WO2010047045A1 - マグネシウム合金成形体及びマグネシウム合金板 - Google Patents

マグネシウム合金成形体及びマグネシウム合金板 Download PDF

Info

Publication number
WO2010047045A1
WO2010047045A1 PCT/JP2009/005004 JP2009005004W WO2010047045A1 WO 2010047045 A1 WO2010047045 A1 WO 2010047045A1 JP 2009005004 W JP2009005004 W JP 2009005004W WO 2010047045 A1 WO2010047045 A1 WO 2010047045A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
plate
test piece
test
dent
Prior art date
Application number
PCT/JP2009/005004
Other languages
English (en)
French (fr)
Inventor
大石幸広
河部望
奥田伸之
森信之
沼野正禎
森宏治
北村貴彦
井上龍一
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to RU2011120482/02A priority Critical patent/RU2011120482A/ru
Priority to CN2009801421984A priority patent/CN102197152B/zh
Priority to US13/125,023 priority patent/US20110203706A1/en
Priority to EP09821745.8A priority patent/EP2351863A4/en
Priority to JP2010534666A priority patent/JPWO2010047045A1/ja
Priority to CA2741210A priority patent/CA2741210A1/en
Priority to BRPI0919653A priority patent/BRPI0919653A2/pt
Priority to AU2009305830A priority patent/AU2009305830A1/en
Publication of WO2010047045A1 publication Critical patent/WO2010047045A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to a magnesium alloy plate suitable for a material such as a casing of a portable electric device, and a magnesium alloy molded body obtained by press-forming this plate.
  • the present invention relates to a magnesium alloy molded body having excellent impact resistance characteristics.
  • ABS acrylonitrile butadiene styrene copolymer
  • PC polycarbonate
  • metals such as aluminum alloy and stainless steel (SUS) are used. Has been.
  • Magnesium alloy is superior in plastic deformation resistance compared to aluminum alloy and is very light compared to stainless steel.
  • a cast material of a magnesium alloy is inferior in strength to a magnesium alloy press-molded body, and it is difficult to reduce the thickness.
  • the AZ31 alloy press-molded body also has insufficient strength.
  • one of the objects of the present invention is to provide a magnesium alloy molded body having excellent impact resistance characteristics.
  • Another object of the present invention is to provide a magnesium alloy sheet suitable for the production of a magnesium alloy molded body having excellent impact resistance.
  • the inventors of the present invention have prepared a plate as a raw material by various manufacturing methods in a magnesium alloy containing 7 mass% or more of Al, and manufactured a press-molded body from the obtained plate, and have impact resistance characteristics (dent resistance) As a result, it was found that the press-molded body that was difficult to dent had small particles composed of an intermetallic compound (precipitate) such as Mg 17 Al 12 and few large particles. Therefore, when the production method for controlling the maximum particle size and the number of the precipitates, that is, reducing the coarse precipitates, was studied, the total time kept in a specific temperature range mainly in the rolling process was made larger than before. By shortening, a magnesium alloy sheet with few coarse precipitates could be obtained. Moreover, the press-molded body obtained by press-molding this magnesium alloy plate was excellent in impact resistance. The present invention is based on the above findings.
  • the magnesium alloy molded body of the present invention is obtained by press-molding a plate made of a magnesium alloy containing 7 mass% or more and 12 mass% or less of Al, and has a flat portion not accompanied by drawing deformation.
  • the observation visual field defined below is taken in the metal structure of the cross section obtained by cutting the portion in the plate thickness direction, the number of coarse intermetallic compound particles present in each observation visual field is five or less.
  • the magnesium alloy plate of the present invention is used for press forming, and is made of a magnesium alloy containing 7 mass% or more and 12 mass% or less of Al, and is present in each observation field defined below.
  • the number of intermetallic compound particles is 5 or less.
  • the observation visual field means that the flat portion or the metal structure of a cross section obtained by cutting the magnesium alloy plate in the plate thickness direction, the surface of the flat portion, or 1/3 of the plate thickness in the plate thickness direction from the plate surface.
  • the region up to is the surface layer region, and is a region of 100 ⁇ m ⁇ 100 ⁇ m selected from any two locations in the surface layer region.
  • the coarse particles are particles of an intermetallic compound containing Al and Mg and have a particle diameter of 5 ⁇ m or more.
  • the particle diameter is the diameter of a circle having an area equivalent to the area of the particles in the cross section.
  • the intermetallic compound present in the cross section can be determined by examining the composition and structure of the particles using, for example, EDS (Energy Dispersive X-ray Spectrometer) or X-ray diffraction.
  • the alloy plate of the present invention having the above specific structure can be manufactured by, for example, a manufacturing method including the following steps.
  • Preparation step A cast plate made of a magnesium alloy containing 7 to 12% by mass of Al and manufactured by a continuous casting method is prepared.
  • Solution treatment step The cast plate is subjected to a solution treatment at a temperature of 350 ° C or higher.
  • Rolling step The solution-treated plate material is rolled. In particular, in the cooling process from the holding temperature of the solution treatment, the cooling rate from 350 ° C. to 250 ° C. is set to 0.1 ° C./sec or more, and in the rolling process, the plate material to be processed is a temperature range of 250 ° C. to 350 ° C. Keep the total time held in 60 minutes.
  • the total holding time of the above temperature range within 1 hour only in the rolling process, it is possible to more effectively suppress coarse precipitates by increasing the cooling rate in the solution treatment process. .
  • the total time of the total holding time in the temperature range in the rolling process and the holding time in the temperature range in the cooling process of the solution treatment step be within 1 hour.
  • the alloy plate of the present invention has a structure in which there are few coarse precipitates in the surface layer region and very fine precipitates are dispersed (FIG. 1 (1)).
  • the present invention alloy plate because there are few coarse precipitates, there is little decrease in the amount of solid solution Al in the matrix (Mg) due to the presence of many coarse precipitates, solid solution strengthening accompanying the decrease in Al amount It is thought that there is little decrease in Therefore, by improving the rigidity of the plate itself by dispersion strengthening of precipitates and maintaining the strength by suppressing the decrease in the amount of solute Al, the alloy plate of the present invention is difficult to dent even under impact and has excellent impact resistance characteristics. Furthermore, the alloy plate of the present invention with few coarse precipitates is excellent in plastic workability and can be easily pressed.
  • the molded product of the present invention can be produced by subjecting the alloy plate of the present invention obtained by controlling the holding time in a specific temperature range mainly in the rolling process to press molding.
  • the alloy plate of the present invention a structure with a small amount of coarse precipitates constituting the alloy plate of the present invention is generally maintained at a portion (flat portion) where deformation due to press forming is small in the formed body of the present invention.
  • the molded body of the present invention also has a structure in which there are few coarse precipitates in the surface layer region and very fine precipitates are dispersed. Accordingly, the molded article of the present invention is excellent in impact resistance and difficult to dent due to dispersion strengthening by fine precipitates and solid solution strengthening by sufficient solid solution of Al as described above.
  • compositions examples of the magnesium alloy include those having various compositions containing an additive element in Mg (remainder: Mg and impurities).
  • the plate and the molded body of the present invention are made of an Mg—Al alloy containing at least 7 mass% to 12 mass% of Al as an additive element.
  • the additive element other than Al include one or more elements selected from Zn, Mn, Si, Ca, Sr, Y, Cu, Ag, and rare earth elements (excluding Y). When these elements are contained, the content thereof is 0.01% by mass or more and 10% by mass or less, preferably 0.1% by mass or more and 5% by mass or less.
  • Mg-Al alloys include, for example, AZ alloys (Mg-Al-Zn alloys, Zn: 0.2 to 1.5 mass%) and AM alloys (Mg-Al-Mn alloys, Mn) according to ASTM standards. : 0.15-0.5% by mass), Mg-Al-RE (rare earth element) alloys and the like.
  • Mg-Al alloys containing 8.3 to 9.5% by mass of Al and 0.5 to 1.5% by mass of Zn, typically AZ91 alloy have better corrosion resistance than other Mg-Al alloys such as AZ31 alloy. Excellent mechanical properties such as strength and plastic deformation resistance.
  • the alloy plate of the present invention is subjected to press forming such as bending and drawing, and is used as a material for a thin and lightweight member such as a casing.
  • the alloy of the present invention is formed so that the thickness of the portion where the thickness does not substantially change due to deformation accompanying plastic working (the flat portion in the formed product of the present invention) is reduced.
  • the thickness of the plate is preferably 2.0 mm or less, particularly 1.5 mm or less, and more preferably 1 mm or less. In the above range, the thicker the magnesium alloy plate, the better the strength, and the thinner the magnesium alloy plate, the more suitable for a thinner and lighter casing.
  • the plate thickness may be selected according to the desired application.
  • the alloy plate of the present invention is difficult to dent when subjected to impact such as dropping. Specifically, when the following dent test was performed on a test piece of 30 mm ⁇ 30 mm and thickness t b cut out from the alloy plate of the present invention, the dent amount x b of the test piece was x b ⁇ 0.47. Xt b -1.25 is satisfied. Further, in the molded body of the present invention, the flat portion not accompanied by the drawing deformation has few coarse precipitates as described above, and substantially maintains the characteristics of the alloy plate of the present invention as described above.
  • the dent amount x p of the test piece is x p ⁇ 0.47 ⁇ t p ⁇ 1.25 is satisfied.
  • Dented x b or x p is the distance from the straight line connecting the both sides of the test piece after the dent test to the most recessed portion.
  • the molded body of the present invention typically has a shape having a top plate portion (bottom surface portion) and a side wall portion standing from the periphery of the top plate portion. More specifically, a rectangular plate-shaped top plate portion and only a pair of opposing side wall portions]], a cross section having two sets of opposing pair of side wall portions, or a top plate portion Examples thereof include a covered cylindrical body having a disk shape and a cylindrical side wall portion.
  • the form of the top plate and the side wall is typically a flat surface, and the shape and size are not particularly limited.
  • the top plate portion and the side wall portion are integrally formed or joined with bosses, etc., have holes penetrating front and back and grooves recessed in the thickness direction, have a stepped shape, plastic working, You may have the part from which thickness differs locally by cutting.
  • the flat portion without drawing is defined as a portion with less warping when a section cut out from a region excluding the portion having the boss or the like is arranged on a horizontal plane.
  • the object of evaluation of the dent resistance is the flat portion.
  • the molded body of the present invention can be provided with a coating layer for the purpose of anticorrosion, protection, decoration and the like on the surface of a plate made of a magnesium alloy.
  • the magnesium alloy that mainly constitutes the compact of the present invention contains 7% by mass or more of Al, so that it has excellent corrosion resistance compared to an alloy having a low Al content, for example, an AZ31 alloy.
  • the corrosion resistance of the molded article of the present invention can be further improved by applying a corrosion prevention treatment such as chemical conversion treatment or anodizing treatment to the plate made of the magnesium alloy to provide a corrosion prevention layer.
  • size and precipitation of a deposit are not affected substantially. Therefore, even if the molded product of the present invention has a coating layer such as anticorrosion, the number of coarse particles is 5 or less, and when the dent test is performed, x p ⁇ 0.47 ⁇ t p ⁇ 1.25 is satisfied. .
  • the cast plate it is preferable to use a cast plate produced by a continuous casting method such as a twin-roll method, in particular, a casting method described in WO / 2006/003899. Since the continuous casting method can be rapidly solidified, it is possible to reduce oxides and segregation and to obtain a cast plate having excellent rolling properties.
  • the size of the cast plate is not particularly limited, but segregation is likely to occur if it is too thick, and therefore it is preferably 10 mm or less, particularly 5 mm or less.
  • the holding temperature is set to 350 ° C. or higher.
  • the holding temperature is preferably 380 to 420 ° C. and the holding time is 60 to 2400 minutes.
  • the holding time in the temperature range of 350 ° C. to 250 ° C. is controlled in the cooling step from the holding temperature. Specifically, as shown in FIG. 2 (1), in order to shorten the holding time of the temperature range, the cooling rate in this temperature range is 0.1 ° C.
  • Such a cooling rate can be achieved by forced cooling such as water cooling or blast.
  • a desired plate thickness can be obtained, and the average crystal grain size of the magnesium alloy can be reduced, and press workability can be improved.
  • the rolling may be performed by combining known conditions, for example, heating not only the plate material but also the roll, or the controlled rolling disclosed in Patent Document 1. Further, in the final pass and a pass in the vicinity thereof, the heating temperature of the plate material may be lowered (for example, room temperature) for the purpose of improving the dimensional accuracy.
  • the holding time in the temperature range of 250 ° C to 350 ° C is controlled. Specifically, as shown in FIG. 2 (1), in each pass of the rolling process, in order to shorten the holding time of the temperature range, for example, the heating time for heating the workpiece is shortened, the rolling speed Increase the (roll peripheral speed) or increase the cooling speed. Then, the rolling conditions are controlled so that the total holding time in the temperature range of 250 ° C. to 350 ° C. in the rolling process is 60 minutes or less. As the amount of Al increases, precipitates are more likely to precipitate. Therefore, the total sum of the retention times is preferably adjusted according to the Al content.
  • the total holding time is preferably as short as possible, preferably 45 minutes or less, particularly preferably 30 minutes or less.
  • the intermediate heat treatment is preferably performed at a holding temperature of 250 ° C. to 350 ° C., but in this temperature range, precipitates grow and become coarse as described above. Therefore, when performing the intermediate heat treatment, it is preferable to control the treatment time by including it in the total holding time.
  • the obtained rolled plate may be subjected to a final heat treatment at, for example, 300 ° C. or more to remove processing distortion due to rolling and be completely recrystallized. Even in this final heat treatment, precipitates are likely to grow in the temperature range of 250 ° C to 350 ° C. Therefore, when the final heat treatment is performed after rolling, it is preferable to control this processing time by including it in the total holding time. By controlling the final heat treatment time as described above, the magnesium alloy sheet of the present invention with few coarse precipitates can be obtained.
  • the final heat treatment may not be performed, and the obtained rolled sheet may be subjected to a warm straightening process in which distortion is imparted by a roll leveler or the like while being heated to 100 to 250 ° C.
  • the processed plate subjected to the warm correction treatment is subjected to press working, it is recrystallized at the time of press working to obtain a compact having a fine crystal structure.
  • the crystal grains are likely to be finer, and a structure in which fine precipitates are more uniformly dispersed is likely to be obtained.
  • the magnesium alloy sheet of the present invention which has less coarse precipitates and is superior in impact resistance due to the fine structure, can be obtained.
  • the precipitates are not likely to become coarse by setting the heating temperature of the rolled sheet to 250 ° C. at the most.
  • the molded product of the present invention can be produced by subjecting the rolled plate obtained by the rolling step or a processed plate obtained by subjecting the rolled plate to the final heat treatment and the warming treatment described above.
  • the press molding is preferably performed in a temperature range of 200 ° C. to 300 ° C. so that the plastic deformation of the rolled plate or the processed plate to be processed can be improved. Even if the press molding is performed at a temperature overlapping with the temperature range of 250 ° C to 350 ° C, the holding time in the temperature range of 250 ° C to 350 ° C is very short in the press molding. There are few problems such as coarsening.
  • ⁇ A heat treatment may be performed after the press forming to remove distortion and residual stress introduced by the press working and to improve the mechanical characteristics.
  • the heat treatment conditions include heating temperature: 100 ° C. to 400 ° C., heating time: about 5 minutes to 60 minutes. Also in this heat treatment, it is preferable not to increase the holding time in the temperature range of 250 ° C. to 350 ° C.
  • the molded body obtained after pressing may be left untreated, but if the treatment for forming a coating layer for the purpose of anticorrosion, protection, decoration, etc. is performed as described above, the corrosion resistance and commercial value are further increased. Enhanced.
  • the magnesium alloy molded body of the present invention and the magnesium alloy sheet of the present invention are excellent in impact resistance.
  • the production process of magnesium alloy sheet it is a graph mainly showing the relationship between the temperature of the rolling process and the holding time of the temperature, (1) is the total holding time (total of 250 to 350 ° C temperature range in the rolling process) When (time) is 60 minutes or less, (2) shows the case where the total retention time (total time) is more than 60 minutes.
  • a plurality of cast plates (thickness 4 mm) made of a magnesium alloy having a composition equivalent to AZ91 alloy (Mg-9.0% Al-1.0% Zn (all by mass%)) and obtained by a twin roll continuous casting method were prepared.
  • Each obtained cast plate was subjected to a solution treatment at 400 ° C. for 24 hours. In the solution treatment, cooling was performed by blast, so that the cooling rate from 350 ° C to 250 ° C was 0.1 ° C / sec or more.
  • the solution-treated plate material was rolled a plurality of times under the following rolling conditions until the thickness became 0.6 mm.
  • the obtained rolled sheet was subjected to a final heat treatment at 300 ° C. for 10 minutes to obtain a magnesium alloy sheet.
  • Roll temperature 100 °C ⁇ 250 °C
  • the plate material to be rolled is maintained in a temperature range of 250 ° C to 350 ° C.
  • the total time was changed, and four types of samples with total time of 20 min (sample a), 35 min (sample b), 50 min (sample c), and 80 min (sample d) were prepared.
  • the magnesium alloy plate subjected to the final heat treatment was subjected to corner drawing at a heating temperature of 250 ° C. to obtain a press-formed body.
  • the press-molded body is a box shape having a rectangular top plate portion of 48 mm ⁇ 98 mm and a side wall portion standing from the top plate portion.
  • AZ31 alloy material thickness: 0.6 mm
  • aluminum alloy material A5052 material (thickness: 0.6 mm)
  • the AZ31 alloy material has the same conditions as the rolled sheet made of the above AZ91 alloy.
  • the A5052 material was subjected to the same corner drawing at room temperature.
  • the metal structure was observed as follows and the precipitates were examined. Moreover, the following dent test was done about the obtained magnesium alloy plate and the press-molded body, and the impact resistance characteristic was evaluated.
  • ⁇ Magnesium alloy plate> ⁇ Precipitate> Cutting the obtained magnesium alloy plate made of AZ91 alloy in the plate thickness direction, observing the cross section with an optical microscope (1000 times), from the surface layer region from the surface of the plate to 1/3 of the plate thickness in the cross section, Two regions of 100 ⁇ m ⁇ 100 ⁇ m are arbitrarily selected, and these regions are used as an observation field. Then, in each observation field, the particle diameter of the observed intermetallic compound containing Al and Mg was measured, and the number of particles having a particle diameter of 5 ⁇ m or more was counted.
  • the obtained magnesium alloy plate made of AZ91 alloy and the prepared AZ31 alloy material and A5052 material (aluminum alloy material) were cut out to 30 mm ⁇ 30 mm to prepare test pieces.
  • the depth of the circular hole 21 was set such that a cylindrical rod 10 described later can be sufficiently inserted.
  • the circular hole 21 was arranged so as to be coaxial with the central axis. Then, the cylindrical rod 10 is freely dropped from the arranged point toward the test piece 1, and then the dent amount of the test piece 1 is measured.
  • the amount of dent (mm) was measured by using a point micrometer to measure the distance from the straight line connecting opposite sides of the test piece 1 to the most recessed portion. For samples a and d, in a 30mm x 30mm test piece, select a straight line that is parallel to one side of 30mm and passes through the most concave part, and the amount of dents at multiple points on this line was measured as described above. The results are shown in FIG.
  • the thickness was measured at any four locations on the 30 mm ⁇ 30 mm test piece cut out from the top plate. As a result, every portion was equal to the thickness of the magnesium alloy plate (test piece thickness: 0.6 mm).
  • Plates and press-molded bodies made of magnesium alloy with an Al content of 7% by mass or more are more resistant than plates and press-formed bodies made of AZ31 alloy and aluminum alloy with less Al content. It can be seen that the impact characteristics are excellent.
  • the total holding time in the temperature range of 250 ° C to 350 ° C in the rolling process and the holding time in the temperature range of 250 ° C to 350 ° C in the final heat treatment after rolling It can be seen that the impact resistance is excellent by controlling the total time within 1 hour.
  • the thickness of the rolled plate was varied by adjusting the rolling reduction, and the total time was set to 35 min or 80 min by adjusting the heating time and rolling speed of the plate.
  • samples having a total time of 45 min (sample ⁇ ) and 90 min (sample ⁇ ) including the time of the final heat treatment after rolling were prepared.
  • the obtained rolled plate was subjected to a final heat treatment at 300 ° C. for 10 minutes, and then subjected to corner drawing at a heating temperature of 250 ° C. to obtain a box-shaped press-molded body similar to that in Test Example 1.
  • the number of precipitates was measured by observing the structure of the cross section in the same manner as in Test Example 1 for the magnesium alloy plate and press-formed body obtained by the above final heat treatment.
  • a test piece was prepared in the same manner as in Test Example 1, a dent test was performed, and the dent amount was measured.
  • Table 2 a sample having a thickness of 0.6 mm (0.6 mm) shows the result of Test Example 1.
  • the total holding time in the temperature range of 250 ° C to 350 ° C is 60 minutes or less in the rolling process, although the amount of dent varies depending on the thickness of the magnesium alloy plate and the press-formed body (top plate part).
  • the coarse intermetallic compound having a particle size of 5 ⁇ m or more does not exist in the surface region regardless of the plate thickness (0), and the amount of dents is small compared to the sample ⁇ having the same thickness. I understand.
  • x ⁇ 0.47 ⁇ t p ⁇ 1.25 is used as an index representing the molded body of the present invention.
  • magnesium alloy plate for even x ⁇ 0.47 ⁇ t b -1.25 ( t b: plate thickness) can be applied, the present invention x ⁇ 0.47 ⁇ t b -1.25 Used as an index to indicate a magnesium alloy plate.
  • the obtained rolled plate was subjected to warm straightening treatment.
  • the warm straightening process uses a roll leveler apparatus including a heating furnace capable of heating a rolled plate and a roll unit having a plurality of rolls that continuously bend (strain) the heated rolled plate. Do it.
  • the roll section includes a plurality of rolls arranged in a staggered manner facing each other in the vertical direction.
  • the rolled plater is sent to the roll part while being heated in the heating furnace by the roll leveler device, and is bent sequentially by these rolls each time it passes between the upper and lower rolls of the roll part.
  • warm correction was performed in the temperature range of 220 to 250 ° C, and the conveyance speed during correction was adjusted so that the total time during which the rolled plate was maintained at a temperature of 250 to 350 ° C was within 60 minutes.
  • the magnesium alloy plate obtained by the above warm straightening treatment was subjected to corner drawing at a heating temperature of 250 ° C. to obtain a box-shaped press-molded body similar to Test Example 1.
  • the number of precipitates was measured by observing the structure of the cross section in the same manner as in Test Example 1.
  • a test piece was prepared in the same manner as in Test Example 1, a dent test was performed, and the dent amount was measured.
  • sample No. 3-1 using a magnesium alloy plate subjected to warm straightening treatment was sample No. 2-1 (0.6 mmt- ⁇ of Test Example 2) subjected to final heat treatment after rolling.
  • the dent amount is small and the impact resistance is excellent.
  • the above-described embodiment can be modified as appropriate without departing from the gist of the present invention, and is not limited to the above-described configuration.
  • the composition of the magnesium alloy, the thickness of the magnesium alloy plate, the shape of the press-molded body, and the like can be changed as appropriate.
  • the magnesium alloy molded body of the present invention can be suitably used for various types of electrical equipment parts, in particular, portable electrical equipment casings.
  • the magnesium alloy sheet of the present invention can be suitably used as a material for the magnesium alloy molded body of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)

Abstract

耐衝撃性に優れるマグネシウム合金成形体、及びこの成形体の素材に適したマグネシウム合金板を提供する。Al を7~12 質量%含有するマグネシウム合金板をプレス成形した成形体であり、絞り変形を伴わない平坦な部分を有する。この平坦な部分を板厚方向に切断した断面の金属組織において、平坦な部分の表面から板厚の1/3 までの表面領域に存在する、粒子径が5μm 以上である粗大な金属間化合物(Mg17Al12)の粒子が5 個以下である。この成形体は、粗大な析出物d1 が少なく、微細な析出物d0 が分散した組織を有する。この微細な析出物の分散強化と、Al を十分に固溶していることによる固溶強化とにより、この成形体は、衝撃を受けても凹み難い。

Description

マグネシウム合金成形体及びマグネシウム合金板
 本発明は、携帯用電気機器の筐体などの素材に適したマグネシウム合金板、及びこの板をプレス成形したマグネシウム合金成形体に関するものである。特に、耐衝撃特性に優れるマグネシウム合金成形体に関するものである。
 携帯電話やノート型パーソナルコンピュータといった携帯用電気機器類の筐体材料として、ABS(アクリロニトリルブタジエンスチレン共重合)樹脂、PC(ポリカーボネート)樹脂といった樹脂や、アルミニウム合金、ステンレス鋼(SUS)といった金属が利用されている。
 昨今、上記筐体材料として、軽量で、比強度、比剛性に優れるマグネシウム合金が検討されている。マグネシウム合金からなる筐体は、ダイカスト法やチクソモールド法による鋳造材が主流であり、ASTM規格のAZ31合金に代表される展伸用マグネシウム合金からなる板にプレス加工を施したものが使用されつつある。また、特許文献1では、ASTM規格のAZ91合金にプレス加工を施すことが検討されている。
 近年、薄く軽量な筐体が望まれている。金属は、一般に、樹脂よりも衝撃に強く、割れ難いため、薄くし易い。しかし、アルミニウム合金は、耐塑性変形性に劣り、落下などの衝撃により極めて容易に変形する。ステンレス鋼は、割れや変形が生じ難いが重い。
特開2007-098470号公報
 マグネシウム合金は、アルミニウム合金に比較して耐塑性変形性に優れ、ステンレス鋼に比較して非常に軽量である。しかし、マグネシウム合金の鋳造材は、マグネシウム合金のプレス成形体に比較して強度に劣り、また、薄肉化も難しい。AZ31合金のプレス成形体も、強度が不十分である。
 特許文献1に記載されるようなAZ91合金からなる圧延板にプレス成形を施した場合、AZ31合金からなるプレス成形体よりも高強度な成形体が得られる。しかし、本発明者らが調べたところ、Alの含有量が7質量%以上と多くなると、素材となる板や、この板を成形したプレス成形体において、耐衝撃特性にばらつきが生じることがあるとの知見を得た。
 そこで、本発明の目的の一つは、耐衝撃特性に優れるマグネシウム合金成形体を提供することにある。また、本発明の別の目的は、耐衝撃特性に優れるマグネシウム合金成形体の製造に適したマグネシウム合金板を提供することにある。
 本発明者らは、Alを7質量%以上含有するマグネシウム合金において種々の製造方法により素材となる板を作製し、得られた板からプレス成形体を作製して、耐衝撃特性(耐凹み性)を調べたところ、凹み難かったプレス成形体は、Mg17Al12といった金属間化合物(析出物)からなる粒子が小さく、大きな粒子が少ない、との知見を得た。そこで、上記析出物の最大粒径及びその個数を制御する、即ち、粗大な析出物を低減する製法を検討したところ、主として圧延工程において特定の温度域に保持される総合計時間を従来よりも短くすることで、粗大な析出物が少ないマグネシウム合金板を得ることができた。また、このマグネシウム合金板をプレス成形したプレス成形体は、耐衝撃特性に優れていた。本発明は、上記知見に基づくものである。
 本発明のマグネシウム合金成形体は、Alを7質量%以上12質量%以下含有するマグネシウム合金からなる板をプレス成形したもので、絞り変形を伴わない平坦な部分を有しており、この平坦な部分を板厚方向に切断した断面の金属組織において、以下に規定する観察視野をとったとき、各観察視野内に存在する粗大な金属間化合物の粒子が5個以下である。
 また、本発明のマグネシウム合金板は、プレス成形に用いられるものであって、Alを7質量%以上12質量%以下含有するマグネシウム合金からなり、以下に規定する各観察視野内に存在する粗大な金属間化合物の粒子が5個以下である。
 観察視野とは、上記平坦な部分、又は上記マグネシウム合金板を板厚方向に切断した断面の金属組織において、上記平坦な部分の表面、又は上記板表面から板厚方向に板厚の1/3までの領域を表層領域とし、この表層領域の任意の2箇所から選択した100μm×100μmの領域とする。
 粗大粒子とは、Al及びMgを含む金属間化合物の粒子であって、粒子径が5μm以上である粒子とする。
 粒子径とは、上記断面における粒子の面積と等価な面積を有する円の直径とする。
 なお、上記断面に存在する金属間化合物は、例えば、EDS(エネルギー分散型X線分析装置:Energy Dispersive X-ray Spectrometer)やX線回折などで粒子の組成、構造を調べることで判別できる。
 上記特定の組織を有する本発明合金板は、例えば、以下の各工程を具える製造方法により、製造することができる。
 準備工程:Alを7~12質量%含有するマグネシウム合金からなり、連続鋳造法で製造した鋳造板を準備する。
 溶体化工程:上記鋳造板に350℃以上の温度で溶体化処理を施す。
 圧延工程:上記溶体化処理された板材に圧延を施す。
 特に、溶体化処理の保持温度からの冷却工程において、350℃から250℃までの冷却速度を0.1℃/sec以上とし、圧延工程において、加工対象である板材が250℃以上350℃以下の温度域に保持される総合計時間を60分以内とする。
 上述のように、溶体化処理の冷却過程(即ち、圧延直前)、及び圧延工程において、析出物が析出されたり、成長して粗大になり易い特定の温度域(250℃~350℃)に保持される時間をできるだけ短くすることで、粗大な析出物を少なすることができ、図1(1)に示すように、微細な析出物d0が分散した組織が得られる。
 従来より、圧延は、所望の板厚になるまで、図2(2)に示すように適宜な加工度(圧下率)で複数回(多パス)行う(各パスは、図2に「圧延n」(n=1,2,…)と示す)。このとき、加工対象(鋳造板又は最終圧延が施されるまでの間の圧延板)を250℃以上に加熱することで、塑性加工性が高められる。従って、圧延工程において少なくとも圧延初期の段階(粗圧延)では、加工対象を加熱して、温間圧延又は熱間圧延することが好ましい。しかし、特に、Alの含有量が7質量%以上と多いマグネシウム合金である場合、250℃以上に加熱することで金属間化合物といった析出物が上述のように成長して粗大になり易くなる。また、溶体化処理工程の冷却過程において250℃~350℃の温度域を通過する際にも析出物が粗大になり易くなる。
 従来、圧延直前及び圧延工程において、加工対象を250℃~350℃の温度域に保持する総合計時間をどの程度にするか十分に検討されていない。本発明者らが調べたところ、Alの含有量が7~12質量%のマグネシウム合金の場合、少なくとも圧延工程において上記温度域の総保持時間が1時間を超えると、図1(2)に示すように粒径が5μm以上の粗大な析出物d1が存在した組織が得られる。これに対し、圧延工程において上記温度域の総保持時間を1時間以内とすることで、上記粗大な析出物を低減することができる。また、圧延工程のみにおいて上記温度域の総保持時間を1時間以内とすることに加えて、溶体化処理工程における冷却速度を速めることで、粗大な析出物をより効果的に抑制することができる。特に、圧延工程における上記温度域の総保持時間と、溶体化処理工程の冷却過程における上記温度域の保持時間との合計時間を1時間以内とすることが好ましい。
 本発明合金板は、表層領域に粗大な析出物が少なく、非常に微細な析出物が分散して存在する組織を有する(図1(1))。また、本発明合金板は、粗大な析出物が少ないことで、粗大な析出物が多く存在することによるマトリクス(Mg)中の固溶Al量の低下が少なく、Al量低下に伴う固溶強化の低下が少ない、と考えられる。そのため、析出物の分散強化による板自体の剛性の向上、及び固溶Al量の低下の抑制による強度の維持により、本発明合金板は、衝撃を受けても凹み難く、耐衝撃特性に優れる。更に、粗大な析出物が少ない本発明合金板は、塑性加工性にも優れ、プレス加工を容易に施すことができる。
 本発明成形体は、上述のように、主として圧延工程において特定の温度域の保持時間を制御して得られた本発明合金板にプレス成形を施すことで製造することができる。本発明合金板を用いた場合、本発明成形体においてプレス成形に伴う変形が少ない箇所(平坦な部分)では、上記本発明合金板を構成する粗大な析出物が少ない組織を概ね維持する。
 即ち、本発明成形体も、表層領域に粗大な析出物が少なく、非常に微細な析出物が分散した組織を有する。従って、本発明成形体は、上述のように微細な析出物による分散強化、及びAlの十分な固溶による固溶強化により、耐衝撃特性に優れ、凹み難い。
 以下、本発明をより詳細に説明する。
 《組成》
 マグネシウム合金は、Mgに添加元素を含有した種々の組成のもの(残部:Mg及び不純物)が挙げられる。本発明の板及び成形体は、添加元素に少なくともAlを7質量%以上12質量%以下含有するMg-Al系合金からなるものとする。Al以外の添加元素は、Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,及び希土類元素(Yを除く)から選択された1種以上の元素が挙げられる。これらの元素を含む場合、その含有量は、0.01質量%以上10質量%以下、好ましくは0.1質量%以上5質量%以下が挙げられる。より具体的なMg-Al系合金は、例えば、ASTM規格におけるAZ系合金(Mg-Al-Zn系合金、Zn:0.2~1.5質量%)、AM系合金(Mg-Al-Mn系合金、Mn:0.15~0.5質量%)、Mg-Al-RE(希土類元素)系合金などが挙げられる。特に、Alを8.3~9.5質量%、Znを0.5~1.5質量%含有するMg-Al系合金、代表的にはAZ91合金は、AZ31合金といった他のMg-Al系合金と比較して、耐食性や強度、耐塑性変形性といった機械的特性に優れる。
 《マグネシウム合金板の厚さ》
 本発明合金板は、曲げ加工や絞り加工といったプレス成形が施され、筐体といった薄型、軽量の部材の素材に利用される。プレス成形が施されて得られた筐体において、塑性加工に伴う変形により厚さが実質的に変化しない箇所(本発明成形体における平坦な部分)の厚さが薄くなるように、本発明合金板の厚さは、2.0mm以下、特に1.5mm以下、更に1mm以下が好ましい。上記範囲においてマグネシウム合金板の厚さが厚いほど、強度に優れ、薄いほど、薄型、軽量な筐体に適する。所望の用途に応じて板厚を選択するとよい。
  《機械的特性》
 本発明合金板は、落下などの衝撃を受けた際に凹み難い。具体的には、本発明合金板から切り出した30mm×30mm、厚さtbの試験片に対して、以下の凹み試験を行ったとき、上記試験片の凹み量xbは、xb≦0.47×tb -1.25を満たす。また、本発明成形体において、絞り変形を伴わない平坦な部分は、上述のように粗大な析出物が少なく、上述のように本発明合金板の特性を実質的に維持する。そのため、上記平坦な部分から、上述した本発明合金板と同様の試験片(厚さ:tp)を切り出し、以下の凹み試験を行ったとき、上記試験片の凹み量xpは、xp≦0.47×tp -1.25を満たす。なお、本発明成形体の平坦な部分から切り出した試験片の厚さtpは、プレス成形前の素材となったマグネシウム合金板、例えば、本発明合金板から切り出した試験片の厚さtbに実質的に等しい(tp=tb)。
 (凹み試験)
 直径20mmの穴を有する支持台に、この穴を塞ぐように試験片を配置し、この状態で試験片からの高さ200mmの地点より、重量100g、先端r=5mmの円柱棒を自由落下させる。
 凹み量xb又はxpは、凹み試験後における試験片の両辺を結ぶ直線から最も凹んだ部分までの距離とする。
  《成形体の形状》
 本発明成形体は、代表的には、天板部(底面部)と、天板部の周縁から立設される側壁部とを有する形状が挙げられる。より具体的には、矩形板状の天板部と、対向する一対の側壁部のみを有する]状体、対向する一対の側壁部を二組有する断面]状の箱体や、天板部が円板状で、側壁部が円筒状の有蓋筒状体などが挙げられる。
 上記天板部及び側壁部の形態は、代表的には、平坦な面からなり、形状・大きさは特に問わない。上記天板部及び側壁部は、ボスなどを一体に成形又は接合していたり、表裏に貫通する孔や厚さ方向に凹んだ溝を有していたり、段差形状になっていたり、塑性加工や切削加工などにより局所的に厚さが異なる部分を有していてもよい。本発明成形体において、絞り加工を伴わない平坦な部分とは、上記ボスなどを有する部分を除いた領域から切り出した切片を水平面に配置したとき、反りが少ない部分とする。より具体的には、上記水平面に配置した切片における水平面と向かい合った面において、水平面から垂直方向に最も離れた箇所までの距離が1mm以内である部分とする。凹みは、一般に、平坦な部分に生じ易いため、本発明合金板や本発明成形体では、耐凹み性の評価の対象を上記平坦な部分とする。
 《成形体の表面》
 本発明成形体は、マグネシウム合金からなる板の表面に、防食、保護、装飾などを目的とした被覆層を具える形態とすることができる。本発明成形体を主として構成するマグネシウム合金は、Alを7質量%以上含むことで、Alの含有量が少ない合金、例えばAZ31合金に比較して耐食性に優れる。更に、化成処理や陽極酸化処理といった防食処理を上記マグネシウム合金からなる板に施し、防食層を具える形態とすることで、本発明成形体の耐食性をより高められる。なお、上記防食や塗装などの被覆層の形成工程では、析出物の大きさや析出に実質的に影響を与えない。そのため、上記本発明成形体は、上記防食などの被覆層を具えていても、上記粗大粒子が5個以下であり、上記凹み試験を行った場合、xp≦0.47×tp -1.25を満たす。
  《製造方法》
   [準備工程]
 鋳造板は、双ロール法といった連続鋳造法、特に、WO/2006/003899に記載の鋳造方法で製造した鋳造板を利用することが好ましい。連続鋳造法は、急冷凝固が可能であるため、酸化物や偏析などを低減でき、圧延性に優れる鋳造板が得られる。鋳造板の大きさは特に問わないが、厚過ぎると偏析が生じ易いため、10mm以下、特に5mm以下が好ましい。
   [溶体化工程]
 上記鋳造板には、溶体化処理を施して、組成の均質化を図る。溶体化処理は、保持温度を350℃以上とする。特に、保持温度:380~420℃、保持時間:60~2400分が好ましく、Alの含有量が高いほど、保持時間を長くすることが好ましい。また、本発明合金板を製造するために、上記保持温度からの冷却工程において、350℃~250℃の温度域の保持時間を制御する。具体的には、図2(1)に示すように上記温度域の保持時間を短くするために、この温度域における冷却速度を0.1℃/sec以上(保持時間:約16.6分以下)、好ましくは、0.5℃/sec以上(保持時間:3.3分以下)とする。このような冷却速度は、水冷や衝風といった強制冷却などにより達成できる。上記温度域の保持時間をできるだけ短くすることで、高Alマグネシウム合金であっても、Al及びMgを含む金属間化合物の析出を抑制でき、特に粗大粒に成長することを効果的に抑制することができる。
   [圧延工程]
 上記溶体化処理が施された板材の塑性加工性(圧延性)を高めるために、上述のように少なくとも粗圧延では、200℃以上、特に250℃以上の温度に加熱した板材に圧延を施すことが好ましい。上記加熱温度が高いほど、板材の塑性加工性を高められるが、350℃を超えると、焼き付きが発生したり、結晶粒が粗大化して圧延後の板材の機械特性が低下するなどの問題があることから、350℃以下が好ましく、より好ましい加熱温度は、270℃以上330℃以下である。複数回(多パス)の圧延を施すことで、所望の板厚にできると共に、マグネシウム合金の平均結晶粒径を小さくしたり、プレス加工性を高められる。圧延は、公知の条件、例えば、板材だけでなくロールも加熱したり、特許文献1に開示される制御圧延などを組み合わせて利用してもよい。また、最終パス及びその近傍のパスでは、寸法精度を高めるなどの目的で、板材の加熱温度を低く(例えば、室温)にしてもよい。
 上記圧延工程において、250℃~350℃の温度域の保持時間を制御する。具体的には、図2(1)に示すように、圧延工程の各パスにおいて、上記温度域の保持時間を短くするために、例えば、加工対象を加熱する加熱時間を短くしたり、圧延速度(ロール周速)を速めたり、冷却速度を速める。そして、圧延工程における250℃~350℃の温度域の総保持時間が60分以下となるように、圧延条件を制御する。Al量が多いほど、析出物が析出し易いため、上記保持時間の総合計は、Alの含有量に応じて調整することが好ましい。また、上記総保持時間は、短いほど好ましく、45分以下、特に30分以下が好ましい。このような特定の圧延を行うことで、上述のように表層領域に粗大な析出物が少なく、耐衝撃特性に優れる本発明合金板が得られる。
 圧延のパス間に中間熱処理を行い、中間熱処理までの加工により加工対象である板材に導入された歪みや残留応力、集合組織などを除去、軽減すると、その後の圧延で不用意な割れや歪み、変形を防止して、より円滑に圧延を行える。中間熱処理は、保持温度:250℃~350℃が好ましいが、この温度域では、上述のように析出物が成長して粗大になり易い。そのため、中間熱処理を行う場合、この処理時間も、上記総保持時間に含めて制御することが好ましい。
  《圧延後の処理》
  (最終熱処理(焼鈍))
 得られた圧延板には、例えば、300℃以上の最終熱処理を行って、圧延による加工歪みを除去すると共に、完全に再結晶化させてもよい。この最終熱処理でも、250℃~350℃の温度域で析出物が成長し易い。そのため、圧延後に最終熱処理を行う場合、この処理時間も、上記総保持時間に含めて制御することが好ましい。上述のように最終熱処理時間を制御することで、粗大な析出物が少ない本発明マグネシウム合金板とすることができる。
  (温間矯正処理)
 或いは、圧延後に上記最終熱処理を行わず、得られた圧延板を100~250℃に加熱した状態でロールレベラなどにより歪みを付与する温間矯正処理を施してもよい。温間矯正処理を行った処理板にプレス加工を施すと、プレス加工時に再結晶化されて、微細な結晶組織の成形体が得られる。上記最終熱処理を行った場合と比較しても結晶粒が微細になり易く、微細な析出物がより均一的に分散した組織になり易い。従って、温間矯正処理を行った場合、粗大な析出物が少ない上に、上記微細組織であることで、耐衝撃特性により優れる本発明マグネシウム合金板が得られる。なお、温間矯正処理では、圧延板の加熱温度をせいぜい250℃とすることで、析出物が粗大になり難いと考えられる。
   [プレス加工]
 本発明成形体は、上記圧延工程により得られた圧延板や、この圧延板に上述した最終熱処理や温間矯正処理を施した処理板にプレス成形を施すことで製造することができる。プレス成形は、加工対象である圧延板や処理板の塑性変形性を高められるように200℃~300℃の温度域で行うことが好ましい。なお、250℃~350℃の温度域と重複する温度でプレス成形を行っても、プレス成形では、250℃~350℃の温度域の保持時間が非常に短いため、上述したような析出物の粗大化などの不具合は少ないと考えられる。
 プレス成形後に熱処理を施し、プレス加工により導入された歪みや残留応力の除去、機械的特性の向上を図ってもよい。熱処理条件は、加熱温度:100℃~400℃、加熱時間:5分~60分程度が挙げられる。この熱処理においても250℃~350℃の温度域の保持時間が長くならないようにすることが好ましい。また、プレス後に得られた成形体は、無処理のままでもよいが、上述のように防食、保護、装飾などを目的とした被覆層を形成する処理を行うと、耐食性や商品価値などを更に高められる。
 本発明マグネシウム合金成形体及び本発明マグネシウム合金板は、耐衝撃特性に優れる。
マグネシウム合金板の組織を示す模式図であり、(1)は、圧延工程における250℃~350℃の温度域の総保持時間が60分以下の試料、(2)は、総保持時間が60分超の試料である。 マグネシウム合金板の製造工程において、主として圧延工程の温度とその温度の保持時間との関係を示すグラフであり、(1)は、圧延工程における250℃~350℃の温度域の総保持時間(合計時間)が60分以下の場合、(2)は、総保持時間(合計時間)が60分超の場合を示す。 凹み試験を説明する概略説明図である。 凹み試験後のマグネシウム合金板の凹み度合いを示すグラフであり、(1)は、試料a、(2)は、試料dを示す。 マグネシウム合金成形体を構成する板の厚さと凹み量との関係を示すグラフである。
 以下、本発明の実施の形態を説明する。
 [試験例1]
 マグネシウム合金からなる複数の板、及びこれらマグネシウム合金板をプレス成形してなるプレス成形体を作製し、金属組織、及び耐衝撃特性を調べた。
 AZ91合金相当の組成(Mg-9.0%Al-1.0%Zn(全て質量%))を有するマグネシウム合金からなり、双ロール連続鋳造法により得られた鋳造板(厚さ4mm)を複数用意した。得られた各鋳造板に、400℃×24時間の溶体化処理を施した。溶体化処理において冷却は、衝風にて行い、350℃~250℃までの冷却速度が0.1℃/sec以上となるようにした。溶体化処理された板材に以下の圧延条件で、厚さが0.6mmになるまで複数回圧延を施した。得られた圧延板に300℃×10分の最終熱処理を施して、マグネシウム合金板を得た。
 (圧延条件)
 加工度(圧下率):5%/パス~40%/パス
 板の加熱温度:200℃~400℃
 ロール温度:100℃~250℃
 この試験では、圧延工程の各パスにおいて、板の加熱時間及び圧延速度(ロール周速)を調整することで、圧延される対象である板材が250℃~350℃の温度域に保持される総合計時間を変化させ、総合計時間が20min(試料a),35min(試料b),50min(試料c),80min(試料d)の四種類の試料を用意した。
 最終熱処理を施したマグネシウム合金板に、加熱温度:250℃で角絞り加工を施し、プレス成形体を得た。プレス成形体は、48mm×98mmの矩形状の天板部と、天板部から立設される側壁部とを具える箱型である。
 比較として、市販のAZ31合金材(厚さ:0.6mm)、アルミニウム合金材:A5052材(厚さ:0.6mm)を準備し、AZ31合金材には、上記AZ91合金からなる圧延板と同様の条件で角絞り加工を施し、A5052材には、室温で同様の角絞り加工を施した。
 得られたマグネシウム合金板、及びプレス成形体について、以下のようにして金属組織を観察し、析出物を調べた。また、得られたマグネシウム合金板、及びプレス成形体について、以下の凹み試験を行い、耐衝撃特性を評価した。
 <マグネシウム合金板>
 《析出物》
 得られたAZ91合金からなるマグネシウム合金板を板厚方向に切断し、その断面を光学顕微鏡(1000倍)で観察し、断面において当該板の表面から板厚の1/3までの表層領域から、100μm×100μmの領域を任意に2箇所選択して、この領域を観察視野とする。そして、各観察視野において、観察されたAl及びMgを含む金属間化合物の粒子径をそれぞれ測定し、粒子径が5μm以上である粒子の個数を数えた。
 《耐衝撃特性》
 得られたAZ91合金からなるマグネシウム合金板、及び準備したAZ31合金材,A5052材(アルミニウム合金材)を30mm×30mmに切り出し、試験片を作製した。この試験では、図3に示すように、水平な面に直径d=20mmの円穴21を有する支持台20を用意した。円穴21の深さは後述する円柱棒10が十分に挿入可能な大きさとした。この円穴21を塞ぐように試験片1を配置し、この状態で、試験片1から高さ200mmの地点に、重量100g、先端r=5mm、セラミックス製の円柱棒10を、その中心軸と、円穴21の中心軸とが同軸となるように配置した。そして、試験片1に向けて、上記配置した地点から円柱棒10を自由落下させた後、試験片1の凹み量を測定する。凹み量(mm)は、試験片1の対向する両辺を結ぶ直線から最も凹んだ部分までの距離をポイントマイクロメータを用いて測定した。また、試料a,dについては、30mm×30mmの試験片において、30mmの一辺に平行な直線であって、最も凹んだ箇所を通過する直線を選択し、この直線上の複数の点で凹み量を上記と同様に測定した。その結果を図4に示す。
 <プレス成形体>
 《析出物》
 得られたAZ91合金の箱型のプレス成形体において、絞り変形を伴わない平坦な部分、具体的には、天板部を板厚方向に切断して、その断面を上記マグネシウム合金板と同様にして観察すると共に観察視野をとり、二つの観察視野において、粒子径が5μm以上である、Al及びMgを含む金属間化合物の粒子の個数を数えた。
 《耐衝撃特性》
 得られたAZ91合金の箱型のプレス成形体、及び別途作製したAZ31合金のプレス成形体,A5052のプレス成形体において、絞り変形を伴わない平坦な部分、具体的には、天板部から30mm×30mmの試験片を切り出し、上記マグネシウム合金板と同様に図3に示す治具を用いて、凹み量(mm)を測定した。
 《厚さ》
 得られたAZ91合金の箱型のプレス成形体において、天板部から切り出した上記30mm×30mmの試験片の任意の4箇所について厚さを測定した。その結果、いずれの箇所も上記マグネシウム合金板の厚さに等しかった(試験片の厚さ:0.6mm)。
 表1に析出物の個数(個)、及び凹み量(mm)を示す。また、試料a~dについて、x=0.47×t-1.25の値を表1に示す。析出物の個数は、2箇所の観察視野において、少なかった方の個数を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 Alの含有量が7質量%以上のマグネシウム合金からなる板やプレス成形体は、Al量が少ないAZ31合金からなる板やプレス成形体、アルミニウム合金からなる板やプレス成形体に比較して、耐衝撃特性に優れることが分かる。
 金属組織の観察の結果、Al量が7質量%以上であるマグネシウム合金からなる試料a~dは、Al及びMgを含む金属間化合物(Mg17Al12)の析出が多数認められた。しかし、表1に示すように圧延工程において250℃~350℃に保持される総合計時間が1時間(60min)以内である試料a~cは、マグネシウム合金板及びプレス成形体の双方について、粗大な金属間化合物が存在せず、図1(1)に示すように微細な金属間化合物が分散した組織を有していた。そして、このような粗大な析出物が少ない試料a~cは、凹みが少なく、耐衝撃特性に優れることが分かる。また、圧延後に最終熱処理を施す場合であっても、圧延工程における250℃~350℃の温度域の保持時間と、圧延後の最終熱処理における250℃~350℃の温度域の保持時間との総合計が1時間以内となるように制御することで、耐衝撃特性に優れることが分かる。
 [試験例2]
 厚さの異なるマグネシウム合金板、及びこれらマグネシウム合金板にプレス成形してなるプレス成形体を作製し、金属組織、及び耐衝撃特性を調べた。
 試験例1と同様の鋳造板(AZ91合金相当の組成、厚さ4mm)を複数用意し、試験例1と同様の条件で、溶体化処理(400℃×24時間,350℃~250℃までの冷却速度:0.1℃/sec以上)、複数回の圧延(圧下率:5%/パス~40%/パス、板の加熱温度:200℃~400℃、ロール温度:100℃~250℃)を施し、圧延板を得た。この試験も試験例1と同様に、圧延工程において板材が250℃~350℃の温度域に保持される総合計時間を変化させた。また、この試験では、圧下率を調整することで圧延板の厚さを異ならせ、板の加熱時間及び圧延速度を調整することで総合計時間が35min又は80minになるようにした。そして、この試験では、上記温度域に保持される総合計時間が圧延後の最終熱処理の時間も含めて45min(試料α),90min(試料β)の試料を用意した。
 得られた圧延板に300℃×10分の最終熱処理を施した後、加熱温度:250℃で角絞り加工を施し、試験例1と同様の箱型のプレス成形体を得た。
 上記最終熱処理を施して得られたマグネシウム合金板、及びプレス成形体について、試験例1と同様にして、断面の組織観察により析出物の個数を測定した。また、試験例1と同様にして試験片を作製して凹み試験を行い、凹み量を測定した。これらの結果を表2に示す。表2において、厚さ0.6mmの試料(0.6mm)は、試験例1の結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、マグネシウム合金板やプレス成形体(天板部)の板厚によって、凹み量が異なるものの、圧延工程において250℃~350℃の温度域の総保持時間を60分以内とした試料αは、板厚に関わらず、粒径が5μm以上の粗大な金属間化合物が表層領域に存在せず(0個)、同じ厚さの試料βに比較して凹み量が小さいことが分かる。
 このように耐衝撃特性に優れるプレス成形体について、プレス成形体(天板部)の板厚tpと、凹み量xとの関係を調べた。その結果を図5に示す。図5に示すグラフから、試料αにおける板厚tpと凹み量xとの関係を最も単純に表すと、x=k×tp -1(kは係数)が考えられる。試料αと試料βとを区別する係数kは、板厚tp=0.5~0.8の範囲において、0~1の数値を0.01刻みで代入して求めたところ、k=0.5及びその近傍が好ましいと考えられる。但し、係数kは、板厚によって若干変化する傾向にあるため、板厚tpが0.5mm未満、0.8mm超の場合を考慮して、k=0.5としたときの関係式x=0.5×t-1から、試料αが極力外れない範囲で試料βと区別する関係式を再検討した。具体的には、k=0.5に固定し、板厚tの指数を-1から0.01刻みで代入して、好ましい曲線を求め、再度、上記と同様にして係数kを求めたところ、x=0.47×t-1.25が求められた。そこで、このx≦0.47×tp -1.25を本発明成形体を表す指標として用いる。また、同様にマグネシウム合金板について調べたところ、マグネシウム合金板についてもx≦0.47×tb -1.25(tb:板厚)を適用することができ、x≦0.47×tb -1.25を本発明マグネシウム合金板を示す指標として用いる。
 [試験例3]
 圧延後に施す処理を変えて作製したマグネシウム合金板を用意し、このマグネシウム合金板にプレス成形してなるプレス成形体を作製し、金属組織、及び耐衝撃特性を調べた。
 この試験では、試験例1と同様の鋳造板(AZ91合金相当の組成、厚さ4mm)を複数用意し、試験例1と同様の条件で、溶体化処理(400℃×24時間,350℃~250℃までの冷却速度:0.1℃/sec以上)を施した。溶体化処理された板材に、複数回の圧延(圧下率:5%/パス~40%/パス、板の加熱温度:200℃~280℃、ロール温度:100℃~250℃)を施し、圧延板を得た。この試験では、圧延工程において板材が250℃~350℃の温度域に保持される総合計時間を45minとした。
 得られた圧延板に温間矯正処理を施した。ここでは、温間矯正処理は、圧延板を加熱可能な加熱炉と、加熱された圧延板に連続的に曲げ(歪)を付与する複数のロールを有するロール部とを具えるロールレベラ装置を用いて行う。上記ロール部は、上下に対向して千鳥状に配置された複数のロールを具える。
 上記ロールレベラ装置により、圧延板は、上記加熱炉内で加熱されながら上記ロール部に送られ、ロール部の上下のロール間を通過するごとに、これらのロールにより順次曲げが付与される。ここでは、220~250℃の温度範囲で温間矯正を行い、圧延板が250~350℃の温度に保持される総合計時間が60min以内となるように矯正時の搬送速度などを調整した。
 上記温間矯正処理を施して得られたマグネシウム合金板に、加熱温度:250℃で角絞り加工を施し、試験例1と同様の箱型のプレス成形体を得た。
 得られたマグネシウム合金板及びプレス成形体について、試験例1と同様にして、断面の組織観察により析出物の個数を測定した。また、試験例1と同様にして試験片を作製して凹み試験を行い、凹み量を測定した。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、いずれの試料も、凹み量が少なく、耐衝撃性に優れることが分かる。特に、圧延後、温間矯正処理を施したマグネシウム合金板を用いた試料No.3-1は、圧延後に最終熱処理を施した試料No.2-1(試験例2の0.6mmt-α)と比較して、凹み量が少なく、耐衝撃特性に優れることが分かる。
 なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、マグネシウム合金の組成、マグネシウム合金板の厚さ、プレス成形体の形状などを適宜変更することができる。
 本発明マグネシウム合金成形体は、各種の電気機器類の部品、特に、携帯用電気機器類の筐体に好適に利用することができる。本発明マグネシウム合金板は、上記本発明マグネシウム合金成形体の素材に好適に利用することができる。
 1 試験片 10 円柱棒 20 支持台 21 円穴 d0,d1 金属間化合物(析出物)

Claims (9)

  1.  マグネシウム合金からなる板をプレス成形したマグネシウム合金成形体であって、
     前記マグネシウム合金は、Alを7質量%以上12質量%以下含有し、
     前記成形体は、絞り変形を伴わない平坦な部分を有しており、
     前記平坦な部分を板厚方向に切断した断面の金属組織において、平坦な部分の表面から板厚方向に板厚の1/3までの領域を表層領域とし、前記表層領域の任意の2箇所から選択した100μm×100μmの領域を観察視野とし、Al及びMgを含む金属間化合物の粒子であって、粒子径が5μm以上である粒子を粗大粒子とするとき、
     前記各観察視野内に存在する前記粗大粒子が5個以下であることを特徴とするマグネシウム合金成形体。
  2.  前記平坦な部分から切り出した30mm×30mm、厚さtpの試験片に対して、以下の凹み試験を行ったとき、前記試験片の凹み量xpは、xp≦0.47×tp -1.25を満たすことを特徴とする請求項1に記載のマグネシウム合金成形体。
     (凹み試験)
     直径20mmの穴を有する支持台に、この穴を塞ぐように試験片を配置し、この状態で試験片からの高さ200mmの地点より、重量100g、先端r=5mmの円柱棒を自由落下させる。
     凹み量xpは、凹み試験後における試験片の両辺を結ぶ直線から最も凹んだ部分までの距離とする。
  3.  前記マグネシウム合金は、Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,及び希土類元素(Yを除く)から選択された1種以上の元素を含むことを特徴とする請求項1又は2に記載のマグネシウム合金成形体。
  4.  前記マグネシウム合金は、質量%でA1を8.3%以上9.5%以下、Znを0.5%以上1.5%以下含有することを特徴とする請求項3に記載のマグネシウム合金成形体。
  5.  前記マグネシウム合金からなる板の表面に、化成処理により形成された防食層を具えることを特徴とする請求項4に記載のマグネシウム合金成形体。
  6.  プレス成形に用いられるマグネシウム合金板であって、
     前記マグネシウム合金は、Alを7質量%以上12質量%以下含有し、
     前記板を板厚方向に切断した断面の金属組織において、板表面から板厚方向に板厚の1/3までの領域を表層領域とし、前記表層領域の任意の2箇所から選択した100μm×100μmの領域を観察視野とし、Al及びMgを含む金属間化合物の粒子であって、粒子径が5μm以上である粒子を粗大粒子とするとき、
     前記各観察視野内に存在する前記粗大粒子が5個以下であることを特徴とするマグネシウム合金板。
  7.  前記板から切り出した30mm×30mm、厚さtbの試験片に対して、以下の凹み試験を行ったとき、前記試験片の凹み量xbは、xb≦0.47×tb -1.25を満たすことを特徴とする請求項6に記載のマグネシウム合金板。
     (凹み試験)
     直径20mmの穴を有する支持台に、この穴を塞ぐように試験片を配置し、この状態で試験片からの高さ200mmの地点より、重量100g、先端r=5mmの円柱棒を自由落下させる。
     凹み量xbは、凹み試験後における試験片の両辺を結ぶ直線から最も凹んだ部分までの距離とする。
  8.  前記マグネシウム合金は、Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,及び希土類元素(Yを除く)から選択された1種以上の元素を含むことを特徴とする請求項6又は7に記載のマグネシウム合金板。
  9.  前記マグネシウム合金は、質量%でA1を8.3%以上9.5%以下、Znを0.5%以上1.5%以下含有することを特徴とする請求項8に記載のマグネシウム合金板。
PCT/JP2009/005004 2008-10-22 2009-09-29 マグネシウム合金成形体及びマグネシウム合金板 WO2010047045A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2011120482/02A RU2011120482A (ru) 2008-10-22 2009-09-29 Формованное изделие из магниевого сплава и лист из магниевого сплава
CN2009801421984A CN102197152B (zh) 2008-10-22 2009-09-29 镁合金成形体和镁合金板
US13/125,023 US20110203706A1 (en) 2008-10-22 2009-09-29 Formed product of magnesium alloy and magnesium alloy sheet
EP09821745.8A EP2351863A4 (en) 2008-10-22 2009-09-29 WORKING MAGNESIUM ALLOY PRODUCT AND MAGNESIUM ALLOY SHEET
JP2010534666A JPWO2010047045A1 (ja) 2008-10-22 2009-09-29 マグネシウム合金成形体及びマグネシウム合金板
CA2741210A CA2741210A1 (en) 2008-10-22 2009-09-29 Formed product of magnesium alloy and magnesium alloy sheet
BRPI0919653A BRPI0919653A2 (pt) 2008-10-22 2009-09-29 produto formado de liga de magnésio e folha de liga de magnésio
AU2009305830A AU2009305830A1 (en) 2008-10-22 2009-09-29 Formed product of magnesium alloy and magnesium alloy sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-272241 2008-10-22
JP2008272241 2008-10-22

Publications (1)

Publication Number Publication Date
WO2010047045A1 true WO2010047045A1 (ja) 2010-04-29

Family

ID=42119101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005004 WO2010047045A1 (ja) 2008-10-22 2009-09-29 マグネシウム合金成形体及びマグネシウム合金板

Country Status (10)

Country Link
US (1) US20110203706A1 (ja)
EP (1) EP2351863A4 (ja)
JP (2) JPWO2010047045A1 (ja)
KR (1) KR20110070884A (ja)
CN (1) CN102197152B (ja)
AU (1) AU2009305830A1 (ja)
BR (1) BRPI0919653A2 (ja)
CA (1) CA2741210A1 (ja)
RU (1) RU2011120482A (ja)
WO (1) WO2010047045A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021182A (ja) * 2010-07-12 2012-02-02 Sumitomo Electric Ind Ltd マグネシウム合金コイル材及びその製造方法
WO2012066986A1 (ja) * 2010-11-16 2012-05-24 住友電気工業株式会社 マグネシウム合金板、及びその製造方法
JP2012107273A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd マグネシウム合金板
JP2012107285A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd マグネシウム合金部材
WO2012091112A1 (ja) * 2010-12-28 2012-07-05 住友電気工業株式会社 マグネシウム合金材
JP2012140656A (ja) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd マグネシウム合金材
JP2012140655A (ja) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd マグネシウム合金板材
JP2012140657A (ja) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd マグネシウム合金材
JP2015166496A (ja) * 2015-05-15 2015-09-24 住友電気工業株式会社 マグネシウム合金材
CN116818468A (zh) * 2023-08-24 2023-09-29 北京科技大学 一种加入稀土改性的钢液的演化过程的分析方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614004B1 (ko) * 2013-11-06 2016-04-21 연세대학교 산학협력단 석출강화 압출용 마그네슘 합금 및 그 제조방법
CN104745905A (zh) * 2013-12-30 2015-07-01 苏州昊卓新材料有限公司 一种高强度、高韧性压铸镁合金及其制备方法
CN104264085A (zh) * 2014-09-25 2015-01-07 昆明理工大学 一种镁合金的表面强化方法
CN105695825B (zh) * 2016-02-05 2017-10-31 辽宁工业大学 一种Mg‑Al‑Zn‑Si‑Bi合金及其制备方法
CN107523728A (zh) * 2016-06-20 2017-12-29 张家港市华舰五金工具有限公司 一种镁合金及其制备方法
WO2021075552A1 (ja) * 2019-10-18 2021-04-22 株式会社栗本鐵工所 分解性マグネシウム合金
CN113073275B (zh) * 2021-03-22 2021-11-30 湖南工程学院 具有四峰非基面织构特征的镁合金板材的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271631A (ja) * 1999-03-26 2000-10-03 Kenji Azuma 押出成形材及び成形品の製造方法
JP2000313948A (ja) * 1999-04-27 2000-11-14 Ykk Corp 成形材料および成形品の製造方法
WO2006003899A1 (ja) 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法
JP2006152401A (ja) * 2004-11-30 2006-06-15 Sumitomo Electric Ind Ltd マグネシウム合金素材
JP2007098470A (ja) 2005-03-28 2007-04-19 Sumitomo Electric Ind Ltd マグネシウム合金板の製造方法
WO2008029497A1 (fr) * 2006-09-08 2008-03-13 Sumitomo Electric Industries, Ltd. Élément d'alliage de magnésium et son procédé de production
JP2008106337A (ja) * 2006-10-27 2008-05-08 Shingijutsu Kenkyusho:Kk マグネシウム合金の圧延材およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2651245B2 (fr) * 1988-02-26 1992-08-07 Pechiney Electrometallurgie Alliages de magnesium a haute resistance mecanique et procede d'obtention par solidification rapide.
FR2642439B2 (ja) * 1988-02-26 1993-04-16 Pechiney Electrometallurgie
FR2651244B1 (fr) * 1989-08-24 1993-03-26 Pechiney Recherche Procede d'obtention d'alliages de magnesium par pulverisation-depot.
JPH0390530A (ja) * 1989-08-24 1991-04-16 Pechiney Electrometall 機械的強度の高いマグネシウム合金及び該合金の急速凝固による製造方法
US5078807A (en) * 1990-09-21 1992-01-07 Allied-Signal, Inc. Rapidly solidified magnesium base alloy sheet
JPH0681089A (ja) * 1992-09-02 1994-03-22 Sumitomo Metal Ind Ltd マグネシウム合金の熱間加工方法
JPH06145872A (ja) * 1992-11-06 1994-05-27 Kobe Steel Ltd クリープ強度に優れたMg合金及びその製造方法
JP3603706B2 (ja) * 1999-12-03 2004-12-22 株式会社日立製作所 高強度Mg基合金とMg基鋳造合金及び物品
US6342180B1 (en) * 2000-06-05 2002-01-29 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature properties
JP2006002184A (ja) * 2004-06-15 2006-01-05 Toudai Tlo Ltd 高強靭性マグネシウム基合金およびそれを用いた駆動系部品並びに高強靭性マグネシウム基合金素材の製造方法
JP2006348349A (ja) * 2005-06-16 2006-12-28 Katsuyoshi Kondo マグネシウム合金粉体原料、高耐力マグネシウム合金、マグネシウム合金粉体原料の製造方法および高耐力マグネシウム合金の製造方法
BRPI0602153B1 (pt) * 2006-06-06 2017-05-30 Coppe/Ufrj - Coordenação Dos Programas De Pós Graduação De Engenharia Da Univ Fed Do Rio De Janeiro ligas de magnésio para armazenamento reversível de hidrogênio
CN101921940B (zh) * 2009-06-16 2013-03-13 富准精密工业(深圳)有限公司 镁合金及其制备方法
JP2011006754A (ja) * 2009-06-26 2011-01-13 Sumitomo Electric Ind Ltd マグネシウム合金板
JP5648885B2 (ja) * 2009-07-07 2015-01-07 住友電気工業株式会社 マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金板の製造方法
US20110030855A1 (en) * 2009-08-07 2011-02-10 Gm Global Technology Operations, Inc. CORROSION RESISTANCE OF THE CAST Mg ALLOYS BY NOVEL MICROSTRUCTURAL PHASE MODIFICATIONS
US8464926B2 (en) * 2009-10-30 2013-06-18 Wisconsin Alumni Research Foundation Method of friction stir welding dissimilar metals and workpiece assemblies formed thereby

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271631A (ja) * 1999-03-26 2000-10-03 Kenji Azuma 押出成形材及び成形品の製造方法
JP2000313948A (ja) * 1999-04-27 2000-11-14 Ykk Corp 成形材料および成形品の製造方法
WO2006003899A1 (ja) 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法
JP2006152401A (ja) * 2004-11-30 2006-06-15 Sumitomo Electric Ind Ltd マグネシウム合金素材
JP2007098470A (ja) 2005-03-28 2007-04-19 Sumitomo Electric Ind Ltd マグネシウム合金板の製造方法
WO2008029497A1 (fr) * 2006-09-08 2008-03-13 Sumitomo Electric Industries, Ltd. Élément d'alliage de magnésium et son procédé de production
JP2008106337A (ja) * 2006-10-27 2008-05-08 Shingijutsu Kenkyusho:Kk マグネシウム合金の圧延材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351863A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021182A (ja) * 2010-07-12 2012-02-02 Sumitomo Electric Ind Ltd マグネシウム合金コイル材及びその製造方法
EP2641986A4 (en) * 2010-11-16 2017-09-06 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet and process for producing same
US9222161B2 (en) 2010-11-16 2015-12-29 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet and method for producing same
JP2012107285A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd マグネシウム合金部材
KR101799615B1 (ko) * 2010-11-16 2017-11-20 스미토모덴키고교가부시키가이샤 마그네슘 합금판, 및 그 제조 방법
CN103210102A (zh) * 2010-11-16 2013-07-17 住友电气工业株式会社 镁合金板及其制造方法
WO2012066986A1 (ja) * 2010-11-16 2012-05-24 住友電気工業株式会社 マグネシウム合金板、及びその製造方法
JP2012107273A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd マグネシウム合金板
JP2012140656A (ja) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd マグネシウム合金材
JP2012140657A (ja) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd マグネシウム合金材
US20140308157A1 (en) * 2010-12-28 2014-10-16 Sumitomo Electric Industries, Ltd. Magnesium alloy material
JP2012140655A (ja) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd マグネシウム合金板材
WO2012091112A1 (ja) * 2010-12-28 2012-07-05 住友電気工業株式会社 マグネシウム合金材
JP2015166496A (ja) * 2015-05-15 2015-09-24 住友電気工業株式会社 マグネシウム合金材
CN116818468A (zh) * 2023-08-24 2023-09-29 北京科技大学 一种加入稀土改性的钢液的演化过程的分析方法
CN116818468B (zh) * 2023-08-24 2023-11-10 北京科技大学 一种加入稀土改性的钢液的演化过程的分析方法

Also Published As

Publication number Publication date
AU2009305830A1 (en) 2010-04-29
RU2011120482A (ru) 2012-11-27
CN102197152A (zh) 2011-09-21
BRPI0919653A2 (pt) 2015-12-08
JP2015034350A (ja) 2015-02-19
CA2741210A1 (en) 2010-04-29
JPWO2010047045A1 (ja) 2012-03-15
EP2351863A4 (en) 2015-08-26
CN102197152B (zh) 2013-11-13
US20110203706A1 (en) 2011-08-25
JP6065346B2 (ja) 2017-01-25
EP2351863A1 (en) 2011-08-03
KR20110070884A (ko) 2011-06-24

Similar Documents

Publication Publication Date Title
JP6065346B2 (ja) マグネシウム合金のプレス成形体、マグネシウム合金の圧延板、マグネシウム合金成形体の製造方法、及びマグネシウム合金板の製造方法
TWI385257B (zh) 鎂合金板之製造方法及鎂合金板
JP3558628B2 (ja) マグネシウム合金板およびその製造方法
AU2011257953B2 (en) Magnesium-based alloy for wrought applications
WO2014168147A1 (ja) プレス成形用アルミニウム合金板、その製造方法およびそのプレス成形体
KR101860167B1 (ko) 마그네슘 합금재 및 그의 제조 방법
KR101324715B1 (ko) 마그네슘 합금 판재의 성형성 향상방법 및 이에 의해 제조되는 마그네슘 합금 판재
WO2012066986A1 (ja) マグネシウム合金板、及びその製造方法
JP5648885B2 (ja) マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金板の製造方法
JP2007138227A (ja) マグネシウム合金材
CN108472699B (zh) 镁合金板材及其制造方法
WO2016059950A1 (ja) マグネシウム合金、マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金の製造方法
WO2010150651A1 (ja) マグネシウム合金板
JP5247010B2 (ja) 高強度で曲げ加工性に優れたCu−Zn系合金
KR101885397B1 (ko) 마그네슘 합금재 및 그의 제조 방법
JP4306547B2 (ja) マグネシウム合金板及びその製造方法
JP2014237896A (ja) マグネシウム合金板
Masoudpanah et al. Correlation between shear punch and tensile measurements for an AZ31 Mg alloy processed by equal-channel angular pressing
JP2011157626A (ja) マグネシウム合金板
JP5522000B2 (ja) マグネシウム合金部材
WO2011129221A1 (ja) 耐衝撃部材
JP5032011B2 (ja) 硬質α黄銅及びその硬質α黄銅の製造方法
CN110785506A (zh) 镁合金板材及其制造方法
JP5637378B2 (ja) マグネシウム合金板
WO2020234655A1 (en) Sheet metal product with high bendability and manufacturing thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142198.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821745

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010534666

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2741210

Country of ref document: CA

Ref document number: 13125023

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2914/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117009128

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009821745

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009305830

Country of ref document: AU

Date of ref document: 20090929

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011120482

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0919653

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110415