WO2010048601A1 - Biodefenses using triazole-containing macrolides - Google Patents

Biodefenses using triazole-containing macrolides Download PDF

Info

Publication number
WO2010048601A1
WO2010048601A1 PCT/US2009/061978 US2009061978W WO2010048601A1 WO 2010048601 A1 WO2010048601 A1 WO 2010048601A1 US 2009061978 W US2009061978 W US 2009061978W WO 2010048601 A1 WO2010048601 A1 WO 2010048601A1
Authority
WO
WIPO (PCT)
Prior art keywords
cem
compounds
intracellular
azi
heteroaryl
Prior art date
Application number
PCT/US2009/061978
Other languages
English (en)
French (fr)
Inventor
Prabhavathi B. Fernandes
Original Assignee
Cempra Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cempra Pharmaceuticals, Inc. filed Critical Cempra Pharmaceuticals, Inc.
Priority to DK09822828.1T priority Critical patent/DK2358379T3/en
Priority to SI200931385A priority patent/SI2358379T1/sl
Priority to US13/125,550 priority patent/US9072759B2/en
Priority to EP09822828.1A priority patent/EP2358379B1/en
Priority to ES09822828.1T priority patent/ES2565083T3/es
Priority to CN200980150068.5A priority patent/CN102245195B/zh
Priority to JP2011533399A priority patent/JP5602748B2/ja
Priority to AU2009308182A priority patent/AU2009308182B2/en
Publication of WO2010048601A1 publication Critical patent/WO2010048601A1/en
Priority to US14/725,247 priority patent/US9669046B2/en
Priority to HRP20160222TT priority patent/HRP20160222T1/hr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/424Oxazoles condensed with heterocyclic ring systems, e.g. clavulanic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention described herein relates to the treatment of acute exposure and diseases caused by biodefense pathogens.
  • the invention described herein relates to the treatment of acute exposure and diseases caused by biodefense pathogens with macrolide and ketolide antibiotics.
  • Illustrative agents include Bacillus anthracis (BA), Yersinia pestis (YP), Francisella tularensis (FT), Burkholderia mallei (BM), and B. pseudomallei (BP).
  • BA Bacillus anthracis
  • YP Yersinia pestis
  • FT Francisella tularensis
  • BM Burkholderia mallei
  • BP B. pseudomallei
  • compounds, compositions, methods, and medicaments are described herein for treating diseases arising from one or more bioterror and/or biowarfare agents selected from B. anthracis, Y. pestis, F. tularensis, and B. mallei. It has been surprising discovered herein that the triazole- containing compounds described herein are highly active on F. tularensis.
  • the compounds, compositions, methods, and medicaments are useful as postexposure prophylaxis agents, such as medical countermeasures, following an exposure or inhalation of a one or more bioterror and/or biowarfare agents.
  • the compounds, compositions, methods, and medicaments are useful in treating diseases caused by an exposure or inhalation of a one or more bioterror and/or biowarfare agents, including, but not limited to, pneumonia, plague, tularemia, meliodosis, and the like.
  • R 10 is hydrogen or acyl.
  • X is H; and Y is OR 7 ; where R 7 is a monosaccharide or disaccharide, alkyl, aryl, heteroaryl, acyl, or C(O)NRsRg, where Rg and R 9 are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, aralkyl, alkylaryl, heteroalkyl, aryl, heteroaryl, alkoxy, dimethylaminoalkyl, acyl, sulfonyl, ureido, and carbamoyl; or X and Y are taken together with the attached carbon to form carbonyl.
  • W is H, F, Cl, Br, I, or OH.
  • A is CH 2 , C(O), C(O)O, C(O)NH, S(O) 2 , S(O) 2 NH,
  • B is (CH 2 ) n where n is an integer ranging from 0-10, or B is an unsaturated carbon chain of 2-10 carbons.
  • C is hydrogen, hydroxy, alkyl, aralkyl, alkylaryl, alkoxy, heteroalkyl, aryl, heteroaryl, aminoaryl, alkylaminoaryl, acyl, acyloxy, sulfonyl, ureido, or carbamoyl.
  • compositions including a therapeutically effective amount of one or more compounds of formula (I), or the various subgenera thereof are described herein.
  • the pharmaceutical compositions may include additional pharmaceutically acceptable carriers, diluents, and/or excipients.
  • FIG. 1 Preliminary in vivo studies in animal models of disease also demonstrate protection against these pathogens.
  • FIG. CEM-101 Minimum Inhibitory Concentration Distributions are shown in bar graph form
  • FIG. 3 Comparative susceptibilities of S. aureus ATCC 25923 and L. monocytogenes EGD to CEM-101, TEL, AZI, and CLR, based on MIC determinations in pH- adjusted broth.
  • FIG. 4 Short-term time-kill effect of CEM-101 and AZI on S. aureus (ATCC 25923) in broth (left panels; pH 7.4) or after phagocytosis by THP-I macrophages (right panels). Both drugs were used at an extracellular concentration of either 0.7 (top panels) or 4 (bottom panels) mg/liter. MICs of CEM-101 and AZI were 0.06 and 0.5 mg/liter, respectively. All values are means ⁇ standard deviations (SD) of three independent experiments (when not visible, SD bars are smaller than the symbols).
  • SD standard deviations
  • FIG. 5 Concentration-effect relationships for CEM-101, TEL, CLR, and AZI toward S. aureus (ATCC 25923) in broth (left panels) and after phagocytosis by THP-I macrophages (right panels).
  • the ordinate shows the change in CFU ( ⁇ log CFU) per ml (broth) or per mg of cell protein (THP-I macrophages) at 24 h compared to the initial inoculum.
  • the abscissa shows the concentrations of the antibiotics as follows: (i) top panels, weight concentrations (in mg/liter) in broth (left) or in the culture medium (right) and (ii) bottom panels, multiples of the MIC as determined in broth at pH 7.4.
  • FIG. 6 Concentration-effect relationships for CEM-101 and AZI toward intraphagocytic L. monocytogenes (strain EGD, left panels) and L. pneumophila (strain ATCC 33153, right panels). The ordinate shows the change in CFU ( ⁇ log CFU) per mg of cell protein at 24 h (L.
  • the abscissa shows the concentrations of the antibiotics as follows: (i) top panels, weight concentrations (in mg/liter); (ii) bottom panels, multiples of the MIC as determined in broth at pH 7.4. All values are means ⁇ standard deviations (SD) of three independent experiments (when not visible, SD bars are smaller than the symbols).
  • FIG. 7 Accumulation of CEM-101 versus comparators in THP-I cells at 37 0 C (all drugs at an extracellular concentration of 10 mg/liter).
  • A Kinetics of accumulation (AZI); Cc, intracellular concentration; Ce, extracellular concentration);
  • B influence of the pH of the culture medium on the accumulation (30 min) of CEM-101 (solid symbols and solid line) and AZI (open symbols and dotted line);
  • C influence of monensin (50 ⁇ M; 2-h incubation), verapamil (150 ⁇ M; 24-h incubation), or gemfibrozil (250 ⁇ M; 24-h incubation) on the cellular accumulation of AZI and CEM-101. All values are means ⁇ standard deviations (SD) of three independent determinations (when not visible, SD bars are smaller than the symbols).
  • SD standard deviations
  • FIG. 8 Intracellular activity: comparative studies with other anti-staphylococcal agents. Comparative dose-static response of antibiotics against intracellular Staphylococcus aureus (strain ATCC 25923) in THP-I macrophages. Bars represent the MICs (in mg/L) or the extracellular static dose.
  • FIG. 9 Intracellular Activity of CEM-101 compared to AZI, CLR, and TEL, expressed as a dose response curve of ⁇ log CFU from time 0 to 24 hours versus log dose.
  • compounds are described herein that are active intracellularly. It has also been discovered herein that the intracellular accumulation and intracellular activity of triazole-containing macrolides was not affected by Pgp or Multidrug Resistant Protein (MRP) inhibitors. Accordingly, it is believed that the compounds described herein are not substrates or are poor substrates of P-glycoprotein (plasma or permeability gycoprotein, Pgp). It is appreciated that Pgp is an efflux mechanism that may lead to resistance by some organisms against certain antibiotics, such as has been reported for AZI and ERY in macrophages in which both antibiotics are substrates of the P-glycoprotein. Accordingly, it has been surprisingly found that the compounds described herein accumulate intracellulary.
  • MRP Multidrug Resistant Protein
  • the triazole- containing macrolide and ketolide compounds described herein have high intracellular activity. It has also been surprising found herein that the compounds described herein have lower protein binding than is typical for macrolides at lower pH, such as the pH found in bacterial infections, including but not limited to abscesses. It is appreciated that the lack of intracellular activity typically observed with anti-bacterial agents, including other macrolides and ketolides, may be due to high protein binding, and/or to the relatively lower pH of the intracellular compartments, such as is present in abscesses.
  • the concentration of other anti-bacterial agents, including other macrolides and ketolides, in macrophages may not be efficacious in treating disease because of the low pH of the lysozomal compartment.
  • the acidic environment prevailing in the phagolysosomes may impair the activity of antibiotics, such as the AZI, CLR and TEL.
  • antibiotics such as the AZI, CLR and TEL. It has been unexpectedly found that the compounds described herein retain their anti-bacterial activity at low pH. It is appreciated that the intracellular activity of the compounds described herein may be an important determinant for fast and complete eradication and, probably also, for prevention of resistance in the target organism.
  • triazole-containing macrolides accumulate to a considerably larger extent than the comparators, including AZI, and consistently expresses greater potency (decreased values of E 50 and C s ) while showing similar maximal efficacy (E max ) to comparators.
  • E max maximal efficacy
  • triazole-containing macrolides such as CEM-101
  • accumulation is almost completely suppressed, in parallel with AZI, by exposure to acid pH or to the proton ionophore monensin.
  • accumulation is determined by the number of ionizable groups and the ratios between the membrane permeability coefficients of the unionized and ionized forms of the drug.
  • CEM-101 has two ionizable functions
  • the pKa of the aminophenyltriazole is calculated to be less than 4, suggesting that the molecule is largely monocationic (similar to CLR and TEL) at neutral and even at lysosomal pH ( ⁇ 5).
  • AZI has two ionizable functions with pK a s > 6 and is therefore dicationic intracellularly.
  • CEM- 101 possesses a fluoro substituent in position 2, which should make it more lipophilic than CLR or TEL.
  • the ratio of the permeability constants of the unionized and ionized forms of CEM-101 in comparison with LR or TEL may be as important as the number of ionizable functions to determine the level of cellular accumulation of weak organic bases.
  • the greater cellular accumulation of CEM-101 may be partially due to its lack of susceptibility to Pgp-mediated efflux (which is expressed by THP-I macrophages under our culture conditions) in contrast to azithromycin and other macrolide or ketolide antibiotics.
  • the cellular accumulation and intracellular activity of the triazole- containing compounds described herein is substantially improved over known macrolides, including ketolides.
  • the compounds described herein maintain the maximal efficacy of their MICs, and show greater potency against intracellular forms of for example, B. anthracis, Y. pestis, F. tularensis, and B. mallei compared to TEL, AZI, and CLR.
  • this improved intracellular potency of the triazole- containing compounds described herein results from the combination of the higher intrinsic activity against B. anthracis, Y. pestis, F. tularensis, and B. mallei coupled with the retained activity at low pH, and the ability to distribute to a wide variety of intracellular compartments.
  • the triazole-containing macrolide and ketolide compounds have intracellular activity, such as intracellular activity against B. anthracis, Y. pestis, F. tularensis, and B. mallei. Survival of these organism within eukaryotic cells is critical for the persistence of infection. It is appreciated that routine susceptibility testing are usually determined against extracellular bacteria only, and therefore may be misleading in their prediction of efficacy against intracellular organisms.
  • the compounds, methods, and medicaments described herein include a therapeutically effective amount of one or more compounds described herein, wherein the therapeutically effective amount is an amount effective to exhibit intracellular antibacterial activity.
  • compounds are described herein that are bactericidal.
  • the compounds, methods, and medicaments described herein include a therapeutically effective amount of one or more compounds described herein, wherein the therapeutically effective amount is an amount effective to exhibit bactericidal activity, including in vivo bactericidal activity.
  • macrolides are generally bacteriostatic. Bacteriostatic compounds do not kill the bacteria, but instead for example inhibit growth and reproduction of bacteria without killing them; killing is accomplished by bactericidal agents. It is understood that bacteriostatic agents must work with the immune system to remove the microorganisms from the body.
  • Bacteriostatic antibiotics may limit the growth of bacteria via a number of mechanisms, such as by interfering with bacterial protein production, DNA replication, or other aspects of bacterial cellular metabolism.
  • bactericidal antibiotics kill bacteria; bacteriostatic antibiotics only slow their growth or reproduction.
  • Several bactericidal mechanism have been reported, including disrupting cell wall precursor leading to lysis, binding irreversibly to 30s ribosomal subunit, reducing translation fidelity leading to inaccurate protein synthesis, and inhibit protein synthesis due to premature separation of the complex between mRNA and ribosomal proteins. The final result is bacterial cell death.
  • the compounds, compositions, methods, and medicaments described herein include a therapeutically effective amount of one or more compounds described herein, wherein the therapeutically effective amount is an amount effective to exhibit bactericidal activity against one or more of B. anthracis, Y. pestis, F. tularensis, and B. mallei.
  • the therapeutically effective amount is an amount effective to exhibit bactericidal activity against one or more of B. anthracis, Y. pestis, F. tularensis, and B. mallei.
  • treating such diseases using bacteriostatic agents may be unsuccessful in two respects. First, simply stopping the progression of the disease with a bacteriostatic agent may be insufficient because the immune system may not intervene to assist in curing the disease at a necessary level. For example, some bacterial organisms are not killed by the immune system because they reside in intracellular compartments.
  • an intracellularly active agent and/or an intracellularly active and bactericidal agent, will be efficacious in treating such diseases.
  • compounds described herein that achieve an intracellular concentration of 2OX the MIC of the targeted bacteria It has been reported that most, if not all, macrolide antibiotics, though bactericidal in vitro, are only bacteriostatic in vivo.
  • CEM-101 was also found to have potent in vitro activity against B. anthracis which compares favorably with that of antibiotics currently approved (ciprofloxacin, MIC 90 0.031 ug/ml) or proposed (cethromycin, MIC 90 0.063 ug/ml) for post-exposure anthrax indications.
  • dose-dependent activity (percent survival) against aerosolized B anthracis is observed over 14 days of oral dosing.
  • the protective doses shown here e.g. 2.5-20.00 mg/kg
  • CEM-101 are administered in rodent models, levels which are achievable with safe dosing regimens in human trials.
  • CEM-101 is significantly more active than other antibacterial agents against organisms located intracellularly. It is active against resistant bacteria, including multi-drug resistant bacteria. Evidence of bacterial resistance to CEM-101 in vitro is observed. Without being bound by theory, it is believed that those examples that become resistant are likely not to have a survival advantage as they would have multiple mutations that decrease viability and virulence
  • CEM-101 The capacity of CEM-101 to accumulate in tissues and to achieve high intracellular concentrations, with antimicrobial potency, is a pharmacologic characteristic, because intracellular parasitism underlies the pathophysiology of disease due to the biothreat agents of concern here.
  • FIG. 6 shows that macrophage uptake and intracellular killing of Legionella pneumophila (lysosomal compartment) and Listeria monocytogenes (cytoplasm) by CEM-101 is even more active than by other macrolide agents tested (Lemaire, et al., Antimicrob. Agents. Chemother. 53: 3734-3743, 2009).
  • CEM-101 unlike azithromycin and cethromycin, is not a substrate for P-glycoprotein.
  • Several in vivo protocols wherein CEM-101 was repeatedly dosed in toxicology studies in rodents and non human primates have demonstrated tissue levels of CEM-101 ⁇ 17- 10OX higher than peak plasma levels.
  • CEM-101 accumulated in tissues and concentrations were highest in liver, spleen, lung, and salivary gland. This relationship was confirmed in rodent ADME studies using radiolabeled CEM-101.
  • lung tissue to plasma radioactivity ratios of ⁇ 13: 1 were observed in male and female animals. After IV dosing at 20 mg/kg, the data was more variable and lung/plasma ratios of 17.6 for males and 6.2 for females were observed.
  • Cmax and AUC ranged from 0.022 ⁇ g/mL and 0.04 ⁇ g*h/mL to 1.96 ⁇ g/mL and 28.60 ⁇ g*h/mL across the dose range.
  • the mean CEM-101 t max increased from 1.5 to 6.0 hours and the mean terminal half-life increased from 2.2 to 7.9 hours over the 50 to 1600 mg dose range.
  • compounds of Formula (I) are described herein where X and Y are taken together with the attached carbon to form a C(O) group.
  • X is H
  • Y is OR 7 , where R 7 is a monosaccharide radical, such as cladinosyl.
  • compounds of Formula (I) are described herein where W is fluoro.
  • compounds of Formula (I) are described herein where A and B are taken together to form an alkylene group, including but not limited to propylene, butylene, and pentylene.
  • compounds of Formula (I) are described herein where A and B are taken together to form butylene.
  • compounds of Formula (I) are described herein where A and B are taken together to form pentylene.
  • compounds of Formula (I) are described herein where A and B are taken together to form butylenes and C is 2-pyridinyl or aminophenyl, such as 3-aminophenyl.
  • compounds of Formula (I) are described herein where A and B are taken together to form propylenes, butylenes, or pentylenes; and C is aminophenyl, such as 3-aminophenyl.
  • compounds of Formula (I) are described herein where A and B are taken together to form pentylene and C is 3-pyridinyl or benzotriazole.
  • compounds of Formula (I) are described herein where C is an optionally substituted aryl or heteroaryl group.
  • compounds of Formula (I) are described herein where V is a carbonyl group.
  • compounds of Formula (I) are described herein where R 10 is hydrogen.
  • X is H
  • Y is OR 7 , where R 7 is a monosaccharide radical, such as cladinosyl, and C is 3-pyridinyl or benzotriazolyl.
  • C is optionally substituted phenyl, such as phenyl, halophenyl, haloalkylphenyl, aminophenyl, and the like, optionally substituted pyridinyl, such as 2-pyridinyl and 3-pyridinyl, optionally substituted benzotriazole, and the like.
  • phenyl such as phenyl, halophenyl, haloalkylphenyl, aminophenyl, and the like
  • pyridinyl such as 2-pyridinyl and 3-pyridinyl, optionally substituted benzotriazole, and the like.
  • a and B are taken together to form butylene or pentylene, and X and Y are taken together with the attached carbon to form a C(O) group.
  • an antibacterial composition is described herein, wherein the composition includes an effective amount of one or more compounds described herein, and a pharmaceutically acceptable carrier, excipient, or diluent therefor, or a combination thereof.
  • compositions generally refers to any product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts.
  • compositions may include one or more carriers, diluents, and/or excipients.
  • the compounds described herein may be formulated in a therapeutically effective amount in conventional dosage forms for the methods described herein, including one or more carriers, diluents, and/or excipients therefor.
  • Such formulation compositions may be administered by a wide variety of conventional routes for the methods described herein in a wide variety of dosage formats, utilizing art-recognized products. See generally, Remington's Pharmaceutical Sciences, (16th ed. 1980).
  • compositions described herein may be prepared from isolated compounds described herein or from salts, solutions, hydrates, solvates, and other forms of the compounds described herein. It is also to be understood that the compositions may be prepared from various amorphous, non-amorphous, partially crystalline, crystalline, and/or other morphological forms of the compounds described herein.
  • therapeutically effective amount refers to that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.
  • the therapeutically effective amount is that which may treat or alleviate the disease or symptoms of the disease at a reasonable benefit/risk ratio applicable to any medical treatment.
  • the total daily usage of the compounds and compositions described herein may be decided by the attending physician within the scope of sound medical judgment.
  • the specific therapeutically-effective dose level for any particular patient will depend upon a variety of factors, including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, gender and diet of the patient: the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidentally with the specific compound employed; and like factors well known in the medical arts.
  • the compounds described herein are administered to a human orally at a dose of about 1 to about 10 mg/kg, about 2 to about 8 mg/kg, or about 4 to about 6 mg/kg of patient body weight.
  • the daily adult human dose is about 100 to about 1,000 mg, which may be administered qd, bid, tid, and the like.
  • the daily adult human dose is about 400 to about 600 mg, which may be administered qd, bid, tid, and the like. Such doses may be administered, once, twice, or thrice per day.
  • Illustrative oral unit dosages are 50, 100, 200, and 400 mg (single or divided).
  • such illustrative dosages are sufficient to achieve plasma levels of about 1 ⁇ g/mL, which may be sufficient to observe bactericidal activity of the compounds described herein, such as for one or more of B. anthracis, Y. pestis, F. tularensis, and B. mallei.
  • the compounds described herein, including CEM-101 reach high concentration in tissues, such as lung tissues.
  • the compounds described herein, including CEM-101 may achieve tissue levels that are at least about 10-times the MIC for strains, including macrolide- resistant strains, such as but not limited to B. anthracis, Y.
  • the compounds described herein may be prepared as described herein, or according to US Patent Application Publication No. 2006/0100164 and in PCT International Publication No. WO 2009/055557, the disclosures of which are incorporated herein by reference in their entirety.
  • the azide of intermediates lOa-c is converted to the 4-substituted-[ 1,2,3]- triazoles via a cycloaddition reaction with substituted acetylenes.
  • Triazole rings may be formed via a Huisgen 1 + 3 cycloaddition reaction between an azide and an alkyne resulting in a mixture of 1,4- and 1,5-regioisomers as depicted in Route A of Scheme II.
  • the procedure of Rostovtsev et al. 8 may be followed using the addition of a CuI catalyst to the reaction to selectively or exclusively produce the 1,4-regioisomer as depicted in Route B of Scheme II.
  • the triazole ring side chain is also incorporated into the clarithromycin ring system.
  • a butyl alkyl side chain is chosen. It is appreciated that many butyl side chain analogs in the ketolide series have improved antibacterial activity based on in vitro MIC results.
  • Intermediate 7b is directly converted into the 4-substituted-[ 1,2,3] -triazole via copper catalyzed cyclization with terminally substituted acetlyenes, as shown in Scheme III.
  • the acetate protecting groups of 19a-e are removed with LiOH in methanol to afford the corresponding 4-substituted-[ 1,2,3] -triazoles 20a-e.
  • Substitution of the 2- position hydrogen with a fluorine is accomplished by electrophilic fluorination of 9b (Scheme IV) using Selectfluor®.
  • the azido group of intermediate 22 is converted to a series of 4-substituted-[ 1,2,3] -triazoles 23a-b via the standard conditions.
  • the primary screening panel consisted of relevant Staph, aureus, S. pyogenes, S. pneumoniae (including strains resistant to azithromycin and telithromycin). MICs against all pathogens were determined using broth microdilution method as per NCCLS guidelines. Compounds described herein, such as CEM-101 were found to be highly potent having MICs against S. pneumoniae (3773) of ⁇ 0.125 ⁇ g/mL and S.pyogenes (1850) of 0.5 ⁇ g/mL, compared to 1 and 8 ⁇ g/mL, respectively for Telithromycin.
  • CEM-103 (20c), an analogue of CEM-101 that contains the 3-O-cladinose was found to be less active.
  • Non-hetero aromatic substituted triazole containing ketolides were less active.
  • the ketolides were tested against erythromycin-sensitive (Ery-S) and erythromycin-resistant (Ery-R) strains of S. aureus (29213 (Ery-S) and 96:11480 (Ery-R)), S. pneumoniae (49619 (Ery-S) and 163 and 303 (Ery-R)) and H. influenzae (49247 (Ery-S)) (Tables 1-3).
  • the broth micro-dilution method was used to determine the Minimum Inhibitory Concentrations (MICs) against all pathogens as per the Clinical and Laboratory Standards Institute (CLSI).
  • the chain length of the alkyl side chain had a affected activity (Table 1).
  • the 3-carbon linked phenyl substituted triazole 1 Ia was less active against Ery-S and Ery-R S. aureus and was inactive against Ery-R S. pneumoniae 303 (ermB) a the tested concentrations, whereas the corresponding 4- and the 5-carbon linked phenyl substituted triazoles 1 Ib and 1 Ic were more active against these organisms.
  • the 4-carbon linked 2-pyridyl substituted triazole 14b and the 3-amino-phenyl substituted triazole 16b possessed the highest potency against S. pneumoniae 303, both having MIC values ( ⁇ 0.125 ⁇ g/mL) comparable to telithromycin.
  • the ketolide containing the 4-carbon linked 3-pyridyl substituted triazole 15b was less active against this strain (MIC of 64 ⁇ g/mL).
  • Within this series antibacterial activity was improved by extending the carbon linker to 5 atoms, for example the MIC against S. pneumoniae 303 for compound 15c improved from 64 to 4 ⁇ g/mL.
  • a similar effect was also observed for the benzo-triazole containing ketolide 18c against S.
  • the macrolides containing a cladinose at the 3 position were all highly active against Ery-S S. pneumoniae (49619) (Table 2). However, these analogs were less potent than telithromycin against Ery-R strains. The MICs were significantly higher for the cladinose containing analogs with either 2-pyridyl, 2-aminophenyl or 2,6-dichlorophenyl triazole substituents than for the corresponding ketolides (20a, 20c, and 20d versus 14b, 16b, and 17b).
  • ketolide analogs 15b (3- pyridyl) and 18b (benzo-triazole) by replacing the keto with the cladinose group in analogs 20b (3- pyridyl) and 2Oe (benzo-triazole).
  • the MICs improved from 64 ⁇ g/mL for 15b and 18b to 1 and 2 ⁇ g/mL for 20b and 20e, respectively.
  • a similar activity trend was also observed for Ery-R S. pneumoniae 163 (MefA).
  • EXAMPLE Pivotal Efficacy of CEM-101 against a Lethal Inhalational
  • Monkeys are tested and verified negative for tuberculosis and also prescreened within 30 days prior to receipt to confirm that they are seronegative for Simian Immunodeficiency Virus (SIV), Simian T-Lymphotrophic Virus- 1 (STLV-I), and Cercopithecine herpesvirus 1 (Herpes B virus) and negative for Simian Retrovirus (SRVl & SRV2) by PCR. See Table 7.
  • SIV Simian Immunodeficiency Virus
  • STLV-I Simian T-Lymphotrophic Virus- 1
  • Cercopithecine herpesvirus 1 Herpes B virus
  • SRVl & SRV2 Simian Retrovirus
  • PT post-treatment
  • PC post-challenge
  • Monkeys are transported into the BL (biohazard laboratory level 3) — 5-10 days prior to challenge to allow time for acclimation. Monkeys within each challenge day group are randomized for challenge order prior to challenge.
  • monkeys are anesthetized with Telazol (1-6 mg/kg, IM) and placed into a plethysmography chamber and a Class III cabinet system for the targeted challenge agent aerosolized by a Collison nebulizer and delivered via a head-only inhalation exposure chamber. Aerosol concentrations of challenge material are quantified by determination of colony forming units (cfu). Effluent streams are collected directly from an animal exposure port by an in-line all-glass impinger. Serial dilutions of impinger samples are plated and counted.
  • Fisher's exact tests are used to compare survival rates between each antibiotic treatment group and the control group. A time-to-death analysis is performed on these data determining if there are differences in protection for the different groups based on a length of survival model. The Kaplan-Meier estimates of survival probabilities are plotted. The log-rank or Wilcoxon test or Cox proportional hazard regression are used to determine if there are significant differences between the groups, and if so, which groups are significantly different. Bacteremia culture data is analyzed separately at each time point. Summary statistics with 95 percent confidence intervals are produced for each group and time point. Fisher's exact test is used to test whether there are any significant differences in the bacteremia culture data between groups.
  • Blood levels of CEM-IO are determined from blood samples collected from treated and control rabbits at the indicated time before and during administration of CEM-101.
  • PK Pharmacokinetics
  • the PK data is collected in three phases. Eight monkeys (4 male, 4 female) participate in each phase (Table 3). Each phase is followed by a 7 -day minimum washout period prior to initiation of the next phase.
  • EXAMPLE Characterization of Burkholderia mallei Challenge Material and Delivery in the Large Animal Exposure system.
  • the strain of Burkholderia mallei is streaked for isolation on appropriate growth media (such as Lysogeny broth (LB) agar with 4 percent glycerol or Ashdown's medium).
  • appropriate growth media such as Lysogeny broth (LB) agar with 4 percent glycerol or Ashdown's medium.
  • LB Lysogeny broth
  • Ashdown's medium Upon confirmation of colony purity and morphology (considering that morphologically variant colonies are common for B. mallei), all colonies are removed and suspended in an appropriate bacterial storage media and frozen at ⁇ _-70°C.
  • a collection of colonies are prepared rather than a single isolated colony (it is appreciated that isolating a single colony type may inadvertently select a variant with altered virulence properties).
  • the collected colonies constitute the master cell bank.
  • the procedure is repeated by streaking from the master cell bank to prepare the working cell bank. All cultures prepared on agar media in the preparation of the master and working cell banks are examined for colony morphology and purity. Gross morphological examination includes descriptions of colony shape, size, elevation, margin, color, surface appearance, density, and consistency. If a cell bank is determined to contain contaminants, it is re-derived from the master or cell bank.
  • Culture material from master and working cell banks are Gram-stained. Gram- stain results and gross cellular morphology are observed and compared to previous results in the published literature.
  • Working cell bank material is used to inoculate broth cultures; flasks are incubated for various times and the optical density of the cultures measured. Multiple broth cultures are prepared. Each culture is grown to a target optical density and then the numbers of CFU/mL of culture are determined by spread plate enumeration. A ratio of the number of CFU/mL is determined by averaging the results of multiple cultures for one culture density.
  • Real-time qualitative PCR (+/- PCR) is performed to determine, at the nucleic acid level, that each working cell bank is indeed the B. mallei strain provided. The concentration of bacteria in the master and working cell banks for all strains is determined by spread plate enumeration, or comparable technique.
  • Fresh B. mallei suspensions are prepared from stock samples. A fresh batch is prepared for each day aerosol tests are conducted. Starting (nebulizer) B. mallei solutions for aerosolization diluted in sterile phosphate buffered saline (PBS) containing 0.01% (wt/vol) gelatin with 9.7% trehalose (wt/vol) (BSGT) and approximately 8 mL are placed into the nebulizer for each test. Aerosol samples are collected from the exposure chamber using glass impingers (e.g.
  • a series of aerosol exposure system-characterization tests are performed to quantify the aerosol concentration of viable B. mallei (i.e. CFU) and the reproducibility of aerosol generation.
  • Table 4 illustrates a test matrix that can be used to test for reproducibility of the aerosol system.
  • the characterization tests are repeated to generate four different, targeted aerosol concentrations on each day for 3 days. The generation of each targeted aerosol concentration is repeated three times on each day. Aerosol samples are collected and enumerated for CFU via the spread plate technique. Additionally, the temperature, relative humidity, and aerosol particle size during each test is monitored for at least one time point.
  • Tests 1-4 The complete test matrix (Tests 1-4) is repeated over 3 separate days.
  • EXAMPLE Development of the mouse aerosol system for generation, delivery, and collection of B. mallei.
  • a series of aerosol exposure system-characterization tests are performed to quantify the aerosol concentration of viable B. mallei (i.e. CFU) and the reproducibility of the exposure system.
  • Table 4 illustrates the proposed tentative test matrix that is used to test for reproducibility of the aerosol system.
  • the characterization tests are repeated to generate four different, targeted aerosol concentrations on each day for 3 days. The generation of each targeted aerosol concentration is repeated three times on each day. Aerosol samples are collected as described above and enumerated for colony forming units (cfu) via a spread plate technique.
  • EXAMPLE Determining the Inhaled Median Lethal Dose (LD 50 ) of B. mallei in Mice.
  • the determination of the inhaled LD 50 for B. mallei is conducted in phases. Each phase of this study consists of a post-challenge period which will extend to Day 28. The day an animal is challenged is designated as study Day 0.
  • Phase I consists of 5 groups, phase II four groups and phases III and IV consist of three groups each. Based on the mortality results of the previous phases, new target exposure doses are determined. This phased approach allows for increased confidence in the inhaled LD 50 value.
  • mice are challenged via the inhalation route with B. mallei on Study Day 0 (for each Phase).
  • a nose-only aerosol exposure system for example a CH Technologies Tower
  • the CH Technologies Tower system used for the mouse aerosol challenge testing is capable of exposing up to 30 mice at a time with the addition of impinger samplers, an aerosol particle size analyzer, temperature and humidity monitoring, and mass flow meters (MFM) and mass flow controllers (MFC) to control and/or monitor the aerosol flows.
  • MFM mass flow meters
  • MFC mass flow controllers
  • forced air enters the system through high efficiency particulate air (HEPA) filters and is divided into a continuous air stream (continuous air) and an air stream that either flows into the Collison nebulizer (during aerosol generation) or by-passes it (between aerosol generations).
  • HEPA high efficiency particulate air
  • MFC regulate the flow for each of the air streams.
  • the B. mallei aerosol, created by the nebulizer, is mixed with continuous air before delivery to the exposure tower.
  • the aerosol exposure parameters required to deliver these doses are based on results from the proposed mouse aerosol system characterization study described above.
  • Aerosol concentrations of B. mallei are quantified by determination of colony forming units (cfu). Effluent streams are collected directly from an animal exposure port by an in-line all-glass impinger. Serial dilutions of impinger samples are plated and enumerated.
  • mice are observed twice daily for a total of 29 days, which includes Study Day 0 through Study Day 28, to determine the onset of clinical signs of disease and survivability.
  • LD 50 inhaled median lethal dose
  • Cox proportional hazards models are fitted to the time to onset and time to death data, with dose as an explanatory variable. Because more severe signs may mask less severe signs, signs may be grouped for this analysis. The median time to signs and median time to death is calculated at the LD 50 .
  • EXAMPLE Natural History/LDso Determination of Inhalational Burkholderia mallei Disease in Cynomolgus macaques. Determination of the lethal dose (LD 50 ) of B. mallei and characterization of the natural history of inhalational melioidosis in cynomolgus macaques is determined by monitoring clinical signs of disease including clinical observations, hematology, clinical chemistry, telemetric parameters, coagulation assays, bacteremia, and numbers of bacteria in selected organs.
  • LD 50 lethal dose
  • NHPs na ⁇ ve cynomolgus macaques
  • Monkeys are tested and verified negative for tuberculosis and also prescreened within 30 days prior to receipt to confirm that they are seronegative for Simian Immunodeficiency Virus (SIV), Simian T-Lymphotrophic Virus- 1 (STLV-I), and Cercopithecine herpesvirus 1 (Herpes B virus) and negative for Simian Retrovirus (SRVl & SRV2) by PCR. Monkeys are quarantined for a minimum of five weeks prior to being placed on study. Prior to placement on study all monkeys are surgically implanted with telemetry transmitters (for example, item D70- PCTP, purchased from Data Sciences International, DSI).
  • telemetry transmitters for example, item D70- PCTP, purchased from Data Sciences International, DSI).
  • Phase IV supports the natural history information collected in the first 3 phases and increases understanding of the disease progression in animals challenged with elevated doses similar to those which might be utilized in efficacy studies. Results obtained from Phase IV may also increase the precision of an LD 90 estimate. Table 7. Phase Approach to Determine the LD 50 in Cynomolgus Macaques
  • Blood samples are taken from a femoral artery or vein, saphenous vein, or other appropriate vein on the days specified in Table 8. Blood samples collected on the day of exposure will take place prior to exposure. Telemetry: Baseline and post-challenge data for body temperature; ECG; activity; and cardiovascular function (heart rate, systolic/diastolic pressure, pulse pressure, mean pressure, and respiratory pressure) are collected for at least 30 seconds every 15 minutes throughout the study. Baseline data are collected for at least 10 days prior to challenge. Details on the specific operation and data collection are contained in SOP BBRC.VI-087, SOP BBRC.VI-093, and SOP BBRC.VI-096.
  • Monkeys are transported into the BL-3 -14 days prior to exposure to allow time for acclimation.
  • monkeys On Day 0, monkeys are anesthetized with Telazol (1-6 mg/kg, IM) and placed into a plethysmography chamber and a Class III cabinet system and exposed to the targeted dose of B. mallei aerosolized by a Collison nebulizer and delivered via a head-only inhalation exposure chamber. Aerosol concentrations of B. mallei are quantified by determination of CFU.
  • Effluent streams are collected directly from an animal exposure port by an in-line all-glass impinger. Serial dilutions of impinger samples are plated and enumerated.
  • Monkeys surviving the 28 day post-exposure period are euthanized and examined as described below. Because of the potential for surviving monkeys to develop a chronic infection, all animals must be euthanized. In addition, the quantification of bacterial load in the tissues of animals in subsequent efficacy studies may provide a secondary endpoint for analysis (i.e. if the treatment doesn't significantly reduce mortality it may significantly reduce bacterial load).
  • Blood samples from time points indicated in Table 8 are cultured to determine the presence or absence of B. mallei .
  • approximately lOO ⁇ l of whole blood is collected from which DNA is isolated and QPCR analysis performed.
  • CBC Hematology evaluation
  • WBC White blood cell count
  • MCV Mean corpuscular volume
  • HGB Hemoglobin
  • RW Red cell distribution width
  • HCT Hematocrit
  • PHT Platelet count
  • Red blood cell count (RBC) Mean platelet volume (MPV)
  • Clinical chemistry evaluation is conducted andl includes, but is not limited to, the following parameters
  • ALT Alanine aminotransferase
  • A/G Ratio Aspartate aminotransferase
  • AST Blood urea nitrogen (BUN) Alkaline Phosphatase (ALP) Creatinine Gamma-Glutamyl Transferase (GGT) BUN/Creatinine Ratio Lactate dehydrogenase (LDH) Glucose Sorbitol Dehydrogenase (SDH) Sodium Total bilirubin Potassium Total protein Chloride Albumin Calcium Globulin Phosphorus Blood samples for analysis of coagulation factors are collected into tubes containing sodium citrate. C-Reactive protein (CRP) analysis is performed on residual plasma collected from each whole blood sample after processing. CRP analysis is also conducted on terminal blood samples collected in EDTA tubes if the plasma can be isolated.
  • CRP C-Reactive protein
  • Gross necropsy is performed on all monkeys that die or are euthanized. Portions of target tissues including but not limited to lungs, spleen, and liver are homogenized, the DNA isolated, and qPCR performed to determine bacterial loads in these organs. Sections of target tissues including but not limited to brain, lungs, kidney, liver, spleen, mediastinal and bronchial lymph nodes as well as all gross lesions are preserved in 10% neutral buffered formalin.
  • Histopathology is performed on all animals including survivors euthanized on study day 28.
  • Probit dose-response models are fitted to dose-lethality data for monkeys using the method of maximum likelihood (Finney, 1971 and Feder, 1991). Estimated parameters of the probit dose-response models are used to compute the LD 50 and LD 90 . Fieller's method (Finney, 1971) or other appropriate methods are used to compute a 95 percent confidence interval for the LD50 and LD 9 0.
  • Time to onset of each of the clinical signs is recorded until death, euthanasia, or end of the clinical observation period of the animal.
  • the proportion of animals showing each of the clinical signs and the time to onset of each sign is determined.
  • Cox proportional hazards models are fitted to the time to onset and time to death data, with dose as an explanatory variable. Because more severe signs may mask less severe signs, signs may be grouped for this analysis.
  • the median time to signs of illness and median time to death are calculated at the LD 50 dose.
  • Telemetry results in the post-challenge period are then adjusted for each animal by subtracting the baseline average. Further data smoothing may be employed by moving averages or other appropriate method. The time trend in the baseline adjusted and smoothed data measurements as well as the cumulative sum of adjustments for each telemetry parameter are plotted for all animals.
  • mice One hundred and ten (110) BALB/c mice are used in this procedure (100 to be placed on study and 10 extras).
  • mice On day 0, mice are placed into a nose-only aerosol exposure system and exposed to agent aerosolized by a Collison nebulizer. Aerosol concentrations of agent are quantified by determination of colony forming units (cfu). Effluent streams are collected directly from an exposure port by an in-line all-glass impinger. Serial dilutions of impinger samples are plated and enumerated.
  • mice Following challenge, mice are observed twice daily for 28 days for survival and clinical signs of illness.
  • the bacterial burden in the lungs, spleen and peripheral blood are determined by quantitative PCR from all mice found dead or euthanized. All animals surviving the 28 day post-challenge observation period are anesthetized, and a terminal blood sample is collected followed by immediate euthanasia. Following euthanasia a specimen of lung and spleen are also collected for bacterial burden analysis.
  • Fisher's exact tests are used to compare survival rates between each antibiotic treatment group and the control group. A time-to-death analysis are performed on these data to determine if there are differences in protection for the different groups based on a length of survival model.
  • MICs were determined by the microdilution method in 96-well plates according to Clinical and Laboratory Standards Institute (CLSI formally NCCLS) (1). Antibiotics were serially diluted twofold in 50 ⁇ l of cation-adjusted Mueller-Hinton broth (CAMHB). For F. tularensis determinations CAMHB was supplemented with 2% Isovitalex
  • the antibiotic range was 16 to 0.008 ⁇ g/ml based on a final well volume of 100 ⁇ l after inoculation.
  • Inocula were prepared by suspending colonies from a 18-24 h (B. anthracis, B. mallei or B. pseudomallei) or 48 hr (Y. pestis, F. tularensis) sheep blood (SBA) or chocolate agar plate (according to CLSI). Suspended cultures were diluted with CAMHB to a bacterial cell density of 10 6 CFU/ml. To each well of the 96-well plate, 50 ⁇ l of this dilution was added for a final inoculum of approximately 5 x 10 4 CFU/well. Plates were incubated at 35°C. MICs were determined visually at 24- and 48 h and by reading the plates at 600 nm (SpectroMax M2, Molecular Devices). Inoculum preparation and antibiotic microdilution were performed according to
  • B. pseudomallei has a demonstrated multi-drug efflux system that is active against macrolides(2) and the data indicating CEM-101 resistance are consistent.
  • the F. tularensis distribution reflects overlap of the two distinct biovars "A" and "B" of this species.
  • the B strains distribute to the higher MICs while the A strains distribute to the lower end.
  • a strains are the more virulent and pose the greater BW/BT threat making their greater susceptibility fortuitous.
  • EXAMPLE Intracellular activity of antibiotics.
  • the determination of antibiotic activity against intraphagocytic S. aureus strain ATCC 25923 was determined.
  • Full dose- responses studies were performed to assess the impact of active efflux in the modulation of the intracellular activity of CEM-101 and AZI against intraphagocytic S. aureus (strain ATCC 25923 [MICs: CEM-101, 0.125mg/L; AZI, 0.5 mg/L].
  • Antibiotics were compared at 24h for: (i) their relative static concentration (Cs), and (ii) their relative maximal efficacy (E).
  • EXAMPLE Cellular accumulation of antibiotics.
  • the cellular content in macrolides was measured in THP-I macrophages by microbiological assay, using S. aureus ATCC 25923 as test organism.
  • Cell proteins was assayed in parallel using the Folin- Ciocalteu/Biuret method.
  • the cell associated content in macrolides was expressed by reference to the total cell protein content, and converted into apparent concentrations using a conversion factor of 5 ⁇ L per mg of cell protein (as commonly used for cultured cells).
  • verapamil an inhibitor of the P-glycoprotein efflux transporter (Pgp, also known as MDRl)
  • Pgp P-glycoprotein efflux transporter
  • gemfibrozil an inhibitor of multidrug resistance proteins (MRP) and other organic anion transporters did not affect either compound.
  • MRP multidrug resistance proteins
  • EXAMPLE Macrolides accumulate in eukaryotic cells and are considered advantageous for the treatment of intracellular infections. Ketolides are active against erythromycin-resistant organisms. The cellular accumulation and intracellular activity of CEM- 101 towards the intracellular forms of Staphylococcus aureus (S. a.), Listeria monocytogenes (L. m.), and Legionella pneumophila (L. p.) in comparison with AZI, CLR, and TEL is shown in the following table.
  • CEM-101 is systematically more active than AZI, CLR and TEL; at pH 5.5, AZI, CLR and TEL show significant decrease of their potencies, while CEM-101 shows less change.
  • CEM-101 activity was less affected by acidic pH of the broth and showed greater potency (lower static dose) and larger maximal efficacy (Emax) against intracellular S. aureus.
  • EXAMPLE Cell lines. Experiments were performed with THP-I cells (ATCC TIB-202; American Tissue Culture Collection, Manassas, VA), a human myelomonocytic cell line displaying macrophage-like activity (see, e.g., Barcia-Macay et al., Antimicrob. Agents Chemother. 50:841-851 (2006)). Assay of the cell-associated macrolides and calculation of the apparent cellular- to-extracellular-concentration ratios. Macrolides were assayed by a microbiological method, using S. aureus ATCC 25923 as a test organism. Cell proteins were measured in parallel using the Folin-Ciocalteu/biuret method. The cell- associated contents in macrolides were expressed by reference to the total cell protein content and converted into apparent concentrations using a conversion factor of 5 ⁇ L per mg of cell protein, an average value found for many cultured cells.
  • S. aureus ATCC 25923 methicillin [meticillin] sensitive
  • L. monocytogenes strain EGD L. pneumophila strain ATCC 33153 were used in the present study.
  • MIC determinations were performed in Mueller- Hinton broth (for S. aureus) and tryptic soy broth (for L. monocytogenes) after a 24-h incubation, or in ⁇ -ketoglutarate-buffered yeast extract broth (for L. pneumophila) after a 48-h incubation.
  • 24-h concentration- response experiments in acellular medium were performed in Mueller-Hinton broth. Cell infection and assessment of antibiotic intracellular activities. Infection of
  • THP-I cells and assessment of the intracellular activity of antibiotics were performed using conventional methods for S. aureus and L. monocytogenes or with minor adaptations for L. pneumophila using (i) a multiplicity of infection of 10 bacteria per macrophage and (ii) gentamicin (50 mg/liter) for 30 to 45 min for the elimination of nonphagocytosed bacteria.
  • Statistical analyses Curve-fitting statistical analyses were performed with
  • EXAMPLE Susceptibility toward S. aureus ATCC 25923, Listeria monocytogenes EGD, and Legionella pneumophila ATCC 33153.
  • CEM-101 showed lower MICs than AZI against the three selected organisms (S. aureus, 0.06 and 0.5 mg/liter; L. monocytogenes, 0.004 and 1 mg/liter; and L. pneumophila, 0.004 and 0.016 mg/liter) in conventional susceptibility testing.
  • the MICs of CEM-101, TEL, AZI, and CLR against S. aureus and L. monocytogenes were measured in broths adjusted to pH values ranging from 5.5 to 7.4.
  • the range was selected to cover the values at which the antibiotics could be exposed in the extracellular milieu or intracellularly for the two organisms considered. As illustrated in FIG. 3, all four drugs showed a marked decrease in potency against both organisms when the pH was decreased from 7.4 to 5.5, with AZI demonstrating the most significant loss of activity. CEM-101 retained the most activity, consistently showing the lowest MICs throughout the entire pH range investigated, with values (mg/liter) ranging from 0.06 (pH 7.4) to 0.5 (pH 5.5) for S. aureus (ATCC 25923) and 0.0039 (pH 7.4) to 0.25 (pH 5.5) for L. monocytogenes (EDG). For L.
  • the lower concentration was chosen to be relevant to the serum concentration of AZI and CEM-101, and the higher concentration was selected to be above the MIC of AZI for the organisms of interest.
  • Results presented in FIG. 5 show that under these conditions, only CEM-101 was able to significantly decrease CFU in broth as well as in THP-I macrophages at the 0.7-mg/liter concentration.
  • AZI eventually achieved the same antibacterial effect as CEM-101, but at a lower rate (5 h compared to 1 h).
  • CEM-101 had higher relative potencies (lower E 50 values) and lower static concentrations (lower C s values) than all three comparator drugs in both broth and in THP-I macrophages.
  • E 50 values lower E 50 values
  • C s values lower static concentrations
  • Example. Activity against intraphagoctic L. monocytogenes and L. pneumophila The same approach was used as that for S. aureus to assess the activities of CEM-101 and AZI against phagocytized L. monocytogenes and L. pneumophila to obtain information on concentration-effect relationships and on the corresponding pertinent pharmacological descriptors. As shown in FIG. 6, a relationship compatible with the Hill equation was observed in all cases, although the limited growth of L. pneumophila made the fitting of functions somewhat more uncertain. When the data were plotted against weight concentration, it appeared that CEM-101 had a higher relative potency (lower EC50) than AZI for both L. monocytogenes and L. pneumophila.
  • CEM-101 is more potent than AZI, CLR and TEL (lower Cs), In addition, CEM-101 is able to reduce the intracellular inoculum (E max ⁇ 1 log), which is not observed with any of AZI, CLR and TEL.
  • EXAMPLE Intracellular activity: comparative studies with other anti- staphylococcal agents. Comparative dose-static response of antibiotics against intracellular Staphylococcus aureus (strain ATCC 25923) in THP-I macrophages were measured. See FIG. 8 bars represent the MICs (in mg/L) or the extracellular static dose.
  • METHOD Mouse peritoneal macrophages were infected with viable M. leprae, the drugs are added and incubated at 33 0 C for 3 days. After 3 days macrophages were lysed to release the intracellular M. leprae which were then assayed for viability by radiorespirometry and viability staining. CEM-101 shows efficacy against intracellular M. leprae viability.
  • CEM-101 at 0.15 ⁇ g/ml was able to significantly (P ⁇ 0.001) reduce the viability of M. leprae in both axenic and intracellular cultures when compared to controls. Inhibition by CEM-101 was not statistically different from inhibition obtained with CLR under identical conditions and at the same concentration.
  • CEM-101 The high potency of CEM-101 against Streptococcus pneumoniae, ⁇ -haemolytic and viridans group streptococci, Staphylococcus spp. and enterococci has been documented in early screening studies performed using reference Clinical and Laboratory Standards Institute (CLSI) methods. Since mechanisms and occurrences of resistance are increasing rapidly that may compromise the MLSB-ketolide class, the bactericidal activity (MBC and killing curves) of CEM-101 with five selected classes of antimicrobial agents when testing wild type (WT) and phenotypically/genotypically defined resistant organism subsets was assessed. MBC determinations for CEM-101, TEL, and CLR used CLSI methods for 40 strains (6 species groups). KC used 8 strains (6 species groups). PAE was tested (5 strains) at 4X concentration for 1 or 2 hours exposure; TEL control.
  • CLSI Clinical and Laboratory Standards Institute
  • MBC and killing curve studies A total of 40 strains (10 S. pneumoniae, 10 S. aureus, and 5 each of ⁇ -haemolytic streptococci, viridans group streptococci, coagulase- negative staphylococci [CoNS] and enterococci) were MIC tested followed by MBC determinations using CLSI procedures (MIC and MBC range, 0.008-16 ⁇ g/ml). The lowest concentration of a tested agent that killed >99.9% of the initial inoculum was defined as the MBC endpoint (Tables 2 and 3).
  • Time kill bactericidal activity was performed for CEM-101, TEL, CLR, and AZI on eight selected strains according to methods described by Moody & Knapp, NCCLS M21-A3 and M26-A. The compounds were tested at 2X, 4X, 8X MIC; and colony counts were performed at TO, T2, T4, T8 and T24.
  • CEM-101 exhibited low MBC/MIC ratios ( ⁇ 4) for BSA, SA and coagulase- negative staphylococci; and 2-fold greater potency than TEL.
  • KC results showed more rapid and greater cidal activity (concentration dependant) for CEM-101 compared to TEL.
  • CEM-101 exhibited cidal activity against several Gram-positive species at rates and an extent greater than TEL.
  • Organism/ Antimicrobial agent No of strains with MBC/MIC value of:
  • Clarithromycin 0 0 1 1 0 2 ⁇
  • Clarithromycin 0 0 1 0 0 3 b
  • Clarithromycin 0 0 0 0 0 6 b
  • Clarithromycin 0 0 0 0 0 4 b
  • Clarithromycin 0 0 0 0 0 2 b
  • Azithromycin 0 0 0 0 0 2 b a Includes six isolates with a MIC of ⁇ 0.008 ⁇ g/ml and a MBC of 0.015 ⁇ g/ml (off scale comparisons). b. MBC was not evaluated on isolates with resistant level MIC results.
  • CEM-101 showed rapid bactericidal activity (reduction of >3 log 10 CFU/ml) against macrolide- susceptible strains of S. aureus, S. epidermidis, S. pneumoniae, S. pyogenes (only at 8X MIC) and viridans group streptococci, as well as a macrolide-resistant S. pyogenes.
  • CEM-101 produced a greater reduction of CFU/ml and more rapid killing when compared to either TEL or the macrolides CLR and AZI.
  • CEM-101 exhibited bactericidal activity when tested against macrolide-susceptible streptococci, CoNS and macrolide-resistant CLN- susceptible S. pneumoniae.
  • CEM-101 MBC/MIC ratios can be high for S. aureus, but some strains showed MBC results remaining within the susceptible range of concentrations.
  • CEM-101, TEL, AZI, CLR, and doxycycline were provided as powders and solubilized according to the instructions of the manufacturers. Drug suspensions were made fresh each time the assay was run.
  • C. pneumoniae Isolates of C. pneumoniae tested included a reference strain (TW 183), 9 isolates from children and adults with pneumonia from the United States (AR39, T2023, T2043, W6805, CWL 029, CM-I), an isolate from a child with pneumonia from Japan (J-21), and 2 strains from bronchoalveolar lavage specimens from patients with human immunodeficiency virus infection and pneumonia from the United States (BAL 15 and BAL16).
  • C. trachomatis 10 isolates of C. trachomatis, including standard isolates from the ATCC (E-BOUR, F-IC-CAL3, C-HAR32, J-UW-36, L2434, D-UW-57kx, B- HAR-36) and recent clinical isolates (N18(cervical), N19(cervical), 7015(infant eye))
  • ATCC E-BOUR, F-IC-CAL3, C-HAR32, J-UW-36, L2434, D-UW-57kx, B- HAR-36
  • recent clinical isolates N18(cervical), N19(cervical), 7015(infant eye)
  • In vitro susceptibility testing Susceptibility testing of C. pneumoniae and C. trachomatis was performed in cell culture using HEp-2 cells grown in 96-well microtiter plates.
  • Each well was inoculated with 0.1 ml of the test strain diluted to yield 10 3 to 10 4 IFU/ per ml, centrifuged at 1,700 x g for 1 hr. and incubated at 35 0 C for 1 hr.
  • Wells were aspirated and overlaid with 0.2 mL of medium containing l ⁇ g of cycloheximide per mL and serial two-fold dilutions of the test drug.
  • MBC minimal bactericidal concentration
  • EXAMPLE Tissue distribution. CEM-101 was well absorbed and distributed to the tissue. In the rat at 250 mg/kg/d, mean lung and liver concentrations of CEM-101 were 17 and 15-fold higher than in plasma. Lung and liver concentrations were 503 and 711-fold higher than plasma concentrations at the 200 mg/kg/d dose in monkeys. Concentrations of CEM-101 in the heart were significantly lower than levels found in lung or liver with levels 5 and 54-fold higher than plasma concentrations in rat and monkey, respectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Rheumatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
PCT/US2009/061978 2008-10-24 2009-10-24 Biodefenses using triazole-containing macrolides WO2010048601A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DK09822828.1T DK2358379T3 (en) 2008-10-24 2009-10-24 BIOFORSVAR USING TRIAZOLHOLDIGE macrolides
SI200931385A SI2358379T1 (sl) 2008-10-24 2009-10-24 Postopki biološke obrambe z makrolidi, ki vsebujejo triazol
US13/125,550 US9072759B2 (en) 2008-10-24 2009-10-24 Biodefenses using triazole-containing macrolides
EP09822828.1A EP2358379B1 (en) 2008-10-24 2009-10-24 Biodefenses using triazole-containing macrolides
ES09822828.1T ES2565083T3 (es) 2008-10-24 2009-10-24 Biodefensas usando macrólidos que contienen triazol
CN200980150068.5A CN102245195B (zh) 2008-10-24 2009-10-24 使用含三唑的大环内酯的生物防御
JP2011533399A JP5602748B2 (ja) 2008-10-24 2009-10-24 トリアゾール含有マクロライドを用いた生体防御
AU2009308182A AU2009308182B2 (en) 2008-10-24 2009-10-24 Biodefenses using triazole-containing macrolides
US14/725,247 US9669046B2 (en) 2008-10-24 2015-05-29 Biodefenses using triazole-containing macrolides
HRP20160222TT HRP20160222T1 (hr) 2008-10-24 2016-03-01 Biozaštite uporabom makrolida koji sadrže triazol

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US10816808P 2008-10-24 2008-10-24
US10813708P 2008-10-24 2008-10-24
US10813408P 2008-10-24 2008-10-24
US10811008P 2008-10-24 2008-10-24
US10811208P 2008-10-24 2008-10-24
US61/108,134 2008-10-24
US61/108,168 2008-10-24
US61/108,137 2008-10-24
US61/108,110 2008-10-24
US61/108,112 2008-10-24
US16210909P 2009-03-20 2009-03-20
US61/162,109 2009-03-20

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/125,550 A-371-Of-International US9072759B2 (en) 2008-10-24 2009-10-24 Biodefenses using triazole-containing macrolides
US201113125550A Continuation 2008-10-24 2011-04-21
US14/725,247 Continuation US9669046B2 (en) 2008-10-24 2015-05-29 Biodefenses using triazole-containing macrolides

Publications (1)

Publication Number Publication Date
WO2010048601A1 true WO2010048601A1 (en) 2010-04-29

Family

ID=42119711

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2009/061976 WO2010048599A1 (en) 2008-10-24 2009-10-24 Methods for treating gastrointestinal diseases
PCT/US2009/061977 WO2010048600A1 (en) 2008-10-24 2009-10-24 Methods for treating resistant diseases using triazole containing macrolides
PCT/US2009/061978 WO2010048601A1 (en) 2008-10-24 2009-10-24 Biodefenses using triazole-containing macrolides

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/US2009/061976 WO2010048599A1 (en) 2008-10-24 2009-10-24 Methods for treating gastrointestinal diseases
PCT/US2009/061977 WO2010048600A1 (en) 2008-10-24 2009-10-24 Methods for treating resistant diseases using triazole containing macrolides

Country Status (11)

Country Link
US (7) US9072759B2 (US20070167479A1-20070719-C00034.png)
EP (4) EP3031460A1 (US20070167479A1-20070719-C00034.png)
JP (10) JP5602748B2 (US20070167479A1-20070719-C00034.png)
CN (4) CN105616437A (US20070167479A1-20070719-C00034.png)
AU (4) AU2009308180B2 (US20070167479A1-20070719-C00034.png)
DK (1) DK2358379T3 (US20070167479A1-20070719-C00034.png)
ES (3) ES2676168T3 (US20070167479A1-20070719-C00034.png)
HK (1) HK1252140A1 (US20070167479A1-20070719-C00034.png)
HR (1) HRP20160222T1 (US20070167479A1-20070719-C00034.png)
SI (1) SI2358379T1 (US20070167479A1-20070719-C00034.png)
WO (3) WO2010048599A1 (US20070167479A1-20070719-C00034.png)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527187A (ja) * 2010-05-20 2013-06-27 センプラ ファーマシューティカルズ,インコーポレイテッド マクロライド類およびケトライド類ならびにその中間体を調製するための工程
JP2013537198A (ja) * 2010-09-10 2013-09-30 センプラ ファーマシューティカルズ,インコーポレイテッド 疾患治療のための水素結合形成フルオロケトライド
EP2968801A4 (en) * 2013-03-14 2016-09-07 Cempra Pharmaceuticals Inc METHODS FOR TREATING RESPIRATORY DISEASES AND FORMULATIONS FOR THE IMPLEMENTATION THEREOF
US9453042B2 (en) 2007-10-25 2016-09-27 Cempra Pharmaceuticals, Inc. Process for the preparation of macrolide antibacterial agents
US9480679B2 (en) 2009-09-10 2016-11-01 Cempra Pharmaceuticals, Inc. Methods for treating malaria, tuberculosis and MAC diseases
US9669046B2 (en) 2008-10-24 2017-06-06 Cempra Pharmaceuticals, Inc. Biodefenses using triazole-containing macrolides
US9751908B2 (en) 2013-03-15 2017-09-05 Cempra Pharmaceuticals, Inc. Convergent processes for preparing macrolide antibacterial agents
US9937194B1 (en) 2009-06-12 2018-04-10 Cempra Pharmaceuticals, Inc. Compounds and methods for treating inflammatory diseases
US9982005B2 (en) 2013-04-04 2018-05-29 President And Fellows Of Harvard College Macrolides and methods of their preparation and use
US10188674B2 (en) 2012-03-27 2019-01-29 Cempra Pharmaceuticals, Inc. Parenteral formulations for administering macrolide antibiotics
US10633407B2 (en) 2014-10-08 2020-04-28 President And Fellows Of Harvard College 14-membered ketolides and methods of their preparation and use
US10640528B2 (en) 2015-03-25 2020-05-05 President And Fellows Of Havard College Macrolides with modified desosamine sugars and uses thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2529817C (en) 2003-03-10 2013-02-12 Optimer Pharmaceuticals, Inc. Novel antibacterial agents
NZ602544A (en) * 2010-03-22 2014-11-28 Cempra Pharmaceuticals Inc Crystalline forms of a macrolide, and uses therefor
CN104151382B (zh) * 2014-08-08 2016-09-14 广东东阳光药业有限公司 一种固态大环内酯的晶型
CN104311611B (zh) * 2014-08-13 2017-01-18 广东东阳光药业有限公司 一种制备固态大环内酯的方法
CN106554992A (zh) * 2015-09-28 2017-04-05 中国疾病预防控制中心传染病预防控制所 检测耐红霉素弯曲菌的试剂盒
JP2020509086A (ja) * 2017-02-17 2020-03-26 センプラ ファーマシューティカルズ,インコーポレイテッド トリアゾール含有マクロライド及びその眼科的使用
US10706191B2 (en) * 2017-08-31 2020-07-07 Google Llc Systems and methods for generating a geo-level hierarchical Bayesian model
US11145299B2 (en) 2018-04-19 2021-10-12 X Development Llc Managing voice interface devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176327A1 (en) * 2001-10-25 2003-09-18 Cassell Gail Houston Antibiotics for treating biohazardous bacterial agents
US20060100164A1 (en) * 2003-03-10 2006-05-11 Chang-Hsing Liang Novel antibacterial agents

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1354753A (en) 1919-02-11 1920-10-05 E M Lannes Portable building
US2180006A (en) 1936-09-09 1939-11-14 Eastman Kodak Co Process for the separation and refining of amines
GB891817A (en) 1959-04-07 1962-03-21 Upjohn Co Improvements in or relating to injectable tetracyclic preparations
US3843787A (en) 1969-01-15 1974-10-22 Pierrel Spa Water soluble derivative of erythromycin
US3668282A (en) 1970-05-08 1972-06-06 Stauffer Chemical Co Stabilized mixture employing n-(beta-0,0-dialkyldithiophosphoryl) aryl sulfonamides
SE458505B (sv) 1979-07-10 1989-04-10 Lepetit Spa Anvaendningen av rifamycin sv och salter daerav foer framstaellning av en beredning foer behandling av reumatoid artrit samt vissa av salterna och deras framstaellning
US4331803A (en) * 1980-06-04 1982-05-25 Taisho Pharmaceutical Co., Ltd. Novel erythromycin compounds
US4474768A (en) * 1982-07-19 1984-10-02 Pfizer Inc. N-Methyl 11-aza-10-deoxo-10-dihydro-erytromycin A, intermediates therefor
JPS59175414A (ja) 1983-03-23 1984-10-04 Toyo Jozo Co Ltd マクロライド抗生物質の安定な経口用製剤および安定化法
US4742049A (en) 1986-06-04 1988-05-03 Abbott Laboratories Semisynthetic erythromycin antibiotics
KR960000434B1 (ko) 1986-12-17 1996-01-06 다이쇼 세이야꾸 가부시끼가이샤 에리스로마이신 a유도체 및 그의 제조 방법
HU198913B (en) 1987-09-03 1989-12-28 Pliva Pharm & Chem Works Process for producing 10-dihydro-10-deoxo-11-aza-erythronolide a-derivatives and pharmaceutical compositions containing them as active components
BE1001869A3 (fr) 1988-10-12 1990-04-03 Franz Legros Procede d'encapsulation liposomiale d'antibiotiques aminoglucosidiques, en particulier de la gentamycine.
IL99995A (en) * 1990-11-21 1997-11-20 Roussel Uclaf Erythromycin derivatives, their preparation and pharmaceutical compositions containing them
US5985844A (en) * 1992-03-26 1999-11-16 Merck & Co., Inc. Homoerythromycin A derivatives modified at the 4"-and 8A-positions
US5527780A (en) 1992-11-05 1996-06-18 Roussel Uclaf Erythromycin derivatives
FR2697524B1 (fr) * 1992-11-05 1994-12-23 Roussel Uclaf Nouveaux dérivés de l'érythromycine, leur procédé de préparation et leur application comme médicaments.
FR2718450B1 (fr) * 1994-04-08 1997-01-10 Roussel Uclaf Nouveaux dérivés de l'érythromycine, leur procédé de préparation et leur application comme médicaments.
FR2719587B1 (fr) * 1994-05-03 1996-07-12 Roussel Uclaf Nouveaux dérivés de l'érythromycine, leur procédé de préparation et leur application comme médicaments.
US5834428A (en) * 1995-04-14 1998-11-10 1149336 Ontario Inc. Glucagon-like peptide-2 and its therapeutic use
WO1997001532A1 (fr) * 1995-06-28 1997-01-16 Tokuyama Corporation Derives cetonitrile, agent antibacterien et medicament contenant ces derives
FR2739620B1 (fr) * 1995-10-09 1997-12-19 Roussel Uclaf Nouveaux derives de la 5-0-desosaminyl 6-o-methyl erythronolide a, leur procede de preparation et leur application a la preparation de produits biologiquement actifs
US6274715B1 (en) 1995-11-08 2001-08-14 Abbott Laboratories Tricyclic erythromycin derivatives
US5742049A (en) * 1995-12-21 1998-04-21 Bruker-Franzen Analytik Gmbh Method of improving mass resolution in time-of-flight mass spectrometry
FR2742757B1 (fr) * 1995-12-22 1998-01-30 Roussel Uclaf Nouveaux derives de l'erythromycine, leur procede de preparation et leur application comme medicaments
FR2745290B1 (fr) * 1996-02-28 1998-04-03 Roussel Uclaf Nouveaux derives de l'erythromycine, leur procede de preparation et leur application comme medicaments
US5719272A (en) 1996-04-02 1998-02-17 Abbott Laboratories 2'-protected 3'-dimethylamine, 9-etheroxime erythromycin A derivatives
ATE296832T1 (de) * 1996-09-04 2005-06-15 Abbott Lab 6-o-substituierte ketoliden mit antibakteriellen wirkung
WO1998025895A1 (en) 1996-12-13 1998-06-18 Eli Lilly And Company Inhibitors of the enzymatic activity of psa
EA199901016A1 (ru) 1997-06-11 2000-06-26 Пфайзер Продактс Инк. 9-оксим-производные эритромицина
HN1998000086A (es) * 1997-06-11 1999-03-08 Pfizer Prod Inc Derivados de 9 - desofo - 9 aza - 9a - homoeritromicina a - c - 4 sustituidos.
HN1998000074A (es) 1997-06-11 1999-01-08 Pfizer Prod Inc Derivados de macrolidos c-4 sustituidos
US6407074B1 (en) * 1997-06-11 2002-06-18 Pfizer Inc C-4″-substituted macrolide derivatives
HN1998000159A (es) 1997-10-29 1999-02-09 Monsanto Co Derivados de 9- amino - 3 ceto eritromicina
IL135792A0 (en) 1997-12-01 2001-05-20 Abbott Lab 6-o-alkyl derivatives of erythronolide b
RU2214244C9 (ru) * 1998-03-26 2020-07-29 Астеллас Фарма Инк. Препараты с замедленным высвобождением
FR2777282B1 (fr) * 1998-04-08 2001-04-20 Hoechst Marion Roussel Inc Nouveaux derives de la 2-fluoro 3-de((2,6-dideoxy 3-c-methyl 3-0-methyl-alpha-l-ribohexopyranosyl) oxyl) 6-o-methyl 3-oxo erythromycine, leur procede de preparation et leur application a la synthese de principes actifs de medicaments
US6020521A (en) * 1998-08-26 2000-02-01 Abbott Laboratories Macrolide LHRH antagonists
US6387885B1 (en) 1998-08-26 2002-05-14 Abbott Laboratories 3′,3′-N-bis-desmethyl-3′-N-cycloalkyl erythromycin derivatives as LHRH antagonists
FR2785612A1 (fr) * 1998-11-10 2000-05-12 Hoechst Marion Roussel Inc Nouveaux derives de l'erythromycine, leur procede de preparation et leur application comme medicaments
KR100317907B1 (ko) 1998-11-24 2001-12-24 김 완 주 신규한 중간체, 이를 이용한 마크로라이드계 항생제의제조방법
FR2786188B1 (fr) * 1998-11-24 2002-10-31 Hoechst Marion Roussel Inc Nouveaux derives de l'erythromycine, leur procede de preparation et leur applicaion comme medicaments
ATE344269T1 (de) * 1998-12-10 2006-11-15 Pfizer Prod Inc Carbamat und carbazat ketolid antibiotika
BR9916969A (pt) 1999-01-27 2001-11-06 Pfizer Prod Inc Antibióticos cetólidos
CA2411293A1 (en) 1999-01-28 2000-07-28 Pfizer Products Inc. Novel azalides and methods of making same
FR2789392B1 (fr) 1999-02-04 2001-10-05 Hoechst Marion Roussel Inc Nouveaux derives de l'erythromycine, leur procede de preparation et leur application comme medicaments
AR023264A1 (es) 1999-04-08 2002-09-04 Hokuriku Pharmaceutical Derivados de eritromicina
JP2000351794A (ja) 1999-04-08 2000-12-19 Hokuriku Seiyaku Co Ltd エリスロマイシン誘導体
ES2272273T3 (es) * 1999-04-16 2007-05-01 Kosan Biosciences, Inc. Agentes antiinfecciosos macrolidos.
AU4354900A (en) 1999-04-16 2000-11-02 Kosan Biosciences, Inc. Ketolide antibacterials
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6420535B1 (en) * 1999-06-07 2002-07-16 Abbott Laboratories 6-O-carbamate ketolide derivatives
US6437106B1 (en) * 1999-06-24 2002-08-20 Abbott Laboratories Process for preparing 6-o-substituted erythromycin derivatives
WO2001010878A1 (fr) 1999-08-06 2001-02-15 Taisho Pharmaceutical Co., Ltd. Derives d'erythromycine a
AU3337900A (en) 1999-08-09 2001-03-05 Eric Au An apparatus for treating wastewater
US6096922A (en) 1999-11-01 2000-08-01 Air Products And Chemicals, Inc. Process for the synthesis of dialkyl, diaryl, and arylalkyl aminosulfur trifluorides
KR100336447B1 (ko) * 1999-11-24 2002-05-15 민경윤 클라리스로마이신의 개선된 제조방법
JP2001261694A (ja) * 2000-03-06 2001-09-26 Pfizer Prod Inc ケトライド抗生物質
MXPA02008861A (es) * 2000-03-15 2003-02-10 Hanmi Pharm Ind Co Ltd Metodo para preparar claritromicina de cristales de forma ii.
NZ523693A (en) 2000-07-10 2004-08-27 Chiron Corp Macrolide formulations for inhalation and methods of treatment of endobronchial infections
US20020115621A1 (en) * 2000-08-07 2002-08-22 Wei-Gu Su Macrolide antibiotics
GB0031312D0 (en) 2000-12-21 2001-02-07 Glaxo Group Ltd Macrolides
PT1320355E (pt) * 2001-05-18 2006-08-31 Chiron Corp Sistema para administracao de uma formulacao de tobramicina
WO2003004509A2 (en) 2001-07-03 2003-01-16 Chiron Corporation C12 modified erythromycin macrolides and ketolides having antibacterial activity
JP2005521691A (ja) 2002-02-22 2005-07-21 ファルマシア・コーポレーション シクロデキストリン化合物及び塩化セチルピリジニウムを含有する眼科用抗菌性薬物製剤
DE60332725D1 (de) * 2002-05-30 2010-07-08 Scripps Research Inst Kupferkatalysierte ligierung von aziden und acetylenen
AU2003269889B2 (en) * 2002-06-17 2007-04-19 Epigenesis Pharmaceuticals, Llc Dihydrate dehydroepiandrosterone and methods of treating asthma or chronic obstructive pulmonary disease using compositions thereof
CN100577681C (zh) 2002-07-08 2010-01-06 葛兰素伊斯特拉齐瓦基森塔萨格勒布公司 用于治疗炎性疾病和病症的新化合物、组合物和方法
TW200420573A (en) * 2002-09-26 2004-10-16 Rib X Pharmaceuticals Inc Bifunctional heterocyclic compounds and methods of making and using same
ITMI20022292A1 (it) * 2002-10-29 2004-04-30 Zambon Spa 9a-azalidi ad attivita' antiinfiammatoria.
EP1618119A2 (en) 2003-04-25 2006-01-25 Chiron Corporation Pyridyl substituted ketolide antibiotics
US7163924B2 (en) * 2003-04-25 2007-01-16 Chiron Corporation Ketolide derivatives
SI1628989T1 (sl) 2003-05-13 2007-06-30 Glaxo Group Ltd Nove cikliäśne spojine s 14 in 15 obroäśnimi äśleni
WO2005007143A2 (en) * 2003-07-14 2005-01-27 The Board Of Trustees Of The University Of Illinois Use of makrolides and ketolides for the treatment of tuberculosis
US7457520B2 (en) * 2003-07-24 2008-11-25 Time Warner Cable, Inc. Technique for providing a virtual digital video recorder service through a communications network
GB0402578D0 (en) 2004-02-05 2004-03-10 Cambridge Theranostics Ltd Methods of treatment of atherosclerosis
US7468428B2 (en) 2004-03-17 2008-12-23 App Pharmaceuticals, Llc Lyophilized azithromycin formulation
US20060116336A1 (en) * 2004-03-17 2006-06-01 American Pharmaceutical Partners, Inc. Lyophilized azithromycin formulation
AU2005238313A1 (en) 2004-04-28 2005-11-10 Alembic Limited Process for the preparation of telithromycin
ATE439367T1 (de) 2004-05-06 2009-08-15 Glaxosmithkline Zagreb Estergebundene makrolide, die sich für die behandlung von mikrobiellen infektionen eignen
JP2008508322A (ja) * 2004-07-28 2008-03-21 ランバクシー ラボラトリーズ リミテッド 抗菌剤としてのケトライド誘導体
GB0424958D0 (en) 2004-11-11 2004-12-15 Glaxo Group Ltd Novel compounds
GB0424959D0 (en) 2004-11-11 2004-12-15 Glaxo Group Ltd Novel compounds
ATE429921T1 (de) 2005-01-14 2009-05-15 Glaxosmithkline Zagreb 9a-carbamoyl- und thiocarbamoylazalide mit antimalariawirkung
JP2008526947A (ja) * 2005-01-14 2008-07-24 グラクソスミスクライン・イストラジヴァッキ・センタル・ザグレブ・ドルズバ・ゼー・オメイェノ・オドゴヴォルノスティオ 抗マラリア活性を有する9a−カルバモイル−γ−アミノプロピル−および9a−チオカルバモイル−γ−アミノプロピル−アザリド
ES2371931T3 (es) 2005-01-14 2012-01-11 Glaxo Group Limited Compuestos macrólidos que contienen biotina y grupo con foto-afinidad para la identificación de la diana del macrólido.
EP1868434A4 (en) 2005-03-22 2011-10-26 Azevan Pharmaceuticals Inc BETA-LACTAMYL ALKANIC ACIDS FOR THE TREATMENT OF PREMIERSTRUELLEN FAULTS
JP2009500356A (ja) 2005-07-07 2009-01-08 エラン ファーマ インターナショナル リミテッド ナノ粒子クラリスロマイシン製剤
KR101523776B1 (ko) 2005-07-19 2015-05-28 아제반 파마슈티칼스, 인코퍼레이티드 베타-락타민 페닐알라닌, 시스테인 그리고 세린 바소프레신길항물질
AU2006310873B2 (en) 2005-10-31 2012-05-24 Leo Pharma A/S Preparation of an antibiotic crystalline fusidic acid
GB0522715D0 (en) 2005-11-08 2005-12-14 Helperby Therapeutics Ltd New use
WO2007059307A2 (en) 2005-11-15 2007-05-24 Teva Pharmaceutical Industries Ltd. Crystalline and amorphous forms of telithromycin
EP1957508A2 (en) * 2005-11-23 2008-08-20 Ranbaxy Laboratories Limited Ketolide derivatives as antibacterial agents
WO2007060627A2 (en) 2005-11-23 2007-05-31 Ranbaxy Laboratories Limited Use of macrolide derivatives for treating acne
DOP2006000268A (es) * 2005-12-22 2007-07-31 Pfizer Prod Inc Agentes antibacterianos
CN101045063B (zh) 2006-03-28 2011-01-26 广州朗圣药业有限公司 注射用克拉霉素水溶性制剂
US8124744B2 (en) 2006-05-01 2012-02-28 Taisho Pharmaceutical Co., Ltd. Macrolide derivatives
US20070281894A1 (en) 2006-06-05 2007-12-06 Auspex Pharmaceuticals, Inc. Preparation and utility of substituted erythromycin analogs
DE102006036199B4 (de) * 2006-08-03 2016-01-07 Deere & Company Förderzusammenbau und Presse
CN101129383B (zh) * 2006-08-25 2014-04-02 天津和美生物技术有限公司 含氨基糖苷类抗生素的抗生素复方
CN101917850B (zh) 2007-10-25 2016-01-13 森普拉制药公司 大环内酯类抗菌剂的制备方法
US20090209547A1 (en) * 2008-02-15 2009-08-20 In Jong Kim C-8 halogenated macrolides
WO2010048599A1 (en) * 2008-10-24 2010-04-29 Cempra Pharmaceuticals, Inc. Methods for treating gastrointestinal diseases
US9814657B2 (en) 2009-04-27 2017-11-14 Premier Dental Products Company Buffered microencapsulated compositions and methods
CA2767614C (en) 2009-07-13 2019-01-15 Cempra Pharmaceuticals Inc. Fusidic acid dosing regimens for treatment of bacterial infections
JP5914335B2 (ja) 2009-09-10 2016-05-11 センプラ ファーマシューティカルズ,インコーポレイテッド マラリア、結核、及びmac病の治療方法
US20110119604A1 (en) 2009-11-19 2011-05-19 Clevest Solutions Inc. System and method for a configurable and extensible allocation and scheduling tool
PL2544537T3 (pl) 2010-03-10 2017-10-31 Cempra Pharmaceuticals Inc Pozajelitowe preparaty antybiotyków makrolidowych
NZ602544A (en) 2010-03-22 2014-11-28 Cempra Pharmaceuticals Inc Crystalline forms of a macrolide, and uses therefor
US9051346B2 (en) 2010-05-20 2015-06-09 Cempra Pharmaceuticals, Inc. Process for preparing triazole-containing ketolide antibiotics
US8247394B2 (en) 2010-06-02 2012-08-21 Cempra Pharmaceuticals Inc. Methods of treating urethritis and related infections using fusidic acid
US9260473B2 (en) 2010-07-19 2016-02-16 Virginia Commonwealth University Bivalent multifunctional ligands targeting Aβ oligomers as treatment for Alzheimer's disease
US20130164351A1 (en) 2010-08-30 2013-06-27 Cempra Pharmaceuticals Inc. Methods of treating bacterial infections through pulmonary delivery of fusidic acid
JP6042334B2 (ja) 2010-09-10 2016-12-14 センプラ ファーマシューティカルズ,インコーポレイテッド 疾患治療のための水素結合形成フルオロケトライド
WO2012042534A2 (en) 2010-09-28 2012-04-05 Glenmark Generics Limited Processes for the preparation of r-sitagliptin and intermediates thereof
US20140088062A1 (en) 2011-05-23 2014-03-27 Cem-102 Pharmaceuticals, Inc. Compositions comprising fusidic acid and packages therefor
AU2012303691B2 (en) 2011-08-27 2014-06-19 Wockhardt Limited 1,6- diazabicyclo [3,2,1] octan-7-one derivatives and their use in the treatment of bacterial infections
RU2014111823A (ru) 2011-08-29 2015-10-10 Инфинити Фармасьютикалз, Инк. Гетероциклические соединения и их применения
US8461188B2 (en) 2011-10-20 2013-06-11 Trius Therapeutics, Inc. Therapeutic combination of daptomycin and protein synthesis inhibitor antibiotic, and methods of use
SG11201405895UA (en) 2012-03-27 2014-10-30 Cempra Pharmaceuticals Inc Parenteral formulations for administering macrolide antibiotics
US9861616B2 (en) 2013-03-14 2018-01-09 Cempra Pharmaceuticals, Inc. Methods for treating respiratory diseases and formulations therefor
JP6675973B2 (ja) 2013-03-15 2020-04-08 センプラ ファーマシューティカルズ,インコーポレイテッド マクロライド抗菌薬を調製するための集束的な方法
US9982005B2 (en) 2013-04-04 2018-05-29 President And Fellows Of Harvard College Macrolides and methods of their preparation and use
EP3105234A4 (en) 2014-02-14 2017-11-08 Cempra Pharmaceuticals, Inc. Compositions and methods for treating diabetes and liver diseases
WO2015181723A1 (en) 2014-05-27 2015-12-03 Dipharma Francis S.R.L. Azidoalkylamine salts and their use as intermediates
US20170224664A1 (en) 2014-08-05 2017-08-10 Cempra Pharmaceuticals, Inc. Powder oral suspension formulations of antibacterial agents
CN107405355A (zh) 2015-03-06 2017-11-28 森普拉制药公司 用于制备氟酮内酯的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176327A1 (en) * 2001-10-25 2003-09-18 Cassell Gail Houston Antibiotics for treating biohazardous bacterial agents
US20060100164A1 (en) * 2003-03-10 2006-05-11 Chang-Hsing Liang Novel antibacterial agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2358379A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131684B2 (en) 2007-10-25 2018-11-20 Cempra Pharmaceuticals, Inc. Process for the preparation of macrolide antibacterial agents
US9453042B2 (en) 2007-10-25 2016-09-27 Cempra Pharmaceuticals, Inc. Process for the preparation of macrolide antibacterial agents
US9669046B2 (en) 2008-10-24 2017-06-06 Cempra Pharmaceuticals, Inc. Biodefenses using triazole-containing macrolides
US9901592B2 (en) 2008-10-24 2018-02-27 Cempra Pharmaceuticals, Inc. Methods for treating resistant diseases using triazole containing macrolides
US9937194B1 (en) 2009-06-12 2018-04-10 Cempra Pharmaceuticals, Inc. Compounds and methods for treating inflammatory diseases
US9480679B2 (en) 2009-09-10 2016-11-01 Cempra Pharmaceuticals, Inc. Methods for treating malaria, tuberculosis and MAC diseases
JP2013527187A (ja) * 2010-05-20 2013-06-27 センプラ ファーマシューティカルズ,インコーポレイテッド マクロライド類およびケトライド類ならびにその中間体を調製するための工程
US9815863B2 (en) 2010-09-10 2017-11-14 Cempra Pharmaceuticals, Inc. Hydrogen bond forming fluoro ketolides for treating diseases
JP2013537198A (ja) * 2010-09-10 2013-09-30 センプラ ファーマシューティカルズ,インコーポレイテッド 疾患治療のための水素結合形成フルオロケトライド
US10188674B2 (en) 2012-03-27 2019-01-29 Cempra Pharmaceuticals, Inc. Parenteral formulations for administering macrolide antibiotics
US9861616B2 (en) 2013-03-14 2018-01-09 Cempra Pharmaceuticals, Inc. Methods for treating respiratory diseases and formulations therefor
EP2968801A4 (en) * 2013-03-14 2016-09-07 Cempra Pharmaceuticals Inc METHODS FOR TREATING RESPIRATORY DISEASES AND FORMULATIONS FOR THE IMPLEMENTATION THEREOF
US9751908B2 (en) 2013-03-15 2017-09-05 Cempra Pharmaceuticals, Inc. Convergent processes for preparing macrolide antibacterial agents
US9982005B2 (en) 2013-04-04 2018-05-29 President And Fellows Of Harvard College Macrolides and methods of their preparation and use
US10913764B2 (en) 2013-04-04 2021-02-09 President And Fellows Of Harvard College Macrolides and methods of their preparation and use
US11634449B2 (en) 2013-04-04 2023-04-25 President And Fellows Of Harvard College Macrolides and methods of their preparation and use
US10633407B2 (en) 2014-10-08 2020-04-28 President And Fellows Of Harvard College 14-membered ketolides and methods of their preparation and use
US11466046B2 (en) 2014-10-08 2022-10-11 President And Fellows Of Harvard College 14-membered ketolides and methods of their preparation and use
US10640528B2 (en) 2015-03-25 2020-05-05 President And Fellows Of Havard College Macrolides with modified desosamine sugars and uses thereof
US11535643B2 (en) 2015-03-25 2022-12-27 President And Fellows Of Harvard College Macrolides with modified desosamine sugars and uses thereof

Also Published As

Publication number Publication date
DK2358379T3 (en) 2016-03-07
CN102245195A (zh) 2011-11-16
JP2015061858A (ja) 2015-04-02
HK1252140A1 (zh) 2019-05-17
AU2016202707A1 (en) 2016-05-19
AU2009308182A1 (en) 2010-04-29
US9072759B2 (en) 2015-07-07
US9901592B2 (en) 2018-02-27
EP2365747A1 (en) 2011-09-21
US20160082028A1 (en) 2016-03-24
JP2014237710A (ja) 2014-12-18
US20150105339A1 (en) 2015-04-16
US20150111845A1 (en) 2015-04-23
US8791080B2 (en) 2014-07-29
EP2358379B1 (en) 2015-12-16
JP7171860B2 (ja) 2022-11-15
HRP20160222T1 (hr) 2016-04-08
JP6002185B2 (ja) 2016-10-05
CN107854477A (zh) 2018-03-30
CN105616437A (zh) 2016-06-01
EP2358379A1 (en) 2011-08-24
EP2365747A4 (en) 2012-06-13
JP6309995B2 (ja) 2018-04-11
JP5715569B2 (ja) 2015-05-07
ES2676168T3 (es) 2018-07-17
JP5711135B2 (ja) 2015-04-30
AU2009308180A1 (en) 2010-04-29
AU2009308182B2 (en) 2016-05-19
AU2009308181B2 (en) 2015-12-03
JP2016166224A (ja) 2016-09-15
EP2362727A4 (en) 2012-05-02
JP5922210B2 (ja) 2016-05-24
US9669046B2 (en) 2017-06-06
EP2362727B1 (en) 2018-04-11
AU2009308180B2 (en) 2016-01-07
US20110201566A1 (en) 2011-08-18
US9439918B2 (en) 2016-09-13
JP2018115177A (ja) 2018-07-26
US20110195920A1 (en) 2011-08-11
EP2358379A4 (en) 2012-05-09
WO2010048600A1 (en) 2010-04-29
EP2365747B1 (en) 2018-04-11
ES2565083T3 (es) 2016-03-31
WO2010048599A1 (en) 2010-04-29
CN102245195B (zh) 2016-01-13
JP2012506870A (ja) 2012-03-22
JP2021193117A (ja) 2021-12-23
SI2358379T1 (sl) 2016-05-31
CN102223794A (zh) 2011-10-19
EP2362727A1 (en) 2011-09-07
AU2009308181A1 (en) 2010-04-29
JP2012506871A (ja) 2012-03-22
US20180369262A1 (en) 2018-12-27
US8796232B2 (en) 2014-08-05
ES2677007T3 (es) 2018-07-27
JP2012506872A (ja) 2012-03-22
US20110237534A1 (en) 2011-09-29
CN102245022A (zh) 2011-11-16
JP5602748B2 (ja) 2014-10-08
CN102223794B (zh) 2017-12-22
JP2020023544A (ja) 2020-02-13
JP2015078203A (ja) 2015-04-23
EP3031460A1 (en) 2016-06-15
JP5908569B2 (ja) 2016-04-26

Similar Documents

Publication Publication Date Title
US9669046B2 (en) Biodefenses using triazole-containing macrolides
US9155792B2 (en) RecA inhibitors with antibiotic activity, compositions and methods of use
Ellepola et al. The postantifungal effect (PAFE) of antimycotics on oral C. albicans isolates and its impact on candidal adhesion
Edelstein et al. BMS-284756 (T-3811ME) a new fluoroquinolone: in vitro activity against Legionella, efficacy in a guinea pig model of L. pneumophila pneumonia and pharmacokinetics in guinea pigs
EP2387398B1 (en) Fulvic acid in combination with fluconazole or amphotericin b for the treatment of fungal infections
EP3769815A1 (en) Antimycotic
Gubbins The systemically acting azoles
Prince et al. Pharmacodynamic Activity of Amphotericin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150068.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13125550

Country of ref document: US

Ref document number: 2011533399

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009308182

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009822828

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009308182

Country of ref document: AU

Date of ref document: 20091024

Kind code of ref document: A