WO2010047159A1 - 石炭ガス化炉 - Google Patents

石炭ガス化炉 Download PDF

Info

Publication number
WO2010047159A1
WO2010047159A1 PCT/JP2009/062589 JP2009062589W WO2010047159A1 WO 2010047159 A1 WO2010047159 A1 WO 2010047159A1 JP 2009062589 W JP2009062589 W JP 2009062589W WO 2010047159 A1 WO2010047159 A1 WO 2010047159A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
gasification
gas
water
furnace
Prior art date
Application number
PCT/JP2009/062589
Other languages
English (en)
French (fr)
Inventor
山元 崇
横濱 克彦
小山 智規
太田 一広
弘実 石井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2009307613A priority Critical patent/AU2009307613B2/en
Priority to CA2730323A priority patent/CA2730323C/en
Priority to CN200980127255.1A priority patent/CN102089406B/zh
Priority to KR1020117000412A priority patent/KR101318571B1/ko
Priority to US13/002,109 priority patent/US20110116979A1/en
Priority to EP09821859A priority patent/EP2338956A4/en
Publication of WO2010047159A1 publication Critical patent/WO2010047159A1/ja
Priority to ZA2010/09297A priority patent/ZA201009297B/en
Priority to US14/610,826 priority patent/US9487715B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1838Autothermal gasification by injection of oxygen or steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to a coal gasification furnace applied to a gasification furnace for combined coal gasification power generation, a chemical coal gasification furnace, and the like.
  • coal gasification combined power generation facility Integrated In Coal Gasification Combined Cycle (IGCC)
  • IGCC Integrated In Coal Gasification Combined Cycle
  • a gasification furnace for power generation an air-blown coal gasification combined power generation gasification furnace that generates fuel gas for a gas turbine from coal
  • the generated gas composition CO / H 2 ratio
  • the target product synthetic product
  • carbon dioxide (CO 2 ) recovery equipment in order to reduce the amount of carbon dioxide discharged into the atmosphere, carbon dioxide (CO 2 ) recovery equipment may be combined.
  • a shift reactor is provided to increase the carbon dioxide concentration in the product gas in order to improve the carbon dioxide recovery rate.
  • coal gas generated in a coal gasification furnace is cooled by a heat exchanger group, and in this case, water and steam are used for cooling the generated coal gas. Not done.
  • Patent Document 1 In addition, some conventional coal gasification systems have a main purpose of cooling the gasification gas and inject water from the gasification furnace outlet.
  • Patent Document 2 In example, see Patent Document 2,
  • the exit gas of a coal gasifier is high temperature of 1000 degreeC or more.
  • quenching medium for quenching water or gas (product gas, inert gas, etc.) Is used.
  • water quenching using the quench medium as water is the easiest method, but the thermal efficiency of the plant is low because the furnace temperature is lowered.
  • water supplied for quenching does not completely evaporate, it is necessary to treat water (untreated water, black water, black-water) mixed with unburned components.
  • the coal gasification gas generated in the coal gasification furnace is enriched with hydrogen, and a shift reactor It is desired to enable downsizing.
  • the second stage cooling for cooling the high-temperature coal gasification gas generated in the coal gasification furnace particularly in the case of a gasification furnace for power generation, it solves the problem of black water treatment and is an efficient heat exchanger It is desirable to be able to use.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a coal gasification furnace that generates hydrogen-rich coal gasification gas and enables downsizing of the shift reactor. There is to do.
  • a coal gasification furnace is a coal gasification furnace in which a coal gasification gas is generated by a gasification reaction that proceeds in a furnace charged with a gasification raw material such as coal and a gasifying agent.
  • a gasification raw material such as coal and a gasifying agent.
  • the coal gasification furnace is a two-stage entrained bed gasification furnace having a combustion chamber and a reduction chamber, and the steam is supplied to the combustion chamber together with the gasification material and the gasifying agent. It is preferable that only the gasification material is charged into the reduction chamber.
  • steam is introduced into the combustion chamber together with the gasification material and the gasifying agent, so that the aquatic gasification reaction and shift reaction proceed in the combustion chamber, and only the gasification material is introduced.
  • a gasification reaction and an aquatic gasification reaction that are endothermic reactions proceed.
  • the coal gasification furnace is a two-stage spouted bed gasification furnace provided with a combustion chamber and a reduction chamber, and the gasification material and the gasifying agent are charged into the combustion chamber, In addition, it is preferable that at least one of the water and the water vapor is introduced into the reduction chamber together with the gasification material.
  • the gasification reaction proceeds with the gasification material and the gasifying agent introduced in the combustion chamber, and gasification is performed in the reduction chamber in which water and water vapor are introduced together with the gasification material. Reaction and aquatic gasification reaction proceed.
  • the coal gasification gas generated by the gasification reaction is rich in hydrogen with a high proportion of hydrogen components. Further, since the gasification reaction and the aquatic gasification reaction in the reduction chamber are endothermic reactions, a reaction quench is performed to cool the coal gasification gas as the reaction proceeds.
  • the input amount of water and steam is in the range of 0.1 to 0.8 (mass basis) with respect to the input amount of the gasification raw material.
  • the amount of steam input in this case is a value that ensures a sufficient amount for the reaction within a range in which the furnace temperature does not decrease.
  • a gas cooling heat exchanger for cooling the coal gasification gas is provided connected to an outlet of the coal gasification furnace, and passes through the gas cooling heat exchanger together with the coal gasification gas. It is preferable that the residual amount of carbon (C) in the char (unreacted coal) to be set is 30% or more, thereby preventing the char accumulated on the surface of the heat exchanger from being sintered and heat having good thermal efficiency.
  • An exchange can be used.
  • the water vapor is preferably introduced from a water cooling wall that cools the outer periphery of the gasification furnace and / or a water cooling system that flows through the heat exchanger for gas cooling. It is possible to secure the water vapor for charging by effectively utilizing the equipment (water vapor supply source).
  • a gas cooling heat exchanger for cooling the coal gasification gas is provided connected to an outlet of the coal gasification furnace, and passes through the gas cooling heat exchanger together with the coal gasification gas. It is preferable that the residual amount of carbon (C) in the char (unreacted coal) to be set is 30% or more, thereby preventing the char accumulated on the surface of the heat exchanger from being sintered and heat having good thermal efficiency.
  • An exchange can be used.
  • the coal gasification gas generated by the coal gasification furnace becomes a hydrogen-rich gas having a high hydrogen (H 2 ) ratio in the components, that is, coal at the coal gasification furnace outlet.
  • the shift reactor is used particularly in a coal gasification furnace such as a chemical gasification furnace or a carbon dioxide recovery power generation gasification furnace that requires a shift reactor. It can be downsized.
  • the carbon (C) residual amount in the char passing through the heat exchanger for gas cooling is set to 30% or more, the problem of black water treatment is solved and heat exchange is performed for the second stage cooling of coal gasification gas.
  • the plant thermal efficiency can be improved.
  • the dried char can be circulated through the coal gasification furnace and gasified, the carbon conversion rate for obtaining the coal gasification gas from the gasification raw material such as coal can be improved.
  • COS carbonyl sulfide
  • the coal gasification furnace G shown in FIG. 1 generates coal gasification gas (hereinafter referred to as “coal gas”) by a gasification reaction that proceeds in a furnace charged with a gasification raw material such as coal and a gasifying agent. It is a device to do.
  • the illustrated coal gasification furnace G is a two-stage spouted bed gasification furnace including a combustion chamber 10 and a reduction chamber 20.
  • the coal gasification furnace G communicates with the upper stage (downstream side in the gas flow direction) of the combustion chamber 10 and has a reduction chamber 20. Is provided.
  • combustion chamber 10 and the reduction chamber 20 are collectively referred to as “furnace” or “gasification furnace”.
  • the coal gasification furnace G is provided with a heat exchanger 30 that communicates with the downstream side of the reduction chamber 20 and cools the coal gas generated in the gasification furnace.
  • the outer peripheral surfaces of the combustion chamber 10, the reduction chamber 20, and the heat exchanger 30 are covered with a water cooling wall W that circulates cooling water to cool it.
  • the coal gasification furnace G of the present embodiment is a two-stage entrained bed gasification furnace including the combustion chamber 10 and the reduction chamber 20, and the lower combustion chamber 10 includes a gasification material and a gasifying agent. Steam is introduced and only the gasification material is introduced into the upper reduction chamber 20. That is, in a combustion chamber (combustor) 10 of a two-stage entrained bed gasification furnace, gasification material coal (pulverized coal) and char (unreacted coal) described later are gasified from a plurality of burners 11 provided at appropriate positions. Agent air or oxygen is charged. Furthermore, in this embodiment, water vapor for promptly accelerating the reaction is introduced from the burner 11 into the combustion chamber 10.
  • the steam introduced here is premixed with the gasifying agent air or oxygen and introduced into the burner 11. This is because the steam introduced in the premixed state is promoted to be quickly mixed in a high temperature field (furnace temperature is about 1800 ° C.) in the combustion chamber 10. This is because it proceeds quickly.
  • a high temperature field furnace temperature is about 1800 ° C.
  • steam thrown into the combustion chamber 10 it is not limited to the premixing with the gasifying agent mentioned above, You may throw in water vapor
  • coal gas (CO) produced by the gasification reaction is rich in hydrogen with a high proportion of hydrogen in the gas as compared with the case where steam is not added.
  • the preferable amount of water vapor to be injected into the combustion chamber 10 is that the proportion of hydrogen (H 2 / CO) in the coal gas (CO) increases when the amount of water vapor is increased.
  • H 2 / CO hydrogen
  • the product gas generated in the reduction chamber 20 is cooled in the second stage by the heat exchanger 30 connected to the gasification furnace outlet (the outlet of the reduction chamber 20). Since this heat exchanger 30 is configured so that the high-temperature product gas and water exchange heat, the product gas that has absorbed heat drops in temperature and flows to the next process, and the water that has absorbed heat rises in temperature. It becomes water vapor.
  • char unreacted coal
  • char unreacted coal
  • the residual amount of C in the char is 30% or more, the sintering of the char can be prevented. In this case, the value of 30% or more of the C residual amount is a knowledge obtained based on experiments and the like.
  • the char described above is recovered by a char recovery device (a cyclone, a high-temperature filter, etc.) (not shown) provided on the downstream side of the heat exchanger 30 and then reintroduced into the combustion chamber 10 as a gasification raw material.
  • the char in this case is recovered in a dry state because the problem of black water or the like has been solved. Therefore, since the dried char can be circulated through the coal gasification furnace G and gasified, it is effective in improving the carbon conversion rate for obtaining coal gas from a gasification raw material such as coal.
  • the ratio of hydrogen in the product gas is 22.1 (Vol% -dry) when steam is supplied and 16.3 (Vol% -dry) when steam is not supplied. It turns out that it is increasing more. Further, since the gasification reaction and the aquatic gasification reaction in the reduction chamber 20 are endothermic reactions, reaction quenching for cooling the coal gas is performed by the progress of these reactions.
  • the high-pressure water vapor source for example, water vapor generated by heating water of the water cooling system flowing through the water cooling wall W or the heat exchanger 30 is introduced, and the pressure is increased to a desired pressure as necessary.
  • the existing facilities water cooling wall W such as a water cooling system and the heat exchanger 30
  • the coal gasification furnace G are effectively used.
  • the method of introducing steam into the high-temperature combustion chamber 10 is suitable when general coal is used as the raw coal. That is, when the temperature in the combustion chamber 10 can be maintained at a high temperature by using general (good quality) raw coal, a large amount of water vapor can be introduced into the high-temperature combustion chamber 10. Moreover, since steam also has an effect as a gasifying agent, the oxygen ratio (oxygen input amount) of air or oxygen input as the gasifying agent can be lowered according to the input amount of water vapor. As a result, the gas turbine The concentration of effective gas components (CO, H 2 ) used as fuel can be increased. In addition, although water vapor
  • the illustrated coal gasification furnace G1 is a two-stage entrained bed gasification furnace including the combustion chamber 10 and the reduction chamber 20, as in the above-described embodiment.
  • coal (pulverized coal) or char serving as a gasification raw material is charged into the combustion chamber 10 together with a gasifying agent (air or oxygen) from the burner 11A.
  • a gasifying agent air or oxygen
  • the gasification reaction and the water gasification reaction described above proceed with the coal gas flowing from the combustion chamber 10 and the pulverized coal and water introduced into the reduction chamber 20. Since these reactions are endothermic reactions, a reaction quench is performed to cool the product gas as the reaction proceeds.
  • the preferable amount of water input is about 0.1 to 0.8 on a mass basis for the same reason as the above-described embodiment with respect to the coal flow rate of pulverized coal input as the gasification material.
  • the gasification reaction by the gasification material and the gasifying agent charged in the combustion chamber 10 proceeds. Further, in the reduction chamber 20, the gasification reaction and the aquatic gasification reaction proceed by introducing the atomized water together with the gasification material. As a result, the hydrogen produced by the aquatic gasification reaction in the reduction chamber 20 turns the coal gasification gas into a hydrogen-rich gas. Further, since the gasification reaction and the aquatic gasification reaction in the reduction chamber 20 are endothermic reactions, a reaction quench is performed to cool the generated gas as the reaction proceeds.
  • the coal gasification furnace G1 configured in this manner has very high degree of freedom because there is almost no restriction on the design and arrangement of the nozzle for water injection because water is supplied to the reduction chamber 20 alone.
  • high-pressure water that can be boosted by a pump is used as the water, so that a high-pressure steam source is unnecessary.
  • water injection into the reduction chamber 20 can be expected for a quenching effect in the reduction chamber 20.
  • the coal gasification furnace G1 configured in this manner does not supply steam into the combustion chamber 10, it is easy to maintain the inside of the combustion chamber 10 at a high temperature.
  • the coal gasification furnace G1 which introduces atomized water into the reduction chamber 20 is suitable when the coal (pulverized coal) used as the gasification raw material is high ash melting point coal (1500 ° C. or higher). That is, when the high ash melting point coal is the raw coal, the molten ash is stably discharged, so that the combustion chamber 10 is kept at a high temperature without introducing steam, and the quenching effect and reaction progress due to the introduction of steam in the reduction chamber 20. Due to the reaction quenching, the temperature of the hot coal gasification gas can be drastically lowered.
  • the illustrated coal gasification furnace G2 is a two-stage entrained bed gasification furnace including the combustion chamber 10 and the reduction chamber 20, as in the above-described embodiment.
  • water vapor is supplied from the steam nozzle 23 to the reduction chamber 20 of the coal gasification furnace G2, which is a two-stage entrained bed gasification furnace. Is different.
  • the other structure is the same as 2nd Embodiment mentioned above.
  • steam is introduced into the reduction chamber 20 of the present embodiment together with the pulverized coal as the gasification raw material.
  • the preferable amount of steam input is 0.1 to 0.8 on the mass basis for the same reason as the above-described embodiment with respect to the coal flow rate of the pulverized coal supplied to the combustion chamber 10 and the reduction chamber 20.
  • Degree. In the reduction chamber 20, a gasification reaction and a water gasification reaction proceed with the introduction of water vapor. Since all of these reactions are endothermic reactions, reaction quenching is performed to cool the product gas as the reaction proceeds. Further, since hydrogen is generated by the water gasification reaction, hydrogen-rich coal gas is generated.
  • the coal gasification furnace G2 configured in this manner does not supply steam to the combustion chamber 10, it becomes easy to maintain the inside of the combustion chamber 10 at a high temperature. For this reason, the coal gasification furnace G2 which introduces water vapor into the reduction chamber 20 is suitable when the coal (pulverized coal) used as the gasification raw material is high ash melting point coal. That is, when the high ash melting point coal (1500 ° C. or higher) is the raw coal, the inside of the combustion chamber 10 is kept at a high temperature in order to stably discharge the molten ash. Due to the reaction quenching, the temperature of the hot coal gasification gas can be drastically lowered.
  • the present embodiment in which water vapor is introduced into the reduction chamber 20 is suitable when a low fuel specific coal having a fuel ratio of 1 or less, such as lignite, is used as the raw coal.
  • a low fuel specific coal having a fuel ratio of 1 or less such as lignite
  • the introduction of steam into the reduction chamber 20 has a cracking effect that promotes the decomposition of gasification by-products originating from volatile components contained in the raw coal.
  • the steam introduced into the reduction chamber 20 promotes the decomposition reaction of the volatile components contained in the raw coal introduced into the reduction chamber 20, so that, for example, hydrocarbons, tar (heavy hydrocarbon), ammonia and the like As described above, the generation of by-products originating in the reduction chamber input coal is suppressed.
  • the coal gasification furnaces G, G1, and G2 of the present invention in the furnace of the combustion chamber 10 and / or the reduction chamber 20, as a substance for promoting the hydrogen generation reaction that proceeds simultaneously with the gasification reaction, Since at least one of water and water vapor is introduced, the aquatic gasification reaction and / or shift reaction proceeds rapidly to produce hydrogen. As a result, the coal gas generated by the gasification reaction becomes a hydrogen-rich gas with a high proportion of hydrogen components.
  • the coal gasification gas generated by the coal gasification furnaces G, G1, and G2 becomes a hydrogen-rich gas having a high hydrogen ratio in the components.
  • the shift reactor can be downsized. If the carbon (C) residual amount in the char passing through the heat exchanger 30 for gas cooling is set to 30% or more, the problem of black water treatment is solved and the second stage cooling of the coal gasification gas is achieved. Since a heat exchanger can be used, particularly in the case of a gasifier for carbon dioxide recovery power generation, the plant thermal efficiency can be improved. Furthermore, since the dried char can be circulated through the coal gasification furnaces G, G1, and G2 and gasified, the carbon conversion rate for obtaining the coal gasification gas from the gasification raw material such as coal can be improved.
  • the introduction of water vapor into the combustion chamber 10, the introduction of water (water spray) into the reduction chamber 20, and the introduction of water vapor into the reduction chamber 20 are carried out independently, but the present invention is limited to this.
  • the combination is possible as appropriate. That is, a combination of water vapor input into the combustion chamber 10 and water spray input into the reduction chamber 20 is performed simultaneously, or a combination of water vapor input into the combustion chamber 10 and water vapor input into the reduction chamber 20 is performed simultaneously. It can be appropriately selected according to various conditions.
  • this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.
  • G G, G1, G2 Coal gasifier 10 Combustion chamber 20 Reduction chamber 30 Heat exchanger

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

水素リッチの石炭ガス化ガスを生成してシフト反応器の小型化を可能にした石炭ガス化炉を提供する。石炭等のガス化原料及びガス化剤を投入した炉内で進行するガス化反応により石炭ガス化ガスが生成される石炭ガス化炉(G)において、ガス化反応と同時進行する水素生成反応の促進用物質として、炉内に水及び水蒸気の少なくとも一方を投入する。

Description

石炭ガス化炉
 本発明は、石炭ガス化複合発電用ガス化炉や化学用石炭ガス化炉等に適用される石炭ガス化炉に関する。
 従来、石炭ガス化複合発電設備(Integrated
Coal Gasification Combined Cycle;IGCC)においては、効率のよいガス化炉として、石炭からガスタービンの燃料ガスを生成する空気吹きの石炭ガス化複合発電用ガス化炉(以下、発電用ガス化炉)が開発されている。
 一方、化学用ガス化炉では、生成ガスのカロリーが重視される従来の発電用ガス化炉とは異なり、目的とする製品(合成物)に合わせた生成ガス組成(CO/H比)にする必要がある。このため、化学用ガス化炉においては、CO/H比を調整するためのシフト反応器が必要となる。
 同様に、発電用ガス化炉においても、大気中へ排出される二酸化炭素量を低減する目的から、二酸化炭素(CO)回収設備を組み合わせる場合がある。このような発電用ガス化炉においては、二酸化炭素の回収率を向上させるため、シフト反応器を設けて生成ガス中の二酸化炭素濃度を高めている。
 従来の石炭ガス化複合発電設備においては、石炭ガス化炉で生成された石炭ガスを熱交換器群により冷却しており、この場合、生成された石炭ガスの冷却用として水や水蒸気の投入は行われていない。(たとえば、特許文献1参照)
 また、従来の石炭ガス化システムにおいては、ガス化ガスの冷却を主目的とし、ガス化炉出口から水を投入するものがある。(たとえば、特許文献2参照)
特公平7-65484号公報 国際公開第2007/125046号パンフレット
 上述したように、化学用ガス化炉及び二酸化炭素回収発電用ガス化炉等の石炭ガス化炉においては、シフト反応器により生成ガス組成を調整する(H濃度を高める)必要がある。このため、石炭ガス化炉出口の水素(H)濃度を極力高めることにより、シフト反応器の容積を小さくすることができる。
 また、石炭ガス化炉の出口ガスは、1000℃以上の高温である。このため、化学原料あるいは燃料ガスとするためのガス精製を行う場合、熱交換器もしくはクエンチ投入による冷却が必要であり、クエンチ投入用のクエンチ媒体としては、水もしくはガス(生成ガス,イナートガス等)が使用される。
 しかし、クエンチ媒体を水とする水クエンチは最も容易な方法であるが、炉内温度を低下させるためプラントの熱効率は低くなる。さらに、クエンチ用に投入した水が完全に気化しない場合は、未燃分が混入した水(煤水、黒水、Black-water)を処理することが必要となる。
 このような背景から、化学用ガス化炉及び二酸化炭素回収発電用ガス化炉等の石炭ガス化炉においては、石炭ガス化炉で生成された石炭ガス化ガスを水素リッチにして、シフト反応器の小型化を可能にすることが望まれる。
 また、石炭ガス化炉で生成された高温の石炭ガス化ガスを冷却する2段目冷却については、特に発電用ガス化炉の場合、黒水処理の問題を解決して効率のよい熱交換器を使用可能とすることが望ましい。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、水素リッチの石炭ガス化ガスを生成してシフト反応器の小型化を可能にした石炭ガス化炉を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の一態様に係る石炭ガス化炉は、石炭等のガス化原料及びガス化剤を投入した炉内で進行するガス化反応により石炭ガス化ガスが生成される石炭ガス化炉において、前記ガス化反応と同時進行する水素生成反応の促進用物質として、前記炉内に水及び水蒸気の少なくとも一方が投入されるものである。
 このような石炭ガス化炉によれば、ガス化反応と同時進行する水素生成反応の促進用物質として、炉内に水及び水蒸気の少なくとも一方が投入されるので、水生ガス化反応及び/またはシフト反応が迅速に進行して水素を生成する。この結果、ガス化反応により生成された石炭ガス化ガスは、水素成分の割合(H比)が高い水素リッチのガスとなる。
 上記の石炭ガス化炉において、前記石炭ガス化炉が燃焼室及び還元室を備えた二段噴流床ガス化炉とされ、前記燃焼室には前記ガス化材料及び前記ガス化剤とともに前記水蒸気を投入し、かつ、前記還元室には前記ガス化材料のみを投入することが好ましい。
 このような二段噴流床ガス化炉は、燃焼室にガス化材料及びガス化剤とともに水蒸気を投入するので、燃焼室内では、水生ガス化反応及びシフト反応が進行し、ガス化材料のみを投入する還元室内では、吸熱反応であるガス化反応及び水生ガス化反応が進行する。この結果、燃焼室内の水生ガス化反応及びシフト反応と、還元室内の水生ガス化反応とにより水素が生成されることになるので、ガス化反応により生成された石炭ガス化ガスは、水素成分の割合が高い水素リッチなガスとなる。また、還元室内のガス化反応及び水生ガス化反応は吸熱反応であるから、反応の進行により石炭ガス化ガスを冷却する反応クエンチが行われる。
 この場合の水蒸気は、ガス化剤(空気または酸素)と予混合した状態で燃焼室に投入することが望ましく、これにより、炉内高温場への速やかな混合が促進され、反応の迅速な進行に有効である。
 上記の石炭ガス化炉において、前記石炭ガス化炉が燃焼室及び還元室を備えた二段噴流床ガス化炉とされ、前記燃焼室には前記ガス化材料及び前記ガス化剤を投入し、かつ、前記還元室には前記ガス化材料とともに前記水及び前記水蒸気の少なくとも一方を投入することが好ましい。
 このような二段噴流床ガス化炉は、燃焼室内において、投入されたガス化材料及びガス化剤によりガス化反応が進行し、ガス化材料とともに水や水蒸気を投入する還元室内において、ガス化反応及び水生ガス化反応が進行する。この結果、還元室内の水生ガス化反応により水素が生成されるので、ガス化反応により生成された石炭ガス化ガスは、水素成分の割合が高い水素リッチとなる。また、還元室内のガス化反応及び水生ガス化反応は吸熱反応であるから、反応の進行により石炭ガス化ガスを冷却する反応クエンチが行われる。
 上記の石炭ガス化炉において、前記水及び水蒸気の投入量は、前記ガス化原料の投入量に対して0.1~0.8(質量基準)の範囲にあることが好ましい。この場合の水蒸気投入量は、炉内温度が低下しない範囲内において反応に十分な量を確保した値である。
 上記の態様においては、前記石炭ガス化ガスを冷却するガス冷却用熱交換器が前記石炭ガス化炉の出口に接続して設けられ、前記石炭ガス化ガスとともに前記ガス冷却用熱交換器を通過するチャー(未反応石炭)中の炭素(C)残留量が30%以上に設定されていることが好ましく、これにより、熱交換器表面に堆積したチャーの焼結を防止して熱効率のよい熱交換器の使用が可能となる。
 上記の石炭ガス化炉において、前記水蒸気は、前記ガス化炉の外周を冷却する水冷壁及び/または前記ガス冷却用熱交換器を流れる水冷却系統から導入されることが好ましく、これにより、既存の設備(水蒸気供給源)を有効利用して投入用の水蒸気を確保することができる。
 上記の態様においては、前記石炭ガス化ガスを冷却するガス冷却用熱交換器が前記石炭ガス化炉の出口に接続して設けられ、前記石炭ガス化ガスとともに前記ガス冷却用熱交換器を通過するチャー(未反応石炭)中の炭素(C)残留量が30%以上に設定されていることが好ましく、これにより、熱交換器表面に堆積したチャーの焼結を防止して熱効率のよい熱交換器の使用が可能となる。
 上述した本発明によれば、石炭ガス化炉により生成される石炭ガス化ガスは、成分中の水素(H)比が高い水素リッチのガスとなるため、すなわち、石炭ガス化炉出口における石炭ガス化ガス中の水素濃度を高めることができるので、特に、シフト反応器を必要とする化学用ガス化炉や二酸化炭素回収発電用ガス化炉等の石炭ガス化炉においては、シフト反応器を小型化することできる。
 また、ガス冷却用熱交換器を通過するチャー中の炭素(C)残留量を30%以上に設定すれば、黒水処理の問題を解消して石炭ガス化ガスの2段目冷却に熱交換器を使用できるので、特に二酸化炭素回収発電用ガス化炉の場合、プラント熱効率を向上させることができる。さらに、乾燥したチャーを石炭ガス化炉に循環させてガス化できるので、石炭等のガス化原料から石炭ガス化ガスを得る炭素転換率も向上させることができる。
本発明に係る石炭ガス化炉について、第1の実施形態を示す構成図である。 本発明に係る石炭ガス化炉について、第2の実施形態を示す構成図である。 本発明に係る石炭ガス化炉について、第3の実施形態を示す構成図である。 蒸気投入により石炭ガス化ガスに含まれる水素の割合が増加することを示す実験データである。 蒸気投入により硫化カルボニル(COS)が低減することを示す実験データである。 蒸気投入によりアンモニア(NH)発生量が低減することを示す実験データである。 蒸気投入により水素量の割合が増すことを示すグラフである。
 以下、本発明に係る石炭ガス化炉の一実施形態を図面に基づいて説明する。
<第1の実施形態>
 図1に示す石炭ガス化炉Gは、石炭等のガス化原料及びガス化剤を投入した炉内で進行するガス化反応により、石炭ガス化ガス(以下、「石炭ガス」と呼ぶ)を生成する装置である。図示の石炭ガス化炉Gは、燃焼室10及び還元室20を備えた二段噴流床ガス化炉であり、燃焼室10の上段(ガス流れ方向の下流側)に連通して還元室20が設けられている。以下の説明では、燃焼室10及び還元室20を総称して「炉」または「ガス化炉」と呼ぶことにする。
 また、石炭ガス化炉Gは、還元室20の下流側に連通して、ガス化炉内で生成した石炭ガスを冷却する熱交換器30が設けられている。
 なお、上述した石炭ガス化炉Gは、燃焼室10、還元室20及び熱交換器30の外周面が冷却水を循環させて冷却する水冷壁Wにより覆われている。
 このように、本実施形態の石炭ガス化炉Gは、燃焼室10及び還元室20を備えた二段噴流床ガス化炉であり、下段の燃焼室10にはガス化材料及びガス化剤とともに水蒸気が投入され、かつ、上段の還元室20にはガス化材料のみが投入される。
 すなわち、二段噴流床ガス化炉の燃焼室(コンバスタ)10には、適所に複数設けたバーナ11から、ガス化材料の石炭(微粉炭)及び後述するチャー(未反応石炭)と、ガス化剤の空気もしくは酸素とが投入される。さらに、本実施形態では、反応を迅速に促進させるための水蒸気がバーナ11から燃焼室10に投入される。
 ここで投入する水蒸気は、ガス化剤の空気または酸素と予混合してバーナ11に投入することが望ましい。これは、予混合した状態で投入される水蒸気は、燃焼室10内の高温場(炉内温度が1800℃程度)における速やかな混合が促進されるので、この結果、燃焼室10内の反応が迅速に進行するためである。
 なお、燃焼室10へ投入する水蒸気については、上述したガス化剤との予混合に限定されることはなく、水蒸気を単独で投入してもよい。
 燃焼室10では、水蒸気を投入することにより、下記の水性ガス化反応及びシフト反応が迅速に進行する。従って、水蒸気を投入しない場合と比較して、ガス化反応により生成される石炭ガス(CO)は、ガス中の水素割合が高い水素リッチとなる。
     水性ガス化反応 ; C(固)+H
→ H+CO
     シフト反応   ; CO+O → H+CO
     ガス化反応   ; C(固)+CO
→ 2CO
 燃焼室10に対する好適な水蒸気の投入量は、たとえば図7に示すように、水蒸気の投入量を増すと石炭ガス(CO)中の水素割合(H/CO)が増すことから、ガス化材料として投入される微粉炭の石炭流量に対して質量基準で0.1~0.8程度となる。これは、蒸気投入量を増やすと燃焼室10の温度が下がり、燃焼性やスラグ排出性を悪化させることから、蒸気投入量の上限が0.8程度(質量基準)であれば、石炭ガス化炉10の運転に支障がないことを確認したシミュレーション結果に基づくものである。すなわち、水蒸気の投入量については、反応促進に十分な投入量の確保と、燃焼室10内の温度低下抑制というように、相反する作用を考慮して最適値に設定することが望ましい。
 なお、ヒートロスの割合が小さくなる商用機等においては、水蒸気投入量の増量が可能になるので、石炭ガス中の水素割合を増して水素リッチにしたガスを生成することができる。
 還元室(リダクタ)20では、バーナ21からガス化材料の石炭(微粉炭)のみが投入される。この結果、還元室20では、燃焼室10から流入した石炭ガス、水素及び二酸化炭素等の生成物と、追加投入された石炭とにより、上記のガス化反応及び水性ガス化反応が進行する。この反応はいずれも吸熱反応であるため、反応進行により石炭ガス及び水素を主成分とする生成ガス(石炭ガス化ガス)を冷却する反応クエンチが行われる。
 還元室20で生成された生成ガスは、ガス化炉出口(還元室20の出口)に接続された熱交換器30により2段目のガス冷却が行われる。この熱交換器30は、高温の生成ガスと水とが熱交換を行うように構成されているので、吸熱された生成ガスは温度低下して次工程へ流出し、吸熱した水は温度上昇して水蒸気になる。
 この熱交換器30では、生成ガスとともに流入するチャー(未反応石炭)が堆積することにより、チャーの焼結トラブルを発生する場合がある。しかし、チャー中のC残留量を30%以上とすることにより、チャーの焼結防止が可能となる。なお、この場合のC残留量30%以上という値は、実験等に基づいて得られた知見である。
 また、炉内温度を高温に維持し、投入した水蒸気を完全に気化させているので、チャーが混入した煤水や黒水等の処理問題も解消される。従って、石炭ガスの2段目冷却用として、熱交換効率のよい熱交換器を使用することが可能になる。このような熱交換器30による生成ガスの冷却は、特に二酸化炭素回収発電用ガス化炉等においてプラント熱効率の向上に有効である。
 上述したチャーは、熱交換器30の下流側に設けられた図示しないチャー回収装置(サイクロン、高温フィルタ等)により回収された後、ガス化原料として燃焼室10に再投入される。この場合のチャーは、黒水等の問題が解消されているので、乾燥した状態で回収される。従って、乾燥したチャーを石炭ガス化炉Gに循環させてガス化できるので、石炭等のガス化原料から石炭ガスを得る炭素転換率の向上にも有効である。
 このような二段噴流床の石炭ガス化炉Gは、炉内温度が1800~2000℃程度と高温の燃焼室10にガス化材料及びガス化剤とともに水蒸気を投入するので、燃焼室10内では水生ガス化反応及びシフト反応が進行し、ガス化材料のみを投入する還元室20内では吸熱反応であるガス化反応及び水生ガス化反応が進行する。この結果、燃焼室10内の水生ガス化反応及びシフト反応と、還元室20内の水生ガス化反応とにより水素が生成されるので、ガス化反応により生成された石炭ガスは、含有する水素成分の割合が高い水素リッチなガスとなる。図4に示す比較実験結果によれば、生成ガス中における水素の割合は、蒸気投入有りの場合が22.1(Vol%-dry)となり、蒸気投入なしの16.3(Vol%-dry)より増加していることが分かる。
 また、還元室20内のガス化反応及び水生ガス化反応は吸熱反応であるから、これらの反応進行により石炭ガスを冷却する反応クエンチが行われる。
 すなわち、高温の燃焼室10に水蒸気を投入すると反応がより迅速に進行するので、燃焼室10の効率(炭素転換率)が向上する。
 また、燃焼室10に水蒸気を投入することにより、石炭ガス化炉Gの副生成物であるアンモニア、硫化カルボニル等の生成量を抑制することができる。すなわち、図5及び図6に示す実験結果によれば、蒸気なしのテスト1と蒸気有のテスト2とを比較した場合、蒸気有のテスト2において生成量が明らかに減少していることが分かる。
 ところで、上述した水蒸気は、高圧(2.5~5MPa程度)の燃焼室10内へ投入するため、高圧の水蒸気源が必要となる。そこで、高圧の水蒸気源としては、たとえば水冷壁Wや熱交換器30を流れる水冷却系統の水が加熱されて生成された水蒸気を導入し、必要に応じて所望の圧力まで昇圧したものを使用する。すなわち、高圧の水蒸気とするための昇圧装置が必要になる場合はあるものの、石炭ガス化炉Gが有する既設設備(水冷却系等の水冷壁Wや熱交換器30)を有効に利用して水蒸気供給源とし、水蒸気投入に必要な水蒸気量を確保することができる。
 このように、高温の燃焼室10に水蒸気を投入する方式は、原料炭として一般的な石炭を使用する場合に適している。すなわち、一般的な(良質な)原料炭を使用することで燃焼室10内の温度を高温に維持できる場合は、高温の燃焼室10に大量の水蒸気量を投入することが可能となる。しかも、水蒸気にはガス化剤としての効果もあるため、水蒸気の投入量に応じてガス化剤として投入する空気または酸素の酸素比(酸素投入量)を下げることもでき、この結果、ガスタービン燃料として使用する有効ガス成分(CO,H)の濃度を上げることができる。
 なお、上述した実施形態では水蒸気を投入したが、噴霧状の水を投入してもよい。
<第2の実施形態>
 次に、本発明に係る石炭ガス化炉について、第2の実施形態を図2に示して説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 図示の石炭ガス化炉G1は、上述した実施形態と同様に、燃焼室10及び還元室20を備えた二段噴流床ガス化炉である。
 この実施形態において、燃焼室10には、ガス化原料となる石炭(微粉炭)やチャーがバーナ11Aからガス化剤(空気もしくは酸素)とともに投入される。この結果、燃焼室10内では、投入されたガス化原料及びガス化剤によりガス化反応が進行する。
 還元室20には、バーナ21から投入されるガス化原料の石炭(微粉炭)とともに、噴霧状の水が噴霧ノズル22から投入される。この結果、還元室20内では、燃焼室10から流入した石炭ガスと、還元室20に投入された微粉炭及び水とにより、上述したガス化反応及び水性ガス化反応が進行する。これらの反応はいずれも吸熱反応であるから、反応進行により生成ガスを冷却する反応クエンチが行われる。この場合、好適な水投入量は、ガス化材料として投入される微粉炭の石炭流量に対して、上述した実施形態と同様の理由により、質量基準で0.1~0.8程度となる。
 このような二段噴流床ガス化炉の石炭ガス化炉G1では、燃焼室10において投入されたガス化材料及びガス化剤によるガス化反応が進行する。さらに、還元室20内においては、ガス化材料とともに噴霧状の水が投入されることで、ガス化反応及び水生ガス化反応が進行する。
 この結果、還元室20内の水生ガス化反応により生成される水素は、石炭ガス化ガスを水素リッチのガスにする。また、還元室20内のガス化反応及び水生ガス化反応は吸熱反応であるから、反応の進行により生成ガスを冷却する反応クエンチが行われる。
 このように構成された石炭ガス化炉G1は、還元室20に水を単独投入するため、水投入用のノズルに関する設計や配置の制約はほとんどなく、極めて自由度が高い。また、この場合の水は、ポンプにより昇圧可能な高圧水を投入することになるので、高圧の水蒸気源は不要である。さらに、還元室20に対する水投入は、還元室20内のクエンチ効果についても期待することができる。
 また、このように構成された石炭ガス化炉G1は、燃焼室10内への水蒸気投入がないため、燃焼室10内を高温に維持することが容易になる。
 このため、還元室20へ噴霧状の水を投入する石炭ガス化炉G1は、ガス化原料として使用する石炭(微粉炭)が高灰融点炭(1500℃以上)である場合に適している。すなわち、高灰融点炭が原料炭の場合、溶融灰を安定排出するため、水蒸気投入をしないで燃焼室10内を高温に保ち、かつ、還元室20においては、水蒸気投入によるクエンチ効果と反応進行による反応クエンチとにより、高温の石炭ガス化ガスを急激に温度低下させることができる。
<第3の実施形態>
 次に、本発明に係る石炭ガス化炉について、第3の実施形態を図3に示して説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 図示の石炭ガス化炉G2は、上述した実施形態と同様に、燃焼室10及び還元室20を備えた二段噴流床ガス化炉である。
 この実施形態では、上述した第2の実施形態における還元室20への水投入に代えて、二段噴流床ガス化炉とした石炭ガス化炉G2の還元室20に蒸気ノズル23から水蒸気を投入している点が異なっている。なお、本実施形態の石炭ガス化炉G2において、他の構成は上述した第2の実施形態と同じである。
 すなわち、本実施形態の還元室20には、ガス化原料の微粉炭とともに水蒸気が投入される。この場合の好適な水蒸気投入量は、燃焼室10及び還元室20へ供給される微粉炭の石炭流量に対して、上述した実施形態と同様の理由により、質量基準で0.1~0.8程度である。
 還元室20では、水蒸気の投入によりガス化反応及び水性ガス化反応が進行する。この反応はいずれも吸熱反応であるから、反応進行により生成ガスを冷却する反応クエンチが行われる。また、水性ガス化反応により水素が生成されるため、水素リッチな石炭ガスが生成される。
 このように構成された石炭ガス化炉G2は、燃焼室10への水蒸気投入がないため、燃焼室10内を高温に維持することが容易になる。このため、還元室20へ水蒸気を投入する石炭ガス化炉G2は、ガス化原料として使用する石炭(微粉炭)が高灰融点炭の場合に適している。すなわち、高灰融点炭(1500℃以上)が原料炭の場合、溶融灰を安定排出するために燃焼室10内を高温に保ち、かつ、還元室20においては、水蒸気投入によるクエンチ効果と反応進行による反応クエンチとにより、高温の石炭ガス化ガスを急激に温度低下させることができる。
 また、還元室20へ水蒸気を投入する本実施形態は、たとえば褐炭等のように、燃料比が1以下の低燃料比炭を原料炭とする場合に適している。これは、還元室20への水蒸気投入が、原料炭中に含まれる揮発分を起源とするガス化副生成物の分解を促進するクラッキング効果を有しているためである。
 また、還元室20に投入した水蒸気により、還元室20へ投入した原料炭に含まれている揮発分の分解反応が促進されるため、たとえば炭化水素、タール(重質炭化水素)及びアンモニア等のように、還元室投入石炭を起源とする副生成物の発生が抑制される。
 このように、本発明の石炭ガス化炉G,G1,G2によれば、ガス化反応と同時進行する水素生成反応の促進用物質として、燃焼室10及び/または還元室20の炉内に、水及び水蒸気の少なくとも一方が投入されるので、水生ガス化反応及び/またはシフト反応が迅速に進行して水素を生成する。この結果、ガス化反応により生成された石炭ガスは、水素成分の割合が高い水素リッチのガスとなる。
 このように、上述した本発明によれば、石炭ガス化炉G,G1,G2により生成される石炭ガス化ガスは、成分中の水素比率が高い水素リッチのガスとなるため、特に、シフト反応器を必要とする化学用ガス化炉や二酸化炭素回収発電用ガス化炉等の石炭ガス化炉においては、シフト反応器を小型化することできる。
 また、ガス冷却用の熱交換器30を通過するチャー中の炭素(C)残留量を30%以上に設定すれば、黒水処理の問題を解消して石炭ガス化ガスの2段目冷却に熱交換器を使用できるので、特に二酸化炭素回収発電用ガス化炉の場合、プラント熱効率の向上が可能になる。さらに、乾燥したチャーを石炭ガス化炉G,G1,G2に循環させてガス化できるので、石炭等のガス化原料から石炭ガス化ガスを得る炭素転換率についても向上させることができる。
 ところで、上述した各実施形態においては、燃焼室10に対する水蒸気投入、還元室20に対する水(水噴霧)投入、及び還元室20に対する水蒸気投入を単独で実施しているが、本発明はこれに限定されることはなく、適宜組み合わせが可能である。すなわち、燃焼室10への水蒸気投入と還元室20への水噴霧投入とを組み合わせて同時に実施することや、燃焼室10への水蒸気投入と還元室20への水蒸気投入とを組み合わせて同時に実施することなど、諸条件に応じて適宜選択可能である。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
 G,G1,G2  石炭ガス化炉
 10  燃焼室
 20  還元室
 30  熱交換器

Claims (6)

  1.  石炭等のガス化原料及びガス化剤を投入した炉内で進行するガス化反応により石炭ガス化ガスが生成される石炭ガス化炉において、
     前記ガス化反応と同時進行する水素生成反応の促進用物質として、前記炉内に水及び水蒸気の少なくとも一方が投入される石炭ガス化炉。
  2.  前記石炭ガス化炉が燃焼室及び還元室を備えた二段噴流床ガス化炉とされ、
     前記燃焼室には前記ガス化材料及び前記ガス化剤とともに前記水蒸気が投入され、かつ、前記還元室には前記ガス化材料のみが投入される請求項1に記載の石炭ガス化炉。
  3.  前記石炭ガス化炉が燃焼室及び還元室を備えた二段噴流床ガス化炉とされ、
     前記燃焼室には前記ガス化材料及び前記ガス化剤が投入され、かつ、前記還元室には前記ガス化材料とともに前記水及び前記水蒸気の少なくとも一方が投入される請求項1に記載の石炭ガス化炉。
  4.  前記水及び水蒸気の投入量は、前記ガス化原料の投入量に対して0.1~0.8(質量基準)である請求項1から3のいずれかに記載の石炭ガス化炉。
  5.  前記石炭ガス化ガスを冷却するガス冷却用熱交換器が前記石炭ガス化炉の出口に接続して設けられ、前記石炭ガス化ガスとともに前記ガス冷却用熱交換器を通過するチャー(未反応石炭)中の炭素(C)残留量が30%以上に設定されている請求項1から4のいずれかに記載の石炭ガス化炉。
  6.  前記水蒸気は、前記ガス化炉の外周を冷却する水冷壁及び/または前記ガス冷却用熱交換器を流れる水冷却系統から導入される請求項1から5のいずれかに記載の石炭ガス化炉。
PCT/JP2009/062589 2008-10-22 2009-07-10 石炭ガス化炉 WO2010047159A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2009307613A AU2009307613B2 (en) 2008-10-22 2009-07-10 Coal gasifier
CA2730323A CA2730323C (en) 2008-10-22 2009-07-10 Coal gasifier
CN200980127255.1A CN102089406B (zh) 2008-10-22 2009-07-10 煤气化炉
KR1020117000412A KR101318571B1 (ko) 2008-10-22 2009-07-10 석탄 가스화 노
US13/002,109 US20110116979A1 (en) 2008-10-22 2009-07-10 Coal gasifier
EP09821859A EP2338956A4 (en) 2008-10-22 2009-07-10 KOHLEGASIFIZIERUNGSOFEN
ZA2010/09297A ZA201009297B (en) 2008-10-22 2010-12-23 " coal gasifier "
US14/610,826 US9487715B2 (en) 2008-10-22 2015-01-30 Coal gasifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-271617 2008-10-22
JP2008271617A JP4898759B2 (ja) 2008-10-22 2008-10-22 石炭ガス化炉

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/002,109 A-371-Of-International US20110116979A1 (en) 2008-10-22 2009-07-10 Coal gasifier
US14/610,826 Division US9487715B2 (en) 2008-10-22 2015-01-30 Coal gasifier

Publications (1)

Publication Number Publication Date
WO2010047159A1 true WO2010047159A1 (ja) 2010-04-29

Family

ID=42119208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062589 WO2010047159A1 (ja) 2008-10-22 2009-07-10 石炭ガス化炉

Country Status (9)

Country Link
US (2) US20110116979A1 (ja)
EP (1) EP2338956A4 (ja)
JP (1) JP4898759B2 (ja)
KR (1) KR101318571B1 (ja)
CN (1) CN102089406B (ja)
AU (1) AU2009307613B2 (ja)
CA (1) CA2730323C (ja)
WO (1) WO2010047159A1 (ja)
ZA (1) ZA201009297B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129243A1 (ja) * 2010-04-16 2011-10-20 新日鉄エンジニアリング株式会社 石炭ガス化反応炉の運転方法および石炭ガス化反応炉
WO2012124379A1 (ja) * 2011-03-17 2012-09-20 三菱重工業株式会社 炭化水素原料ガス化炉

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303696B2 (en) * 2009-07-10 2012-11-06 Southern Company Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas
US9873840B2 (en) * 2009-09-18 2018-01-23 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
US8877136B1 (en) 2012-09-05 2014-11-04 Andrei Razumau Method of producing synthesis gas from coal
DE102015005610A1 (de) * 2015-04-30 2016-11-03 CCP Technology GmbH Vorrichtung und Verfahren zur Erzeugung eines Synthesegases
KR101617392B1 (ko) * 2015-11-13 2016-05-09 김현영 산업용 고온 개질기 및 개질 방법
EP3423550B1 (en) * 2016-03-04 2021-04-21 Lummus Technology LLC Two-stage gasifier and gasification process with feedstock flexibility
CN105670692A (zh) * 2016-03-30 2016-06-15 浙江工业大学 一种污泥高温水蒸气气化制备富氢燃气的系统
JP6865149B2 (ja) * 2017-11-30 2021-04-28 三菱パワー株式会社 石炭ガス化設備の閉塞防止装置及び閉塞防止方法
CN108774549B (zh) * 2018-08-29 2023-10-24 中国石油化工股份有限公司 气流床粉煤加氢气化炉、加氢气化系统及加氢气化方法
CN110498395B (zh) * 2019-08-08 2022-07-19 中石化宁波工程有限公司 一种用于水煤浆多水气比工况的一氧化碳全部变换工艺
CN112831352B (zh) 2021-01-09 2021-09-07 中国华能集团清洁能源技术研究院有限公司 一种高效气化炉及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136371A (ja) * 1992-10-22 1994-05-17 Mitsubishi Heavy Ind Ltd 噴流床石炭ガス化炉
JPH06330058A (ja) * 1993-05-26 1994-11-29 Mitsubishi Heavy Ind Ltd 噴流床石炭ガス化炉
JPH0765484B2 (ja) 1985-04-09 1995-07-19 三菱重工業株式会社 石炭ガス化複合発電装置
JPH0892573A (ja) * 1994-09-21 1996-04-09 Hitachi Ltd 噴流層石炭ガス化炉
JP2005171148A (ja) * 2003-12-12 2005-06-30 Mitsubishi Heavy Ind Ltd 石炭ガス化炉及びその運転方法
WO2007125046A1 (en) 2006-05-01 2007-11-08 Shell Internationale Research Maatschappij B.V. Gasification system and its use
JP2008150463A (ja) * 2006-12-15 2008-07-03 Mitsubishi Heavy Ind Ltd 二段噴流床ガス化炉及びその運転制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3664100A (en) * 1970-06-30 1972-05-23 Sperry Rand Corp Axial combine with rotor and concave convertible to support different threshing elements
US3864100A (en) 1973-01-02 1975-02-04 Combustion Eng Method and apparatus for gasification of pulverized coal
US3988123A (en) * 1975-08-15 1976-10-26 The United States Of America As Represented By The United States Energy Research And Development Administration Gasification of carbonaceous solids
US4168956A (en) * 1977-08-18 1979-09-25 Combustion Engineering, Inc. Method of operating a coal gasifier
US4158552A (en) * 1977-08-29 1979-06-19 Combustion Engineering, Inc. Entrained flow coal gasifier
CA1118600A (en) * 1979-02-21 1982-02-23 Dennis Hebden Two-stage coal gasification process and apparatus
US4343627A (en) * 1980-11-28 1982-08-10 Combustion Engineering, Inc. Method of operating a two-stage coal gasifier
JPH0649874B2 (ja) * 1982-08-25 1994-06-29 株式会社日立製作所 石炭の噴流層ガス化方法
US4872886A (en) * 1985-11-29 1989-10-10 The Dow Chemical Company Two-stage coal gasification process
US4872866A (en) * 1987-09-11 1989-10-10 Davis Richard C Medical lavage apparatus
KR20000015802A (ko) * 1996-05-20 2000-03-15 가나이 쓰도무 석탄 가스화 장치, 석탄 가스화 방법 및 석탄 가스화 복합 발전시스템
JP3976888B2 (ja) 1998-04-15 2007-09-19 新日本製鐵株式会社 石炭の気流床ガス化方法および装置
JP4072612B2 (ja) * 2000-12-27 2008-04-09 独立行政法人産業技術総合研究所 バイオマスを利用した石炭の加圧噴流床ガス化方法
US20090320368A1 (en) * 2006-03-31 2009-12-31 Castaldi Marco J Methods and Systems for Gasifying a Process Stream

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765484B2 (ja) 1985-04-09 1995-07-19 三菱重工業株式会社 石炭ガス化複合発電装置
JPH06136371A (ja) * 1992-10-22 1994-05-17 Mitsubishi Heavy Ind Ltd 噴流床石炭ガス化炉
JPH06330058A (ja) * 1993-05-26 1994-11-29 Mitsubishi Heavy Ind Ltd 噴流床石炭ガス化炉
JPH0892573A (ja) * 1994-09-21 1996-04-09 Hitachi Ltd 噴流層石炭ガス化炉
JP2005171148A (ja) * 2003-12-12 2005-06-30 Mitsubishi Heavy Ind Ltd 石炭ガス化炉及びその運転方法
WO2007125046A1 (en) 2006-05-01 2007-11-08 Shell Internationale Research Maatschappij B.V. Gasification system and its use
JP2008150463A (ja) * 2006-12-15 2008-07-03 Mitsubishi Heavy Ind Ltd 二段噴流床ガス化炉及びその運転制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2338956A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129243A1 (ja) * 2010-04-16 2011-10-20 新日鉄エンジニアリング株式会社 石炭ガス化反応炉の運転方法および石炭ガス化反応炉
AU2011242111B2 (en) * 2010-04-16 2013-11-07 Nippon Steel & Sumikin Engineering Co., Ltd. Operational method for coal gasification reaction furnace and coal gasification reaction furnace
JP5386635B2 (ja) * 2010-04-16 2014-01-15 新日鉄住金エンジニアリング株式会社 石炭ガス化反応炉の運転方法および石炭ガス化反応炉
WO2012124379A1 (ja) * 2011-03-17 2012-09-20 三菱重工業株式会社 炭化水素原料ガス化炉
JP2012193306A (ja) * 2011-03-17 2012-10-11 Mitsubishi Heavy Ind Ltd 炭化水素原料ガス化炉

Also Published As

Publication number Publication date
AU2009307613B2 (en) 2015-06-04
US20150144843A1 (en) 2015-05-28
KR101318571B1 (ko) 2013-10-16
US9487715B2 (en) 2016-11-08
CA2730323C (en) 2013-12-24
JP4898759B2 (ja) 2012-03-21
US20110116979A1 (en) 2011-05-19
CA2730323A1 (en) 2010-04-29
JP2010100690A (ja) 2010-05-06
EP2338956A4 (en) 2013-03-13
AU2009307613A1 (en) 2010-04-29
CN102089406B (zh) 2014-10-01
CN102089406A (zh) 2011-06-08
ZA201009297B (en) 2011-10-26
KR20110034634A (ko) 2011-04-05
EP2338956A1 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4898759B2 (ja) 石炭ガス化炉
TWI410487B (zh) 自生質生產低焦油合成氣的方法與裝置
JP5607303B2 (ja) 外部からの動力供給により高温下でバイオマス及び有機廃棄物をガス化し、良質の合成ガスを生成するための装置
CA2710732C (en) Method and apparatus to produce synthetic gas
JP5777887B2 (ja) 炭素原材料を変換するための方法および装置
KR101633951B1 (ko) 재생연료를 추가 및 후-가스화하여 합성가스의 엔탈피를 이용하기 위한 방법 및 장치
JP5630626B2 (ja) 有機物原料のガス化装置及び方法
TW200948951A (en) Process and device for the production of synthesis gas from biomass
WO2014023149A1 (zh) 生物质燃料二氧化碳循环无氧气化方法及设备
JP2012522870A (ja) 2段階乾燥供給ガス化装置および方法
US20160122669A1 (en) System and method for gasification
JP2011515530A (ja) アクティブな改質装置
US20070294943A1 (en) Gasification reactor and its use
JP2018502804A (ja) 合成ガスの製造方法およびプラント
KR20110065962A (ko) 상부 공급 이중선회형 가스화기
CN104650984B (zh) 用于气化和冷却合成气的系统和方法
JP5256811B2 (ja) ガス発生炉のパージ方法及び装置
KR20140080453A (ko) 열 교환기가 구비된 순환 유동층 가스화기
JPH05523B2 (ja)
CN107922859B (zh) 用于处理合成气的方法和系统
JP2011246525A (ja) ガス化処理システムおよびこれを用いたガス化処理方法
JP2010270264A (ja) 循環流動層式ガス化方法及び装置
US20140191162A1 (en) Method and apparatus for biomass gasification
US20140083010A1 (en) Process and plant for the production and further treatment of fuel gas
JP2009227879A (ja) ガス化設備のパージ方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127255.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009307613

Country of ref document: AU

Ref document number: 2009821859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13002109

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117000412

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2730323

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2009307613

Country of ref document: AU

Date of ref document: 20090710

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE