WO2010047259A1 - ラジアルタービンのスクロール構造 - Google Patents

ラジアルタービンのスクロール構造 Download PDF

Info

Publication number
WO2010047259A1
WO2010047259A1 PCT/JP2009/067798 JP2009067798W WO2010047259A1 WO 2010047259 A1 WO2010047259 A1 WO 2010047259A1 JP 2009067798 W JP2009067798 W JP 2009067798W WO 2010047259 A1 WO2010047259 A1 WO 2010047259A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
turbine
partition plate
tongue
flow
Prior art date
Application number
PCT/JP2009/067798
Other languages
English (en)
French (fr)
Inventor
横山隆雄
大迫雄志
惠比寿幹
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2010534778A priority Critical patent/JP5047364B2/ja
Priority to CN200980107185.3A priority patent/CN101960120B/zh
Priority to KR1020107018415A priority patent/KR101200627B1/ko
Priority to EP09821956.1A priority patent/EP2249002B1/en
Priority to US12/867,272 priority patent/US8591177B2/en
Publication of WO2010047259A1 publication Critical patent/WO2010047259A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the present invention is used in an exhaust gas turbocharger of a relatively small to medium size internal combustion engine, and the working gas from the engine (internal combustion engine) is located inside the scroll from the spiral scroll formed in the turbine casing.
  • the present invention relates to a scroll structure of a radial turbine configured to rotationally drive the turbine rotor by causing the turbine rotor blade to radially flow into and act on the turbine rotor blade of the turbine rotor.
  • FIG. 6 is a cross-sectional view along an axial center line showing a structure of an exhaust gas turbocharger for an engine.
  • reference numeral 1 denotes a turbine casing
  • a spiral scroll 4 is formed in the turbine casing 1
  • a gas outlet passage 5 is formed on the inner periphery of the turbine casing 1.
  • a bearing housing 9 is fixed to the turbine casing 1
  • a compressor housing 6 is fixed to the bearing housing 9.
  • a turbine rotor is indicated by reference numeral 10, and a plurality of turbine blades 3 are fixed to the outer periphery of the turbine rotor 10 at equal intervals in the circumferential direction.
  • a compressor 7 is housed in the compressor housing 6, and a diffuser 8 is provided at an air outlet of the compressor 7.
  • a rotor shaft 12 connecting the turbine rotor 10 and the compressor 7 is supported by a bearing housing 9 by two bearings 11 and 11. The rotation center is indicated by 20z.
  • FIGS. 7A, 7B, and 7C are a cross-sectional view and a W-W cross-sectional view (FIG. 7C) of the scroll 4 of the turbine casing 1, respectively.
  • exhaust gas from the engine enters the scroll 4 and circulates along the spiral of the scroll 4 and from the end face of the outer peripheral side inlet 4 c of the turbine rotor 3, the turbine rotor 3 , And flows radially toward the center of the turbine rotor 10 to perform expansion work on the turbine rotor 10, and then axially flows out and is discharged from the gas outlet passage 5 to the outside of the machine.
  • the scroll 4 is formed in a spiral shape in the turbine casing 1, but the gas of the scroll 4 is formed.
  • a tongue 21 is formed on the inner periphery of the inlet, and the tongue 21 needs a thickness of at least about 3 mm because the turbine casing 1 is a casting. Therefore, when the exhaust gas flows, wake (low speed region) 30 of the tongue occurs.
  • the wake 30 is thicker in the thicker portion 7B of the tongue 21 than in the case of FIG. 7A, and hence the decrease in turbine performance due to the wake 30 of the tongue 21 is also greater.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-120303
  • a tongue is formed on the inner periphery of the gas inlet of the scroll, and the flow passage cross-sectional area of the tongue directly downstream of The tongue thickness dimension is formed smaller in the width direction than the flow channel cross-sectional area, and the wake generated at the tongue can be reduced.
  • the wake (low speed region) 30 is due to the flow of gas from the outer side to the inner side in the radial direction, and the flow of the exhaust gas toward the inner side is as shown in FIG.
  • the thermal stress is increased because the thickness of the tongue 21 is small.
  • the present invention avoids the flow of gas from the radially outer side toward the inner side in the vicinity of the tongue to suppress the decrease in turbine performance, and maximizes the thermal stress due to the formation of the tongue. It is an object to provide a reduced radial turbine scroll structure.
  • the present invention achieves such an object, in which working gas is allowed to radially flow from a spiral scroll formed in a turbine casing into a turbine blade of a turbine rotor located inside the scroll to move the turbine gas.
  • the partition plate is formed in a certain range of length on the line of the tongue formed on the inner periphery of the gas inlet or between the scroll side walls at the outlet of the tongue formed on the inner periphery of the gas inlet of the scroll.
  • the present invention is characterized in that it reduces the height of the to prevent the flow of gas from radially outward to inward in the vicinity of the tongue.
  • the scroll forms a partition plate in a certain range of length on the line of the tongue portion formed on the inner periphery of the gas inlet portion, and the flow of the gas in the upper space of the partition plate to the lower space It is characterized by being suppressed by a partition plate.
  • the cross-sectional shape of the end portion of the partition plate is cut from the upper space side to the lower space side to form an inclined surface toward the upper space side.
  • the present invention is (1) The flow area of the lower space of the partition plate is reduced in the circumferential direction to generate a throttling effect, thereby generating a gas flow from the lower space to the upper space of the partition plate. (2) The flow area of the upper space of the partition plate is not reduced, and the flow area of the lower space of the partition plate is reduced in the circumferential direction, thereby suppressing the flow of gas from the upper space to the lower space Do.
  • a partition member is disposed at a predetermined length on a line of a tongue formed on the inner periphery of the gas inlet of the scroll, and the partition member has a wide passage area at the end along the circumferential direction and the tongue It is characterized in that the passage area changes in the circumferential direction so that the passage area becomes narrower as it approaches.
  • the working gas is allowed to radially flow from the spiral scroll formed in the turbine casing into the turbine blade of the turbine rotor located inside the scroll and act on the turbine blade.
  • a scroll structure of a radial turbine configured to rotationally drive the turbine rotor by axially flowing out, heights between scroll side walls at an outlet portion of a tongue portion formed on an inner periphery of a gas inlet portion of the scroll to reduce the passage cross-sectional area at the outlet portion of the tongue.
  • the scroll in the scroll structure of the radial turbine, forms a partition plate in a certain range of length on the line of the tongue portion formed on the inner periphery of the gas inlet portion, and the gas in the upper space of the partition plate If the flow of the air into the lower space is suppressed by the partition plate, and in the invention, the partition plate is formed to project from the wall surface of the turbine casing following the shroud side of the turbine blade of the scroll, If a partition plate is projected to a certain range of length on the line of the tongue, particularly on the wall surface of the turbine casing following the shroud side of the turbine blade, the partition plate will go from the upper space side to the lower space side of the scroll Exhaust gas flow can be suppressed. Therefore, the exhaust gas flow from the upper space side to the lower space side is reduced, and the occurrence of wake can be suppressed, whereby the reduction of the turbine efficiency can be prevented.
  • the opening can be formed in the partition plate, the thermal restraint due to the formation of the partition plate and the tongue can be reduced, and thus the thermal stress due to the restraint can be reduced.
  • the cross-sectional shape of the end portion of the partition plate is cut from the upper space side to the lower space side to form an inclined surface facing the upper space side
  • the gas flow directed inward in the radial direction causes wakes from the partition plate, but the projected area of the end portion of the partition plate with respect to the direction of the gas flow is configured by forming an inclined surface toward the upper space side at the end of the partition plate. Is reduced, which reduces wakes.
  • the present invention if the flow area of the lower space of the partition plate is reduced in the circumferential direction to generate the throttling effect and generate the flow of gas from the lower space to the upper space of the partition plate, If the throttling effect is generated by decreasing the flow passage area in the lower space of the partition plate in the circumferential direction, a force acts to flow the exhaust gas from the lower space of the partition plate to the upper space, and from the upper space side It is possible to suppress the inflow toward the lower space side of the tongue.
  • the flow of gas from the upper space to the lower space is achieved by reducing the flow passage area of the upper space of the partition plate and reducing the flow passage area of the lower space of the partition plate in the circumferential direction. If you suppress Since the flow passage area of the upper space of the partition plate is not reduced, the inflow toward the lower space side of the tongue from the upper space side can be suppressed.
  • the partition member is disposed in a certain range of length on the line of the tongue portion formed on the inner periphery of the gas inlet portion of the scroll, and the partition member has the passage area of the end along the circumferential direction If the passage area is changed in the circumferential direction so that the passage area becomes narrower as it gets closer to the tongue, The flow of exhaust gas can be suppressed by widening the end of the tongue portion where the flow of exhaust gas is small and narrowing the passage area near the tongue where the flow of exhaust gas is the largest. Moreover, since the projection area of the passage can be reduced by the above, the wake of the tongue can be reduced.
  • the passage area of the end of the partition member is wide along the circumferential direction, and the passage area is gradually narrowed, and the passage area is formed to be the narrowest when approaching the tongue.
  • the height between the scroll side walls at the outlet portion of the tongue portion formed on the inner periphery of the gas inlet portion of the scroll is reduced to narrow the passage cross-sectional area at the outlet portion of the tongue portion. If By reducing the axial height of the scroll at the outlet portion of the tongue, ie by narrowing the passage cross-sectional area at the outlet portion of the tongue, preventing rapid expansion of the passage area due to the absence of the tongue, The area can be reduced smoothly to reduce the turbulence of the tongue wake, which can reduce the wake of the inner scroll of the tongue.
  • FIG. 1 The structure of the scroll part of the radial turbine of the exhaust gas turbocharger concerning the 1st example of the present invention is shown, (A) is a figure seen perpendicularly to the axis of a turbine casing, (B) is AA of (A).
  • FIG. It is the figure which looked at a right-angled perpendicular view of a turbine casing which shows the structure of the scroll part of the radial turbine of the exhaust gas turbocharger concerning 2nd, 3rd Example of this invention.
  • FIG. (A) is a view showing a structure of a scroll portion of a radial turbine of an exhaust gas turbocharger according to a fourth embodiment of the present invention, as viewed perpendicularly to the turbine casing, (B) is an enlarged view of a Y portion in (A)
  • FIG. (A) is a view showing a structure of a scroll portion of a radial turbine of an exhaust gas turbocharger according to a fifth embodiment of the present invention, as viewed in a direction perpendicular to a turbine casing,
  • (B) is a view as viewed from an arrow B in (A) It is an enlarged view.
  • FIG. 1 is a cross-sectional view along an axial center line showing a structure of an exhaust gas turbocharger for an engine to which the present invention is applied.
  • (A), (B), (C) concerning prior art is sectional drawing of the scroll of a turbine casing.
  • FIG. 6 is a cross-sectional view along an axial center line showing a structure of an exhaust gas turbocharger for an engine to which the present invention is applied.
  • reference numeral 1 denotes a turbine casing
  • a spiral scroll 4 is formed in the turbine casing 1
  • a gas outlet passage 5 is formed on the inner periphery of the turbine casing 1.
  • a bearing housing 9 is fixed to the turbine casing 1
  • a compressor housing 6 is fixed to the bearing housing 9.
  • a turbine rotor is indicated by reference numeral 10, and a plurality of turbine blades 3 are fixed to the outer periphery of the turbine rotor 10 at equal intervals in the circumferential direction.
  • a compressor 7 is accommodated in the compressor housing 6 and a diffuser 8 is provided at an air outlet of the compressor 7.
  • a rotor shaft 12 connecting the turbine rotor 10 and the compressor 7 is supported by a bearing housing 9 by two bearings 11 and 11.
  • the rotation center is indicated by reference numeral 20z.
  • exhaust gas from the engine enters the scroll 4 and circulates along the spiral of the scroll 4 and from the end face of the outer peripheral side inlet 4 c of the turbine rotor 3, the turbine rotor 3 , And flows radially toward the center side of the turbine rotor 10 to perform expansion work on the turbine rotor 10, and then axially flows out and is discharged from the gas / gas outlet passage 5 to the outside.
  • the present invention suppresses the occurrence of such a wake and prevents the decrease in turbine efficiency due to the occurrence of the wake.
  • FIG. 1 shows the structure of the scroll portion of a radial turbine of an exhaust gas turbocharger according to a first embodiment of the present invention, in which (A) is a view seen perpendicularly to the turbine casing and (B) is an example of (A). It is an AA line sectional view.
  • Exhaust gas from the engine enters the scroll 4 of the turbine casing 1 and travels along the spiral of the scroll 4 while flowing into the turbine moving blade 3 from the end face of the outer peripheral side inlet 4c of the turbine moving blade 3 After flowing radially toward the center side of the rotor 10 to perform expansion work on the turbine rotor 10, it axially flows out and is discharged from the gas outlet passage 5 to the outside of the machine.
  • the axis of rotation is indicated by 20z.
  • the partition plate 20 is formed in a certain range of length on the line of the tongue portion 21 formed on the inner periphery of the opening 21 s. That is, as shown in FIG. 1A, the partition plate 20 is an end of the tongue 21 on the line of the tongue 21, that is, on a line extending the center of the tongue 21 at a circumferential position. It is appropriate that the angle ⁇ on the non-tongue 21 side is at least 10 ° or more from the line connecting the part and the rotation center 20z. As shown in FIG. 1A, an opening 21s is formed between the partition plate 20 and the tongue 21.
  • the partition plate 20 is made of a plate material and is protruded on the wall surface of the turbine casing 1 on the shroud side 4 d of the turbine moving blade 3 of the scroll 4.
  • the scroll 4 is divided into the scroll outer side 4a outside the partition plate 20 and the scroll inner side 4b inside the partition plate 20, and a portion without the partition plate 20 Is an opening 4h.
  • the flow to the scroll outer side 4 a of the upper space of the partition plate 20 and the scroll inner side 4 b of the lower space of the lower space is suppressed by the partition plate 20.
  • the partition plate 20 may be provided on the wall surface of the turbine casing 1 on the hub side 4 f of the turbine moving blade 3 of the scroll 4.
  • the partition plate 20 is provided to protrude in a certain range of length on the line of the tongue 21, particularly on the wall surface of the turbine casing following the shroud side 4d of the turbine moving blade 3, the partition Exhaust gas flow from the scroll outer side (upper space) 4a of the scroll 4 toward the scroll inner side (lower space) 4b can be suppressed by the plate 20, whereby generation of the wake 30 (see FIG. 7) can be suppressed. Therefore, the exhaust gas flow from the scroll outer side (upper space) 4a to the scroll inner side (lower space) 4b is reduced, and as described above, the generation of the wake 30 can be suppressed, whereby the reduction of the turbine efficiency can be prevented. Further, since the opening 21s can be formed in the partition plate 20, the thermal restraint due to the formation of the partition plate 20 and the tongue 21 can be reduced, and thus the thermal stress due to the restraint can be reduced.
  • FIG. 2 is a view showing a structure of a scroll portion of a radial turbine of an exhaust gas turbocharger according to second and third embodiments of the present invention, as viewed perpendicularly to a turbine casing.
  • the throttling effect is generated by decreasing the flow passage area of the scroll inner side (lower space) 4b of the partition plate 20 in the circumferential direction, and partitioning from the scroll inner side (lower space) 4b. A flow of gas to the scroll outer side (upper space) 4 a of the plate 20 is generated.
  • the flow passage area of the scroll outer side (upper space) 4a of the partition plate 20 is not reduced, and the flow passage area of the scroll inner side (lower space) 4b of the partition plate 20 By reducing in the direction, the flow of gas from the scroll outer side (upper space) 4a to the scroll inner side (lower space) 4b is suppressed.
  • the flow passage area of the scroll outer side (upper space) 4a of the partition plate 20 is not reduced, so the flow from the scroll outer side (upper space) 4a toward the scroll inner side (lower space) 4b of the tongue 21 is performed. It can be suppressed.
  • the other configuration is the same as that of the first embodiment, and the same members as those in the first embodiment are denoted by the same reference numerals.
  • FIG. 3 (A) is a view showing a structure of a scroll portion of a radial turbine of an exhaust gas turbocharger according to a fourth embodiment of the present invention, as viewed in a direction perpendicular to a turbine casing, (B) is Y in (A).
  • FIG. 3 (B) is a view showing a structure of a scroll portion of a radial turbine of an exhaust gas turbocharger according to a fourth embodiment of the present invention, as viewed in a direction perpendicular to a turbine casing, (B) is Y in (A).
  • FIG. In the fourth embodiment of the present invention the cross-sectional shape of the end of the partition plate 20 is cut from the scroll outer side (upper space) 4a to the scroll inner side (lower space) 4b and inclined to the scroll outer side (upper space) 4a. It is configured to 20y. That is, as shown in FIG. 3B, the width S is linearly changed such that the scroll outer side (upper space) 4a has a width S1
  • the gas flow from the radially inner side causes wakes from the partition plate 20.
  • the inclined surface 20y toward the scroll outer side (upper space) 4a the projection area of the end of the partition plate 20 with respect to the direction of the gas flow is reduced, thereby reducing the wake.
  • the remaining structure of the fourth embodiment is similar to that of the first embodiment, and the same members as those in the first embodiment are designated by the same reference numerals.
  • FIG. 4 (A) shows the structure of the scroll portion of the radial turbine of the exhaust gas turbocharger according to the fifth embodiment of the present invention, as viewed in a direction perpendicular to the turbine casing, (B) shows B in (A). It is an arrow enlarged view.
  • the partition member 20a is disposed in a certain range of length on the line of the tongue portion 21 formed on the inner periphery of the gas inlet portion of the scroll 4, and the partition member 20a is radially outside
  • the passage width of the opening H (FIG. 4 (B)) communicating the upper space and the lower space in the radial direction is wider along the circumferential direction and the passage width at the end is wider. To change in the circumferential direction.
  • the passage widths a and b are circumferential such that the passage width a becomes narrower as the passage width b at the end becomes wider and closer to the tongue 21. It is configured to change in the direction W.
  • the end of the anti-tongue portion 21 with less inflow of exhaust gas is made wider (passage width b), and the passage width a in the vicinity of the tongue 21 with the largest inflow of exhaust gas is narrowed.
  • the flow of exhaust gas can be suppressed.
  • path can be reduced by the above, the wake of the tongue part 21 can be reduced.
  • the partition member 20a has a passage width b such that the passage width b at the end is wide along the circumferential direction W and gradually narrows the passage width, and the passage width a becomes the narrowest when approaching the tongue 21. It is formed to change continuously.
  • the other configuration is the same as that of the first embodiment, and the same members as those in the first embodiment are denoted by the same reference numerals.
  • FIG. 5 (A) shows the structure of the scroll portion of the radial turbine of the exhaust gas turbocharger according to the sixth embodiment of the present invention, as viewed in a direction perpendicular to the turbine casing, (B) shows Z in (A). It is a perspective view from the arrow R direction with a partial enlarged view.
  • the sixth embodiment of the present invention does not have a structure in which the partition plate 20 and the partition member 20a are located halfway from one wall of the scroll to the other wall as shown in the first to fifth embodiments.
  • the height (H) from one wall K1 of the outlet portion 20C of the tongue 21 to the other wall K2 is squeezed to form the throttled portion M. That is, as shown in FIG.
  • the structure is focused on the surface B. That is, assuming that the height of the inner scroll US on the surface A on the upstream side is H1 and the height of the outlet surface B is H2, there is a relationship of H2 ⁇ H1.
  • FIG. 5C shows the relationship between the axial length of the inner scroll US, that is, the height H in FIG. 5B in the circumferential direction.
  • the height of the conventional inner scroll US decreases at a constant rate as shown by the solid line in FIG. 5C, but in the case of the sixth embodiment, this height decreases sharply at the tongue 21 exit portion.
  • the tongue portion 21 disappears as shown by the solid line in FIG. 5D before and after the exit portion of the tongue portion 21 and the area is rapidly expanded there. The sudden change of the area can be prevented as shown by the broken line in FIG.
  • the upstream side surface A of the inner scroll US is rapidly reduced at the outlet surface B, and the tip end portion of the tongue portion 21 is connected.
  • the gas flow from the radially outer side to the inner side in the vicinity of the tongue portion is avoided to suppress the decrease in turbine performance, and the thermal stress due to the formation of the tongue portion is maximally reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

舌部の近傍の径方向外側から内側に向かうガスの流れを回避してタービン性能の低下を抑制し、且つ舌部の形成による熱応力を最大限に低下したラジアルタービンのスクロール構造を提供する。作動ガスをタービンケーシング内に形成された渦巻状のスクロールから該スクロールの内側に位置するタービンロータのタービン動翼へと半径方向に流入させて該タービン動翼に作用させた後、軸方向に流出させることにより該タービンロータを回転駆動するように構成されたラジアルタービンのスクロール構造において、前記スクロール4は、前記スクロールは、ガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切板20を形成するか若しくはスクロールのガス入口部内周に形成される舌部21の出口部分におけるスクロール側壁間の高さを減少させて、舌部の近傍の径方向外側から内側に向かうガスの流れを回避した。

Description

ラジアルタービンのスクロール構造
 本発明は、比較的中小型内燃機関の排気ターボ過給機に用いられ、エンジン(内燃機関)からの作動ガスを、タービンケーシング内に形成された渦巻状のスクロールから該スクロールの内側に位置するタービンロータのタービン動翼へと半径方向に流入させて該タービン動翼に作用させた後、軸方向に流出させることにより該タービンロータを回転駆動するように構成されたラジアルタービンのスクロール構造に関する。
 図6は、エンジン用排気ターボ過給機の構造を示す軸心線に沿う断面図である。
 図6において、符号1はタービンケーシングを示し、該タービンケーシング1内には渦巻き状のスクロール4が形成され、また、タービンケーシング1の内周にはガス出口通路5が形成されている。
 前記タービンケーシング1には、軸受ハウジング9が固定され、該軸受ハウジング9にはコンプレッサハウジング6が固定されている。
 タービンロータは符号10で示され、該タービンロータ10の外周に複数のタービン動翼3が円周方向等間隔に固着されている。
 前記コンプレッサハウジング6内には、コンプレッサ7が収納され、該コンプレッサ7の空気出口にはディフューザ8が設けられている。前記タービンロータ10とコンプレッサ7とを連結するロータシャフト12が、2個の軸受11,11にて軸受ハウジング9に支持されている。回転中心を20zで示す。
 図7(A)、(B)、(C)はタービンケーシング1のスクロール4の断面図及びW-W断面図(図7の(C))である。
 かかる排気ターボ過給機において、エンジンからの排気ガスは、前記スクロール4に入り、該スクロール4の渦巻きに沿って周回しながら、タービン動翼3の外周側入口4cの端面から該タービン動翼3に流入し、タービンロータ10の中心側に向かい半径方向に流れてタービンロータ10に膨張仕事をなした後、軸方向に流出してガス出口通路5から機外に排出される。
 そして、前記運転時において、図7(A)、(B)、(C)に示すように、前記タービンケーシング1内には前記スクロール4は渦巻き状に形成されているが、該スクロール4のガス入口部内周には舌部21が形成され、該舌部21は、タービンケーシング1が鋳物のため、少なくとも3mm程度の厚さが必要となる。
 このため、排気ガスの流動時に舌部のウェイク(低速領域)30が発生する。該ウェイク30は、図7(A)の場合よりも、舌部21の厚い図7(B)の方が大きくなって、従って舌部21のウェイク30によるタービン性能の低下も大きくなる。
 尚、特許文献1(特開2003-120303号公報)のものは、スクロールのガス入口部内周には舌部が形成され、該舌部の直下流側の流路断面積を、舌部端の流路断面積よりも幅方向に舌部厚み寸法だけ、小さく形成し、舌部にて発生したウェイクを低減することができる。
 前記のように、従来の排気ターボ過給機においては、図7(A)、(B)、(C)に示すように、排気ガスの流動時に舌部のウェイク(低速領域)30が発生し、かかるウェイク30は、舌部21の厚い方が大きくなる。この舌部21のウェイク30の発生によって、タービン性能の低下を引き起こす。
 即ち、前記ウェイク(低速領域)30は、径方向の外側から内側に向かうガスの流れによるものであり、かかる排気ガスの内側に向かう流れは、図7(A)のように、舌部21が薄い場合の方が少なく、タービン性能の低下も小さくなるが、この場合には、舌部21の厚さが薄いため熱応力が大きくなる。
特開2003-120303号公報
 本発明はかかる従来技術の課題に鑑み、舌部の近傍の径方向外側から内側に向かうガスの流れを回避してタービン性能の低下を抑制し、且つ舌部の形成による熱応力を最大限に低下したラジアルタービンのスクロール構造を提供することを目的とする。
 本発明はかかる目的を達成するもので、作動ガスをタービンケーシング内に形成された渦巻状のスクロールから該スクロールの内側に位置するタービンロータのタービン動翼へと半径方向に流入させて該タービン動翼に作用させた後、軸方向に流出させることにより該タービンロータを回転駆動するように構成されたラジアルタービンのスクロール構造において、
前記スクロールは、ガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切板を形成するか若しくはスクロールのガス入口部内周に形成される舌部の出口部分におけるスクロール側壁間の高さを減少させて、舌部の近傍の径方向外側から内側に向かうガスの流れを回避したことを特徴とする。
 特に本発明は前記スクロールは、ガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切板を形成し、該仕切板の上部空間のガスの下部空間への流れを該仕切板で抑制したことを特徴とする。
 かかる発明においては、前記仕切板を前記スクロールのタービン動翼のシュラウド側に続くタービンケーシング壁面に突設するのが好ましい。
 また、かかる発明において、好ましくは、仕切板の端部の断面形状を上部空間側から下部空間側に切断して上部空間側に向かう傾斜面に構成したことを特徴とする。
 また、本発明は、
 (1)前記仕切板の下部空間の流路面積を、周方向に減少させることにより絞り効果を発生させ、前記下部空間から仕切板の上部空間へのガスの流れを生成する。
 (2)前記仕切板の上部空間の流路面積を減少させず、且つ前記仕切板の下部空間の流路面積を周方向に減少させることにより、上部空間から下部空間へのガスの流れを抑制する。
 また、本発明は、前記ラジアルタービンのスクロール構造において、
 前記スクロールのガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切部材を配置し、該仕切部材は、円周方向に沿って端部の通路面積が広く該舌部に近づくほど通路面積が狭くなるように通路面積が円周方向に変化するように構成したことを特徴とする。
 また、本発明は、作動ガスをタービンケーシング内に形成された渦巻状のスクロールから該スクロールの内側に位置するタービンロータのタービン動翼へと半径方向に流入させて該タービン動翼に作用させた後、軸方向に流出させることにより該タービンロータを回転駆動するように構成されたラジアルタービンのスクロール構造において、前記スクロールのガス入口部内周に形成される舌部の出口部分におけるスクロール側壁間の高さを減少させて、前記舌部の出口部分における通路断面積を絞るように構成したことを特徴とする。
 本発明によれば、ラジアルタービンのスクロール構造において、スクロールは、ガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切板を形成し、該仕切板の上部空間のガスの下部空間への流れを該仕切板で抑制し、また、かかる発明において、仕切板をスクロールのタービン動翼のシュラウド側に続くタービンケーシング壁面に突設する構成とすれば、
 前記舌部のライン上の一定範囲の長さに仕切板を、とくにタービン動翼のシュラウド側に続くタービンケーシング壁面に突設すれば、該仕切板によりスクロールの上部空間側から下部空間側に向かう排気ガス流を抑制できる。
 従って、かかる上部空間側から下部空間側に向かう排気ガス流が低減され、ウェイクの発生を抑制でき、これによりタービン効率の低下を防止できる。
 また、前記仕切板に開口部を形成できるため、該仕切板及び舌部の形成による熱拘束が少なくなり、従ってかかる拘束による熱応力が低減できる。
 また、本発明において、仕切板の端部の断面形状を上部空間側から下部空間側に切断して上部空間側に向かう傾斜面に構成すれば、
 径方向内側に向かうガス流によって、仕切板からウェイクが発生するが、仕切板の端部に上部空間側に向かう傾斜面に構成することにより、ガス流の方向に対する仕切板の端部の投影面積が縮小され、これによりウェイクが低減される。
 また、本発明において、仕切板の下部空間の流路面積を、周方向に減少させることにより絞り効果を発生させ、前記下部空間から仕切板の上部空間へのガスの流れを生成すれば、
 仕切板の下部空間の流路面積を、周方向に減少させることにより絞り効果を発生させれば、仕切板の下部空間から上部空間に排気ガスが流れようとする力が働き、上部空間側から舌部の下部空間側に向かう流れ込みを抑制できる。
 また、本発明において、仕切板の上部空間の流路面積を減少させず、且つ前記仕切板の下部空間の流路面積を周方向に減少させることにより、上部空間から下部空間へのガスの流れを抑制すれば、
 仕切板の上部空間の流路面積を減少させないので、上部空間側から舌部の下部空間側に向かう流れ込みを抑制できる。
 また、本発明は、スクロールのガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切部材を配置し、該仕切部材は、円周方向に沿って端部の通路面積が広く該舌部に近づくほど通路面積が狭くなるように通路面積が円周方向に変化するように構成すれば、
 排気ガスの流れ込みの少ない反舌部の端部を広く、また最も排気ガスの流れ込みの大きい舌部近傍の通路面積を狭くすることにより、排気ガスの流れ込みを抑制できる。また前記により通路の投影面積を減少できるため、舌部のウェイクを低減できる。
 尚、仕切部材の、円周方向に沿って端部の通路面積が広く、序々に通路面積を狭くして行き、舌部に近づくと通路面積が最も狭くなるように形成する。
 また、本発明は、前記スクロールのガス入口部内周に形成される舌部の出口部分におけるスクロール側壁間の高さを減少させて、前記舌部の出口部分における通路断面積を絞るように構成すれば、
 舌部の出口部分におけるスクロールの軸方向の高さを減少させることで、すなわち通路断面積が舌部の出口部分において絞られることで、舌部が無くなることによる急激な通路面積の拡大を防ぎ、スムーズに面積が減少して舌部後流の乱れを低減でき、これによって舌部の内側スクロールのウェイクを低減できる。
本発明の第1実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示し、(A)はタービンケーシングの軸直角に視た図、(B)は(A)のA-A線断面図である。 本発明の第2,3実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示す、タービンケーシングの軸直角に視た図である。 (A)は本発明の第4実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示す、タービンケーシングの軸直角に視た図、(B)は(A)におけるY部拡大図である。 (A)は本発明の第5実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示す、タービンケーシングの軸直角に視た図、(B)は(A)におけるB矢視拡大図である。 本発明の第6実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示す、タービンケーシングの軸直角に視た図である。 本発明の第6実施例にかかる図5(A)におけるZ部拡大図である。 本発明の第6実施例にかかる舌部出口部における内側スクロール高さの変化を説明する説明図である。 本発明の第6実施例にかかる舌部出口部における通路面積の変化を説明する説明図である。 本発明が適用されるエンジン用排気ターボ過給機の構造を示す軸心線に沿う断面図である。 従来技術にかかる(A)、(B)、(C)はタービンケーシングのスクロールの断面図である。
  以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
 図6は、本発明が適用されるエンジン用排気ターボ過給機の構造を示す軸心線に沿う断面図である。
 図6において、符号1はタービンケーシングを示し、該タービンケーシング1内には渦巻き状のスクロール4が形成され、また、タービンケーシング1の内周にはガス出口通路5が形成されている。
 前記タービンケーシング1には軸受ハウジング9が固定され、該軸受ハウジング9にはコンプレッサハウジング6が固定されている。
 タービンロータは符号10で示され、該タービンロータ10の外周に複数のタービン動翼3が円周方向等間隔に固着されている。
 前記コンプレッサハウジング6内にはコンプレッサ7が収納され、該コンプレッサ7の空気出口にはディフューザ8が設けられている。前記タービンロータ10とコンプレッサ7とを連結するロータシャフト12が、2個の軸受11,11にて軸受ハウジング9に支持されている。回転中心を符号20zで示す。
 かかる排気ターボ過給機において、エンジンからの排気ガスは、前記スクロール4に入り、該スクロール4の渦巻きに沿って周回しながら、タービン動翼3の外周側入口4cの端面から該タービン動翼3に流入し、タービンロータ10の中心側に向かい半径方向に流れてタービンロータ10に膨張仕事をなした後、軸方向に流出してガスガス出口通路5から機外に排出される。
 そして、かかる運転時において、前記のように、排気ガスの流動時に舌部のウェイク(低速領域)が発生し、タービン性能が低下する。
 本発明は、かかるウェイクの発生を抑制して、該ウェイクの発生によるタービン効率の低下を防止するものである。
第1実施例
 図1は本発明の第1実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示し、(A)はタービンケーシングの軸直角に視た図、(B)は(A)のA-A線断面図である。
 エンジンからの排気ガスは、タービンケーシング1のスクロール4に入り、該スクロール4の渦巻きに沿って周回しながら、タービン動翼3の外周側入口4cの端面から該タービン動翼3に流入し、タービンロータ10の中心側に向かい半径方向に流れてタービンロータ10に膨張仕事をなした後、軸方向に流出してガス出口通路5から機外に排出される。回転軸心は20zで示す。
 本発明の第1実施例は、前記スクロール4には、開口部21sの内周に形成される舌部21のライン上の、一定範囲の長さに仕切板20を形成している。
 即ち、前記仕切板20は、図1(A)に示すように、円周方向位置において、前記舌部21のライン上、つまり舌部21中心を延長したライン上の、前記舌部21の端部と回転中心20zとを結ぶ線から反舌部21側の角θは少なくとも10°以上が妥当である。
 図1(A)のように、該仕切板20と舌部21との間には、開口部21sが形成される。
 また、前記仕切板20は、図1(B)に示すように、板材からなり、前記スクロール4のタービン動翼3のシュラウド側4dのタービンケーシング1の壁面に突設されている。
 かかる仕切板20を設けたことにより前記スクロール4は、該仕切板20よりも外側のスクロール外側4aと該仕切板20よりも内側のスクロール内側4bとに分けられるとともに、前記仕切板20のない部分は開口部4hとなっている。
 これにより、前記仕切板20の上部空間のスクロール外側4aとガスの下部空間のスクロール内側4bへの流れを、該仕切板20で抑制している。
 尚、前記仕切板20は、前記スクロール4のタービン動翼3のハブ側4fのタービンケーシング1の壁面に突設されても良い。
 以上の第1実施例によれば、舌部21のライン上の一定範囲の長さに仕切板20を、とくにタービン動翼3のシュラウド側4dに続くタービンケーシング壁面に突設したので、該仕切板20によりスクロール4のスクロール外側(上部空間)4aからスクロール内側(下部空間)4bに向かう排気ガス流を抑制でき、これによりウェイク30(図7参照)の発生を抑制できる。
 従って、かかるスクロール外側(上部空間)4aからスクロール内側(下部空間)4bに向かう排気ガス流が低減され、前記のように、ウェイク30の発生を抑制でき、これによりタービン効率の低下を防止できる。
 また、前記仕切板20に開口部21sを形成できるため、該仕切板20及び舌部21の形成による熱拘束が少なくなり、従ってかかる拘束による熱応力が低減できる。
第2,3実施例
 図2は本発明の第2,3実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示す、タービンケーシングの軸直角に視た図である。
 本発明の第2実施例では、前記仕切板20のスクロール内側(下部空間)4bの流路面積を、周方向に減少させることにより絞り効果を発生させ、前記スクロール内側(下部空間)4bから仕切板20のスクロール外側(上部空間)4aへのガスの流れを生成している。
 このように構成すれば、仕切板20のスクロール内側(下部空間)4bの流路面積を、周方向に減少させることにより絞り効果を発生させれば、仕切板20のスクロール内側(下部空間)4bからスクロール外側(上部空間)4aに排気ガスが流れようとする力が働き、スクロール外側(上部空間)4a側から舌部21のスクロール内側(下部空間)4b側に、向かう流れ込みを抑制できる。
 また、本発明の第3実施例では、仕切板20のスクロール外側(上部空間)4aの流路面積を減少させず、且つ前記仕切板20のスクロール内側(下部空間)4bの流路面積を周方向に減少させることにより、スクロール外側(上部空間)4aからスクロール内側(下部空間)4bへのガスの流れを抑制している。
 このように構成すれば、仕切板20のスクロール外側(上部空間)4aの流路面積を減少させないので、スクロール外側(上部空間)4aから舌部21のスクロール内側(下部空間)4bに向かう流れ込みを抑制できる。
 第2,3実施例において、その他の構成は、前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
第4実施例
 図3(A)は本発明の第4実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示す、タービンケーシングの軸直角に視た図、(B)は(A)におけるY部拡大図である。
 本発明の第4実施例では、仕切板20の、端部の断面形状をスクロール外側(上部空間)4aからスクロール内側(下部空間)4bに切断してスクロール外側(上部空間)4aに向かう傾斜面20yに構成している。即ち、図3(B)のように、スクロール外側(上部空間)4aが幅S1,スクロール内側(下部空間)4bが幅S2のように、幅Sを直線的に変化させている。
 このように構成すれば、径方向内側(スクロール外側(上部空間)4aからスクロール内側(下部空間)4b)に向かうガス流によって、仕切板20からウェイクが発生するが、仕切板20の端部にスクロール外側(上部空間)4aに向かう傾斜面20yを構成することにより、ガス流の方向に対する仕切板20の端部の投影面積が縮小され、これによりウェイクが低減される。
 第4実施例において、その他の構成は、前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
第5実施例
 図4(A)は本発明の第5実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示す、タービンケーシングの軸直角に視た図、(B)は(A)におけるB矢視拡大図である。
 本発明の第5実施例では、スクロール4のガス入口部内周に形成される舌部21のライン上の一定範囲の長さに仕切部材20aを配置し、該仕切部材20aは、径方向外側の上部空間と径方向内側の下部空間とを連通する開口部H(図4(B))の通路幅が円周方向に沿って端部の通路幅が広く該舌部に近づくほど通路幅が狭くなるように円周方向に変化している。すなわち図4(B)に示すように円周方向Wに沿って、端部の通路幅bが広く該舌部21に近づくほど通路幅aが狭くなるように、通路幅a、bが円周方向Wに変化するように構成している。
 このように構成すれば、排気ガスの流れ込みの少ない反舌部21の端部を広く(通路幅b)、また最も排気ガスの流れ込みの大きい舌部21近傍の通路幅aを狭くすることにより、排気ガスの流れ込みを抑制できる。また前記により通路の投影面積を減少できるため、舌部21のウェイクを低減できる。
 前記仕切部材20aは、円周方向Wに沿って端部の通路幅bが広く、序々に通路幅狭くして行き、舌部21に近づくと通路幅aが最も狭くなるように、通路幅を連続的に変化するように形成している。
 第5実施例において、その他の構成は、前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
第6実施例
 図5(A)は本発明の第6実施例にかかる排気ターボ過給機のラジアルタービンのスクロール部の構造を示す、タービンケーシングの軸直角に視た図、(B)は(A)におけるZ部拡大図で矢印R方向からの斜視図である。
 本発明の第6実施例では、前記第1実施例から第5実施例のようにスクロールの一方の壁から他方の壁に向かって途中まで仕切板20、仕切部材20aがある構造でなく、図5(B)に示すように、舌部21の出口部分20Cの一方の壁K1から他方の壁K2への高さ(H)が絞られて絞り部分Mを形成している。
 すなわち、舌部21の内側に位置する内側スクロールUS、その内側スクロールUSの舌部先端側に存在する先端部20Cが図5(B)のように、舌部21出口部分において上流側面Aから出口面Bにかけて絞った構造としたものである。
 即ち、上流側の面Aにおける内側スクロールUSの高さをH1とし、出口面Bの高さをH2とするとH2<H1の関係にある。
 図5(C)は、内側スクロールUSの軸方向長さ即ち図5(B)における高さHの周方向における関係を示す。従来の内側スクロールUSの高さは、図5Cの実線のように一定割合にて高さが減少しているが、第6実施例の場合この高さを舌部21出口部分にて急激に減少させるもので図5(C)の破線に相当する。
 こうすることで舌部21の出口部分の前後にて、従来は、図5(D)の実線のように舌分21が無くなりそこで面積が急拡大するが、第6実施例の如く内側スクロールUSの高さを減少させることにより図5(D)の破線の如く面積の急変を防ぐことができる。
 このように構成すれば、内側スクロールUSの上流側面Aを、出口面Bにて急激に減少させて、舌部21の先端部を接続することにより、舌部21がなくなることによる内側スクロールUSへの急激な面積の増加を防ぎ、スムーズに面積が減少するスクロールとなり舌部21後流の乱れを低減でき、これによって舌部の内側スクロールのウェイクを低減できる。
 本発明によれば、舌部の近傍の径方向外側から内側に向かうガスの流れを回避してタービン性能の低下を抑制し、且つ舌部の形成による熱応力を最大限に低下したラジアルタービンのスクロール構造を提供できる。

Claims (8)

  1.  作動ガスをタービンケーシング内に形成された渦巻状のスクロールから該スクロールの内側に位置するタービンロータのタービン動翼へと半径方向に流入させて該タービン動翼に作用させた後、軸方向に流出させることにより該タービンロータを回転駆動するように構成されたラジアルタービンのスクロール構造において、
    前記スクロールは、ガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切板を形成するか若しくはスクロールのガス入口部内周に形成される舌部の出口部分におけるスクロール側壁間の高さを減少させて、舌部の近傍の径方向外側から内側に向かうガスの流れを回避したことを特徴とするラジアルタービンのスクロール構造。
  2.  請求項1記載のラジアルタービンのスクロール構造において、
     前記スクロールは、ガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切板を形成し、該仕切板の径方向外側の上部空間のガスが径方向内側の下部空間へ流れるのを該仕切板で抑制したことを特徴とするラジアルタービンのスクロール構造。
  3.  前記仕切板を、前記スクロールのタービン動翼のシュラウド側に続くタービンケーシング壁面に突設したことを特徴とする請求項2記載のラジアルタービンのスクロール構造。
  4.  前記仕切板の端部の断面形状を上部空間側から下部空間側に切断して径内側に向かうに従って、前記スクロール内壁面との開口幅が縮小するように傾斜面に構成したことを特徴とする請求項2記載のラジアルタービンのスクロール構造。
  5.  前記仕切板の下部空間の流路面積を、周方向に減少させることにより絞り効果を発生させ、前記下部空間から仕切板の上部空間へのガスの流れを生成することを特徴とする請求項2記載のラジアルタービンのスクロール構造。
  6.  前記仕切板の上部空間の流路面積を減少させず、且つ前記仕切板の下部空間の流路面積を周方向に減少させることにより、上部空間から下部空間へのガスの流れを抑制することを特徴とする請求項5記載のラジアルタービンのスクロール構造。
  7.  請求項1記載のラジアルタービンのスクロール構造において、
     前記スクロールのガス入口部内周に形成される舌部のライン上の一定範囲の長さに仕切部材を配置し、該仕切部材は、仕切板の径方向外側の上部空間と径方向内側の下部空間とを連通する通路幅が円周方向に沿って端部の通路幅が広く該舌部に近づくほど通路幅が狭くなるように円周方向に変化するように構成したことを特徴とするラジアルタービンのスクロール構造。
  8.  請求項1記載のラジアルタービンのスクロール構造において、
     前記スクロールのガス入口部内周に形成される舌部の出口部分におけるスクロール側壁間の高さを減少させて、前記舌部の出口部分における通路断面積を絞るように構成したことを特徴とするラジアルタービンのスクロール構造。
PCT/JP2009/067798 2008-10-20 2009-10-14 ラジアルタービンのスクロール構造 WO2010047259A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010534778A JP5047364B2 (ja) 2008-10-20 2009-10-14 ラジアルタービンのスクロール構造
CN200980107185.3A CN101960120B (zh) 2008-10-20 2009-10-14 径流式涡轮的涡管结构
KR1020107018415A KR101200627B1 (ko) 2008-10-20 2009-10-14 래디얼 터빈의 스크롤 구조
EP09821956.1A EP2249002B1 (en) 2008-10-20 2009-10-14 Radial turbine scroll structure
US12/867,272 US8591177B2 (en) 2008-10-20 2009-10-14 Structure of radial turbine scroll

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-269466 2008-10-20
JP2008269466 2008-10-20

Publications (1)

Publication Number Publication Date
WO2010047259A1 true WO2010047259A1 (ja) 2010-04-29

Family

ID=42119300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067798 WO2010047259A1 (ja) 2008-10-20 2009-10-14 ラジアルタービンのスクロール構造

Country Status (6)

Country Link
US (1) US8591177B2 (ja)
EP (1) EP2249002B1 (ja)
JP (1) JP5047364B2 (ja)
KR (1) KR101200627B1 (ja)
CN (1) CN101960120B (ja)
WO (1) WO2010047259A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266432A1 (en) * 2010-12-28 2013-10-10 Mitsubishi Heavy Industries, Ltd. Scroll structure of centrifugal compressor
US20170022830A1 (en) * 2013-12-16 2017-01-26 Cummins Ltd Turbine housing
US9874222B2 (en) 2012-01-11 2018-01-23 Mitsubishi Heavy Industries, Ltd. Scroll structure of turbine housing
JP2018080620A (ja) * 2016-11-15 2018-05-24 株式会社豊田中央研究所 タービンユニット、ターボチャージャ
JP2018150843A (ja) * 2017-03-10 2018-09-27 株式会社Ihi タービンハウジング
US11261746B2 (en) 2018-06-29 2022-03-01 Ihi Corporation Turbine and turbocharger

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838830B2 (ja) * 2008-08-28 2011-12-14 三菱重工業株式会社 可変容量排気ガスタービンの製造方法
US9206817B2 (en) 2010-08-31 2015-12-08 Nippon Soken, Inc. Centrifugal blower
FR2968717B1 (fr) * 2010-12-14 2014-06-13 Faurecia Sys Echappement Carter de turbine pour turbocompresseur, turbine et turbocompresseur correspondants.
JP5660878B2 (ja) * 2010-12-20 2015-01-28 三菱重工業株式会社 ラジアルタービンあるいは斜流タービンのスクロール部構造
WO2013065154A1 (ja) * 2011-11-02 2013-05-10 トヨタ自動車 株式会社 タービンハウジング及び排気タービン過給機
CN106401669A (zh) * 2015-07-31 2017-02-15 新乡航空工业(集团)有限公司 一种中间级涡轮出口流道结构
DE102015014900A1 (de) * 2015-10-22 2017-04-27 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Radialturbinengehäuse
DE102016008273A1 (de) 2016-03-15 2017-09-21 Daimler Ag Turbinengehäuse für eine Turbine eines Abgasturboladers
JP6441402B2 (ja) * 2017-03-30 2018-12-19 株式会社ケーヒン 遠心式送風機
CN213743545U (zh) 2019-10-14 2021-07-20 博格华纳公司 涡轮增压器和用于涡轮增压器的涡轮机壳体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004871A (ja) * 2000-04-19 2002-01-09 Aisin Takaoka Ltd 過給機のタービンハウジング
JP2003120303A (ja) 2001-10-19 2003-04-23 Mitsubishi Heavy Ind Ltd ラジアルタービンのスクロール構造
JP2007113501A (ja) * 2005-10-21 2007-05-10 Mitsubishi Heavy Ind Ltd 排気ターボ式過給機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687360A (en) * 1969-11-19 1972-08-29 Beloit Corp Noise suppressing baffle discharge exit
JPS58162703A (ja) * 1982-03-24 1983-09-27 Nissan Motor Co Ltd ラジアルタ−ビンのタ−ビンケ−シング製造方法
DE3346472C2 (de) * 1982-12-28 1991-09-12 Nissan Motor Co., Ltd., Yokohama, Kanagawa Radialturbine mit veränderlicher Leistung
US4678397A (en) * 1983-06-15 1987-07-07 Nissan Motor Co., Ltd. Variable-capacitance radial turbine having swingable tongue member
US4781528A (en) * 1987-09-09 1988-11-01 Mitsubishi Jukogyo Kabushiki Kaisha Variable capacity radial flow turbine
JPH0886299A (ja) * 1994-09-16 1996-04-02 Nippondenso Co Ltd 遠心式送風機
US6742989B2 (en) 2001-10-19 2004-06-01 Mitsubishi Heavy Industries, Ltd. Structures of turbine scroll and blades
JP3876185B2 (ja) 2002-04-26 2007-01-31 三菱重工業株式会社 可変容量タービン及びこれを用いた可変容量ターボチャージャ
JP2004092481A (ja) 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd 可変容量タービン及びこれを備えた可変容量ターボチャージャ
US7269950B2 (en) * 2004-05-05 2007-09-18 Precision Industries, Inc. Staged turbocharger
US7428814B2 (en) * 2006-03-08 2008-09-30 Melvin Hess Pedersen Turbine assemblies and related systems for use with turbochargers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004871A (ja) * 2000-04-19 2002-01-09 Aisin Takaoka Ltd 過給機のタービンハウジング
JP2003120303A (ja) 2001-10-19 2003-04-23 Mitsubishi Heavy Ind Ltd ラジアルタービンのスクロール構造
JP2007113501A (ja) * 2005-10-21 2007-05-10 Mitsubishi Heavy Ind Ltd 排気ターボ式過給機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2249002A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266432A1 (en) * 2010-12-28 2013-10-10 Mitsubishi Heavy Industries, Ltd. Scroll structure of centrifugal compressor
US9541094B2 (en) * 2010-12-28 2017-01-10 Mitsubishi Heavy Industries, Ltd. Scroll structure of centrifugal compressor
US9874222B2 (en) 2012-01-11 2018-01-23 Mitsubishi Heavy Industries, Ltd. Scroll structure of turbine housing
US20170022830A1 (en) * 2013-12-16 2017-01-26 Cummins Ltd Turbine housing
US10487676B2 (en) * 2013-12-16 2019-11-26 Cummins Ltd. Turbine housing
JP2018080620A (ja) * 2016-11-15 2018-05-24 株式会社豊田中央研究所 タービンユニット、ターボチャージャ
JP2018150843A (ja) * 2017-03-10 2018-09-27 株式会社Ihi タービンハウジング
US11261746B2 (en) 2018-06-29 2022-03-01 Ihi Corporation Turbine and turbocharger

Also Published As

Publication number Publication date
JPWO2010047259A1 (ja) 2012-03-22
KR101200627B1 (ko) 2012-11-12
KR20100117082A (ko) 2010-11-02
US20110008162A1 (en) 2011-01-13
JP5047364B2 (ja) 2012-10-10
CN101960120B (zh) 2013-03-06
EP2249002B1 (en) 2018-10-03
EP2249002A4 (en) 2017-10-11
CN101960120A (zh) 2011-01-26
US8591177B2 (en) 2013-11-26
EP2249002A1 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
WO2010047259A1 (ja) ラジアルタービンのスクロール構造
EP1304445B1 (en) Structure of radial turbine scroll and blades
JP5221985B2 (ja) 遠心圧縮機
JP5433560B2 (ja) タービンスクロール部構造
WO2011007467A1 (ja) インペラおよび回転機械
JP2009281197A (ja) 斜流タービン
JP2007127108A (ja) 排気ターボ過給機のコンプレッサ
JP2001289050A (ja) 可変容量ターボ過給機
US20100040458A1 (en) Axial fan casing design with circumferentially spaced wedges
JP2009047043A (ja) 軸流タービン
JP5936710B2 (ja) 可変容量型排気ターボ過給機
JP6265353B2 (ja) 開閉弁装置、及び回転機械
WO2011007466A1 (ja) インペラおよび回転機械
JP3534728B2 (ja) ラジアルタービンのスクロール構造
JP2011132810A (ja) ラジアルタービンの動翼
WO2018116394A1 (ja) ターボチャージャ及びターボチャージャのノズルベーン並びにタービン
JP5427900B2 (ja) 斜流タービン
JP2009074542A (ja) 可変容量ターボチャージャ
JP6200350B2 (ja) ラジアルタービン又は斜流タービン
JP6864119B2 (ja) タービン及びターボチャージャ
JP2005299573A (ja) 風力機械のディフューザおよび斜流圧縮機のディフューザ、ディフューザ
WO2023203813A1 (ja) 遠心圧縮機
JP6759463B2 (ja) ターボチャージャ用タービン及びターボチャージャ
JP2008163761A (ja) ラジアルタービン
JP2009236121A (ja) 斜流圧縮機のディフューザ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107185.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534778

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009821956

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107018415

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12867272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE