WO2010047300A1 - 光学シート - Google Patents

光学シート Download PDF

Info

Publication number
WO2010047300A1
WO2010047300A1 PCT/JP2009/067991 JP2009067991W WO2010047300A1 WO 2010047300 A1 WO2010047300 A1 WO 2010047300A1 JP 2009067991 W JP2009067991 W JP 2009067991W WO 2010047300 A1 WO2010047300 A1 WO 2010047300A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sheet
particles
diffusion
functional layer
transparent substrate
Prior art date
Application number
PCT/JP2009/067991
Other languages
English (en)
French (fr)
Inventor
崇 児玉
玄 古井
誠 本田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US12/811,134 priority Critical patent/US8422135B2/en
Priority to CN200980102172.7A priority patent/CN101910877B/zh
Priority to KR1020157034829A priority patent/KR101779279B1/ko
Priority to KR1020107014110A priority patent/KR101778801B1/ko
Publication of WO2010047300A1 publication Critical patent/WO2010047300A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to an optical sheet that is excellent in blackness and image cutout and is suitable for mixed use of a moving image and a still image.
  • a layer having functions such as antiglare property, antistatic property and antifouling property is laminated as a functional layer on the surface of the transparent substrate on the viewer side.
  • a method of imparting uneven shapes to the surface layer or adding diffusion particles to the resin forming the surface layer is used.
  • antistatic properties methods such as adding conductive fine particles and conductive resin, and in order to impart antifouling properties, a fluorine-containing polymer and an antifouling agent are added.
  • the optical sheet using them has an action of diffusing visible light.
  • the unevenness of the surface layer also has the effect of diffusing visible light.
  • the surface layer, the back surface of the transparent substrate, and irregularities having a visible light wavelength or more are provided between the respective layers.
  • this unevenness also has the effect of diffusing visible light.
  • a material that causes the diffusion of visible light as described above is defined as a diffusing element. If such a diffusing element is provided, the optical sheet causes a decrease in contrast due to reflection of external light. That is, the optical sheet is required to prevent a decrease in contrast while maintaining the function of the optical sheet as described above.
  • a haze value or a ratio of internal haze to total haze has been generally used. That is, in the process of manufacturing an optical sheet, it has been considered that an optical sheet with little reduction in contrast can be manufactured by controlling material specification, manufacturing conditions, etc. so as to reduce the haze value (Patent Documents 1 to 6). 3).
  • the performance required for such moving images has both dynamic feeling and contrast (for example, it looks glossy black when displaying black, or it looks glossy and lively when displaying skin color, etc.) ) Is called “blackness”.
  • blackness for still images, an image with excellent contrast and anti-reflection properties is required, and the performance that combines contrast and anti-reflection properties required for still images is called ⁇ image loss ''. Called. That is, an optical sheet excellent in blackness and image cut is desired.
  • the present invention has an object of providing an optical sheet that is excellent in blackness and image cut-off under such circumstances and suitable for mixed use of a moving image and a still image.
  • contrast and anti-glare properties are thought to depend on surface shapes such as surface roughness Ra, Rz, Sm, ⁇ a, etc., or due to differences in refractive index between the internal diffusing agent and the binder resin, the shape of the internal diffusing particles, etc. It was thought to depend on the reflection state of light. That is, the mutual effect between the surface unevenness and the internal diffusion element was not considered.
  • the present inventors have made a difference between the refractive index difference between the internal diffusion particles and the binder resin, and the light that passes through and reflects the image light incident on the diffusion particles and the diffusion particles of external light.
  • the diffusion characteristics of diffusing particles differ greatly.
  • the greater the difference in the refractive index between the diffusing particles and the binder the greater the amount of light reflected by the diffusing particles and the greater the diffusion angle. It has been found that the amount of light increases and the contrast decreases.
  • FIGS. 1-1 to 1-1 in FIG. 9A in the image light, the diffused particles are transmitted through the positional relationship between the diffused particles and the surface irregularities.
  • the transmission and reflection characteristics of the image light and the occurrence of stray light that degrades the resolution and contrast are also greatly different. Furthermore, as shown in FIGS. We found that the surface irregularities of the present optical sheet differ greatly depending on the positional relationship between the diffusing particles and the surface irregularities, and the reflection characteristics of reflected light and the occurrence of stray light that degrades the contrast due to the diffusing particles of external light entering the diffusion layer are also different Optical sheet with excellent contrast and anti-glare properties as well as blackness and sharpness of images by taking into account the shape of the particles, the characteristics of the diffusion particles, and the relative relationship between the surface irregularities and the internal diffusion particles Made it possible to obtain. *
  • the diffusing particle 2-2 in FIG. 9-2 when there is a positional relationship between the surface unevenness and the diffusing particle where the diffusion of the external light reflected by the diffusing particle is large, the 1- 1 in FIG. As shown in FIG. 2, the image light is also highly diffused and stray light is likely to be generated, and the contrast is easily lowered due to the image light. That is, the magnitude relationship of the contrast decrease due to the stray light of the image light can be considered by approximating the reflection characteristic of the external light. The same applies to blackness caused by stray light.
  • the present inventors In order to obtain a moving image with excellent blackness, the present inventors have a high directivity of image light due to a small transmission diffusion of the optical sheet and a high regular transmission intensity, and external light and It has been found that the smaller the stray light component of image light, the better. On the other hand, if the transmitted and scattered light is large, stray light is generated, the directivity of the image light is lowered, and the image appears to be whitish, so that the display is not vibrant with respect to the display such as skin color. On the other hand, in order to obtain a still image with excellent image cut-off, it is necessary to achieve both contrast and anti-reflection properties.
  • the present inventors have found that the cause of the difficulty in reflection for the observer often matches the external image in which the observer's focus is reflected when viewing the image. It was found that this was because the viewpoint was not fixed on the image. As a result of further investigation, the outline of the reflected external video is made unclear, so that the reflection does not become difficult and the reduction in contrast can be suppressed, and it is possible to improve the cutout of the image. I found out.
  • Optical sheets generally add conductive particles to provide an antistatic function, and fine particles are often added to prevent glare and surface unevenness shaping. Diffusion due to surface unevenness (hereinafter referred to as external diffusion) In addition to internal diffusion.
  • external diffusion Diffusion due to surface unevenness
  • the refractive index ratio between the resin constituting the optical sheet and the internal diffusion factor is significantly larger than the refractive index ratio between the air and the resin on the external surface. Since the surface is small, in the optical sheet having a concavo-convex shape on the surface, the surface shape is dominant in the transmission diffusion strength.
  • the exit angle from the inclined surface ⁇ is ⁇ and the refractive index of the coating film is n
  • n * sin ⁇ sin ⁇ from Snell's law
  • the exit angle ⁇ is A ⁇ sin (n * sin ⁇ ) ⁇ It becomes.
  • the reflection shows twice the change of the inclined surface ⁇ according to the law of reflection, so the reflection angle ⁇ is 2 * ⁇ .
  • a refractive index of 1.5 which is a general coating film refractive index
  • the reflection and transmission diffusion angles with respect to the surface inclination angle are shown in FIG. 1 within the surface shape range (within 10 degrees) of the optical sheet. As shown in FIG.
  • the diffusion angle of reflection and transmission is proportional to the surface inclination angle, and it can be seen that the diffusion angle by reflection is always about 30% larger than the diffusion angle by transmission. That is, a small transmission diffusion is almost synonymous with a small reflection diffusion. Therefore, since (a) small transmission diffusion is equivalent to (a ′) low reflection diffusion, an optical system that achieves both the above-described anti-reflection characteristics of still images and the blackness of moving images. For the sheet, it is preferable to convert regular reflection into diffusion in the vicinity of regular reflection. On the other hand, since small diffusion is preferable for blackness, it is important that the conversion to the vicinity of regular reflection is not excessive, and the reflection diffusion intensity is preferably controlled within a specific range.
  • the haze value that has been used for the optical sheet so far is a ratio of the light diffused by 2.5 degrees or more from the regular transmission with respect to the total light as shown in JIS K7136. It is impossible to come up with the idea of using diffusion in the vicinity of regular reflection, such as diffusion of less than 2.5 degrees.
  • the diffusion intensity in the vicinity of regular reflection in the case of isotropic diffusion will be considered.
  • FIG. 2 when a layer having a diffuse reflection intensity distribution of b is laminated on a transparent substrate having a diffuse reflection intensity distribution of a, the reduction rate of the diffuse reflection intensity is larger as it approaches 0 degrees. The closer to 0 degrees, the greater the decrease in intensity, and the optical sheet has a diffuse reflection intensity distribution of c.
  • the total (V) of the reflection intensities measured for each optical sheet with a larger change in the reflection intensity distribution near 0 degrees shows a smaller value
  • the reflection intensity near 0 degrees shows a smaller value
  • the optical sheet having a wider reflection intensity distribution from the beginning shows a smaller value of V
  • the optical sheet having a narrower reflection intensity distribution from the beginning has a larger V.
  • the total reflected light amount of each of the optical sheets having the reflection diffusion characteristics aa, bb, and cc is a rotating body around the y axis.
  • the volume Vbaa of the rotating body in the part indicated by the oblique line indicated by bb is reduced, and the part having a larger diffusion than the diffusion angle b has a characteristic of bb having a stronger intensity than aa.
  • Vaa Vbb
  • Vbaa is distributed to the volume Vhbb of the donut-shaped rotating body.
  • the volume Vcaa of the rotating body in the portion indicated by the oblique line indicated by cc decreases, and in the portion where the diffusion is larger than the diffusion angle c, the strength of cc is stronger than aa.
  • Vhaa Vhcc of the donut-shaped rotating body.
  • the amount of light is thought to be proportional to the product of the square of the diffusion angle and the intensity at that diffusion angle. The strength is lower. That is, the total reflection intensity V is stray light that cannot be ignored even at an intermediate angle between them, as well as anti-glare properties that have a large influence in the vicinity of specular reflection, white turbidity that has a large influence on a portion having a large diffusion angle, etc. It is related to all reflection diffusion angles.
  • R / V indicates the degree to which the regular reflection is changed to the diffusion in the vicinity of the regular reflection, and at the same time, the influence of stray light or the like is taken into account, and the blackness and cut are evaluated with higher accuracy.
  • R / V is approximated to the ratio of the flat part that causes specular reflection and the uneven part that causes reflection diffusion with respect to the surface shape (external diffusion element).
  • internal diffusion it is related to the difference in refractive index between the diffusing particles and the binder, the collision probability and shape of the diffusing particles, and the interaction between the surface shape and internal diffusion is more or less weakening the interaction.
  • the degree of match it determines blackness and sharpness.
  • the functional layer is made of a transparent resin, and the transparent resin is made of a plurality of resins that can be phase-separated.
  • the transparent resin and the light-transmitting inorganic particles and / or the light-transmitting organic particles have different refractive indexes.
  • the transparent resin is an ionizing radiation curable resin
  • the functional layer is formed by applying an ionizing radiation curable resin composition containing the ionizing radiation curable resin on a transparent base material and crosslinking and curing the above ( The optical sheet according to any one of 5) to (11).
  • the transparent substrate is made of a cellulose-based resin, and the ionizing radiation curable resin composition is impregnated with a solvent that impregnates the transparent substrate and / or an ionizing radiation curable resin that impregnates the transparent substrate, and the transparent substrate.
  • Optical sheet (16) The optical sheet according to any one of (1) to (15), wherein the transparent substrate is triacetylcellulose or a cyclic olefin. (17) The optical sheet according to any one of (1) to (15), wherein the transparent substrate is polyethylene terephthalate. (18) The optical sheet according to any one of (1) to (17), wherein the functional layer includes a hard coat layer, and the steel wool scuff resistance is 200 g / cm 2 or more.
  • (20) A polarizing plate using the optical sheet according to any one of (1) to (19).
  • (21) An image display device using the polarizing plate according to (20).
  • (22) A method for producing an optical sheet having a functional layer on at least one surface of a transparent substrate, and having a diffusing element on the outermost surface and / or inside of the functional layer, comprising the above formulas (I) to ( The manufacturing method of the optical sheet used for the display element surface characterized by controlling manufacturing conditions so that it may have the relationship of III).
  • the optical sheet of the present invention is an optical sheet having a functional layer on at least one surface of a transparent substrate, and having a diffusing element on the outermost surface and / or inside of the functional layer, and 0.16 ⁇ R / V Control is performed so as to have a relationship of ⁇ 0.71.
  • a method for measuring R and V will be described with reference to FIG. 3.
  • FIG. 3 when the optical sheet 1 is irradiated with visible light from the direction 4, it is diffusely reflected in the direction 5, and Part of the light is diffused.
  • This direction 5 is the diffuse regular reflection direction, and the intensity of light in the diffuse regular reflection direction is defined as the diffuse regular reflection intensity R.
  • a visible light absorbing material 8 such as a black acrylic plate is attached to the back surface of the transparent substrate 2 with an adhesive to suppress back surface reflection and match the conditions during actual use. To do.
  • V is the total sum of the diffuse reflection intensities measured from ⁇ degrees to + ⁇ degrees shown in FIG.
  • for determining the measurement range, the measurement accuracy becomes higher as the angle range is larger, but usually about 45 degrees provides sufficient measurement accuracy.
  • the maximum measurement range of ⁇ can be changed by changing the angle of the incident light.
  • R / V is used as an index to select materials, control manufacturing conditions, and the like to obtain an optical sheet that satisfies the above formula (I).
  • the diffuse reflection intensity is measured as follows.
  • a sample for evaluation is prepared by attaching the back surface of the optical sheet (the surface having no surface layer, the surface opposite to the viewer side) to a flat black acrylic plate having no irregularities or warping through a transparent adhesive.
  • the black acrylic board used here is for preventing back surface reflection as described above, so that it does not have an air layer on the back surface of the optical sheet and can absorb visible light.
  • a method such as applying a black paint to the back surface of the inspection portion of the optical sheet.
  • the evaluation sample is installed in a measuring apparatus, and a light beam is incident on the optical sheet side surface of the evaluation sample at an angle of 45 degrees from the normal of the surface.
  • Diffuse reflection intensity is obtained by scanning the light receiver at every degree in the range from - ⁇ degrees to + ⁇ degrees with respect to the diffuse regular reflection direction for the light that is incident on the optical sheet surface of the sample for evaluation and diffusely reflected. taking measurement.
  • 45 degrees which is the regular reflection direction of incident light is defined as a diffuse regular reflection direction.
  • the apparatus for measuring diffuse reflection intensity is not particularly limited, but “GC5000L” manufactured by Nippon Denshoku Industries Co., Ltd. was used in the present invention.
  • the present invention is characterized by controlling the following formula (I) as an index. 0.16 ⁇ R / V ⁇ 0.71 (I)
  • R / V exceed 0.16, it is possible to obtain an optical sheet that is excellent in blackness and has good image cut-out.
  • R / V is preferably more than 0.20, and more preferably more than 0.31. Further, from the viewpoint of further improving the cutout of the image, it is more preferable that R / V is less than 0.62.
  • the optical sheet of the present invention satisfies the above formula (I).
  • An optical sheet satisfying the above formula (I) has excellent blackness and excellent image cutout.
  • the resin constituting the functional layer may be described as translucent inorganic particles and / or translucent organic particles (hereinafter simply referred to as “translucent particles”).
  • translucent particles There is a way to disperse.
  • it can be performed by controlling the shape of the transparent resin constituting the functional layer, the shape of the translucent particles dispersed in the transparent resin, the dispersed state, the particle diameter, the addition amount, the refractive index, and the like.
  • concentration of additives other than the translucent particles that can be added to the transparent resin also affects the diffuse reflection intensity by the internal diffusion element.
  • a method of adjusting the diffuse reflection intensity by the external diffusion element for example, (1) A method for transferring an uneven shape onto the surface of an optical sheet using a mold having fine unevenness on the surface, (2) A method of forming irregularities on the surface by curing shrinkage of a resin constituting the functional layer such as an ionizing radiation curable resin, (3) A method of projecting and solidifying translucent fine particles from the surface layer to form irregularities on the surface (even if the protruding fine particles are covered with the resin constituting the surface layer, the fine particles are exposed. Or either) (4) There is a method of imparting surface irregularities by external pressure.
  • an ionizing radiation curable resin is disposed on a transparent substrate, a mold having fine irregularities is brought into close contact with the coating layer of the ionizing radiation curable resin, and cured by ionizing radiation.
  • the method (2) is effective in providing glare prevention and reflection resistance because fine irregularities having a smooth surface can be obtained, and the method (3) described above is performed with translucent particles. Since the performance can be adjusted by selecting transparent resin, coating thickness, solvent selection, drying conditions, permeability to transparent substrate, etc., the process is short and the work is simple, so it can be manufactured at low cost It is effective in.
  • the functional layer (antireflection layer, antifouling layer, hard coat layer, antistatic layer, etc.) provided between the uneven surface or the uneven layer and the transparent substrate also affects the diffuse reflection intensity by the external diffusion element. Is. Specifically, by providing another functional layer on the uneven surface to form a two-layer structure, the surface unevenness can be moderated and surface diffusion can be suppressed. In addition, by increasing the thickness of the coating film of the other functional layer, the surface unevenness can be moderated, and the surface diffusion can be controlled by the coating solution composition, coating and drying conditions, and the like.
  • the method (3) for obtaining the above-mentioned external diffusion element is preferable in that the external diffusion and the internal diffusion can be simultaneously applied depending on the kind of the light-transmitting fine particles to be used, and the manufacturing process can be simplified. Is the method.
  • the method of adjusting the diffuse reflection intensity by the external diffusion element and the method of adjusting the diffuse reflection intensity by the internal diffusion element can be designed separately and independently.
  • it is preferable in terms of easy adjustment of optical performance such as resolution, glare and anti-reflection.
  • a resin that exhibits physical properties such as hard coat properties, antifouling properties, and antistatic properties of the surface resin. Is easy to select.
  • the translucent particles dispersed in the transparent resin will be described in detail below.
  • the translucent particles may be organic particles, inorganic particles, or a mixture of organic particles and inorganic particles.
  • the average particle size of the translucent particles used is preferably in the range of 0.5 to 20 ⁇ m, more preferably 1 to 10 ⁇ m. Within this range, it is possible to adjust the diffuse reflection intensity distribution due to internal diffusion and / or external diffusion. In particular, when the average particle diameter of the translucent particles is 0.5 ⁇ m or more, the aggregation of the particles does not become excessive and adjustment of the unevenness is facilitated, and when it is 20 ⁇ m or less, a glare or rough image is produced. Since this is difficult, a degree of freedom in designing the diffuse reflection intensity distribution is ensured.
  • the cumulative 25% diameter refers to the particle diameter when counted from a particle having a small particle diameter in the particle size distribution and reaches 25% by mass.
  • the cumulative 75% diameter is similarly counted to 75% by mass. The particle diameter when it becomes%.
  • a method for adjusting the particle size variation for example, it can be carried out by adjusting the conditions of the synthesis reaction, and classification after the synthesis reaction is also an effective means.
  • classification particles having a desired distribution can be obtained by increasing the number of times or increasing the degree. It is preferable to use a method such as an air classification method, a centrifugal classification method, a sedimentation classification method, a filtration classification method, or an electrostatic classification method for classification.
  • the difference in refractive index between the transparent resin constituting the functional layer and the translucent particles is preferably 0.01 to 0.25. If the refractive index difference is 0.01 or more, glare can be suppressed, and if it is 0.25 or less, the diffuse reflection intensity distribution design becomes easy. From the above viewpoint, the difference in refractive index is preferably 0.01 to 0.2, and more preferably 0.02 to 0.15.
  • the refractive index of the translucent particles was measured by measuring the turbidity by dispersing an equal amount of the translucent particles in the solvent in which the refractive index was changed by changing the mixing ratio of two types of solvents having different refractive indexes. In addition to measuring the refractive index of the solvent when the turbidity is minimized with an Abbe refractometer, it is measured by a method such as using a Cargill reagent.
  • two or more kinds of translucent particles having a specific gravity difference of 0.1 or more are used in combination, or two or more kinds of translucent particles having different particle diameters having a particle diameter difference of 0.5 ⁇ m or more are used in combination.
  • the specific gravity is a liquid phase substitution method, a gas phase substitution method (pycnometer method), and the particle size is a Coulter counter method, a light diffraction scattering method, or the like, or a cross section of the optical laminate is observed with a microscope such as SEM or TEM.
  • the refractive index can be quantitatively evaluated by directly measuring the refractive index with an Abbe refractometer, by using a Cargill reagent, or by measuring a spectral reflection spectrum or a spectral ellipsometry.
  • Translucent organic particles include polymethyl methacrylate particles, polyacryl-styrene copolymer particles, melamine resin particles, polycarbonate particles, polystyrene particles, crosslinked polystyrene particles, polyvinyl chloride particles, benzoguanamine-melamine formaldehyde particles, silicone particles, Fluorine resin particles, polyester resin, and the like are used.
  • Examples of the light-transmitting inorganic particles include silica particles, alumina particles, zirconia particles, titania particles, and inorganic particles having a hollow shape or pores.
  • the diffuse reflection intensity distribution varies depending on the degree of aggregation of the light-transmitting particles. Therefore, two or more kinds of light-transmitting particles having different aggregation states are used.
  • the diffuse reflection intensity distribution can be adjusted by changing the aggregation state by using two or more kinds of inorganic particles having different silane coupling treatment conditions.
  • the method of adding the silica etc. which have a particle diameter below the wavelength of visible light, for example, a particle diameter of about 50 nm or less, is mentioned suitably for aggregation prevention of a translucent particle.
  • amorphous translucent particles such as silica having a particle diameter equal to or larger than the wavelength of visible light are effective. This is because amorphous particles have the effect of widening the distribution of reflection diffusion angles compared to spherical particles.
  • amorphous translucent particles also have a wide internal reflection distribution, which affects the diffusibility of the coating and may make it difficult to adjust the diffuse reflection intensity. It is preferable to add it according to. More specifically, it is preferable to add the amorphous translucent particles within a range of less than 4% by mass with respect to the total amount of the spherical particles and the amorphous translucent particles.
  • the translucent particles are preferably blended so as to be contained in an amount of 1 to 30% by mass in the transparent resin (solid content), and more preferably in the range of 2 to 25% by mass. When it is 1% by mass or more, reflection resistance can be obtained. On the other hand, when it is 30% by mass or less, there is little decrease in contrast and good visibility can be obtained.
  • an ionizing radiation curable resin or a thermosetting resin can be used as the transparent resin constituting the functional layer.
  • a resin composition containing an ionizing radiation curable resin or a thermosetting resin is applied to a transparent substrate, and monomers, oligomers and prepolymers contained in the resin composition are crosslinked and / or Alternatively, it can be formed by polymerization.
  • the functional groups of the monomer, oligomer and prepolymer those having ionizing radiation polymerization are preferable, and among them, a photopolymerizable functional group is preferable.
  • Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group.
  • Examples of the prepolymer and oligomer include acrylates such as urethane (meth) acrylate, polyester (meth) acrylate, and epoxy (meth) acrylate, silicon resins such as siloxane, unsaturated polyester, and epoxy resin.
  • Examples of the monomer include styrene monomers such as styrene and ⁇ -methylstyrene; methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, pentaerythritol (meth) acrylate, dipentaerythritol hexa (meth) acrylate, di Acrylic monomers such as pentaerythritol penta (meth) acrylate and trimethylolpropane tri (meth) acrylate; two in a molecule such as trimethylolpropane trithioglycolate, trimethylolpropane trithiopropylate, and pentaerythritol tetrathioglycol Examples include polyol compounds having the above thiol groups.
  • a polymer to the said resin composition and use it as a binder.
  • the polymer include polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • a radical photopolymerization initiator can be added to the resin composition as necessary.
  • the radical photopolymerization initiator acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds and the like are used.
  • acetophenones 2,2-dimethoxyacetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxy-dimethylphenylketone, 1-hydroxy-dimethyl-p-isopropylphenylketone, 1-hydroxycyclohexylphenyl Ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 4-phenoxydichloroacetophenone, 4-t-butyl-
  • benzoins include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl dimethyl ketal, and benzoin benzene sulfonic acid.
  • Benzophenones include benzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone, 4,4′-dimethylaminobenzophenone. (Michler's ketone), 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone and the like can be used.
  • a photosensitizer can be mixed and used, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the diffuse reflection intensity by the internal diffusion element by using a plurality of phase-separable resins as the transparent resin. That is, in the above-mentioned prepolymer, oligomer, monomer, and polymer, it is also possible to adjust the diffuse reflection intensity by the internal diffusion element by mixing and using a compatible component and an incompatible composition.
  • one resin is a styrene resin (polystyrene, styrene-acrylonitrile copolymer, etc.)
  • the other resin is a cellulose derivative (cellulose ester such as cellulose acetate propionate), a (meth) acrylic resin (Suitable examples include polymethyl methacrylate), alicyclic olefin resins (polymers having norbornene as a monomer), polycarbonate resins, polyester resins, and the like.
  • one resin is a cellulose derivative (cellulose ester such as cellulose acetate propionate)
  • the other resin is styrene resin (polystyrene, styrene-acrylonitrile copolymer, etc.), (meth) acrylic resin.
  • styrene resin polystyrene, styrene-acrylonitrile copolymer, etc.
  • meth acrylic resin Polymethyl methacrylate, etc.
  • alicyclic olefin resins polymers having norbornene as a monomer, etc.
  • polycarbonate resins polyester resins and the like are preferred.
  • the ratio (mass ratio) of the resin to be combined can be selected from the range of 1/99 to 99/1, preferably in the range of 5/95 to 95/5, more preferably in the range of 10/90 to 90/10, and 20 / A range of 80 to 80/20, particularly a range of 30/70 to 70/30 is preferable.
  • the diffuse reflection intensity by the external diffusing element can be adjusted by using the prepolymer, oligomer and monomer having a large polymerization shrinkage.
  • addition of a compatible polymer to the ionizing radiation curable resin or thermosetting resin, or addition of fine particles having a wavelength less than or equal to the wavelength of light, for example, fine particles having a wavelength of 100 nm or less can reduce polymerization shrinkage. It is also possible to adjust the diffuse reflection intensity by the external diffusion element.
  • a solvent is usually used for the radiation curable resin composition in order to adjust the viscosity and to dissolve or disperse each component.
  • the solvent is preferably selected as appropriate in consideration of the fact that the surface state of the coating film varies depending on the type of solvent used and the steps of coating and drying, so that the reflection intensity distribution due to external diffusion can be adjusted. Specifically, it is selected in consideration of saturated vapor pressure, permeability to a transparent substrate, and the like.
  • the resin composition for forming the functional layer preferably contains an ionizing radiation curable resin as a transparent resin, translucent particles, and a solvent.
  • the resin composition does not impregnate the transparent base material with the solvent impregnated in the transparent base material (hereinafter sometimes referred to as “permeable solvent”) and / or the ionizing radiation curable resin impregnated in the transparent base material.
  • permeable solvent the solvent impregnated in the transparent base material
  • an ionizing radiation curable resin not impregnated in the solvent and / or the transparent substrate is included. This is because the thickness of the functional layer can be controlled by adjusting the amount of impregnation into the transparent substrate, and as a result, the diffuse reflection intensity can be adjusted.
  • the diffuse reflection intensity can be controlled by the amount of impregnation into the transparent substrate and the size of the translucent particles.
  • the amount of impregnation of the solvent and / or ionizing radiation curable resin (hereinafter sometimes referred to as “solvent etc.”) into the substrate is small and the translucent particles are small, the solvent etc.
  • the functional layer is formed in such a manner that most of the particles are embedded therein, but since the translucent particles are likely to aggregate, the surface irregularities are relatively large.
  • the solvent one kind can be used alone, or two or more kinds of solvents having different boiling points and / or relative evaporation rates at room temperature and normal pressure can be contained.
  • the drying speed of the solvent can be controlled in various ways. When the drying speed is high, the particles are volatilized and the solvent is reduced and the viscosity is increased before the particles are sufficiently aggregated, so that further aggregation does not proceed. Therefore, controlling the drying rate will control the particle size of the translucent particles, and as described above, in relation to the degree of penetration of the solvent and / or ionizing radiation curable resin into the substrate, It leads to controlling the diffuse reflection intensity.
  • the relative evaporation rate is a rate obtained by the following equation as shown in ASTM-D3539, and the larger the number, the faster the evaporation.
  • Relative evaporation rate time required for n-butyl acetate to evaporate / time required for some solvent to evaporate.
  • Specific solvents can be appropriately selected from the above viewpoints. Specific examples include aromatic solvents such as toluene and xylene, and ketones such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone. Are preferred. These can be used alone or in combination of two or more. It is preferable to use a mixture of at least one aromatic solvent and at least one ketone.
  • cellosolves such as methyl cellosolve and ethyl cellosolve and cellosolve acetates
  • alcohols such as ethanol, isopropanol, butanol, and cyclohexanol may be mixed.
  • additives other than the translucent particles are blended in the transparent resin as necessary.
  • various inorganic particles can be added to improve physical properties such as hardness, optical properties such as reflectance, and scattering properties.
  • inorganic particles include metals such as zirconium, titanium, aluminum, indium, zinc, tin, and antimony, ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO, Examples thereof include metal oxides such as ATO and SiO 2 .
  • carbon, MgF, silicon, BaSO 4 , CaCO 3 , talc, kaolin and the like are included.
  • the particle size of the inorganic particles is preferably as fine as possible in the resin composition when the functional layer is applied in order to reduce the influence on the diffuse reflection intensity distribution, and the average particle size is 100 nm or less. It is preferable that it is the range of these. By miniaturizing the inorganic particles to 100 nm or less, an optical sheet that does not impair transparency can be formed.
  • the particle diameter of the inorganic particles can be measured by a light scattering method or an electron micrograph.
  • various surfactants can be used to improve the properties such as anti-aggregation effect and anti-settling effect, and other leveling properties.
  • the surfactant include silicone oil, a fluorine-based surfactant, and preferably a fluorine-based surfactant containing a perfluoroalkyl group.
  • an antifouling agent an antistatic agent, a colorant (pigment, dye), a flame retardant, an ultraviolet absorber, an infrared absorber, an adhesion promoter, a polymerization inhibitor, an antioxidant, a surface modifier, etc. Can be added.
  • the transparent substrate used in the optical sheet of the present invention is not particularly limited as long as it is usually used in an optical sheet, such as a transparent resin film, a transparent resin plate, a transparent resin sheet, or transparent glass.
  • Transparent resin films include triacetylcellulose film (TAC film), diacetylcellulose film, acetylbutylcellulose film, acetylpropylcellulose film, cyclic polyolefin film, polyethylene terephthalate film, polyethersulfone film, polyacrylic resin film, polyurethane film Resin films, polyester films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films, polyether ketone films, (meth) acrylonitrile films, polynorbornene resin films, and the like can be used.
  • TAC film triacetylcellulose film
  • diacetylcellulose film acetylbutylcellulose film
  • acetylpropylcellulose film cyclic polyolefin
  • the TAC film and the cyclic polyolefin film are preferable because they do not disturb the polarization, and polyester films such as a polyethylene terephthalate film are preferable when the mechanical strength and smoothness are important. .
  • the transparent substrate may be a multilayer or a single layer, and a primer layer may be provided on the surface for the purpose of adhesion to the coating film.
  • a primer layer may be provided on the surface for the purpose of adhesion to the coating film.
  • interference fringes generated at the interface when there is a substantial difference in refractive index between the transparent substrate and the coating layer, for example, interference fringes having an intermediate refractive index between the transparent substrate and the coating layer.
  • Rz is a value measured according to JIS B0601 1994.
  • the optical sheet according to the present invention can be provided with functions such as hard coat properties, anti-reflection properties, antireflection properties, antistatic properties, and antifouling properties.
  • Hard coat property is usually the maximum load at which scratches are not confirmed when a black tape is applied to the backside of the 10-reciprocal rubbing test while applying a load with pencil hardness (measured according to JIS K5400) or steel wool # 0000.
  • the pencil hardness is preferably H or higher, more preferably 2H or higher.
  • the steel wool scuff resistance is preferably 200 g / cm 2 or more, more preferably 500 g / cm 2 or more, and particularly preferably 700 g / cm 2 or more.
  • a low refractive index layer is provided on the outermost surface in order to reduce the reflectance of the sheet.
  • the refractive index of the low refractive index layer is preferably 1.5 or less, and more preferably 1.45 or less.
  • the low refractive index layer is formed of a material containing silica or magnesium fluoride, a fluororesin that is a low refractive index resin, or the like.
  • m represents a positive odd number
  • n represents the refractive index of the low refractive index layer
  • represents the wavelength.
  • m is preferably 1, and ⁇ is preferably 480 to 580 nm.
  • antistatic performance in terms of preventing static electricity on the optical sheet surface.
  • a method of applying a conductive coating liquid containing conductive fine particles, a conductive polymer, a quaternary ammonium salt, thiophene and a reactive curable resin, or a transparent film is formed.
  • Conventionally known methods such as a method of forming a conductive thin film by vapor deposition or sputtering of metal, metal oxide or the like can be mentioned.
  • the antistatic layer can be used as a part of a functional layer such as a hard coat, reflection resistance, and antireflection.
  • an index indicating antistatic property there is a surface resistance value.
  • the surface resistance value is preferably 10 12 ⁇ / ⁇ or less, more preferably 10 11 ⁇ / ⁇ or less, and particularly preferably 10 10 ⁇ / ⁇ or less.
  • the so-called saturation band voltage which is the maximum voltage that can be stored in the optical film, is preferably 2 kV or less with an applied voltage of 10 kV.
  • an antifouling layer can be provided on the outermost surface of the optical sheet of the present invention.
  • the antifouling layer lowers the surface energy and makes it difficult to attach hydrophilic or lipophilic stains.
  • the antifouling layer can be applied by adding an antifouling agent, and examples of the antifouling agent include fluorine compounds, silicon compounds, and mixtures thereof, and compounds having a fluoroalkyl group are particularly preferred.
  • the optical sheet of the present invention is produced by applying a resin composition constituting a functional layer to a transparent substrate.
  • a resin composition constituting a functional layer is produced by applying a resin composition constituting a functional layer to a transparent substrate.
  • Various methods can be used as the coating method, such as dip coating, air knife coating, curtain coating, roll coating, wire bar coating, gravure coating, die coating, blade coating, Known methods such as a micro gravure coating method, a spray coating method, and a spin coating method are used.
  • the reflection / diffusion luminance characteristics vary depending on the coating amount
  • a roll coating method, a gravure coating method, and a die coating method which can be stably obtained with a functional layer thickness in the range of 1 to 20 ⁇ m, are preferred.
  • the solvent is dried by various known methods by being transported to a heated zone to dry the solvent.
  • Internal diffusion due to the light-sensitive particles and the additives can be adjusted.
  • a method of adjusting the reflection / diffusion luminance characteristics by selection of drying conditions is simple and preferable.
  • the drying temperature is preferably 30 to 120 ° C.
  • the drying wind speed is preferably 0.2 to 50 m / s, and the reflection diffusion luminance characteristic can be adjusted by appropriately adjusting within this range.
  • the resin composition for forming the functional layer is made of a transparent resin, a light-transmitting particle having a higher refractive index than that of the transparent resin, and a solvent, and the refractive index of the component having the permeability of the transparent resin is that of the light-transmitting particle.
  • the drying time until curing becomes longer the low refractive component in the transparent resin penetrates the transparent substrate, The refractive index of transparent resin rises and the refractive index difference with translucent particles decreases.
  • the ratio of the translucent particles to the transparent resin is increased, the translucent particles are likely to protrude on the surface, and surface irregularities are easily developed. Therefore, the longer the drying time, the smaller the internal diffusion and the larger the external diffusion.
  • the adhesion between the transparent base material and the functional layer due to the anchor effect and the occurrence of interference fringes that become noticeable when the difference in refractive index between the transparent base material and the functional layer is 0.03 or more are prevented. It is also possible to do. This is because the low-refractive component in the transparent resin penetrates the transparent base material, and the permeation layer expresses the function as a refractive index adjustment layer in which the refractive index continuously changes between the transparent base material and the functional layer. This is because it has the effect of eliminating the interface.
  • the drying speed by increasing the drying speed, the aggregation time of the translucent particles is shortened, so that the aggregation does not proceed, and the same effect is exhibited as when the particle size of the translucent particles that act substantially becomes smaller. . That is, by controlling the drying rate, the particle size of the translucent particles that act substantially can be controlled. As described above, the penetration of the solvent and / or ionizing radiation curable resin into the base material is possible. It leads to controlling the diffuse reflection intensity in relation to the degree.
  • a 50 ⁇ m product such as MHM series manufactured by Niei Engineering Co., Ltd. was used. Place the LCD TV in a room with an illuminance of about 1,000 Lx, display the DVD “Media Phantom” by Media Factory, and place it about 1.5 to 2.0 meters away from the LCD TV From the above, the video was viewed by 15 test subjects, and a sensitivity evaluation of a three-step evaluation was performed on the following items. The evaluation criteria are as follows, and the most frequent evaluation result was used as the final result. (1) Blackness feeling: When moving images were displayed, it was determined by whether or not the image had a high contrast, and the images had teri and shine and felt a dynamic feeling.
  • Triacetyl cellulose (manufactured by Fuji Film Co., Ltd., thickness 80 ⁇ m) was prepared as a transparent substrate.
  • Production Examples 2 to 7 and Production Examples 10 to 19 In Production Example 1, the type of transparent substrate, the type of transparent resin, the type and content of translucent particles, the type and content of solvent, the drying conditions, and the coating thickness are listed in Table 1. An optical sheet was prepared by changing. Table 2 shows the evaluation results for each optical sheet in the same manner as in Production Example 1.
  • Triacetyl cellulose (Fuji Film Co., Ltd., thickness 80 ⁇ m) was prepared as a transparent substrate.
  • Pentaerythritol triacrylate (PETA, refractive index 1.51) was used as the transparent resin, and styrene-acrylic copolymer particles (refractive index 1.51, average particle size 9.0 ⁇ m, (d75-) were used as the translucent particles.
  • d25) / MV is 0.04) and polystyrene particles (refractive index 1.60, average particle size 3.5 ⁇ m, (d75-d25) / MV is 0.05), respectively, with respect to 100 parts by mass of the transparent resin, It was made to contain 10.0 mass parts and 16.5 mass parts.
  • a mixed solvent (mass ratio 7: 3) of toluene (boiling point 110 ° C., relative evaporation rate 2.0) and cyclohexanone (boiling point 156 ° C., relative evaporation rate 0.32) was added to 100 parts by mass of the transparent resin.
  • the resin composition obtained by blending 190 parts by mass was applied to the transparent substrate, and dried at 85 ° C. at a flow rate of 1 m / s for 1 minute. This was irradiated with ultraviolet rays (100 mJ / cm 2 in an air atmosphere) to cure the transparent resin.
  • PETA penentaerythritol triacrylate, refractive index 1.51
  • toluene molecular weight
  • cyclohexanone molecular weight
  • Production Example 9 the content of polystyrene particles that are translucent particles is 6.5 parts by mass with respect to 100 parts by mass of the transparent resin, and the production thickness is 13.0 ⁇ m in total. In the same manner as in Example 8, an optical sheet was produced. The results evaluated in the same manner as in Production Example 1 are shown in Table 2.
  • A polystyrene particles (refractive index 1.60, average particle size 3.5 ⁇ m, (d75-d25) / MV is 0.05)
  • B Styrene-acrylic copolymer particles (refractive index 1.56, average particle size 3.5 ⁇ m, (d75-d25) / MV is 0.04)
  • C Styrene-acrylic copolymer particles (refractive index 1.51, average particle size 9.0 ⁇ m, (d75-d25) / MV is 0.04)
  • D amorphous silica (refractive index 1.45, average particle size 1.5 ⁇ m, (d75-d25) / MV is 0.6)
  • E amorphous silica (refractive index 1.45, average particle size 2.5 ⁇ m, (d75-d25) / MV is 0.8)
  • P a mixture of pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DP
  • Pentaerythritol triacrylate PETA (refractive index 1.51)
  • X Mixture of toluene (boiling point 110 ° C., relative evaporation rate 2.0) and methyl isobutyl ketone (boiling point 116 ° C., relative evaporation rate 1.6) (mass ratio 8: 2)
  • Y Mixture of toluene (boiling point 110 ° C., relative evaporation rate 2.0) and cyclohexanone (boiling point 156 ° C., relative evaporation rate 0.32) (mass ratio 7: 3)
  • Production Examples 1 to 19 R / V was calculated from the measurement results of diffuse reflection intensity. It can be seen that the optical sheet satisfying the formula (I) is well-balanced with excellent blackness and image cutout.
  • Production Examples 1 to 4, 8 to 12, 15, 16, and 18 correspond to Examples satisfying 0.16 ⁇ R / V ⁇ 0.71
  • Production Examples 5 to 7, 13, 14, 17, and 19 correspond to comparative examples that do not satisfy the above formula.
  • optical sheet of the present invention it is possible to easily evaluate the blackness and image breakage that could not be evaluated with the conventional haze value, and to stabilize the optical sheet that is excellent in blackness and image breakage. Can be provided.
  • Optical sheet Base material 4.
  • Light incident direction 5.
  • Diffuse regular reflection direction Functional layer (antiglare layer) 7).
  • Translucent particles 8.
  • Visible light absorbing material black acrylic board

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

透明基材の少なくとも一方の面に機能層を有し、該機能層の最表面及び/又は内部に拡散要素を有する表示素子表面に用いる光学シートであって、下記式(I)の関係を有することを特徴とした光学シートを提供する。  0.16<R/V<0.71 (I)  R(拡散正反射強度);拡散正反射方向の強度  V;光学シートに可視光線を照射した際の拡散正反射方向に対して-θ度~+θ度まで1度ごとに測定した拡散反射強度の総和

Description

光学シート
 本発明は黒彩感および画像の切れに優れ、動画像と静止画像との混用に適した光学シートに関する。
 表示装置の表面に用いる光学シートは、透明基材の観察者側の面に機能層として防眩性、帯電防止性、防汚性等の機能を持つ層が積層されている。通常、前記機能を発現させるために、例えば、防眩性を付与するためには、表面層に凹凸形状を付与したり、表面層を形成する樹脂に拡散粒子を含有させるなどの方法がとられる。
 また、帯電防止性を付与するためには、導電性微粒子や導電性樹脂を添加し、防汚性を付与するためには、含フッ素ポリマーや防汚剤を添加するなどの方法がとられる。これらの拡散粒子、導電性微粒子、添加剤等は、表面層を形成する樹脂とは完全に相溶することがないため、これらを用いた光学シートは可視光を拡散する作用を有する。また、表面層の凹凸も同様に可視光を拡散する作用を有する。
 さらには、光学シート間の干渉斑や光学シートと表示素子との間での干渉斑を防ぐため、表面層、透明基材の裏面、各層間に可視光波長以上の凹凸を設けることも行われるが、この凹凸も同様に可視光を拡散する作用を有する。
 本発明では、上記のような可視光の拡散を生じさせるものを拡散要素と定義するが、このような拡散要素を有すると、光学シートは外光の反射によるコントラストの低下を生ずることとなる。すなわち、光学シートは上述のような光学シートの機能を維持しつつコントラストの低下を防ぐことが求められている。
 コントラストを簡便に評価する方法として、ヘイズ値や内部ヘイズと総ヘイズの比が一般に用いられてきた。すなわち、光学シートの製造過程において、ヘイズ値を低くするように材料の特定、製造条件などを制御することで、コントラストの低下の少ない光学シートを製造し得ると考えられていた(特許文献1~3参照)。
 しかしながら、同じヘイズ値であってもコントラストが異なる場合が多く見られ、例えば、ヘイズ値及び内部ヘイズと総ヘイズの比を指標として製造しても、必ずしも良好な光学シートを安定的に生産することはできないことがわかった。
 また、近年では、ワンセグをはじめとする様々な配信システムの普及により、静止画像及び動画像の両者を、同一のディスプレイで鑑賞する機会が増加している。そのため、ディスプレイ端末に要求される画像品質も変化しており、静止画像と動画像の混用に対して優れた光学シートの開発が要望されている。
 一例として特許文献4及び5に示されるように、静止画像と動画像では要求性能は異なるし、観察者の看視状態も異なる。本発明者らは、動画像と静止画像に対する光学シートへの要求性能を鋭意検討した結果、動画像に対しては鑑賞に堪えうる画質としてコントラストが高く、かつ画像のテリや、輝きを増すことによる躍動感のある画像が求められることを見出した。
 なお、このような動画像に要求される、躍動感とコントラストを兼ね備えた性能(例えば、黒表示をした場合に艶のある黒に見えたり、肌色を表示した場合に艶があり活き活きとして見える等)を「黒彩感」と称する。
 また、静止画像に対してはコントラストと耐映り込み性に優れた画像が求められ、このような、静止画像に要求される、コントラストと耐映り込み性を兼ね備えた性能を「画像の切れ」と称する。すなわち、黒彩感と画像の切れに優れた光学シートが希求されている。
特開2002-267818 特開2007-334294 特開2007-17626 特開2006-81089 特開2006-189658
 本発明はこのような状況の下、黒彩感と画像の切れに優れ、動画像と静止画像との混用に適した光学シートを提供することを目的とする。
 これまで、コントラストや防眩性は表面凹凸のRa、Rz、Sm、θa等の表面形状に依存すると考えられたり、内部拡散剤とバインダー樹脂との屈折率差や内部拡散粒子の形状等による外光の反射状態に依存すると考えられていた。すなわち表面凹凸と内部拡散要素との相互効果を考慮されることがなかった。
 本発明者らは、図10の1から4に示すように、内部拡散粒子とバインダー樹脂の屈折率差によって、拡散粒子に入射した映像光および外光の拡散粒子を透過する光及び反射する光の拡散特性は大きく異なり、拡散粒子とバインダーとの屈折率差が大きいほど、拡散粒子による反射光量が増加し、且つ、拡散角度が大きくなるので、映像光による迷光の発生増加と外光の反射光量が増加しコントラストを低下させることを見出し、さらにまた、図9-1の1-1から1-5に示す如く、映像光においては拡散粒子と表面凹凸との位置関係により、拡散粒子を透過した映像光の透過及び反射特性や、解像度やコントラストを劣化させる迷光の発生状況も大きく異なること、さらには、図9-2の2-1から2-4に示す如く、外光においても、拡散粒子と表面凹凸との位置関係により、拡散層内部に侵入した外光の拡散粒子による反射光の反射特性やコントラストを劣化させる迷光の発生状況も大きく異なることを見出し、本願光学シートの表面凹凸の形状、拡散粒子の特性、および表面凹凸と内部拡散粒子の相対的関係をも加味することにより、コントラストや防眩性に優れるばかりでなく、黒彩感と画像の切れにも優れた光学シートを得ることを可能とした。 
 また、図9-2の拡散粒子2-2のように、拡散粒子により反射される外光の拡散が大きくなる表面凹凸と拡散粒子との位置関係にある場合は、図9-1の1-2のように、映像光に関しても拡散が大きく迷光が発生しやすい条件となり、映像光によるコントラスト低下をもきたしやすくなっている。すなわち、映像光の迷光によるコントラスト低下の大小関係は、外光の反射特性に近似して考慮することが可能である。なお、迷光による黒彩感についても同様である。
 本発明者らは、黒彩感に優れた動画像を得るためには、光学シートの透過拡散が小さく正透過強度が高いことで映像光の指向性が高い状態にあり、且つ、外光および映像光の迷光成分を少なくするほど良好となることを見出した。対して透過散乱が大きいと迷光が発生し、映像光の指向性が低くなり、映像が白茶けたように見えるため肌色などの表示に対して活き活きとした表示とならない。
  一方、画像の切れに優れた静止画像を得るためには、コントラストと耐映り込み性を両立させる必要がある。
 しかしながら、耐映り込み性を改善する目的で、いわゆる防眩性を強くすると反射拡散が大きくなりコントラストが低下してしまい、画像の切れは悪化してしまう。
 そこで、本発明者らは、画像の切れに関し鋭意検討した結果、観察者にとって映り込みが苦になる原因は、画像鑑賞時に観察者の焦点が映り込んだ外部映像に度々合ってしまい、本来の画像に視点が定まらないためであることが判明した。
 そして、さらなる検討の結果、映り込んだ外部映像の輪郭を不鮮明とすることで、映り込みは苦にならなくなり、かつコントラストの低下も押さえることができ、画像の切れを向上させることが可能であることを見出した。
 すなわち、静止画像に要求される画像の切れと動画像の黒彩感を両立させるためには、正透過拡散の正透過強度成分の低下を抑えつつ、かつ、映り込んだ外部映像の輪郭を不鮮明とさせる、小さい反射拡散を適度に持たせつつ迷光成分を減少させることが重要であることを見出した。
 これは、正反射強度成分を正反射近傍の拡散に転換することを意味し、以下の(a)~(c)を考慮することで、静止画像の切れと動画像の黒彩感との両立を図った光学シートが得られることを意味する。すなわち、(a)透過拡散が小さい(正透過強度が高い)こと、(b)正反射強度成分が小さいこと、(c)正反射近傍の拡散に変換すること、の三要素を満足させることである。
 光学シートは一般的には帯電防止機能を持たせるための導電粒子の添加や、ギラツキの防止や表面凹凸賦型のために微細粒子を添加することが多く、表面凹凸による拡散(以下外部拡散という)以外に内部拡散を有している。
 ここで、内部拡散因子による拡散と表面形状による拡散を比較した場合、光学シートを構成する樹脂と内部拡散因子との屈折率比は、外部表面での空気と樹脂の屈折率比に比べ大幅に小さいので、表面に凹凸形状を持つ光学シートでは、透過拡散強度は表面形状が優位となる。
 また、θなる傾斜面からの出射角度をψ、塗膜の屈折率をnとしたとき、スネルの法則からn*sinθ=sinψであり、出射角度ψはA・sin(n*sinθ)-θとなる。一方、反射は、反射の法則により、θなる傾斜面の二倍の変化を示すのであるから、反射角度ψは2*θとなる。
 一般的な塗膜の屈折率である1.5の場合において、光学シートの表面形状範囲内(10度以内)について、表面傾斜角度に対する反射及び透過の拡散角度を図1に示す。図1に示すように、表面傾斜角度に対する反射及び透過の拡散角度は比例し、常に反射による拡散角度が透過による拡散角度より30%程度大きいことがわかる。すなわち、透過拡散が小さいことは、反射拡散が小さいこととほぼ同義となる。
 よって、上記(a)透過拡散が小さいことは、(a’)反射拡散が小さいことと換言できるので、前述の静止画像の耐映り込み性と、動画像の黒彩感の両立を図った光学シートについて、正反射を正反射近傍の拡散に変換することが好ましいこととなる。
 一方で、拡散が小さいことが黒彩感には好ましいため、正反射近傍への変換は過剰にならないことが肝要であり、反射拡散強度は特定の範囲に制御されることが好ましい。
 ところで、これまで光学シートに用いられてきたヘイズ値はJIS K7136に示されるように全光線に対して、正透過から2.5度以上拡散した光の割合であるから、ヘイズ値からでは、上記のような正反射近傍の拡散、ことに2.5度未満の拡散を用いた考えに想到することはできない。
 ここで、等方拡散の場合の正反射近傍の拡散強度について考察する。
 図2に示すように拡散強度は、aなる拡散反射強度分布を持つ透明基板に、bなる拡散反射強度分布を持つ層を積層すると、0度に近いほど拡散反射強度の減少割合は大きいので、0度に近いほど強度の低下が大きいこととなり、cなる拡散反射強度分布を持つ光学シートとなる。
 すなわち、反射総光量が一定であった場合、0度近傍の反射強度分布の変化が大きい光学シートほど一度ごとに測定した反射強度の総和(V)は小さい値を示し、0度近傍の反射強度分布の変化が小さいシートほどVは大きくなる。また、初期から反射強度分布が広がっている光学シートほどVは小さい値を示し、初期から反射強度分布が狭い光学シートほどVは大きくなる。
 さらに詳述するならば、反射拡散角度と強度の関係を示す図4において、反射拡散特性がaa、bb、ccなる光学シートの各々の反射総光量は、各々、y軸を中心とした回転体の体積Vaa、Vbb、Vccとしたとき、積分反射率が等しければ、Vaa=Vbb=Vccである。
 ここで、aaなる拡散特性を有する光学シートの正反射強度がOh低下し、bb及びccなる拡散特性となった場合を考える。bbの場合では、bbにより指し示された斜線で表される部分の回転体の体積Vbaaが減少し、拡散角bより拡散の大きい部分ではaaより強度が強いbbの特性となる。このとき、Vaa=Vbbであるから、Vbaaはドーナツ状の回転体の体積Vhbbに配分されたこととなる。
 同様に、ccの場合では、ccで指し示された斜線で表される部分の回転体の体積Vcaaが減少し、拡散角cより拡散の大きい部分ではaaより強度が強いccの特性となる。このとき、Vaa=Vccであるから、Vhaaはドーナツ状の回転体の体積Vhccに配分されたこととなる。
 また、光量は拡散角の二乗とその拡散角での強度の積に比例すると考えられるので、正反射強度の減少に伴う反射拡散特性の変化は、拡散の大きい部分に振り向けられるほどその角度での強度はより低くなる。
 すなわち、反射強度の総和Vは、正反射近傍の影響が大きい防眩性等や、拡散角の大きい部分の影響が大きい白濁感等はもちろん、両者の中間の角度でも無視することの出来ない迷光等を含め、全ての反射拡散角度と関連することとなる。
 よって、R/Vは正反射を正反射近傍の拡散に変化させた程度を示すと同時に、迷光等の影響をも加味し、黒彩感と切れをより精度良く評価していることとなる。換言すれば、R/Vは表面形状(外部拡散要素)に関しては、正反射をもたらす平坦部と反射拡散をもたらす凹凸部の比率に近似される為、凹凸の傾斜の角度と凹凸の存在確率に関連し、内部拡散に関しては、拡散粒子とバインダーの屈折率差、拡散粒子との衝突確率及び形状に関連し、表面形状と内部拡散の相互作用に関しては、前記相互作用をより弱めあう程度と強めあう程度とに関連することで、黒彩感と切れの良し悪しを決定している。
 本発明は、上記知見に基づいて完成したものであり、以下の態様を包含する。
(1)透明基材の少なくとも一方の面に機能層を有し、該機能層の最表面及び/又は内部に拡散要素を有する表示素子表面に用いる光学シートであって、下記式(I)の関係を有することを特徴とする光学シート。
  0.16<R/V<0.71   (I)
   R(拡散正反射強度);拡散正反射方向の強度
   V;光学シートに可視光線を照射した際の拡散正反射方向に対して-θ度~+θ度まで1度ごとに測定した拡散反射強度の総和
(2) さらに、下記式(II)の関係を有する上記(1)に記載の光学シート。
  0.20<R/V<0.62   (II)
(3)さらに、下記式(III)の関係を有する上記(1)に記載の光学シート。
  0.31<R/V<0.62  (III)
(4)表示素子が液晶表示素子である上記(1)~(3)のいずれかに記載の光学シート。
(5)機能層が、透明樹脂に透光性無機粒子及び/又は透光性有機粒子を分散させてなる上記(1)~(4)のいずれかに記載の光学シート。
(6)機能層が透明樹脂からなり、該透明樹脂が相分離可能な複数の樹脂から構成される上記(1)~(5)のいずれかに記載の光学シート。
(7)透明樹脂と透光性無機粒子及び/又は透光性有機粒子との屈折率が異なる上記(5)又は(6)に記載の光学シート。
(8)透光性無機粒子及び/又は透光性有機粒子により機能層の表面に凹凸を設けた上記(5)~(7)のいずれかに記載の光学シート。
(9)透明樹脂と透光性無機粒子及び/又は透光性有機粒子との屈折率差が0.01~0.25である上記(5)~(8)のいずれかに記載の光学シート。
(10)透光性無機粒子及び/又は透光性有機粒子の平均粒径が0.5~20μmである上記(5)~(9)のいずれかに記載の光学シート。
(11)透光性無機粒子及び/又は透光性有機粒子の重量平均による平均径をMV、累積25%径をd25、累積75%径をd75としたときに、(d75-d25)/MVが0.25以下である上記(5)~(10)のいずれかに記載の光学シート。
(12)透光性無機粒子及び/又は透光性有機粒子が透明樹脂中に1~30質量%含有され上記(5)~(11)のいずれかに記載の光学シート。
(13)型の表面に設けられた凹凸を反転転写して、機能層の表面に凹凸を設けてなる上記(1)~(12)のいずれかに記載の光学シート。
(14)透明樹脂が電離放射線硬化性樹脂であり、機能層は該電離放射線硬化性樹脂を含有する電離放射線硬化性樹脂組成物を透明基材上に塗布し、架橋硬化して形成する上記(5)~(11)のいずれかに記載の光学シート。
(15)透明基材がセルロース系樹脂からなり、電離放射線硬化性樹脂組成物は、透明基材に含浸する溶剤及び/又は透明基材に含浸する電離放射線硬化性樹脂と、透明基材に含浸しない溶剤及び/又は透明基材に含浸しない電離放射線硬化性樹脂とを含み、前記式(I)、式(II)又は式(III)のいずれかの関係を有するように制御された上記(14)に記載の光学シート。
(16)透明基材がトリアセチルセルロースまたは環状オレフィンである上記(1)~(15)のいずれかに記載の光学シート。
(17)透明基材がポリエチレンテレフタレートである上記(1)~(15)のいずれかに記載の光学シート。
(18)機能層がハードコート層を含み、耐スチールウール擦り性が200g/cm2以上である上記(1)~(17)のいずれかに記載の光学シート。
(19)最表層に反射防止機能層を形成してなる上記(1)~(18)のいずれかに記載の光学シート。
(20)上記(1)~(19)のいずれかに記載の光学シートを用いた偏光板。
(21)上記(20)に記載の偏光板を用いた画像表示装置。
(22)透明基材の少なくとも一方の面に機能層を有し、該機能層の最表面及び/又は内部に拡散要素を有する光学シートの製造方法であって、上記式(I)~式(III)の関係を有するように製造条件を制御することを特徴とする表示素子表面に用いる光学シートの製造方法。
 本発明によれば、黒彩感及び画像の切れと総ヘイズ(図5)、内部ヘイズ(図6)、内部へイズ/総ヘイズ(図7)との関係のグラフからわかるように、従来のヘイズ値では評価し得なかった黒彩感及び画像の切れの評価が、黒彩感及び画像の切れとR/Vとの関係を示す図8から明らかなように、簡便に行え、黒彩感に優れ、かつ画像の切れに優れた光学シートを提供することができる。
表面傾斜角度に対する反射及び透過の拡散角度を示す図である。 拡散強度分布を示す図である。 本発明における拡散反射強度の測定方法を示す概念図である。 拡散強度分布の詳細な説明を示す概念図である。 総ヘイズと黒彩感及び切れを示す図である。 内部ヘイズと黒彩感及び切れを示す図である。 内部ヘイズと総ヘイズの比と黒彩感及び切れを示す図である。 R/Vと黒彩感及び切れを示す図である。 映像光及び外光における拡散粒子と表面凹凸との位置関係による反射光の特性を説明する図である。 内部拡散粒子とバインダー樹脂の屈折率差による光の拡散特性の違いを説明する図である。
 本発明の光学シートは、透明基材の少なくとも一方の面に機能層を有し、該機能層の最表面及び/又は内部に拡散要素を有する光学シートであって、0.16<R/V<0.71の関係を有するように制御することを特徴とする。
 以下、図3を用いて、R及びVの測定方法について説明する
 図3に示すように、光学シート1に4の方向から可視光線を照射すると、5の方向に拡散正反射されるとともに、一部の光が拡散される。この5の方向が拡散正反射方向であり、拡散正反射方向における光の強度が、拡散正反射強度Rと定義される。
 なお、後に記載するように、裏面反射を抑制し、実使用時の条件とあわせるために、透明基材2の裏面には接着剤を介して黒色のアクリル板などの可視光吸収材料8を貼付する。
 次に、拡散正反射方向に対して、図3に示す-θ度~+θ度までの拡散反射強度を1度ごとに測定した総和がVである。測定範囲を決定するθについては、その角度範囲が大きい方がより測定精度が高くなるが、通常は45度程度で十分な測定精度が得られる。なお、入射光の角度を変えることで、θの最大測定範囲を変えることができる。
 そして、光学シートの製造過程において、R/Vを指標として、材料の選定、製造条件の制御などを行い、上記式(I)を満足する光学シートを得るものである。
 なお、拡散反射強度の測定は、具体的には以下のように測定する。
(拡散反射強度の測定方法)
 光学シートの裏面(表面層を有さない面、観察者側と反対側の面)を、透明粘着剤を介して凹凸や反りのない平坦な黒アクリル板に貼付して評価用サンプルを作製する。
 なお、ここで用いる黒色のアクリル板は、上述のように裏面反射を防止するためのものであり、光学シートの裏面に空気層を有さないように、かつ可視光を吸収し得るものであれば、特に制限はない。
 例えば、製造ラインにおいて測定する場合などでは、光学シートの検査用部分の裏面に黒色塗料を塗布する等の方法によりオンラインで測定することも可能である。
 次に、評価用サンプルを測定装置に設置し、評価用サンプルの光学シート側の面に対し面の法線から45度の角度より光束を入射する。光束が評価用サンプルの光学シート面に入射し拡散反射した光を、拡散正反射方向に対し-θ度~+θ度までの範囲で、1度ごとに受光器を走査することにより拡散反射強度を測定する。
 なお、入射光の正反射方向である45度を拡散正反射方向と定義する。また、拡散反射強度を測定する装置については、特に制限はないが、本発明においては、日本電色工業(株)製「GC5000L」を使用した。
 本発明は、下記式(I)を指標として制御することが特徴である。
  0.16<R/V<0.71   (I)
 R/Vが0.16を超えるようにすることによって、黒彩感に優れるとともに、画像の切れが良好な光学シートを得ることができる。黒彩感をさらに良好にするとの観点から、R/Vは0.20を超えることが好ましく、0.31を超えることがさらに好ましい。
 また、画像の切れをさらに良好にするとの観点から、R/Vは0.62未満であることがより好ましい。
 次に、本発明の光学シートは、上記式(I)を満足するものである。上記式(I)を満足する光学シートは、黒彩感に優れるとともに、画像の切れに優れたものとなる。
 本発明における0.16<R/V<0.71を達成するには、内部拡散要素及び外部拡散要素によって反射輝度分布及び強度を調整することが肝要である。
 内部拡散要素によって反射輝度分布及び強度を調整する方法として、機能層を構成する樹脂に透光性無機粒子及び/又は透光性有機粒子(以下、単に「透光性粒子」と記載することがある。)を分散させる方法がある。
 さらには、機能層を構成する透明樹脂、透明樹脂に分散される透光性粒子の形状、分散状態、粒子径、添加量、屈折率等を制御することにより行い得る。また、透明樹脂に添加し得る透光性粒子以外の添加剤の濃度等も、前記内部拡散要素による拡散反射強度に影響を与える。
 一方、外部拡散要素によって拡散反射強度を調整する方法としては、例えば、
(1)表面に微細な凹凸を有する型を用いて光学シートの表面に凹凸形状を転写する方法、
(2)電離放射線硬化性樹脂など機能層を構成する樹脂の硬化収縮により、表面に凹凸を形成する方法、
(3)透光性微粒子を前記表面層から突出固化させて、表面に凹凸を形成する方法(突出している微粒子が前記表面層を構成する樹脂で覆われていても、微粒子がむき出しになっていてもどちらでもよい)、
(4)外部からの圧力により表面凹凸を付与する方法、等がある。
 上記(1)の方法としては、例えば、透明基材に電離放射線硬化性樹脂を配し、該電離放射線硬化性樹脂の塗工層に微細な凹凸を有する型を密着させ、電離放射線により硬化することで、光学シートの表面に凹凸形状を設けることができる。
 上記(2)の方法は、滑らかな表面を持つ微細な凹凸が得られることから、ギラツキ防止、耐映り込み性の付与に有効であり、また上記(3)の方法は、透光性粒子と透明樹脂の選定、塗膜の厚さ、溶剤の選定、乾燥条件、透明基材への浸透性等により性能調整ができるため、プロセスが短くかつ作業が単純なことから、低コストで製造できる点で有効である。
 なお、凹凸表面や凹凸層と透明基材との間に設ける機能層(反射防止層や、防汚層、ハードコート層、帯電防止層等)も前記外部拡散要素による拡散反射強度に影響を与えるものである。具体的には、凹凸表面に他の機能層を設けて2層構成とすることで、表面凹凸を緩やかにし、表面拡散を抑制することができる。なお、前記他の機能層の塗膜の厚さを厚くすることで、表面凹凸を緩やかにしたり、塗布液組成、塗布及び乾燥条件等によっても表面拡散を制御することができる。
 上述の外部拡散要素を得るための方法の(3)は、用いる透光性微粒子の種類によっては、外部拡散と内部拡散を同時に付与することができ、製造プロセスを簡略化できるという点で好適な方法である。
 一方、上記(3)以外の方法を用いる場合には、外部拡散要素によって拡散反射強度を調整する方法と、内部拡散要素によって拡散反射強度を調整する方法を、別個独立に設計することができるため、コントラスト以外の、解像度、ギラツキ、耐映りこみ性等の光学性能の調整が容易となる点で好ましい。
 しかも、用いる樹脂の光学性能を考慮することなく、外部拡散要素によって拡散反射強度を調整することができるため、表面樹脂のハードコート性、防汚性、帯電防止性等の物理性能を発揮する樹脂の選定が容易である。
[透光性粒子]
 透明樹脂に分散される透光性粒子について、以下詳細に記載する。
 透光性粒子は有機粒子であっても、無機粒子であってもよいし、有機粒子と無機粒子を混合して使用してもよい。
 本発明の光学シートにおいて、用いる透光性粒子の平均粒径は、0.5~20μmの範囲が好ましく、より好ましくは1~10μmである。この範囲内であれば、内部拡散及び/又は外部拡散による拡散反射強度分布を、調整することが可能である。
 特に、透光性粒子の平均粒径が0.5μm以上であると、粒子の凝集が過度にならず、凹凸形成の調整が容易になり、20μm以下であると、ギラツキやざらついた画像が出にくいために、拡散反射強度分布を設計する上での自由度が確保される。
 また、透光性粒子の粒径のばらつきが少ないほど、散乱特性にばらつきが少なく、拡散反射強度分布設計が容易となる。より具体的には、重量平均による平均径をMV、累積25%径をd25、累積75%径をd75としたとき、(d75-d25)/MVが0.25以下であることが好ましく、0.20以下であることが更に好ましい。
 なお、累積25%径とは、粒径分布における粒径の小さい粒子からカウントして、25質量%となったときの粒子径をいい、累積75%径とは、同様にカウントして75質量%となったときの粒子径をいう。
 粒径のばらつきの調整方法としては、例えば、合成反応の条件を調整することで行うことができ、また、合成反応後に分級することも有力な手段である。分級では、その回数を上げることやその程度を強くすることで、望ましい分布の粒子を得ることができる。
 分級には風力分級法、遠心分級法、沈降分級法、濾過分級法、静電分級法等の方法を用いることが好ましい。
 さらに、機能層を構成する透明樹脂と透光性粒子の屈折率差が0.01~0.25であることが好ましい。屈折率差が0.01以上であると、ギラツキを抑制することができ、0.25以下であると拡散反射強度分布設計が容易となる。以上の観点から、該屈折率差は0.01~0.2が好ましく、0.02~0.15であることがより好ましい。
 なお、透光性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中、透光性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定する他、カーギル試薬を用いるなどの方法により測定される。
 また、比重差が0.1以上の2種以上の透光性粒子を併用したり、粒子径の差が0.5μm以上である、異なる粒径を有する2種以上の透光性粒子を併用したり、屈折率差が0.01以上の2種以上の透光性粒子を併用したり、球状の透光性粒子と不定形の透光性粒子を併用することによっても、拡散反射強度の調整を行うことが可能である。
 なお、比重は液相置換法、気相置換法(ピクノメーター法)等で、粒子径はコールターカウンター法や光回折散乱法等または光学積層体の断面をSEMやTEM等顕微鏡で観察することで、屈折率は、アッベ屈折計で直接測定するか、カーギル試薬を用いる方法、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量的に評価できる。
 透光性有機粒子としては、ポリメチルメタクリレート粒子、ポリアクリル-スチレン共重合体粒子、メラミン樹脂粒子、ポリカーボネート粒子、ポリスチレン粒子、架橋ポリスチレン粒子、ポリ塩化ビニル粒子、ベンゾグアナミン-メラミンホルムアルデヒド粒子、シリコーン粒子、フッ素系樹脂粒子、ポリエステル系樹脂等が用いられる。
 また、透光性無機粒子としては、シリカ粒子、アルミナ粒子、ジルコニア粒子、チタニア粒子また中空や細孔を有する無機粒子等が挙げられる。
 また、屈折率、粒径分布が同一な透光性微粒子であっても、透光性粒子の凝集の程度により拡散反射強度分布は異なるので、凝集状態の異なる2種類以上の透光性粒子を組み合わせて使用したり、シランカップリング処理の条件の異なる2種以上の無機粒子を用いることで凝集状態を変えて拡散反射強度分布を調整することができる。
 なお、透光性粒子の凝集防止には、可視光線の波長以下の粒子径、例えば50nm以下程度の粒子径を有するシリカなどを、添加する方法が好適に挙げられる。
 また、内部拡散の効果を得るためには、可視光線の波長以上の粒子径を有するシリカなどの不定形透光性粒子が有効である。球状粒子に比べて、不定形粒子は反射拡散角度の分布を広くする作用があるためである。
 しかしながら、不定形透光性粒子は内部反射分布も広くするので、塗膜の拡散性に影響を及ぼし、拡散反射強度の調整が困難となる場合があるので、広い反射拡散を得たい場合等必要に応じて添加することが好ましい。
 より具体的には、不定形透光性粒子を、球状粒子と不定形透光性粒子との合計量に対して、4質量%未満の範囲内で添加することが好ましい。
 透光性粒子は、透明樹脂(固形分)中に1~30質量%含有されるように配合されることが好ましく、2~25質量%の範囲がより好ましい。1質量%以上であると、耐映り込み性を得ることができ、一方、30質量%以下であると、コントラストの低下が少なく、良好な視認性を得ることができる。
[透明樹脂]
 機能層を構成する透明樹脂としては、電離放射線硬化性樹脂又は熱硬化性樹脂を用いることができる。機能層を形成するには、電離放射線硬化性樹脂又は熱硬化性樹脂を含有する樹脂組成物を透明基材に塗布し、該樹脂組成物中に含まれるモノマー、オリゴマー及びプレポリマーを架橋及び/又は重合させることにより形成することができる。
 モノマー、オリゴマー及びプレポリマーの官能基としては、電離放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
 光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられる。
 また、プレポリマー及びオリゴマーとしては、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等のアクリレート、シロキサン等の珪素樹脂、不飽和ポリエステル、エポキシ樹脂等が挙げられる。
 モノマーとしては、スチレン、α-メチルスチレン等のスチレン系モノマー;(メタ)アクリル酸メチル、(メタ)アクリル酸-2-エチルヘキシル、ペンタエリスリトール(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等のアクリル系モノマー;トリメチロールプロパントリチオグリコレート、トリメチロールプロパントリチオプロピレート、ペンタエリスリトールテトラチオグリコール等の分子中に2個以上のチオール基を有するポリオール化合物などが挙げられる。
 また、バインダーとして、ポリマーを上記樹脂組成物に添加して用いることも可能である。ポリマーとしては、例えばポリメチルメタクリレート(PMMA)等が挙げられる。ポリマーを添加することで、塗液の粘度調整が可能であり、このことによって、塗工を容易にするとともに、粒子の凝集による凹凸形成の調整が容易になるといった利点がある。
 また、上記樹脂組成物には、必要に応じて、光ラジカル重合開始剤を添加することができる。光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物等が用いられる。
 アセトフェノン類としては、2,2-ジメトキシアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシ-ジメチルフェニルケトン、1-ヒドロキシ-ジメチル-p-イソプロピルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン等が挙げられ、ベンゾイン類としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル等が挙げられる。また、ベンゾフェノン類としては、ベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、2,4-ジクロロベンゾフェノン、4,4-ジクロロベンゾフェノンおよびp-クロロベンゾフェノン、4,4’-ジメチルアミノベンゾフェノン(ミヒラーケトン)、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等が使用可能である。
 また、光増感剤を混合して用いることもでき、その具体例としては、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
 また、透明樹脂として、相分離可能な複数の樹脂を用いることでも内部拡散要素による拡散反射強度を調整することが可能である。すなわち、上記したプレポリマー、オリゴマー、モノマー、及びポリマーにおいて、相溶性成分と非相溶性成とを混合して使用することで、前記内部拡散要素による拡散反射強度を調整することも可能である。
 例えば、一方の樹脂がスチレン系樹脂(ポリスチレン、スチレン-アクリロニトリル共重合体等)である場合、他方の樹脂はセルロース誘導体(セルロースアセテートプロピオネート等のセルロースエステルなど)、(メタ)アクリル系樹脂(ポリメタクリル酸メチル等)、脂環式オレフィン系樹脂(ノルボルネンを単量体とする重合体等)、ポリカーボネート系樹脂、ポリエステル系樹脂などが好適に挙げられる。
 また、一方の樹脂がセルロース誘導体(セルロースアセテートプロピオネート等のセルロースエステルなど)である場合、他方の樹脂は、スチレン系樹脂(ポリスチレン、スチレン-アクリロニトリル共重合体等)、(メタ)アクリル系樹脂(ポリメタクリル酸メチル等)、脂環式オレフィン系樹脂(ノルボルネンを単量体とする重合体等)、ポリカーボネート系樹脂、ポリエステル系樹脂などが好適に挙げられる。
 組み合わせる樹脂の比率(質量比)は、1/99~99/1の範囲から選択でき、5/95~95/5の範囲が好ましく、10/90~90/10の範囲がさらに好ましく、20/80~80/20の範囲、特には30/70~70/30の範囲が好ましい。
 さらには、前記プレポリマー、オリゴマー及びモノマーとして、重合収縮が大きいものを用いることで、前記外部拡散要素による拡散反射強度を調整することも可能である。重合収縮が大きいほど、表面の凹凸が大きくなり、拡散反射強度分布が広くなる。
 また、逆に、前記電離放射線硬化性樹脂又は熱硬化性樹脂に相溶性ポリマーの添加や、光の波長以下の微粒子、例えば100nm以下の微粒子を充填材として添加することで、重合収縮を減じさせ前記外部拡散要素による拡散反射強度を調整することも可能である。
 また、上記放射線硬化性樹脂組成物には、通常、粘度を調節したり、各成分を溶解または分散可能とするために溶剤を用いる。該溶剤は、用いる溶剤の種類によって、塗布、乾燥の工程により塗膜の表面状態が異なるため、外部拡散による反射強度分布を調整し得ることを考慮して、適宜選択することが好ましい。具体的には、飽和蒸気圧、透明基材への浸透性等を考慮して選定される。
 本発明の製造方法において、機能層を形成するための樹脂組成物は、透明樹脂としての電離放射性硬化性樹脂、透光性粒子、及び溶媒を含有することが好ましい。
 ここで、該樹脂組成物は、透明基材に含浸する溶剤(以下「浸透性溶剤」ということがある)及び/又は透明基材に含浸する電離放射線硬化性樹脂と、透明基材に含浸しない溶剤及び/又は透明基材に含浸しない電離放射線硬化性樹脂とを含むことが好ましい。
 透明基材への含浸量を調整することによって、機能層の厚さを制御することができ、結果として拡散反射強度を調整できるためである。
 さらに詳細には、透明基材への含浸量と透光性粒子の大きさによって、拡散反射強度を制御することができる。具体的には、溶剤及び/又は電離放射線硬化性樹脂(以下「溶剤等」と表記する場合がある)の基材への含浸量が小さく、かつ透光性粒子が小さい場合には、溶剤等の中に大部分の粒子が埋め込まれた形で機能層が形成されるが、透光性粒子が凝集しやすくなることから、表面の凹凸は比較的大きいものになる。
 一方、透明基材への含浸量の大きい溶剤等と小さい粒径の透光性粒子を組み合わせて用いた場合には、透光性粒子の凝集が少なくなるため、表面の凹凸は比較的小さいものになる。
 また、透明基材への含浸量の大きい溶剤及び/又は電離放射線硬化性樹脂と大きい粒径の透光性粒子を組み合わせて用いた場合には、機能層の厚さが薄くなるために、透光性粒子が機能層から突出する形となり、透光性粒子に起因する表面凹凸が得られる。
 これに対し、透明基材への含浸量の小さい溶剤等と大きい粒径の透光性粒子を組み合わせて用いた場合には、機能層の厚さが厚くなるために、透光性粒子の表面への突出が抑制され、表面の凹凸は比較的小さいものになる。
 このように、溶剤及び/又は電離放射線硬化性樹脂の透明基材への含浸量を調整し、これと透光性粒子の粒径を組み合わせて制御することで、種々の大きさの表面凹凸形状を形成させることができる。
 特に、透明基材がセルロース系樹脂からなる場合に本手法は有効である。
 さらに、上記溶剤として、1種類を単独で又は、常温・常圧における沸点および/または相対蒸発速度の異なる2種以上の溶剤を含むことができる。2種以上の溶剤を用いることで、溶剤の乾燥速度を多様に制御することができる。
 乾燥速度が速いと、粒子の凝集が十分に起こる前に、揮発して溶剤が減少し粘度が高くなるため、それ以上の凝集が進まなくなる。従って、乾燥速度を制御することは、透光性粒子の粒径を制御することになり、上述のように、溶剤及び/又は電離放射線硬化性樹脂の基材への浸透度との関係で、拡散反射強度を制御することにつながる。
 なお、相対蒸発速度とは、ASTM-D3539に示されるように、次の式で求められる速度であり、数字が大きいほど蒸発が速いことを示す。相対蒸発速度=酢酸n-ブチルが蒸発するのに要する時間/ある溶剤が蒸発するのに要する時間である。
 具体的な溶剤としては、上記観点から適宜選択することができるが、具体的には、トルエン、キシレンなどの芳香族系溶剤や、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノンなどのケトン類が好適に挙げられる。
 これらは1種を単独で、又は2種以上を組み合わせて用いることができる。芳香族系溶剤の少なくとも1種とケトン類の少なくとも1種を混合して使用することが好ましい。
 その他、乾燥速度を制御するために、メチルセロソルブ、エチルセロソルブ等のセロソルブ類やセロソルブアセテート類、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等のアルコール類を混合してもよい。
 本発明にかかる光学シートにおいて、透明樹脂中に透光性粒子以外の添加剤が、必要に応じて配合される。例えば、硬度などの物理特性、反射率、散乱性などの光学特性などの向上のため、各種無機粒子を添加することができる。
 無機粒子としては、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモン等の金属やZrO2、TiO2、Al23、In23、ZnO、SnO2、Sb23、ITO、ATO、SiO2等の金属酸化物が挙げられる。その他カーボン、MgF、珪素、BaSO4、CaCO3、タルク、カオリンなどが含まれる。
 該無機粒子の粒径は、拡散反射強度分布への影響を少なくするために、機能層を塗工する際の樹脂組成物中でなるべく微細化されていることが好ましく、平均粒径が100nm以下の範囲であることが好ましい。
 無機粒子を100nm以下に微細化することで透明性を損なわない光学シートを形成できる。なお、無機粒子の粒子径は、光散乱法や電子顕微鏡写真により測定できる。
 また本発明では、凝集防止効果及び沈降防止効果、その他、レベリング性などの特性の向上のため、各種界面活性剤を用いることができる。界面活性剤としては、シリコーンオイル、フッ素系界面活性剤、好ましくはパーフルオロアルキル基を含有するフッ素系界面活性剤などが挙げられる。
 溶剤を含む樹脂組成物を塗工し、乾燥する場合、塗膜内において膜表面と内面とに表面張力差などを生じ、それによって膜内に多数の対流が引き起こされる。この対流はゆず肌や塗工欠陥となる。
 また、黒彩感と画像のキレに悪影響を及ぼす。このような界面活性剤を用いると、この対流を防止することができるため、欠陥やムラのない凹凸膜が得られるだけでなく、拡散反射強度特性の調整も容易となる。
 さらに、本発明では防汚剤、帯電防止剤、着色剤(顔料、染料)、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤などを添加することができる。
 本発明の光学シートに用いられる透明基材としては、透明樹脂フィルム、透明樹脂板、透明樹脂シートや透明ガラスなど、通常光学シートに用いられるものであれば特に限定は無い。
 透明樹脂フィルムとしては、トリアセチルセルロースフィルム(TACフィルム)、ジアセチルセルロースフィルム、アセチルブチルセルロースフィルム、アセチルプロピルセルロースフィルム、環状ポリオレフィンフィルム、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリロニトリルフィルム、ポリノルボルネン系樹脂フィルム等が使用できる。
 特に、本発明の光学シートを偏光板とともに用いる場合では、偏光を乱さないことからTACフィルム、環状ポリオレフィンフィルムが、機械的強度と平滑性を重視する場合は、ポリエチレンテレフタレートフィルムなどのポリエステルフィルムが好ましい。
 また、前記透明基材は多層であっても単層であっても良いし、塗膜との接着性を目的として表面にプライマー層を設けても良い。
 また、透明基材と塗膜層に実質的な屈折率差がある場合に界面で生じる干渉縞を防止するために、例えば透明基板と塗膜層との間に中間の屈折率をもつ干渉縞防止層を設けることや、表面粗さ(十点平均粗さRz)として、0.3~1.5μm程度の凹凸を設けておくことも可能である。なお、RzはJIS B0601 1994に準拠して測定した値である。
 本発明にかかる光学シートにはハードコート性、耐映り込み性、反射防止性、帯電防止性、防汚性等の機能を持たせることが可能である。
 ハードコート性は、通常、鉛筆硬度(JIS K5400に準拠して測定)やスチールウール#0000で荷重をかけながら10往復擦り試験を行い、裏面に黒テープを貼付した状態でキズが確認されない最大荷重で評価する(耐スチールウール擦り性)。
 本発明にかかる光学シートにおいては、鉛筆硬度ではH以上が好ましく、2H以上がさらに好ましい。また、耐スチールウール擦り性では、200g/cm2以上であることが好ましく、500g/cm2以上であることがさらに好ましく、700g/cm2以上であることが特に好ましい。
 反射防止性はシートの反射率を低減するために、最表面に低屈折率層を設ける。低屈折率層の屈折率は、1.5以下であることが好ましく、1.45以下であることがより好ましい。
 低屈折率層は、シリカ又はフッ化マグネシウムを含有する材料、低屈折率樹脂であるフッ素樹脂などにより形成される。
 低屈折率層の厚さdは、d=mλ/4nを満たすものが好ましい。ここで、mは正の奇数を表し、nは低屈折率層の屈折率を表わし、λは波長を表わす。mは好ましくは1であり、λは好ましくは480~580nmである。また、低反射率化の点から、120<n・d<145の関係を有することが好ましい。
 また、光学シート表面での静電気防止の点で帯電防止性能を付与することが好ましい。
 帯電防止性能を付与するには、例えば、導電性微粒子、導電性ポリマー、4級アンモニウム塩、チオフェンなどと反応性硬化樹脂を含む導電性塗工液を塗工する方法、或いは透明膜を形成する金属や金属酸化物等を蒸着やスパッタリングして導電性薄膜を形成する方法等の従来公知の方法を挙げることができる。
 また、帯電防止層をハードコート、耐映り込み性、反射防止等の機能層の一部として使用することもできる。
 帯電防止性を示す指標として表面抵抗値があり、本発明では、表面抵抗値が、1012Ω/□以下が好ましく、1011Ω/□以下がさらに好ましく、1010Ω/□以下が特に好ましい。また、該光学フィルムが蓄積できる最大電圧である、いわゆる飽和帯電圧としては、10kVの印加電圧で2kV以下であることが好ましい。
 また、本発明の光学シートの最表面には防汚層を設けることができる。防汚層は表面エネルギーを下げ、親水性あるいは親油性の汚れを付きにくくするものである。
 防汚層は防汚剤の添加により付与することができ、防汚剤としては、フッ素系化合物、ケイ素系化合物、またはこれらの混合物が挙げられ、特にフロロアルキル基を有する化合物が好ましい。
 以下、本発明の光学シートの製造方法について詳細に記載する。本発明では、上述のように、式0.16<R/V<0.71を指標として、これを満足するように、製造条件を制御することが肝要である。
 本発明の光学シートは、透明基材に機能層を構成する樹脂組成物を塗布して製造する。塗布の方法としては、種々の方法を用いることができ、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ロールコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法、ブレードコート法、マイクログラビアコート法、スプレーコート法、スピンコート法等の公知の方法が用いられる。
 本発明においては、塗布量により反射拡散輝度特性が変化するので、機能層の厚さを1~20μmの範囲で安定して得やすいロールコート法、グラビアコート法、ダイコート法が好ましい。
 前記の方法のいずれかで塗布した後、溶剤を乾燥するために加熱されたゾーンに搬送され各種の公知の方法で溶剤を乾燥する。
 ここで溶剤相対蒸発速度、固形分濃度、塗布液温度、乾燥温度、乾燥風の風速、乾燥時間、乾燥ゾーンの溶剤雰囲気濃度等を選定することにより、表面凹凸形状のプロファイルによる外部拡散及び前記透光性粒子や前記添加剤による内部拡散を調整できる。
 特に、乾燥条件の選定によって反射拡散輝度特性を調整する方法が簡便で好ましい。具体的な乾燥温度としては、30~120℃、乾燥風速では0.2~50m/sであることが好ましく、この範囲内で適宜調整することで反射拡散輝度特性を調整することができる。
 より具体的には、乾燥温度を高くすることで、樹脂及び溶剤の基材への浸透性が向上する。すなわち、乾燥温度を制御することで、樹脂及び溶剤の基材への浸透性を制御することができ、上述したように、透光性粒子の粒径との関係で、拡散反射強度を制御することにつながる。
 例えば、機能層を形成するための樹脂組成物が、透明樹脂、透明樹脂より屈折率の高い透光性粒子及び溶剤からなり、透明樹脂の浸透性を有する成分の屈折率が透光性粒子の屈折率より低く、レべリング性及び透光性粒子の沈降や凝集が同程度の場合には、硬化までの乾燥時間が長くなると、透明樹脂中の低屈折成分が透明基材に浸透し、透明樹脂の屈折率が上昇して、透光性粒子との屈折率差が減少する。
 一方、透明樹脂に対する透光性粒子の割合が増加するため、透光性粒子が表面に突出しやすくなり、表面凹凸が発現しやすくなる。従って、乾燥時間が長くなることにより、内部拡散は小さくなると同時に、外部拡散が大きくなる。
 なお、この浸透性を利用することによりアンカー効果による透明基材と機能層の密着性や、透明基材と機能層との屈折率差が0.03以上で顕著となる干渉縞の発生を防止することも可能となる。
 これは、透明樹脂中の低屈折成分が透明基材に浸透して生じた浸透層が、透明基材と機能層の間に屈折率が連続的に変化する屈折率調整層としての機能を発現し、界面を解消する作用を有するためである。
 また、乾燥速度を早くすることで、透光性粒子の凝集時間が短くなるため凝集が進まず、実質的に作用する透光性粒子の粒径は小さくなったと同様な作用を呈することとなる。
 すなわち、乾燥速度を制御することで、実質的に作用する透光性粒子の粒径を制御することができ、やはり上述したように、溶剤及び/又は電離放射線硬化性樹脂の基材への浸透度との関係で、拡散反射強度を制御することにつながる。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によってなんら限定されるものではない。
(評価方法)
1.拡散正反射強度及び拡散反射強度の測定
 各製造例にて作製された光学シートについて、明細書本文中に記載の方法により測定した。
2.黒彩感及び画像の切れの評価
 ソニー社製液晶テレビ「KDL-40X2500」の最表面の偏光板を剥離し、表面塗布のない偏光板を貼付した。
 次いで、その上に各製造例で作成したサンプルを表面塗布面側が最表面となるように、光学フィルム用透明粘着フィルム(全光線透過率91%以上、ヘイズ0.3%以下、膜厚20~50μmの製品、例えばMHMシリーズ:日栄加工(株)製など)により貼付した。
 該液晶テレビを、照度が約1,000Lxの環境下の室内に設置し、メディアファクトリー社のDVD「オペラ座の怪人」を表示して、液晶テレビから1.5~2.0m程度離れた場所から、該映像を被験者15人にて鑑賞し、下記項目に関して3段階評価の感応評価を実施した。評価基準は以下のとおりであり、最も多かった評価結果を最終結果とした。
(1)黒彩感;動画像表示のとき、コントラストが高く、かつ画像にテリや輝きがあり、躍動感を感じるか否かで判定した。
   ○;良好と答えた人が10人以上
   △;良好と答えた人が5~9人
   ×;良好と答えた人が4人以下
(2)画像の切れ;静止画像表示のとき、コントラストが高く、かつ耐映り込み性(観測者及び観測者の背景の映り込みが気にならない状態)に優れ、静止画像が映えて見えるか否かで判定した。
   ○;良好と答えた人が10人以上
   △;良好と答えた人が5~9人
   ×;良好と答えた人が4人以下
製造例1
 透明基材としてトリアセチルセルロース(富士フィルム(株)製、厚さ80μm)を用意した。
 透明樹脂としてペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、及びポリメタクリル酸メチル(PMMA)の混合物(質量比;PETA/DPHA/PMMA=86/5/9)を用い(屈折率1.51)、これに透光性粒子として、ポリスチレン粒子(屈折率1.60、平均粒径3.5μm、(d75-d25)/MVが0.05)及びスチレン-アクリル共重合粒子(屈折率1.56、平均粒径3.5μm、(d75-d25)/MVが0.04)を、透明樹脂100質量部に対して、各々18.5及び3.5質量部含有させた。
 これに溶剤としてトルエン(沸点110℃、相対蒸発速度2.0)とシクロヘキサノン(沸点156℃、相対蒸発速度0.32)の混合溶剤(質量比7:3)を、透明樹脂100質量部に対して、190質量部配合して得られた樹脂組成物を、前記透明基材に塗工し、0.2m/sの流速で70℃の乾燥空気を流通させ、1分間乾燥させた。
 その後、紫外線を照射して(窒素雰囲気下にて200mJ/cm2)透明樹脂を硬化させ、光学シートを作製した。塗膜厚は3.5μmとした。この光学シートに関し、上記方法にて評価した結果を第2表に示す。
製造例2~7、及び、製造例10~19
 製造例1において、透明基材の種類、透明樹脂の種類、透光性粒子の種類及び含有量、溶剤の種類及び含有量、乾燥条件、及び塗膜厚を、第1表に記載するように変化させて光学シートを作製した。それぞれの光学シートに関し、製造例1と同様に評価した結果を第2表に示す。
製造例8
 透明基材として、トリアセチルセルロース(富士フィルム(株)製、厚さ80μm)を用意した。
 透明樹脂としてペンタエリスリトールトリアクリレート(PETA、屈折率1.51)を用い、これに透光性粒子として、スチレン-アクリル共重合粒子(屈折率1.51、平均粒径9.0μm、(d75-d25)/MVが0.04)及びポリスチレン粒子(屈折率1.60、平均粒径3.5μm、(d75-d25)/MVが0.05)を、それぞれ透明樹脂100質量部に対して、10.0質量部、及び16.5質量部含有させた。
 これに溶剤として、トルエン(沸点110℃、相対蒸発速度2.0)とシクロヘキサノン(沸点156℃、相対蒸発速度0.32)の混合溶剤(質量比7:3)を、透明樹脂100質量部に対して、190質量部配合して得られた樹脂組成物を、前記透明基材に塗工し、1m/sの流速で85℃の乾燥空気を流通させ、1分間乾燥させた。
 これに紫外線を照射して(空気雰囲気下にて100mJ/cm2)透明樹脂を硬化させた。
 該塗膜層の上に、透明樹脂としてPETA(ペンタエリスリトールトリアクリレート、屈折率1.51)、及び溶剤としてトルエン(沸点110℃、相対蒸発速度2.0)とシクロヘキサノン(沸点156℃、相対蒸発速度0.32)の混合溶剤(質量比7:3)を、透明樹脂100質量部に対して、190質量部配合して得られた樹脂組成物を塗工し、5m/sの流速で70℃の乾燥空気を流通させ、1分間乾燥させた(ハードコート層の形成)。
 これに紫外線を照射して(窒素雰囲気下にて200mJ/cm2)透明樹脂を硬化させ
、光学シートを作製した。塗膜厚は全体で12.0μmとした。この光学シートに関し、製造例1と同様に評価した結果を第2表に示す。
製造例9
 製造例8において、透光性粒子であるポリスチレン粒子の含有量を、透明樹脂100質量部に対して、6.5質量部とし、塗膜厚を全体で13.0μmとしたこと以外は製造例8と同様にして、光学シートを作製した。製造例1と同様に評価した結果を第2表に示す。

Figure JPOXMLDOC01-appb-T000001
A;ポリスチレン粒子(屈折率1.60、平均粒径3.5μm、(d75-d25)/MVが0.05)
B;スチレン-アクリル共重合粒子(屈折率1.56、平均粒径3.5μm、(d75-d25)/MVが0.04)
C;スチレン-アクリル共重合粒子(屈折率1.51、平均粒径9.0μm、(d75-d25)/MVが0.04)
D;不定形シリカ(屈折率1.45、平均粒径1.5μm、(d75-d25)/MVが0.6)
E;不定形シリカ(屈折率1.45、平均粒径2.5μm、(d75-d25)/MVが0.8)
P;ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、及びポリメタクリル酸メチル(PMMA)の混合物(質量比;PETA/DPHA/PMMA=86/5/9)(屈折率1.51)
Q;ペンタエリスリトールトリアクリレート(PETA)(屈折率1.51)
X;トルエン(沸点110℃、相対蒸発速度2.0)とメチルイソブチルケトン(沸点116℃、相対蒸発速度1.6)の混合物(質量比8:2)
Y;トルエン(沸点110℃、相対蒸発速度2.0)とシクロヘキサノン(沸点156℃、相対蒸発速度0.32)の混合物(質量比7:3)
Figure JPOXMLDOC01-appb-T000002
 製造例1~19において、拡散反射強度の測定結果からR/Vを計算した。式(I)を満足する光学シートは、黒彩感、画像の切れが良好であり、バランスのとれたものであることがわかる。
 なお、本発明においては、製造例1~4、8~12、15、16及び18が、0.16<R/V<0.71を満足する実施例に該当し、製造例5~7、13、14、17及び19が、上記式を満足しない比較例に該当する。
 本発明の光学シートによれば、従来のヘイズ値では評価し得なかった黒彩感及び画像の切れの評価が簡便に行え、黒彩感に優れ、かつ画像の切れに優れた光学シートを安定的に提供することができる。
 1.光学シート
 2.基材
 4.光束の入射方向
 5.拡散正反射方向
 6.機能層(防眩層)
 7.透光性粒子
 8.可視光吸収材料(黒色のアクリル板)

Claims (12)

  1.  透明基材の少なくとも一方の面に機能層を有し、該機能層の最表面及び/又は内部に拡散要素を有する表示素子表面に用いる光学シートであって、下記式(I)の関係を有することを特徴とする光学シート。
      0.16<R/V<0.71   (I)
       R(拡散正反射強度);拡散正反射方向の強度
       V;光学シートに可視光線を照射した際の拡散正反射方向に対して-θ度~+θ度まで1度ごとに測定した拡散反射強度の総和
  2.  さらに、下記式(II)の関係を有する請求項1に記載の光学シート。
      0.20<R/V<0.62   (II)
  3.  さらに、下記式(III)の関係を有する請求項1に記載の光学シート。
      0.31<R/V<0.62  (III)
  4.  表示素子が液晶表示素子である請求項1~3のいずれか1項に記載の光学シート。
  5.   前記機能層が、透明樹脂に透光性無機粒子及び/又は透光性有機粒子を分散させてなり、該透光性無機粒子及び/又は透光性有機粒子により機能層の表面に凹凸を設ける請求項4に記載の光学シート。
  6.  前記透明基材がセルロース系樹脂からなり、前記機能層が透明樹脂からなり、該透明樹脂が電離放射線硬化性樹脂であり、機能層は該電離放射線硬化性樹脂を含有する電離放射線硬化性樹脂組成物を透明基材上に塗布し、架橋硬化して形成し、電離放射線硬化性樹脂組成物は、透明基材に含浸する溶剤及び/又は透明基材に含浸する電離放射線硬化性樹脂と、透明基材に含浸しない溶剤及び/又は透明基材に含浸しない電離放射線硬化性樹脂とを含み、透明基材への含浸量を調整することにより、前記式(I)又は式(III)のいずれかの関係を有するように制御した請求項4に記載の光学シート。
  7.  前記透明基材がトリアセチルセルロースまたは環状ポリオレフィンである請求項4に記載の光学シート。
  8.  前記透明基材がポリエチレンテレフタレートである請求項4に記載の光学シート。
  9.  前記機能層がハードコート層を含み、耐スチールウール擦り性が200g/cm2以上である請求項4に記載の光学シート。
  10.  最表層に反射防止機能層を形成してなる請求項4に記載の光学シート。
  11.  請求項1~3のいずれか1項に記載の光学シートを用いた偏光板。
  12.  請求項11記載の偏光板を用いた画像表示装置。
PCT/JP2009/067991 2008-10-21 2009-10-19 光学シート WO2010047300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/811,134 US8422135B2 (en) 2008-10-21 2009-10-19 Optical sheet
CN200980102172.7A CN101910877B (zh) 2008-10-21 2009-10-19 光学片
KR1020157034829A KR101779279B1 (ko) 2008-10-21 2009-10-19 광학 시트
KR1020107014110A KR101778801B1 (ko) 2008-10-21 2009-10-19 광학 시트

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008271218 2008-10-21
JP2008-271218 2008-10-21
JP2009-151680 2009-06-26
JP2009151680 2009-06-26

Publications (1)

Publication Number Publication Date
WO2010047300A1 true WO2010047300A1 (ja) 2010-04-29

Family

ID=42119339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067991 WO2010047300A1 (ja) 2008-10-21 2009-10-19 光学シート

Country Status (5)

Country Link
US (1) US8422135B2 (ja)
KR (2) KR101779279B1 (ja)
CN (1) CN101910877B (ja)
TW (1) TWI468739B (ja)
WO (1) WO2010047300A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047059A1 (ja) * 2014-09-22 2016-03-31 パナソニックIpマネジメント株式会社 反射防止部材
WO2016063792A1 (ja) * 2014-10-24 2016-04-28 三菱瓦斯化学株式会社 光拡散フィルム
TWI596379B (zh) 2016-01-21 2017-08-21 友達光電股份有限公司 顯示模組與應用其之頭戴式顯示裝置
CN106297574B (zh) * 2016-09-08 2022-07-01 北京小米移动软件有限公司 屏幕组件
KR101988548B1 (ko) 2016-12-12 2019-06-12 주식회사 엘지화학 광학 필름 및 이를 포함하는 화상 표시 장치
JP7027337B2 (ja) * 2016-12-22 2022-03-01 富士フイルム株式会社 フレキシブルディスプレイ用光学フィルム及びフレキシブルディスプレイ用光学フィルムの製造方法
KR101852376B1 (ko) 2017-11-16 2018-06-04 정화엠큐디(주) 마이크로파 가열을 이용한 커피생두 로스팅 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191952A (ja) * 2002-11-25 2004-07-08 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、及び液晶表示装置
JP2004191956A (ja) * 2002-11-25 2004-07-08 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、及び液晶表示装置
JP2004279491A (ja) * 2003-03-13 2004-10-07 Konica Minolta Holdings Inc 防眩性反射防止層の形成方法、防眩性反射防止フィルムとその製造方法、防眩性反射防止フィルムを用いた表示装置及び防眩性反射防止加工装置
JP2007108725A (ja) * 2005-09-15 2007-04-26 Fujifilm Corp 光学フィルム、反射防止フィルム、それを用いた偏光板およびディスプレイ装置
JP2007188070A (ja) * 2005-12-15 2007-07-26 Fujifilm Corp 光学フィルム、及びそれを用いた偏光板、画像表示装置並びに液晶表示装置
JP2007256844A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 光学フィルム、反射防止フィルム、光学フィルムの製造方法、それを用いた偏光板およびディスプレイ装置
JP2007264113A (ja) * 2006-03-27 2007-10-11 Fujifilm Corp 光学フィルム、偏光板および画像表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703133B2 (ja) 2001-03-12 2005-10-05 日東電工株式会社 光拡散性シート及び光学素子
US20060152801A1 (en) * 2002-11-25 2006-07-13 Fuji Photo Film Co., Ltd Anti-reflection film, polarizing plate and liquid crystal display device
JP2005258155A (ja) * 2004-03-12 2005-09-22 Dainippon Printing Co Ltd 透過型スクリーン用光拡散部材
JP2006081089A (ja) 2004-09-13 2006-03-23 Canon Inc 撮像装置
JP2006189658A (ja) 2005-01-06 2006-07-20 Toshiba Corp 画像表示装置及びその画像表示方法
JP4766936B2 (ja) 2005-07-06 2011-09-07 富士フイルム株式会社 光学フィルムおよびその製造方法、光学補償フィルム、偏光板、並びに液晶表示装置
US20070058250A1 (en) 2005-09-15 2007-03-15 Fuji Photo Film Co., Ltd. Optical film, antireflection film, polarizing plate using the same and display device
US20070139781A1 (en) 2005-12-15 2007-06-21 Fujifilm Corporation Optical film, and polarizing plate, image display device and liquid crystal display device including the same
JP5252811B2 (ja) 2006-05-16 2013-07-31 日東電工株式会社 防眩性ハードコートフィルム、偏光板および画像表示装置
JP5035236B2 (ja) 2006-08-18 2012-09-26 大日本印刷株式会社 プラズマディスプレイ用前面フィルタ、及びプラズマディスプレイ
WO2008069324A1 (ja) * 2006-12-08 2008-06-12 Mitsubishi Rayon Co., Ltd., 光拡散性光学フィルム及びその製造方法、プリズムシート、並びに面光源装置
JP2008180936A (ja) * 2007-01-25 2008-08-07 Nitto Denko Corp 色純度向上シート、光学装置、画像表示装置および液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191952A (ja) * 2002-11-25 2004-07-08 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、及び液晶表示装置
JP2004191956A (ja) * 2002-11-25 2004-07-08 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、及び液晶表示装置
JP2004279491A (ja) * 2003-03-13 2004-10-07 Konica Minolta Holdings Inc 防眩性反射防止層の形成方法、防眩性反射防止フィルムとその製造方法、防眩性反射防止フィルムを用いた表示装置及び防眩性反射防止加工装置
JP2007108725A (ja) * 2005-09-15 2007-04-26 Fujifilm Corp 光学フィルム、反射防止フィルム、それを用いた偏光板およびディスプレイ装置
JP2007188070A (ja) * 2005-12-15 2007-07-26 Fujifilm Corp 光学フィルム、及びそれを用いた偏光板、画像表示装置並びに液晶表示装置
JP2007256844A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 光学フィルム、反射防止フィルム、光学フィルムの製造方法、それを用いた偏光板およびディスプレイ装置
JP2007264113A (ja) * 2006-03-27 2007-10-11 Fujifilm Corp 光学フィルム、偏光板および画像表示装置

Also Published As

Publication number Publication date
CN101910877B (zh) 2014-10-01
US8422135B2 (en) 2013-04-16
CN101910877A (zh) 2010-12-08
TW201027135A (en) 2010-07-16
KR101778801B1 (ko) 2017-09-14
US20100284071A1 (en) 2010-11-11
KR20150144345A (ko) 2015-12-24
KR20110070959A (ko) 2011-06-27
KR101779279B1 (ko) 2017-09-18
TWI468739B (zh) 2015-01-11

Similar Documents

Publication Publication Date Title
WO2010047298A1 (ja) 光学シート
JP5505309B2 (ja) 光学シート
JP4966395B2 (ja) 動画像と静止画像との混用に適した液晶表示装置の黒彩感及び画像の切れの改善方法
JP2010122560A (ja) 光学シートの製造方法及び光学シート
JP5725216B2 (ja) 光学シート
WO2010047300A1 (ja) 光学シート
JP5163259B2 (ja) 光学シートの評価方法
JP5405781B2 (ja) 光学シートの製造方法
JP2014112257A (ja) 光学シート
JP2010128255A (ja) 光学シートの製造方法及び光学シート
JP5399024B2 (ja) 光学シートの選別方法
JP5488430B2 (ja) 動画像と静止画像との混用に適した液晶表示装置の黒彩感及び画像の切れの改善方法
JP2010128108A (ja) 光学シートの製造方法及び光学シート
JP2010122559A (ja) 光学シートの製造方法及び光学シート
JP5493317B2 (ja) 光学シートの外光の反射によるコントラスト低下防止方法
JP2010128256A (ja) 光学シートの製造方法及び光学シート
JP5439769B2 (ja) 光学シートの製造方法
JP2010122710A (ja) 光学シート
JP5531388B2 (ja) 光学シートの製造方法
JP5460032B2 (ja) 光学シートの選別方法
JP2010128106A (ja) 光学シートの製造方法及び光学シート
JP2010128180A (ja) 光学シートの製造方法及び光学シート
JP2010122709A (ja) 光学シート
JP2010122452A (ja) 光学シートの製造方法及び光学シート
JP2014059585A (ja) 光学シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102172.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107014110

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12811134

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821997

Country of ref document: EP

Kind code of ref document: A1