WO2010047045A1 - マグネシウム合金成形体及びマグネシウム合金板 - Google Patents
マグネシウム合金成形体及びマグネシウム合金板 Download PDFInfo
- Publication number
- WO2010047045A1 WO2010047045A1 PCT/JP2009/005004 JP2009005004W WO2010047045A1 WO 2010047045 A1 WO2010047045 A1 WO 2010047045A1 JP 2009005004 W JP2009005004 W JP 2009005004W WO 2010047045 A1 WO2010047045 A1 WO 2010047045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium alloy
- plate
- test piece
- test
- dent
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Definitions
- the present invention relates to a magnesium alloy plate suitable for a material such as a casing of a portable electric device, and a magnesium alloy molded body obtained by press-forming this plate.
- the present invention relates to a magnesium alloy molded body having excellent impact resistance characteristics.
- ABS acrylonitrile butadiene styrene copolymer
- PC polycarbonate
- metals such as aluminum alloy and stainless steel (SUS) are used. Has been.
- Magnesium alloy is superior in plastic deformation resistance compared to aluminum alloy and is very light compared to stainless steel.
- a cast material of a magnesium alloy is inferior in strength to a magnesium alloy press-molded body, and it is difficult to reduce the thickness.
- the AZ31 alloy press-molded body also has insufficient strength.
- one of the objects of the present invention is to provide a magnesium alloy molded body having excellent impact resistance characteristics.
- Another object of the present invention is to provide a magnesium alloy sheet suitable for the production of a magnesium alloy molded body having excellent impact resistance.
- the inventors of the present invention have prepared a plate as a raw material by various manufacturing methods in a magnesium alloy containing 7 mass% or more of Al, and manufactured a press-molded body from the obtained plate, and have impact resistance characteristics (dent resistance) As a result, it was found that the press-molded body that was difficult to dent had small particles composed of an intermetallic compound (precipitate) such as Mg 17 Al 12 and few large particles. Therefore, when the production method for controlling the maximum particle size and the number of the precipitates, that is, reducing the coarse precipitates, was studied, the total time kept in a specific temperature range mainly in the rolling process was made larger than before. By shortening, a magnesium alloy sheet with few coarse precipitates could be obtained. Moreover, the press-molded body obtained by press-molding this magnesium alloy plate was excellent in impact resistance. The present invention is based on the above findings.
- the magnesium alloy molded body of the present invention is obtained by press-molding a plate made of a magnesium alloy containing 7 mass% or more and 12 mass% or less of Al, and has a flat portion not accompanied by drawing deformation.
- the observation visual field defined below is taken in the metal structure of the cross section obtained by cutting the portion in the plate thickness direction, the number of coarse intermetallic compound particles present in each observation visual field is five or less.
- the magnesium alloy plate of the present invention is used for press forming, and is made of a magnesium alloy containing 7 mass% or more and 12 mass% or less of Al, and is present in each observation field defined below.
- the number of intermetallic compound particles is 5 or less.
- the observation visual field means that the flat portion or the metal structure of a cross section obtained by cutting the magnesium alloy plate in the plate thickness direction, the surface of the flat portion, or 1/3 of the plate thickness in the plate thickness direction from the plate surface.
- the region up to is the surface layer region, and is a region of 100 ⁇ m ⁇ 100 ⁇ m selected from any two locations in the surface layer region.
- the coarse particles are particles of an intermetallic compound containing Al and Mg and have a particle diameter of 5 ⁇ m or more.
- the particle diameter is the diameter of a circle having an area equivalent to the area of the particles in the cross section.
- the intermetallic compound present in the cross section can be determined by examining the composition and structure of the particles using, for example, EDS (Energy Dispersive X-ray Spectrometer) or X-ray diffraction.
- the alloy plate of the present invention having the above specific structure can be manufactured by, for example, a manufacturing method including the following steps.
- Preparation step A cast plate made of a magnesium alloy containing 7 to 12% by mass of Al and manufactured by a continuous casting method is prepared.
- Solution treatment step The cast plate is subjected to a solution treatment at a temperature of 350 ° C or higher.
- Rolling step The solution-treated plate material is rolled. In particular, in the cooling process from the holding temperature of the solution treatment, the cooling rate from 350 ° C. to 250 ° C. is set to 0.1 ° C./sec or more, and in the rolling process, the plate material to be processed is a temperature range of 250 ° C. to 350 ° C. Keep the total time held in 60 minutes.
- the total holding time of the above temperature range within 1 hour only in the rolling process, it is possible to more effectively suppress coarse precipitates by increasing the cooling rate in the solution treatment process. .
- the total time of the total holding time in the temperature range in the rolling process and the holding time in the temperature range in the cooling process of the solution treatment step be within 1 hour.
- the alloy plate of the present invention has a structure in which there are few coarse precipitates in the surface layer region and very fine precipitates are dispersed (FIG. 1 (1)).
- the present invention alloy plate because there are few coarse precipitates, there is little decrease in the amount of solid solution Al in the matrix (Mg) due to the presence of many coarse precipitates, solid solution strengthening accompanying the decrease in Al amount It is thought that there is little decrease in Therefore, by improving the rigidity of the plate itself by dispersion strengthening of precipitates and maintaining the strength by suppressing the decrease in the amount of solute Al, the alloy plate of the present invention is difficult to dent even under impact and has excellent impact resistance characteristics. Furthermore, the alloy plate of the present invention with few coarse precipitates is excellent in plastic workability and can be easily pressed.
- the molded product of the present invention can be produced by subjecting the alloy plate of the present invention obtained by controlling the holding time in a specific temperature range mainly in the rolling process to press molding.
- the alloy plate of the present invention a structure with a small amount of coarse precipitates constituting the alloy plate of the present invention is generally maintained at a portion (flat portion) where deformation due to press forming is small in the formed body of the present invention.
- the molded body of the present invention also has a structure in which there are few coarse precipitates in the surface layer region and very fine precipitates are dispersed. Accordingly, the molded article of the present invention is excellent in impact resistance and difficult to dent due to dispersion strengthening by fine precipitates and solid solution strengthening by sufficient solid solution of Al as described above.
- compositions examples of the magnesium alloy include those having various compositions containing an additive element in Mg (remainder: Mg and impurities).
- the plate and the molded body of the present invention are made of an Mg—Al alloy containing at least 7 mass% to 12 mass% of Al as an additive element.
- the additive element other than Al include one or more elements selected from Zn, Mn, Si, Ca, Sr, Y, Cu, Ag, and rare earth elements (excluding Y). When these elements are contained, the content thereof is 0.01% by mass or more and 10% by mass or less, preferably 0.1% by mass or more and 5% by mass or less.
- Mg-Al alloys include, for example, AZ alloys (Mg-Al-Zn alloys, Zn: 0.2 to 1.5 mass%) and AM alloys (Mg-Al-Mn alloys, Mn) according to ASTM standards. : 0.15-0.5% by mass), Mg-Al-RE (rare earth element) alloys and the like.
- Mg-Al alloys containing 8.3 to 9.5% by mass of Al and 0.5 to 1.5% by mass of Zn, typically AZ91 alloy have better corrosion resistance than other Mg-Al alloys such as AZ31 alloy. Excellent mechanical properties such as strength and plastic deformation resistance.
- the alloy plate of the present invention is subjected to press forming such as bending and drawing, and is used as a material for a thin and lightweight member such as a casing.
- the alloy of the present invention is formed so that the thickness of the portion where the thickness does not substantially change due to deformation accompanying plastic working (the flat portion in the formed product of the present invention) is reduced.
- the thickness of the plate is preferably 2.0 mm or less, particularly 1.5 mm or less, and more preferably 1 mm or less. In the above range, the thicker the magnesium alloy plate, the better the strength, and the thinner the magnesium alloy plate, the more suitable for a thinner and lighter casing.
- the plate thickness may be selected according to the desired application.
- the alloy plate of the present invention is difficult to dent when subjected to impact such as dropping. Specifically, when the following dent test was performed on a test piece of 30 mm ⁇ 30 mm and thickness t b cut out from the alloy plate of the present invention, the dent amount x b of the test piece was x b ⁇ 0.47. Xt b -1.25 is satisfied. Further, in the molded body of the present invention, the flat portion not accompanied by the drawing deformation has few coarse precipitates as described above, and substantially maintains the characteristics of the alloy plate of the present invention as described above.
- the dent amount x p of the test piece is x p ⁇ 0.47 ⁇ t p ⁇ 1.25 is satisfied.
- Dented x b or x p is the distance from the straight line connecting the both sides of the test piece after the dent test to the most recessed portion.
- the molded body of the present invention typically has a shape having a top plate portion (bottom surface portion) and a side wall portion standing from the periphery of the top plate portion. More specifically, a rectangular plate-shaped top plate portion and only a pair of opposing side wall portions]], a cross section having two sets of opposing pair of side wall portions, or a top plate portion Examples thereof include a covered cylindrical body having a disk shape and a cylindrical side wall portion.
- the form of the top plate and the side wall is typically a flat surface, and the shape and size are not particularly limited.
- the top plate portion and the side wall portion are integrally formed or joined with bosses, etc., have holes penetrating front and back and grooves recessed in the thickness direction, have a stepped shape, plastic working, You may have the part from which thickness differs locally by cutting.
- the flat portion without drawing is defined as a portion with less warping when a section cut out from a region excluding the portion having the boss or the like is arranged on a horizontal plane.
- the object of evaluation of the dent resistance is the flat portion.
- the molded body of the present invention can be provided with a coating layer for the purpose of anticorrosion, protection, decoration and the like on the surface of a plate made of a magnesium alloy.
- the magnesium alloy that mainly constitutes the compact of the present invention contains 7% by mass or more of Al, so that it has excellent corrosion resistance compared to an alloy having a low Al content, for example, an AZ31 alloy.
- the corrosion resistance of the molded article of the present invention can be further improved by applying a corrosion prevention treatment such as chemical conversion treatment or anodizing treatment to the plate made of the magnesium alloy to provide a corrosion prevention layer.
- size and precipitation of a deposit are not affected substantially. Therefore, even if the molded product of the present invention has a coating layer such as anticorrosion, the number of coarse particles is 5 or less, and when the dent test is performed, x p ⁇ 0.47 ⁇ t p ⁇ 1.25 is satisfied. .
- the cast plate it is preferable to use a cast plate produced by a continuous casting method such as a twin-roll method, in particular, a casting method described in WO / 2006/003899. Since the continuous casting method can be rapidly solidified, it is possible to reduce oxides and segregation and to obtain a cast plate having excellent rolling properties.
- the size of the cast plate is not particularly limited, but segregation is likely to occur if it is too thick, and therefore it is preferably 10 mm or less, particularly 5 mm or less.
- the holding temperature is set to 350 ° C. or higher.
- the holding temperature is preferably 380 to 420 ° C. and the holding time is 60 to 2400 minutes.
- the holding time in the temperature range of 350 ° C. to 250 ° C. is controlled in the cooling step from the holding temperature. Specifically, as shown in FIG. 2 (1), in order to shorten the holding time of the temperature range, the cooling rate in this temperature range is 0.1 ° C.
- Such a cooling rate can be achieved by forced cooling such as water cooling or blast.
- a desired plate thickness can be obtained, and the average crystal grain size of the magnesium alloy can be reduced, and press workability can be improved.
- the rolling may be performed by combining known conditions, for example, heating not only the plate material but also the roll, or the controlled rolling disclosed in Patent Document 1. Further, in the final pass and a pass in the vicinity thereof, the heating temperature of the plate material may be lowered (for example, room temperature) for the purpose of improving the dimensional accuracy.
- the holding time in the temperature range of 250 ° C to 350 ° C is controlled. Specifically, as shown in FIG. 2 (1), in each pass of the rolling process, in order to shorten the holding time of the temperature range, for example, the heating time for heating the workpiece is shortened, the rolling speed Increase the (roll peripheral speed) or increase the cooling speed. Then, the rolling conditions are controlled so that the total holding time in the temperature range of 250 ° C. to 350 ° C. in the rolling process is 60 minutes or less. As the amount of Al increases, precipitates are more likely to precipitate. Therefore, the total sum of the retention times is preferably adjusted according to the Al content.
- the total holding time is preferably as short as possible, preferably 45 minutes or less, particularly preferably 30 minutes or less.
- the intermediate heat treatment is preferably performed at a holding temperature of 250 ° C. to 350 ° C., but in this temperature range, precipitates grow and become coarse as described above. Therefore, when performing the intermediate heat treatment, it is preferable to control the treatment time by including it in the total holding time.
- the obtained rolled plate may be subjected to a final heat treatment at, for example, 300 ° C. or more to remove processing distortion due to rolling and be completely recrystallized. Even in this final heat treatment, precipitates are likely to grow in the temperature range of 250 ° C to 350 ° C. Therefore, when the final heat treatment is performed after rolling, it is preferable to control this processing time by including it in the total holding time. By controlling the final heat treatment time as described above, the magnesium alloy sheet of the present invention with few coarse precipitates can be obtained.
- the final heat treatment may not be performed, and the obtained rolled sheet may be subjected to a warm straightening process in which distortion is imparted by a roll leveler or the like while being heated to 100 to 250 ° C.
- the processed plate subjected to the warm correction treatment is subjected to press working, it is recrystallized at the time of press working to obtain a compact having a fine crystal structure.
- the crystal grains are likely to be finer, and a structure in which fine precipitates are more uniformly dispersed is likely to be obtained.
- the magnesium alloy sheet of the present invention which has less coarse precipitates and is superior in impact resistance due to the fine structure, can be obtained.
- the precipitates are not likely to become coarse by setting the heating temperature of the rolled sheet to 250 ° C. at the most.
- the molded product of the present invention can be produced by subjecting the rolled plate obtained by the rolling step or a processed plate obtained by subjecting the rolled plate to the final heat treatment and the warming treatment described above.
- the press molding is preferably performed in a temperature range of 200 ° C. to 300 ° C. so that the plastic deformation of the rolled plate or the processed plate to be processed can be improved. Even if the press molding is performed at a temperature overlapping with the temperature range of 250 ° C to 350 ° C, the holding time in the temperature range of 250 ° C to 350 ° C is very short in the press molding. There are few problems such as coarsening.
- ⁇ A heat treatment may be performed after the press forming to remove distortion and residual stress introduced by the press working and to improve the mechanical characteristics.
- the heat treatment conditions include heating temperature: 100 ° C. to 400 ° C., heating time: about 5 minutes to 60 minutes. Also in this heat treatment, it is preferable not to increase the holding time in the temperature range of 250 ° C. to 350 ° C.
- the molded body obtained after pressing may be left untreated, but if the treatment for forming a coating layer for the purpose of anticorrosion, protection, decoration, etc. is performed as described above, the corrosion resistance and commercial value are further increased. Enhanced.
- the magnesium alloy molded body of the present invention and the magnesium alloy sheet of the present invention are excellent in impact resistance.
- the production process of magnesium alloy sheet it is a graph mainly showing the relationship between the temperature of the rolling process and the holding time of the temperature, (1) is the total holding time (total of 250 to 350 ° C temperature range in the rolling process) When (time) is 60 minutes or less, (2) shows the case where the total retention time (total time) is more than 60 minutes.
- a plurality of cast plates (thickness 4 mm) made of a magnesium alloy having a composition equivalent to AZ91 alloy (Mg-9.0% Al-1.0% Zn (all by mass%)) and obtained by a twin roll continuous casting method were prepared.
- Each obtained cast plate was subjected to a solution treatment at 400 ° C. for 24 hours. In the solution treatment, cooling was performed by blast, so that the cooling rate from 350 ° C to 250 ° C was 0.1 ° C / sec or more.
- the solution-treated plate material was rolled a plurality of times under the following rolling conditions until the thickness became 0.6 mm.
- the obtained rolled sheet was subjected to a final heat treatment at 300 ° C. for 10 minutes to obtain a magnesium alloy sheet.
- Roll temperature 100 °C ⁇ 250 °C
- the plate material to be rolled is maintained in a temperature range of 250 ° C to 350 ° C.
- the total time was changed, and four types of samples with total time of 20 min (sample a), 35 min (sample b), 50 min (sample c), and 80 min (sample d) were prepared.
- the magnesium alloy plate subjected to the final heat treatment was subjected to corner drawing at a heating temperature of 250 ° C. to obtain a press-formed body.
- the press-molded body is a box shape having a rectangular top plate portion of 48 mm ⁇ 98 mm and a side wall portion standing from the top plate portion.
- AZ31 alloy material thickness: 0.6 mm
- aluminum alloy material A5052 material (thickness: 0.6 mm)
- the AZ31 alloy material has the same conditions as the rolled sheet made of the above AZ91 alloy.
- the A5052 material was subjected to the same corner drawing at room temperature.
- the metal structure was observed as follows and the precipitates were examined. Moreover, the following dent test was done about the obtained magnesium alloy plate and the press-molded body, and the impact resistance characteristic was evaluated.
- ⁇ Magnesium alloy plate> ⁇ Precipitate> Cutting the obtained magnesium alloy plate made of AZ91 alloy in the plate thickness direction, observing the cross section with an optical microscope (1000 times), from the surface layer region from the surface of the plate to 1/3 of the plate thickness in the cross section, Two regions of 100 ⁇ m ⁇ 100 ⁇ m are arbitrarily selected, and these regions are used as an observation field. Then, in each observation field, the particle diameter of the observed intermetallic compound containing Al and Mg was measured, and the number of particles having a particle diameter of 5 ⁇ m or more was counted.
- the obtained magnesium alloy plate made of AZ91 alloy and the prepared AZ31 alloy material and A5052 material (aluminum alloy material) were cut out to 30 mm ⁇ 30 mm to prepare test pieces.
- the depth of the circular hole 21 was set such that a cylindrical rod 10 described later can be sufficiently inserted.
- the circular hole 21 was arranged so as to be coaxial with the central axis. Then, the cylindrical rod 10 is freely dropped from the arranged point toward the test piece 1, and then the dent amount of the test piece 1 is measured.
- the amount of dent (mm) was measured by using a point micrometer to measure the distance from the straight line connecting opposite sides of the test piece 1 to the most recessed portion. For samples a and d, in a 30mm x 30mm test piece, select a straight line that is parallel to one side of 30mm and passes through the most concave part, and the amount of dents at multiple points on this line was measured as described above. The results are shown in FIG.
- the thickness was measured at any four locations on the 30 mm ⁇ 30 mm test piece cut out from the top plate. As a result, every portion was equal to the thickness of the magnesium alloy plate (test piece thickness: 0.6 mm).
- Plates and press-molded bodies made of magnesium alloy with an Al content of 7% by mass or more are more resistant than plates and press-formed bodies made of AZ31 alloy and aluminum alloy with less Al content. It can be seen that the impact characteristics are excellent.
- the total holding time in the temperature range of 250 ° C to 350 ° C in the rolling process and the holding time in the temperature range of 250 ° C to 350 ° C in the final heat treatment after rolling It can be seen that the impact resistance is excellent by controlling the total time within 1 hour.
- the thickness of the rolled plate was varied by adjusting the rolling reduction, and the total time was set to 35 min or 80 min by adjusting the heating time and rolling speed of the plate.
- samples having a total time of 45 min (sample ⁇ ) and 90 min (sample ⁇ ) including the time of the final heat treatment after rolling were prepared.
- the obtained rolled plate was subjected to a final heat treatment at 300 ° C. for 10 minutes, and then subjected to corner drawing at a heating temperature of 250 ° C. to obtain a box-shaped press-molded body similar to that in Test Example 1.
- the number of precipitates was measured by observing the structure of the cross section in the same manner as in Test Example 1 for the magnesium alloy plate and press-formed body obtained by the above final heat treatment.
- a test piece was prepared in the same manner as in Test Example 1, a dent test was performed, and the dent amount was measured.
- Table 2 a sample having a thickness of 0.6 mm (0.6 mm) shows the result of Test Example 1.
- the total holding time in the temperature range of 250 ° C to 350 ° C is 60 minutes or less in the rolling process, although the amount of dent varies depending on the thickness of the magnesium alloy plate and the press-formed body (top plate part).
- the coarse intermetallic compound having a particle size of 5 ⁇ m or more does not exist in the surface region regardless of the plate thickness (0), and the amount of dents is small compared to the sample ⁇ having the same thickness. I understand.
- x ⁇ 0.47 ⁇ t p ⁇ 1.25 is used as an index representing the molded body of the present invention.
- magnesium alloy plate for even x ⁇ 0.47 ⁇ t b -1.25 ( t b: plate thickness) can be applied, the present invention x ⁇ 0.47 ⁇ t b -1.25 Used as an index to indicate a magnesium alloy plate.
- the obtained rolled plate was subjected to warm straightening treatment.
- the warm straightening process uses a roll leveler apparatus including a heating furnace capable of heating a rolled plate and a roll unit having a plurality of rolls that continuously bend (strain) the heated rolled plate. Do it.
- the roll section includes a plurality of rolls arranged in a staggered manner facing each other in the vertical direction.
- the rolled plater is sent to the roll part while being heated in the heating furnace by the roll leveler device, and is bent sequentially by these rolls each time it passes between the upper and lower rolls of the roll part.
- warm correction was performed in the temperature range of 220 to 250 ° C, and the conveyance speed during correction was adjusted so that the total time during which the rolled plate was maintained at a temperature of 250 to 350 ° C was within 60 minutes.
- the magnesium alloy plate obtained by the above warm straightening treatment was subjected to corner drawing at a heating temperature of 250 ° C. to obtain a box-shaped press-molded body similar to Test Example 1.
- the number of precipitates was measured by observing the structure of the cross section in the same manner as in Test Example 1.
- a test piece was prepared in the same manner as in Test Example 1, a dent test was performed, and the dent amount was measured.
- sample No. 3-1 using a magnesium alloy plate subjected to warm straightening treatment was sample No. 2-1 (0.6 mmt- ⁇ of Test Example 2) subjected to final heat treatment after rolling.
- the dent amount is small and the impact resistance is excellent.
- the above-described embodiment can be modified as appropriate without departing from the gist of the present invention, and is not limited to the above-described configuration.
- the composition of the magnesium alloy, the thickness of the magnesium alloy plate, the shape of the press-molded body, and the like can be changed as appropriate.
- the magnesium alloy molded body of the present invention can be suitably used for various types of electrical equipment parts, in particular, portable electrical equipment casings.
- the magnesium alloy sheet of the present invention can be suitably used as a material for the magnesium alloy molded body of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
- Continuous Casting (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
粗大粒子とは、Al及びMgを含む金属間化合物の粒子であって、粒子径が5μm以上である粒子とする。
粒子径とは、上記断面における粒子の面積と等価な面積を有する円の直径とする。
なお、上記断面に存在する金属間化合物は、例えば、EDS(エネルギー分散型X線分析装置:Energy Dispersive X-ray Spectrometer)やX線回折などで粒子の組成、構造を調べることで判別できる。
準備工程:Alを7~12質量%含有するマグネシウム合金からなり、連続鋳造法で製造した鋳造板を準備する。
溶体化工程:上記鋳造板に350℃以上の温度で溶体化処理を施す。
圧延工程:上記溶体化処理された板材に圧延を施す。
特に、溶体化処理の保持温度からの冷却工程において、350℃から250℃までの冷却速度を0.1℃/sec以上とし、圧延工程において、加工対象である板材が250℃以上350℃以下の温度域に保持される総合計時間を60分以内とする。
《組成》
マグネシウム合金は、Mgに添加元素を含有した種々の組成のもの(残部:Mg及び不純物)が挙げられる。本発明の板及び成形体は、添加元素に少なくともAlを7質量%以上12質量%以下含有するMg-Al系合金からなるものとする。Al以外の添加元素は、Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,及び希土類元素(Yを除く)から選択された1種以上の元素が挙げられる。これらの元素を含む場合、その含有量は、0.01質量%以上10質量%以下、好ましくは0.1質量%以上5質量%以下が挙げられる。より具体的なMg-Al系合金は、例えば、ASTM規格におけるAZ系合金(Mg-Al-Zn系合金、Zn:0.2~1.5質量%)、AM系合金(Mg-Al-Mn系合金、Mn:0.15~0.5質量%)、Mg-Al-RE(希土類元素)系合金などが挙げられる。特に、Alを8.3~9.5質量%、Znを0.5~1.5質量%含有するMg-Al系合金、代表的にはAZ91合金は、AZ31合金といった他のMg-Al系合金と比較して、耐食性や強度、耐塑性変形性といった機械的特性に優れる。
本発明合金板は、曲げ加工や絞り加工といったプレス成形が施され、筐体といった薄型、軽量の部材の素材に利用される。プレス成形が施されて得られた筐体において、塑性加工に伴う変形により厚さが実質的に変化しない箇所(本発明成形体における平坦な部分)の厚さが薄くなるように、本発明合金板の厚さは、2.0mm以下、特に1.5mm以下、更に1mm以下が好ましい。上記範囲においてマグネシウム合金板の厚さが厚いほど、強度に優れ、薄いほど、薄型、軽量な筐体に適する。所望の用途に応じて板厚を選択するとよい。
本発明合金板は、落下などの衝撃を受けた際に凹み難い。具体的には、本発明合金板から切り出した30mm×30mm、厚さtbの試験片に対して、以下の凹み試験を行ったとき、上記試験片の凹み量xbは、xb≦0.47×tb -1.25を満たす。また、本発明成形体において、絞り変形を伴わない平坦な部分は、上述のように粗大な析出物が少なく、上述のように本発明合金板の特性を実質的に維持する。そのため、上記平坦な部分から、上述した本発明合金板と同様の試験片(厚さ:tp)を切り出し、以下の凹み試験を行ったとき、上記試験片の凹み量xpは、xp≦0.47×tp -1.25を満たす。なお、本発明成形体の平坦な部分から切り出した試験片の厚さtpは、プレス成形前の素材となったマグネシウム合金板、例えば、本発明合金板から切り出した試験片の厚さtbに実質的に等しい(tp=tb)。
(凹み試験)
直径20mmの穴を有する支持台に、この穴を塞ぐように試験片を配置し、この状態で試験片からの高さ200mmの地点より、重量100g、先端r=5mmの円柱棒を自由落下させる。
凹み量xb又はxpは、凹み試験後における試験片の両辺を結ぶ直線から最も凹んだ部分までの距離とする。
本発明成形体は、代表的には、天板部(底面部)と、天板部の周縁から立設される側壁部とを有する形状が挙げられる。より具体的には、矩形板状の天板部と、対向する一対の側壁部のみを有する]状体、対向する一対の側壁部を二組有する断面]状の箱体や、天板部が円板状で、側壁部が円筒状の有蓋筒状体などが挙げられる。
本発明成形体は、マグネシウム合金からなる板の表面に、防食、保護、装飾などを目的とした被覆層を具える形態とすることができる。本発明成形体を主として構成するマグネシウム合金は、Alを7質量%以上含むことで、Alの含有量が少ない合金、例えばAZ31合金に比較して耐食性に優れる。更に、化成処理や陽極酸化処理といった防食処理を上記マグネシウム合金からなる板に施し、防食層を具える形態とすることで、本発明成形体の耐食性をより高められる。なお、上記防食や塗装などの被覆層の形成工程では、析出物の大きさや析出に実質的に影響を与えない。そのため、上記本発明成形体は、上記防食などの被覆層を具えていても、上記粗大粒子が5個以下であり、上記凹み試験を行った場合、xp≦0.47×tp -1.25を満たす。
[準備工程]
鋳造板は、双ロール法といった連続鋳造法、特に、WO/2006/003899に記載の鋳造方法で製造した鋳造板を利用することが好ましい。連続鋳造法は、急冷凝固が可能であるため、酸化物や偏析などを低減でき、圧延性に優れる鋳造板が得られる。鋳造板の大きさは特に問わないが、厚過ぎると偏析が生じ易いため、10mm以下、特に5mm以下が好ましい。
上記鋳造板には、溶体化処理を施して、組成の均質化を図る。溶体化処理は、保持温度を350℃以上とする。特に、保持温度:380~420℃、保持時間:60~2400分が好ましく、Alの含有量が高いほど、保持時間を長くすることが好ましい。また、本発明合金板を製造するために、上記保持温度からの冷却工程において、350℃~250℃の温度域の保持時間を制御する。具体的には、図2(1)に示すように上記温度域の保持時間を短くするために、この温度域における冷却速度を0.1℃/sec以上(保持時間:約16.6分以下)、好ましくは、0.5℃/sec以上(保持時間:3.3分以下)とする。このような冷却速度は、水冷や衝風といった強制冷却などにより達成できる。上記温度域の保持時間をできるだけ短くすることで、高Alマグネシウム合金であっても、Al及びMgを含む金属間化合物の析出を抑制でき、特に粗大粒に成長することを効果的に抑制することができる。
上記溶体化処理が施された板材の塑性加工性(圧延性)を高めるために、上述のように少なくとも粗圧延では、200℃以上、特に250℃以上の温度に加熱した板材に圧延を施すことが好ましい。上記加熱温度が高いほど、板材の塑性加工性を高められるが、350℃を超えると、焼き付きが発生したり、結晶粒が粗大化して圧延後の板材の機械特性が低下するなどの問題があることから、350℃以下が好ましく、より好ましい加熱温度は、270℃以上330℃以下である。複数回(多パス)の圧延を施すことで、所望の板厚にできると共に、マグネシウム合金の平均結晶粒径を小さくしたり、プレス加工性を高められる。圧延は、公知の条件、例えば、板材だけでなくロールも加熱したり、特許文献1に開示される制御圧延などを組み合わせて利用してもよい。また、最終パス及びその近傍のパスでは、寸法精度を高めるなどの目的で、板材の加熱温度を低く(例えば、室温)にしてもよい。
(最終熱処理(焼鈍))
得られた圧延板には、例えば、300℃以上の最終熱処理を行って、圧延による加工歪みを除去すると共に、完全に再結晶化させてもよい。この最終熱処理でも、250℃~350℃の温度域で析出物が成長し易い。そのため、圧延後に最終熱処理を行う場合、この処理時間も、上記総保持時間に含めて制御することが好ましい。上述のように最終熱処理時間を制御することで、粗大な析出物が少ない本発明マグネシウム合金板とすることができる。
或いは、圧延後に上記最終熱処理を行わず、得られた圧延板を100~250℃に加熱した状態でロールレベラなどにより歪みを付与する温間矯正処理を施してもよい。温間矯正処理を行った処理板にプレス加工を施すと、プレス加工時に再結晶化されて、微細な結晶組織の成形体が得られる。上記最終熱処理を行った場合と比較しても結晶粒が微細になり易く、微細な析出物がより均一的に分散した組織になり易い。従って、温間矯正処理を行った場合、粗大な析出物が少ない上に、上記微細組織であることで、耐衝撃特性により優れる本発明マグネシウム合金板が得られる。なお、温間矯正処理では、圧延板の加熱温度をせいぜい250℃とすることで、析出物が粗大になり難いと考えられる。
本発明成形体は、上記圧延工程により得られた圧延板や、この圧延板に上述した最終熱処理や温間矯正処理を施した処理板にプレス成形を施すことで製造することができる。プレス成形は、加工対象である圧延板や処理板の塑性変形性を高められるように200℃~300℃の温度域で行うことが好ましい。なお、250℃~350℃の温度域と重複する温度でプレス成形を行っても、プレス成形では、250℃~350℃の温度域の保持時間が非常に短いため、上述したような析出物の粗大化などの不具合は少ないと考えられる。
[試験例1]
マグネシウム合金からなる複数の板、及びこれらマグネシウム合金板をプレス成形してなるプレス成形体を作製し、金属組織、及び耐衝撃特性を調べた。
(圧延条件)
加工度(圧下率):5%/パス~40%/パス
板の加熱温度:200℃~400℃
ロール温度:100℃~250℃
《析出物》
得られたAZ91合金からなるマグネシウム合金板を板厚方向に切断し、その断面を光学顕微鏡(1000倍)で観察し、断面において当該板の表面から板厚の1/3までの表層領域から、100μm×100μmの領域を任意に2箇所選択して、この領域を観察視野とする。そして、各観察視野において、観察されたAl及びMgを含む金属間化合物の粒子径をそれぞれ測定し、粒子径が5μm以上である粒子の個数を数えた。
得られたAZ91合金からなるマグネシウム合金板、及び準備したAZ31合金材,A5052材(アルミニウム合金材)を30mm×30mmに切り出し、試験片を作製した。この試験では、図3に示すように、水平な面に直径d=20mmの円穴21を有する支持台20を用意した。円穴21の深さは後述する円柱棒10が十分に挿入可能な大きさとした。この円穴21を塞ぐように試験片1を配置し、この状態で、試験片1から高さ200mmの地点に、重量100g、先端r=5mm、セラミックス製の円柱棒10を、その中心軸と、円穴21の中心軸とが同軸となるように配置した。そして、試験片1に向けて、上記配置した地点から円柱棒10を自由落下させた後、試験片1の凹み量を測定する。凹み量(mm)は、試験片1の対向する両辺を結ぶ直線から最も凹んだ部分までの距離をポイントマイクロメータを用いて測定した。また、試料a,dについては、30mm×30mmの試験片において、30mmの一辺に平行な直線であって、最も凹んだ箇所を通過する直線を選択し、この直線上の複数の点で凹み量を上記と同様に測定した。その結果を図4に示す。
《析出物》
得られたAZ91合金の箱型のプレス成形体において、絞り変形を伴わない平坦な部分、具体的には、天板部を板厚方向に切断して、その断面を上記マグネシウム合金板と同様にして観察すると共に観察視野をとり、二つの観察視野において、粒子径が5μm以上である、Al及びMgを含む金属間化合物の粒子の個数を数えた。
得られたAZ91合金の箱型のプレス成形体、及び別途作製したAZ31合金のプレス成形体,A5052のプレス成形体において、絞り変形を伴わない平坦な部分、具体的には、天板部から30mm×30mmの試験片を切り出し、上記マグネシウム合金板と同様に図3に示す治具を用いて、凹み量(mm)を測定した。
得られたAZ91合金の箱型のプレス成形体において、天板部から切り出した上記30mm×30mmの試験片の任意の4箇所について厚さを測定した。その結果、いずれの箇所も上記マグネシウム合金板の厚さに等しかった(試験片の厚さ:0.6mm)。
厚さの異なるマグネシウム合金板、及びこれらマグネシウム合金板にプレス成形してなるプレス成形体を作製し、金属組織、及び耐衝撃特性を調べた。
圧延後に施す処理を変えて作製したマグネシウム合金板を用意し、このマグネシウム合金板にプレス成形してなるプレス成形体を作製し、金属組織、及び耐衝撃特性を調べた。
Claims (9)
- マグネシウム合金からなる板をプレス成形したマグネシウム合金成形体であって、
前記マグネシウム合金は、Alを7質量%以上12質量%以下含有し、
前記成形体は、絞り変形を伴わない平坦な部分を有しており、
前記平坦な部分を板厚方向に切断した断面の金属組織において、平坦な部分の表面から板厚方向に板厚の1/3までの領域を表層領域とし、前記表層領域の任意の2箇所から選択した100μm×100μmの領域を観察視野とし、Al及びMgを含む金属間化合物の粒子であって、粒子径が5μm以上である粒子を粗大粒子とするとき、
前記各観察視野内に存在する前記粗大粒子が5個以下であることを特徴とするマグネシウム合金成形体。 - 前記平坦な部分から切り出した30mm×30mm、厚さtpの試験片に対して、以下の凹み試験を行ったとき、前記試験片の凹み量xpは、xp≦0.47×tp -1.25を満たすことを特徴とする請求項1に記載のマグネシウム合金成形体。
(凹み試験)
直径20mmの穴を有する支持台に、この穴を塞ぐように試験片を配置し、この状態で試験片からの高さ200mmの地点より、重量100g、先端r=5mmの円柱棒を自由落下させる。
凹み量xpは、凹み試験後における試験片の両辺を結ぶ直線から最も凹んだ部分までの距離とする。 - 前記マグネシウム合金は、Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,及び希土類元素(Yを除く)から選択された1種以上の元素を含むことを特徴とする請求項1又は2に記載のマグネシウム合金成形体。
- 前記マグネシウム合金は、質量%でA1を8.3%以上9.5%以下、Znを0.5%以上1.5%以下含有することを特徴とする請求項3に記載のマグネシウム合金成形体。
- 前記マグネシウム合金からなる板の表面に、化成処理により形成された防食層を具えることを特徴とする請求項4に記載のマグネシウム合金成形体。
- プレス成形に用いられるマグネシウム合金板であって、
前記マグネシウム合金は、Alを7質量%以上12質量%以下含有し、
前記板を板厚方向に切断した断面の金属組織において、板表面から板厚方向に板厚の1/3までの領域を表層領域とし、前記表層領域の任意の2箇所から選択した100μm×100μmの領域を観察視野とし、Al及びMgを含む金属間化合物の粒子であって、粒子径が5μm以上である粒子を粗大粒子とするとき、
前記各観察視野内に存在する前記粗大粒子が5個以下であることを特徴とするマグネシウム合金板。 - 前記板から切り出した30mm×30mm、厚さtbの試験片に対して、以下の凹み試験を行ったとき、前記試験片の凹み量xbは、xb≦0.47×tb -1.25を満たすことを特徴とする請求項6に記載のマグネシウム合金板。
(凹み試験)
直径20mmの穴を有する支持台に、この穴を塞ぐように試験片を配置し、この状態で試験片からの高さ200mmの地点より、重量100g、先端r=5mmの円柱棒を自由落下させる。
凹み量xbは、凹み試験後における試験片の両辺を結ぶ直線から最も凹んだ部分までの距離とする。 - 前記マグネシウム合金は、Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,及び希土類元素(Yを除く)から選択された1種以上の元素を含むことを特徴とする請求項6又は7に記載のマグネシウム合金板。
- 前記マグネシウム合金は、質量%でA1を8.3%以上9.5%以下、Znを0.5%以上1.5%以下含有することを特徴とする請求項8に記載のマグネシウム合金板。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010534666A JPWO2010047045A1 (ja) | 2008-10-22 | 2009-09-29 | マグネシウム合金成形体及びマグネシウム合金板 |
US13/125,023 US20110203706A1 (en) | 2008-10-22 | 2009-09-29 | Formed product of magnesium alloy and magnesium alloy sheet |
CN2009801421984A CN102197152B (zh) | 2008-10-22 | 2009-09-29 | 镁合金成形体和镁合金板 |
RU2011120482/02A RU2011120482A (ru) | 2008-10-22 | 2009-09-29 | Формованное изделие из магниевого сплава и лист из магниевого сплава |
CA2741210A CA2741210A1 (en) | 2008-10-22 | 2009-09-29 | Formed product of magnesium alloy and magnesium alloy sheet |
BRPI0919653A BRPI0919653A2 (pt) | 2008-10-22 | 2009-09-29 | produto formado de liga de magnésio e folha de liga de magnésio |
AU2009305830A AU2009305830A1 (en) | 2008-10-22 | 2009-09-29 | Formed product of magnesium alloy and magnesium alloy sheet |
EP09821745.8A EP2351863A4 (en) | 2008-10-22 | 2009-09-29 | WORKING MAGNESIUM ALLOY PRODUCT AND MAGNESIUM ALLOY SHEET |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-272241 | 2008-10-22 | ||
JP2008272241 | 2008-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010047045A1 true WO2010047045A1 (ja) | 2010-04-29 |
Family
ID=42119101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005004 WO2010047045A1 (ja) | 2008-10-22 | 2009-09-29 | マグネシウム合金成形体及びマグネシウム合金板 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20110203706A1 (ja) |
EP (1) | EP2351863A4 (ja) |
JP (2) | JPWO2010047045A1 (ja) |
KR (1) | KR20110070884A (ja) |
CN (1) | CN102197152B (ja) |
AU (1) | AU2009305830A1 (ja) |
BR (1) | BRPI0919653A2 (ja) |
CA (1) | CA2741210A1 (ja) |
RU (1) | RU2011120482A (ja) |
WO (1) | WO2010047045A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021182A (ja) * | 2010-07-12 | 2012-02-02 | Sumitomo Electric Ind Ltd | マグネシウム合金コイル材及びその製造方法 |
WO2012066986A1 (ja) * | 2010-11-16 | 2012-05-24 | 住友電気工業株式会社 | マグネシウム合金板、及びその製造方法 |
JP2012107273A (ja) * | 2010-11-16 | 2012-06-07 | Sumitomo Electric Ind Ltd | マグネシウム合金板 |
JP2012107285A (ja) * | 2010-11-16 | 2012-06-07 | Sumitomo Electric Ind Ltd | マグネシウム合金部材 |
WO2012091112A1 (ja) * | 2010-12-28 | 2012-07-05 | 住友電気工業株式会社 | マグネシウム合金材 |
JP2012140656A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | マグネシウム合金材 |
JP2012140657A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | マグネシウム合金材 |
JP2012140655A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | マグネシウム合金板材 |
JP2015166496A (ja) * | 2015-05-15 | 2015-09-24 | 住友電気工業株式会社 | マグネシウム合金材 |
CN116818468A (zh) * | 2023-08-24 | 2023-09-29 | 北京科技大学 | 一种加入稀土改性的钢液的演化过程的分析方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101614004B1 (ko) * | 2013-11-06 | 2016-04-21 | 연세대학교 산학협력단 | 석출강화 압출용 마그네슘 합금 및 그 제조방법 |
CN104745905A (zh) * | 2013-12-30 | 2015-07-01 | 苏州昊卓新材料有限公司 | 一种高强度、高韧性压铸镁合金及其制备方法 |
CN104264085A (zh) * | 2014-09-25 | 2015-01-07 | 昆明理工大学 | 一种镁合金的表面强化方法 |
CN105695825B (zh) * | 2016-02-05 | 2017-10-31 | 辽宁工业大学 | 一种Mg‑Al‑Zn‑Si‑Bi合金及其制备方法 |
CN107523728A (zh) * | 2016-06-20 | 2017-12-29 | 张家港市华舰五金工具有限公司 | 一种镁合金及其制备方法 |
AU2020367416A1 (en) * | 2019-10-18 | 2022-05-05 | Kurimoto, Ltd. | Degradable magnesium alloy |
CN113073275B (zh) * | 2021-03-22 | 2021-11-30 | 湖南工程学院 | 具有四峰非基面织构特征的镁合金板材的制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000271631A (ja) * | 1999-03-26 | 2000-10-03 | Kenji Azuma | 押出成形材及び成形品の製造方法 |
JP2000313948A (ja) * | 1999-04-27 | 2000-11-14 | Ykk Corp | 成形材料および成形品の製造方法 |
WO2006003899A1 (ja) | 2004-06-30 | 2006-01-12 | Sumitomo Electric Industries, Ltd. | マグネシウム合金材の製造方法 |
JP2006152401A (ja) * | 2004-11-30 | 2006-06-15 | Sumitomo Electric Ind Ltd | マグネシウム合金素材 |
JP2007098470A (ja) | 2005-03-28 | 2007-04-19 | Sumitomo Electric Ind Ltd | マグネシウム合金板の製造方法 |
WO2008029497A1 (fr) * | 2006-09-08 | 2008-03-13 | Sumitomo Electric Industries, Ltd. | Élément d'alliage de magnésium et son procédé de production |
JP2008106337A (ja) * | 2006-10-27 | 2008-05-08 | Shingijutsu Kenkyusho:Kk | マグネシウム合金の圧延材およびその製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2651245B2 (fr) * | 1988-02-26 | 1992-08-07 | Pechiney Electrometallurgie | Alliages de magnesium a haute resistance mecanique et procede d'obtention par solidification rapide. |
FR2642439B2 (ja) * | 1988-02-26 | 1993-04-16 | Pechiney Electrometallurgie | |
FR2651244B1 (fr) * | 1989-08-24 | 1993-03-26 | Pechiney Recherche | Procede d'obtention d'alliages de magnesium par pulverisation-depot. |
JPH0390530A (ja) * | 1989-08-24 | 1991-04-16 | Pechiney Electrometall | 機械的強度の高いマグネシウム合金及び該合金の急速凝固による製造方法 |
US5078807A (en) * | 1990-09-21 | 1992-01-07 | Allied-Signal, Inc. | Rapidly solidified magnesium base alloy sheet |
JPH0681089A (ja) * | 1992-09-02 | 1994-03-22 | Sumitomo Metal Ind Ltd | マグネシウム合金の熱間加工方法 |
JPH06145872A (ja) * | 1992-11-06 | 1994-05-27 | Kobe Steel Ltd | クリープ強度に優れたMg合金及びその製造方法 |
JP3603706B2 (ja) * | 1999-12-03 | 2004-12-22 | 株式会社日立製作所 | 高強度Mg基合金とMg基鋳造合金及び物品 |
US6342180B1 (en) * | 2000-06-05 | 2002-01-29 | Noranda, Inc. | Magnesium-based casting alloys having improved elevated temperature properties |
JP2006002184A (ja) * | 2004-06-15 | 2006-01-05 | Toudai Tlo Ltd | 高強靭性マグネシウム基合金およびそれを用いた駆動系部品並びに高強靭性マグネシウム基合金素材の製造方法 |
JP2006348349A (ja) * | 2005-06-16 | 2006-12-28 | Katsuyoshi Kondo | マグネシウム合金粉体原料、高耐力マグネシウム合金、マグネシウム合金粉体原料の製造方法および高耐力マグネシウム合金の製造方法 |
BRPI0602153B1 (pt) * | 2006-06-06 | 2017-05-30 | Coppe/Ufrj - Coordenação Dos Programas De Pós Graduação De Engenharia Da Univ Fed Do Rio De Janeiro | ligas de magnésio para armazenamento reversível de hidrogênio |
CN101921940B (zh) * | 2009-06-16 | 2013-03-13 | 富准精密工业(深圳)有限公司 | 镁合金及其制备方法 |
JP2011006754A (ja) * | 2009-06-26 | 2011-01-13 | Sumitomo Electric Ind Ltd | マグネシウム合金板 |
JP5648885B2 (ja) * | 2009-07-07 | 2015-01-07 | 住友電気工業株式会社 | マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金板の製造方法 |
US20110030855A1 (en) * | 2009-08-07 | 2011-02-10 | Gm Global Technology Operations, Inc. | CORROSION RESISTANCE OF THE CAST Mg ALLOYS BY NOVEL MICROSTRUCTURAL PHASE MODIFICATIONS |
US8464926B2 (en) * | 2009-10-30 | 2013-06-18 | Wisconsin Alumni Research Foundation | Method of friction stir welding dissimilar metals and workpiece assemblies formed thereby |
-
2009
- 2009-09-29 US US13/125,023 patent/US20110203706A1/en not_active Abandoned
- 2009-09-29 KR KR1020117009128A patent/KR20110070884A/ko not_active Application Discontinuation
- 2009-09-29 CN CN2009801421984A patent/CN102197152B/zh not_active Expired - Fee Related
- 2009-09-29 BR BRPI0919653A patent/BRPI0919653A2/pt not_active Application Discontinuation
- 2009-09-29 JP JP2010534666A patent/JPWO2010047045A1/ja not_active Revoked
- 2009-09-29 WO PCT/JP2009/005004 patent/WO2010047045A1/ja active Application Filing
- 2009-09-29 RU RU2011120482/02A patent/RU2011120482A/ru unknown
- 2009-09-29 CA CA2741210A patent/CA2741210A1/en not_active Abandoned
- 2009-09-29 AU AU2009305830A patent/AU2009305830A1/en not_active Abandoned
- 2009-09-29 EP EP09821745.8A patent/EP2351863A4/en not_active Withdrawn
-
2014
- 2014-10-23 JP JP2014216651A patent/JP6065346B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000271631A (ja) * | 1999-03-26 | 2000-10-03 | Kenji Azuma | 押出成形材及び成形品の製造方法 |
JP2000313948A (ja) * | 1999-04-27 | 2000-11-14 | Ykk Corp | 成形材料および成形品の製造方法 |
WO2006003899A1 (ja) | 2004-06-30 | 2006-01-12 | Sumitomo Electric Industries, Ltd. | マグネシウム合金材の製造方法 |
JP2006152401A (ja) * | 2004-11-30 | 2006-06-15 | Sumitomo Electric Ind Ltd | マグネシウム合金素材 |
JP2007098470A (ja) | 2005-03-28 | 2007-04-19 | Sumitomo Electric Ind Ltd | マグネシウム合金板の製造方法 |
WO2008029497A1 (fr) * | 2006-09-08 | 2008-03-13 | Sumitomo Electric Industries, Ltd. | Élément d'alliage de magnésium et son procédé de production |
JP2008106337A (ja) * | 2006-10-27 | 2008-05-08 | Shingijutsu Kenkyusho:Kk | マグネシウム合金の圧延材およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2351863A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021182A (ja) * | 2010-07-12 | 2012-02-02 | Sumitomo Electric Ind Ltd | マグネシウム合金コイル材及びその製造方法 |
EP2641986A4 (en) * | 2010-11-16 | 2017-09-06 | Sumitomo Electric Industries, Ltd. | Magnesium alloy sheet and process for producing same |
US9222161B2 (en) | 2010-11-16 | 2015-12-29 | Sumitomo Electric Industries, Ltd. | Magnesium alloy sheet and method for producing same |
JP2012107285A (ja) * | 2010-11-16 | 2012-06-07 | Sumitomo Electric Ind Ltd | マグネシウム合金部材 |
KR101799615B1 (ko) * | 2010-11-16 | 2017-11-20 | 스미토모덴키고교가부시키가이샤 | 마그네슘 합금판, 및 그 제조 방법 |
CN103210102A (zh) * | 2010-11-16 | 2013-07-17 | 住友电气工业株式会社 | 镁合金板及其制造方法 |
WO2012066986A1 (ja) * | 2010-11-16 | 2012-05-24 | 住友電気工業株式会社 | マグネシウム合金板、及びその製造方法 |
JP2012107273A (ja) * | 2010-11-16 | 2012-06-07 | Sumitomo Electric Ind Ltd | マグネシウム合金板 |
JP2012140656A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | マグネシウム合金材 |
JP2012140655A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | マグネシウム合金板材 |
US20140308157A1 (en) * | 2010-12-28 | 2014-10-16 | Sumitomo Electric Industries, Ltd. | Magnesium alloy material |
JP2012140657A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | マグネシウム合金材 |
WO2012091112A1 (ja) * | 2010-12-28 | 2012-07-05 | 住友電気工業株式会社 | マグネシウム合金材 |
JP2015166496A (ja) * | 2015-05-15 | 2015-09-24 | 住友電気工業株式会社 | マグネシウム合金材 |
CN116818468A (zh) * | 2023-08-24 | 2023-09-29 | 北京科技大学 | 一种加入稀土改性的钢液的演化过程的分析方法 |
CN116818468B (zh) * | 2023-08-24 | 2023-11-10 | 北京科技大学 | 一种加入稀土改性的钢液的演化过程的分析方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2351863A4 (en) | 2015-08-26 |
JPWO2010047045A1 (ja) | 2012-03-15 |
CN102197152A (zh) | 2011-09-21 |
JP6065346B2 (ja) | 2017-01-25 |
BRPI0919653A2 (pt) | 2015-12-08 |
US20110203706A1 (en) | 2011-08-25 |
RU2011120482A (ru) | 2012-11-27 |
JP2015034350A (ja) | 2015-02-19 |
AU2009305830A1 (en) | 2010-04-29 |
CA2741210A1 (en) | 2010-04-29 |
CN102197152B (zh) | 2013-11-13 |
KR20110070884A (ko) | 2011-06-24 |
EP2351863A1 (en) | 2011-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6065346B2 (ja) | マグネシウム合金のプレス成形体、マグネシウム合金の圧延板、マグネシウム合金成形体の製造方法、及びマグネシウム合金板の製造方法 | |
TWI385257B (zh) | 鎂合金板之製造方法及鎂合金板 | |
JP3558628B2 (ja) | マグネシウム合金板およびその製造方法 | |
AU2011257953B2 (en) | Magnesium-based alloy for wrought applications | |
WO2014168147A1 (ja) | プレス成形用アルミニウム合金板、その製造方法およびそのプレス成形体 | |
KR101860167B1 (ko) | 마그네슘 합금재 및 그의 제조 방법 | |
KR101324715B1 (ko) | 마그네슘 합금 판재의 성형성 향상방법 및 이에 의해 제조되는 마그네슘 합금 판재 | |
CN108472699B (zh) | 镁合金板材及其制造方法 | |
WO2012066986A1 (ja) | マグネシウム合金板、及びその製造方法 | |
JP2007138227A (ja) | マグネシウム合金材 | |
JP5648885B2 (ja) | マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金板の製造方法 | |
WO2016059950A1 (ja) | マグネシウム合金、マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金の製造方法 | |
WO2010150651A1 (ja) | マグネシウム合金板 | |
JP5247010B2 (ja) | 高強度で曲げ加工性に優れたCu−Zn系合金 | |
CN103370433B (zh) | 镁合金材料及其制造方法 | |
JP4306547B2 (ja) | マグネシウム合金板及びその製造方法 | |
JP2014237896A (ja) | マグネシウム合金板 | |
Masoudpanah et al. | Correlation between shear punch and tensile measurements for an AZ31 Mg alloy processed by equal-channel angular pressing | |
JP2011157626A (ja) | マグネシウム合金板 | |
JP2012025981A (ja) | マグネシウム合金コイル材 | |
WO2011129221A1 (ja) | 耐衝撃部材 | |
JP5032011B2 (ja) | 硬質α黄銅及びその硬質α黄銅の製造方法 | |
CN110785506A (zh) | 镁合金板材及其制造方法 | |
JP5637378B2 (ja) | マグネシウム合金板 | |
JP2012107274A (ja) | マグネシウム合金板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980142198.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09821745 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2010534666 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2741210 Country of ref document: CA Ref document number: 13125023 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2914/DELNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20117009128 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009821745 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009305830 Country of ref document: AU Date of ref document: 20090929 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011120482 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0919653 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110415 |