801249733A CN102077371B (zh) 2008-11-07 2009-11-05 引线框及其制造方法和使用引线框的半导体发光装置
US12/737,678 US8841692B2 (en) 2008-11-07 2011-02-04 Lead frame, its manufacturing method, and semiconductor light emitting device using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008286265 2008-11-07
JP2008-286265 2008-11-07
JP2009-045460 2009-02-27
JP2009045460A JP5304314B2 (ja) 2008-11-07 2009-02-27 Led発光素子用リードフレーム及びその製造方法及びそれを用いたled発光素子
JP2009120675A JP5304431B2 (ja) 2009-05-19 2009-05-19 リードフレーム及びその製造方法及びそれを用いた半導体発光装置
JP2009-120675 2009-05-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/737,678 Continuation US8841692B2 (en) 2008-11-07 2011-02-04 Lead frame, its manufacturing method, and semiconductor light emitting device using the same

Publications (1)

Publication Number Publication Date
WO2010053133A1 true WO2010053133A1 (ja) 2010-05-14

Family

ID=42152940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068921 WO2010053133A1 (ja) 2008-11-07 2009-11-05 リードフレーム及びその製造方法及びそれを用いた半導体発光装置

Country Status (1)

Country Link
WO (1) WO2010053133A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171611A (ja) * 2010-02-19 2011-09-01 Canon Inc 半導体装置の製造方法及びその方法に用いる部品
JP2012104542A (ja) * 2010-11-08 2012-05-31 Toppan Printing Co Ltd Led発光素子用リードフレーム及びそれを用いたledパッケージ、およびその製造方法
JP2013168653A (ja) * 2010-11-02 2013-08-29 Dainippon Printing Co Ltd Led素子搭載用リードフレーム、樹脂付リードフレーム、半導体装置の製造方法、および半導体素子搭載用リードフレーム
JP2017092500A (ja) * 2017-02-15 2017-05-25 大日本印刷株式会社 Led用リードフレーム、光半導体装置、およびled用リードフレームの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083918A (ja) * 2000-06-22 2002-03-22 Mitsui High Tec Inc リードフレーム及び半導体装置
JP2003204024A (ja) * 2002-01-08 2003-07-18 Toppan Printing Co Ltd リードフレームの製造方法
JP2005005437A (ja) * 2003-06-11 2005-01-06 Seiko Epson Corp 発光素子、照明装置、投射型表示装置
JP2007043155A (ja) * 2005-07-29 2007-02-15 Samsung Electronics Co Ltd Ledパッケージおよびその製造方法、それを用いたledアレイモジュール
JP2007329219A (ja) * 2006-06-07 2007-12-20 Nichia Chem Ind Ltd 樹脂成形体及び表面実装型発光装置並びにそれらの製造方法
JP2008041950A (ja) * 2006-08-07 2008-02-21 Hitachi Cable Ltd 発光ダイオードパッケージ用プリモールド部品及びその製造方法、並びに発光ダイオードパッケージ
JP2008120848A (ja) * 2006-11-08 2008-05-29 Sumitomo Osaka Cement Co Ltd 無機酸化物透明分散液と透明複合体およびその製造方法、発光素子封止用組成物並びに発光素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083918A (ja) * 2000-06-22 2002-03-22 Mitsui High Tec Inc リードフレーム及び半導体装置
JP2003204024A (ja) * 2002-01-08 2003-07-18 Toppan Printing Co Ltd リードフレームの製造方法
JP2005005437A (ja) * 2003-06-11 2005-01-06 Seiko Epson Corp 発光素子、照明装置、投射型表示装置
JP2007043155A (ja) * 2005-07-29 2007-02-15 Samsung Electronics Co Ltd Ledパッケージおよびその製造方法、それを用いたledアレイモジュール
JP2007329219A (ja) * 2006-06-07 2007-12-20 Nichia Chem Ind Ltd 樹脂成形体及び表面実装型発光装置並びにそれらの製造方法
JP2008041950A (ja) * 2006-08-07 2008-02-21 Hitachi Cable Ltd 発光ダイオードパッケージ用プリモールド部品及びその製造方法、並びに発光ダイオードパッケージ
JP2008120848A (ja) * 2006-11-08 2008-05-29 Sumitomo Osaka Cement Co Ltd 無機酸化物透明分散液と透明複合体およびその製造方法、発光素子封止用組成物並びに発光素子

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171611A (ja) * 2010-02-19 2011-09-01 Canon Inc 半導体装置の製造方法及びその方法に用いる部品
JP2013168653A (ja) * 2010-11-02 2013-08-29 Dainippon Printing Co Ltd Led素子搭載用リードフレーム、樹脂付リードフレーム、半導体装置の製造方法、および半導体素子搭載用リードフレーム
US8933548B2 (en) 2010-11-02 2015-01-13 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9159655B2 (en) 2010-11-02 2015-10-13 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9214414B2 (en) 2010-11-02 2015-12-15 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9362473B2 (en) 2010-11-02 2016-06-07 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9412923B2 (en) 2010-11-02 2016-08-09 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9553247B2 (en) 2010-11-02 2017-01-24 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9773960B2 (en) 2010-11-02 2017-09-26 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9899583B2 (en) 2010-11-02 2018-02-20 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
JP2012104542A (ja) * 2010-11-08 2012-05-31 Toppan Printing Co Ltd Led発光素子用リードフレーム及びそれを用いたledパッケージ、およびその製造方法
JP2017092500A (ja) * 2017-02-15 2017-05-25 大日本印刷株式会社 Led用リードフレーム、光半導体装置、およびled用リードフレームの製造方法

Similar Documents

Publication Publication Date Title
KR101257581B1 (ko) 리드 프레임 및 그 제조 방법 및 그것을 이용한 반도체 발광 장치
JP5304431B2 (ja) リードフレーム及びその製造方法及びそれを用いた半導体発光装置
JP5304314B2 (ja) Led発光素子用リードフレーム及びその製造方法及びそれを用いたled発光素子
JP5936810B2 (ja) 発光装置
JP5287899B2 (ja) 半導体発光装置用リードフレーム及びその製造方法
JP2009117536A (ja) 樹脂封止発光体及びその製造方法
JP5860289B2 (ja) Led装置の製造方法
JP2012084810A (ja) Led素子用リードフレーム基板及び発光素子
JP2009033088A (ja) 半導体発光装置、その製造方法およびそれを用いたled照明装置
JP2011151239A (ja) Led用リードフレーム及びledモジュールの製造方法
KR20090128557A (ko) 광학적 커플러 패키지
JP5381563B2 (ja) 発光素子用リードフレーム基板の製造方法
JP5375630B2 (ja) 樹脂付リードフレームおよびその製造方法、ならびにled素子パッケージおよびその製造方法
WO2010053133A1 (ja) リードフレーム及びその製造方法及びそれを用いた半導体発光装置
JP5378568B2 (ja) Ledパッケージ
JP5287889B2 (ja) 半導体発光装置用リードフレーム及び半導体発光装置
JP5370050B2 (ja) Led発光素子用リードフレーム
JP5509878B2 (ja) Led発光素子用リードフレーム基板の製造方法
KR101125437B1 (ko) 발광 소자 및 이를 구비한 조명 시스템
JP2013219104A (ja) Led用リードフレームおよびその製造方法
JP2012104542A (ja) Led発光素子用リードフレーム及びそれを用いたledパッケージ、およびその製造方法
JP6321228B2 (ja) 発光装置
JP5672714B2 (ja) Led発光素子用リードフレームの製造方法
JP5381585B2 (ja) Led発光素子用リードフレームの製造方法、及びledパッケージの製造方法
KR101172177B1 (ko) 발광 소자 및 이를 구비한 조명 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124973.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107029799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824832

Country of ref document: EP

Kind code of ref document: A1