WO2010045904A2 - Metall/cnt- und/oder fulleren-komposit-beschichtung auf bandwerkstoffen - Google Patents

Metall/cnt- und/oder fulleren-komposit-beschichtung auf bandwerkstoffen Download PDF

Info

Publication number
WO2010045904A2
WO2010045904A2 PCT/DE2009/001236 DE2009001236W WO2010045904A2 WO 2010045904 A2 WO2010045904 A2 WO 2010045904A2 DE 2009001236 W DE2009001236 W DE 2009001236W WO 2010045904 A2 WO2010045904 A2 WO 2010045904A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal strip
carbon nanotubes
fullerenes
metal
graphenes
Prior art date
Application number
PCT/DE2009/001236
Other languages
English (en)
French (fr)
Other versions
WO2010045904A3 (de
Inventor
Helge Schmidt
Isabell Buresch
Udo Adler
Dirk Rode
Sonja Priggemeyer
Original Assignee
Kme Germany Ag & Co. Kg
Tyco Electronics Amp Gmbh
Wieland-Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kme Germany Ag & Co. Kg, Tyco Electronics Amp Gmbh, Wieland-Werke Aktiengesellschaft filed Critical Kme Germany Ag & Co. Kg
Priority to EP09744030.9A priority Critical patent/EP2342366B1/de
Priority to CN200980127356.9A priority patent/CN102099506B/zh
Priority to JP2011532490A priority patent/JP5551173B2/ja
Priority to RU2011108261/02A priority patent/RU2485214C2/ru
Priority to KR1020117008885A priority patent/KR101318536B1/ko
Priority to MX2011003316A priority patent/MX344640B/es
Priority to CA2731922A priority patent/CA2731922A1/en
Priority to BRPI0919567A priority patent/BRPI0919567A2/pt
Priority to US13/125,195 priority patent/US20110203831A1/en
Publication of WO2010045904A2 publication Critical patent/WO2010045904A2/de
Publication of WO2010045904A3 publication Critical patent/WO2010045904A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component

Definitions

  • the invention relates to a metal / carbon nanotube (CNT) and / or fullerene composite coating on metal strips, which has an improved coefficient of friction, a good contact resistance, a good Reibkorrosionsbe pretechnik, good wear resistance and good formability.
  • the invention further relates to a method for producing a metal strip coated according to the invention.
  • Carbon nanotubes were discovered by Sumio lijama in 1991 (see S. lijama, Nature, 1991, 354, 56). lijama found in the soot of a fullerene generator under certain reaction conditions tubular structures of only a few 10 nm diameter, but up to several micrometers in length. The compounds he found consisted of several concentric graphite tubes, which got the name multi-walled carbon nanotubes (MWCNTs). Shortly thereafter, single-walled carbon nanotubes (SWCNTs) were identified by lijama and Ichihashi as single-wall CNTs (see S. lijama, T. Ichihashi, Nature, 1993, 363, 6430). , The outstanding properties of CNTs include, for example, their mechanical tensile strength and stiffness of about 40 GPa and 1 TPa (20 and 5 times higher than steel, respectively).
  • the carbon nanotubes belong to the family of fullerenes and have a diameter of 1 nm to several 100 nm.
  • Carbon nanotubes are microscopic tubular structures (molecular nanotubes) made of carbon. Their walls, like the fullerenes or, like the planes of the graphite, consist only of carbon, the carbon atoms occupying a honeycomb-like structure with six corners and three binding partners each (dictated by sp 2 hybridization).
  • the diameter of the tubes is usually in the range of 1 to 50 nm, but also tubes were made with only 0.4 nm diameter. Lengths of several millimeters for single tubes and up to 20 cm for tube bundles have already been achieved.
  • the synthesis of the carbon nanotubes usually takes place by deposition of carbon from the gas phase or a plasma.
  • the current carrying capacity is estimated to be 1000 times higher than copper wires, the thermal conductivity at room temperature with 6000 W / m * K is almost twice as high as that of Diamant, the best naturally occurring thermal conductor.
  • the carbon nanotubes belong to the group of fullerenes.
  • Fullerenes are spherical molecules of high symmetry carbon atoms, which represent the third elemental modification of carbon (besides diamond and graphite).
  • the preparation of the fullerenes is usually carried out by evaporation of graphite under reduced pressure and under a protective gas atmosphere (eg argon) with a resistance heating or in the arc.
  • a protective gas atmosphere eg argon
  • the carbon nanotubes discussed above often arise.
  • Fullerenes have semiconducting to superconducting properties. It is known in the art that carbon nanotubes are mixed with conventional plastic. This greatly improves the mechanical properties of the plastics.
  • electrically conductive plastics for example, nanotubes have already been used for Leitschreibmachung antistatic films.
  • Electromechanical components such as connectors, switches, relay springs, direct plug-in stamped grid and the like in today's design with a tin or silver or Ni coating often have a problem of poor coefficient of friction and / or
  • the object of the present invention was thus to provide an electromechanical component which overcomes the abovementioned disadvantages, that is to say has an improved coefficient of friction and / or good contact-contact resistance and / or good wear resistance and / or good formability.
  • the object is achieved by a metal strip comprising a coating of carbon nanotubes and / or fullerenes and metal.
  • a metal strip in the context of this invention is preferably understood a metal strip or an electromechanical component, which preferably consists of copper and / or copper alloys, aluminum and / or aluminum alloys or iron and / or iron alloys.
  • the metal strip comprises a diffusion barrier layer, which is advantageously applied on both sides of the metal strip.
  • the metal band should be a non-insulator. Therefore, the diffusion barrier layer preferably comprises or consists of a transition metal. - A -
  • Preferred transition metals are, for example, Mo, B, Co, Fe / Ni, Cr, Ti, W or Ce.
  • the carbon nanotubes are arranged in a columnar manner on the metal strip, which can be achieved by the method according to the invention described below.
  • the carbon nanotubes can be single-walled or multi-walled carbon nanotubes, which can likewise be controlled by the method according to the invention.
  • the fullerenes are preferably arranged in the form of spheres on the metal strip.
  • the coating may preferably also contain graphene.
  • Graphenes are monatomic layers of sp 2 -hybridized carbon atoms. Graphenes show very good electrical and thermal conductivity along their plane. Graphs are represented by splitting graphite into its basal planes. Initially, oxygen is intercalated. The oxygen reacts partially with the carbon and leads to a mutual repulsion of the layers. Subsequently, the graphenes are suspended and, depending on the intended use, embedded in, for example, polymers or, as in the present invention, as a coating component for a metal strip.
  • Another way of displaying individual graphene layers is to heat hexagonal silicon carbide surfaces to temperatures in excess of 1400 ° C. Because of the higher vapor pressure of the silicon, the silicon atoms evaporate faster than the carbon atoms. Thin layers of monocrystalline graphite, consisting of a few graphene monolayers, then form on the surface.
  • the graphenes and / or carbon nanotubes and / or fullerenes form a composite.
  • the graphenes can form a composite with carbon nanotubes, the graphenes with fullerenes, the fullerenes with carbon nanotubes, or all components together.
  • the graphenes are orthogonal arranged on the carbon nanotubes and / or fullerenes, for example, represent the completion of a tube in the axial direction, or the graphenes and fullerenes are arranged orthogonally on the carbon nanotubes.
  • An orthogonal arrangement of graphenes on fullerenes means a tangential arrangement of the graphenes on the fullerenes.
  • An orthogonal arrangement of fullerenes on carbon nanotubes can be thought of as a scepter with the fullerene sitting at one end of a carbon nanotube.
  • the metal strip preferably has a thickness of 0.06 to 3 mm, more preferably 0.08 to 2.7 mm.
  • the invention also provides a process for producing a metal strip coated with carbon nanotubes and / or fullerenes and metal, comprising the steps of
  • step c) subjecting the treated after step a) and b) metal strip of an organic gaseous compounds containing atmosphere,
  • the metal strip is coated on both sides with the diffusion barrier layer.
  • a nucleating layer is advantageously applied, which supports the columnar outgrowth of the carbon nanotubes or the deposition of fullerenes.
  • the nucleating layer used in the method preferably comprises a metal salt selected from Metals of the Fe group, the 8th, 9th and 10th subgroup of the Periodic Table of the Elements.
  • the metal strip thus treated is then exposed to an atmosphere, which is preferably a hydrocarbon atmosphere.
  • the hydrocarbon atmosphere is a methane atmosphere, wherein a carrier gas is further added to the atmosphere or hydrocarbon atmosphere.
  • Argon can be used as the carrier gas, for example.
  • the formation of the carbon nanotubes and / or fullerenes on the metal strip is usually carried out at a temperature of 200 0 C to 1500 0 C. At a temperature of 200 0 C to 900 0 C predominantly multi-walled carbon nanotubes (MWCNTs) are formed. At a temperature greater than 900 0 C to about 1500 0 C preferably single-walled carbon nanotubes (SWCNTs) are formed.
  • MWCNTs multi-walled carbon nanotubes
  • SWCNTs single-walled carbon nanotubes
  • the quality of carbon nanotubes can be improved if growth takes place in a humid environment.
  • the formation of the carbon nanotubes on the metal strip takes place in a columnar shape, which is supported by the nucleating layer.
  • the fullerenes preferably divorced spherically on the metal strip.
  • Metals used are the above-mentioned metals Sn, Ni, Ag, Au, Pd, Cu or W and their alloys.
  • the penetration of the carbon nanotubes and / or fullerenes with the metal is preferably carried out by a vacuum process, for example CVD (chemical vapor deposition) or PVD (physical vapor deposition), electrolytic, electroless reductive or by melting / infiltration.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Graphenes are preferably also introduced into the coating.
  • the graphenes and / or carbon nanotubes and / or fullerenes preferably form a composite. This means that the graphene with carbon nanotubes, the graphene with fullerenes, the fullerenes with carbon nanotubes or all three components together can form a composite.
  • the graphenes are arranged orthogonally on the carbon nanotubes and / or fullerenes, for example representing the termination of a tube in the axial direction, or the graphenes and fullerenes are arranged orthogonally on the carbon nanotubes.
  • An orthogonal arrangement of graphenes on fullerenes means a tangential arrangement of the graphenes on the fullerenes.
  • An orthogonal arrangement of fullerenes on carbon nanotubes can be thought of as a scepter with the fullerene sitting at one end of a carbon nanotube.
  • a metal strip produced in this way and coated with metal and carbon nanotubes and / or fullerenes (and graphenes) is distinguished by an improved coefficient of friction, a good contact resistance, a good wear resistance and good formability and is thus outstandingly suitable as an electromechanical component, for example for plug connectors , Switches, relay springs or the like.
  • an electrical and thermal conductivity in the horizontal and vertical directions can be provided, which is particularly advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft eine Metall/Kohlenstoffnanoröhren (CNT)- und/oder Fulleren-Komposit-Beschichtung auf Metallbändern oder vorgestanzten Metallbändern, die einen verbesserten Reibwert und/oder einen guten Kontaktübergangswiderstand und /oder eine gute Reibkorrosionsbeständigkeit und/oder eine gute Verschleißbeständigkeit und/oder gute Umformbarkeit aufweist. Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines erfindungsgemäß beschichteten Metallbandes.

Description

Metall/CNT- und/oder Fulleren-Komposit-Beschichtunq auf
Bandwerkstoffen
Die Erfindung betrifft eine Metall/Kohlenstoff-Nanoröhren (CNT)- und/oder Fulleren-Komposit-Beschichtung auf Metallbändern, die einen verbesserten Reibwert, einen guten Kontaktübergangswiderstand, eine gute Reibkorrosionsbeständigkeit, eine gute Verschleißbeständigkeit und gute Umformbarkeit aufweist. Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines erfindungsgemäß beschichteten Metallbandes.
Kohlenstoff-Nanoröhren (CNTs) wurden von Sumio lijama im Jahre 1991 entdeckt (siehe S. lijama, Nature, 1991 , 354, 56). lijama fand im Ruß eines Fullerengenerators unter bestimmten Reaktionsbedingungen röhrenartige Gebilde von nur wenigen 10 nm Durchmesser, aber bis zu einigen Mikrometern Länge. Die von ihm gefundenen Verbindungen bestanden aus mehreren konzentrischen Graphitröhren, welche die Bezeichnung mehrwandige Kohlenstoff-Nanoröhren (multi-wall carbon nanotubes, MWCNTs) bekamen. Kurz darauf wurden von lijama und Ichihashi einwandige CNTs von etwa nur 1 nm Durchmesser gefunden, welche entsprechend als Single-Wall Carbon- Nanotubes (SWCNTs) bezeichnet wurden (s. S. lijama, T. Ichihashi, Nature, 1993, 363, 6430). Zu den herausragenden Eigenschaften der CNTs zählen z.B. ihre mechanische Zugfestigkeit und Steifheit von etwa 40 GPa bzw. 1 TPa (20- bzw. 5-mal höher als die von Stahl).
Bei den CNTs existieren sowohl leitende als auch halbleitende Materialien. Die Kohlenstoff-Nanoröhren gehören zu der Familie der Fullerene und besitzen einen Durchmesser von 1 nm bis einigen 100 nm. Kohlenstoff-Nanoröhren sind mikroskopisch kleine röhrenförmige Gebilde (molekulare Nanoröhren) aus Kohlenstoff. Ihre Wände bestehen wie die der Fullerene oder wie die Ebenen des Graphits nur aus Kohlenstoff, wobei die Kohlenstoffatome eine wabenartige Struktur mit sechs Ecken und jeweils drei Bindungspartnern einnehmen (vorgegeben durch die sp2-Hybridisierung). Der Durchmesser der Röhren liegt meist im Bereich von 1 bis 50 nm, wobei aber auch Röhren mit nur 0,4 nm Durchmesser hergestellt wurden. Längen von mehreren Millimetern für einzelne Röhren und bis zu 20 cm für Röhrenbündel wurden bereits erreicht.
Die Synthese der Kohlenstoff-Nanoröhren erfolgt gewöhnlich durch Abscheidung von Kohlenstoff aus der Gasphase oder einem Plasma. Für die Elektronikindustrie sind vor allem die Strombelastbarkeit und die Wärmeleitfähigkeit interessant. Die Strombelastbarkeit liegt schätzungsweise 1000-mal höher als bei Kupferdrähten, die Wärmeleitfähigkeit ist bei Raumtemperatur mit 6000 W/m * K beinahe doppelt so hoch wie die von Diamant, dem besten natürlich vorkommenden Wärmeleiter.
Wie oben bereits ausgeführt gehören die Kohlenstoff-Nanoröhren zur Gruppe der Fullerene. Als Fullerene werden sphärische Moleküle aus Kohlenstoffatomen mit hoher Symmetrie bezeichnet, welche die dritte Element- Modifikation des Kohlenstoffs (neben Diamant und Graphit) darstellen. Die Herstellung der Fullerene erfolgt gewöhnlich durch Verdampfen von Graphit unter reduziertem Druck und unter einer Schutgasatmosphäre (z.B. Argon) mit einer Widerstandsheizung oder im Lichtbogen. Als Nebenprodukt entstehen häufig die bereits oben besprochenen Kohlenstoff-Nanoröhren. Fullerene haben halbleitende bis supraleitende Eigenschaften. Im Stand der Technik ist bekannt, dass Kohlenstoff-Nanoröhren mit herkömmlichem Kunststoff gemischt werden. Dadurch werden die mechanischen Eigenschaften der Kunststoffe stark verbessert. Außerdem ist es möglich, elektrisch leitende Kunststoffe herzustellen, beispielsweise wurden Nanoröhren bereits zur Leitfähigmachung von Antistatikfolien verwendet.
Elektromechanische Bauelemente wie beispielsweise Steckverbinder, Schalter, Relaisfedern, direkt steckbare Stanzgitter und dergleichen haben in der heutigen Ausführung mit einer Zinn- oder Silber oder Ni-Beschichtung häufig ein Problem eines schlechten Reibwerts und/oder
Kontaktübergangswiderstands, einer geringen Verschleißbeständigkeit und/oder einer schlechten Umformbarkeit. Der Einsatz von Kohlenstoff- Nanoröhren und/oder Fullerenen zur Verbesserung dieser Eigenschaften ist im Stand der Technik bisher nicht bekannt.
Die Aufgabe der vorliegenden Erfindung lag somit in der Bereitstellung eines elektromechanischen Bauteils, das die oben genannten Nachteile überwindet, also einen verbesserten Reibwert und/oder einen guten Kontaktübergangswiderstand und/oder eine gute Verschleißbeständigkeit und/oder eine gute Umformbarkeit aufweist.
Die Aufgabe wird gelöst durch ein Metallband, umfassend eine Beschichtung aus Kohlenstoff-Nanoröhren und/oder Fullerenen und Metall.
Als Metallband im Sinne dieser Erfindung wird vorzugsweise ein Metallband bzw. ein elektromechanisches Bauteil verstanden, das vorzugsweise aus Kupfer und/oder Kupferlegierungen, Aluminium und/oder Aluminiumlegierungen oder Eisen und/oder Eisenlegierungen besteht.
Vorzugsweise umfasst das Metallband eine Diffusionssperrschicht, welche vorteilhafterweise auf beiden Seiten des Metallbandes aufgebracht ist. Das Metallband soll ein Nicht-Isolator sein. Bevorzugt umfasst die Diffusionssperrschicht deshalb ein Übergangsmetall bzw. besteht aus diesem. - A -
Bevorzugte Übergangsmetalle sind beispielsweise Mo, B, Co, Fe/Ni, Cr, Ti, W oder Ce.
Die Kohlenstoff-Nanoröhren sind säulenartig auf dem Metallband angeordnet, was durch das nachstehend beschriebene erfindungsgemäße Verfahren erreicht werden kann. Die Kohlenstoff-Nanoröhren können einwandige oder mehrwandige Kohlenstoff-Nanoröhren sein, was ebenfalls durch das erfindungsgemäße Verfahren gesteuert werden kann. Die Fullerene sind bevorzugt in Form von Kugeln auf dem Metallband angeordnet.
Die Beschichtung kann bevorzugt auch Graphene enthalten.
Als Graphene bezeichnet man monoatomare Lagen von sp2-hybridisierten Kohlenstoffatomen. Graphene zeigen eine sehr gute elektrische und thermische Leitfähigkeit entlang ihrer Ebene. Die Darstellung von Graphen erfolgt durch Aufspalten von Graphit in seine Basalebenen. Dabei wird zunächst Sauerstoff interkaliert. Der Sauerstoff reagiert partiell mit dem Kohlenstoff und führt zu einer gegenseitigen Abstoßung der Schichten. Anschließend werden die Graphene suspendiert und je nach Verwendungszweck zum Beispiel in Polymere eingebettet oder wie in der vorliegenden Erfindung als Beschichtungskomponente für ein Metallband.
Eine weitere Möglichkeit der Darstellung einzelner Graphen-Lagen ist das Erhitzen hexagonaler Siliciumcarbid-Oberflächen auf Temperaturen oberhalb 1400 0C. Aufgrund des höheren Dampfdruckes des Siliciums evaporieren die Silicium-Atome schneller als die Kohlenstoff-Atome. Auf der Oberfläche bilden sich dann dünne Schichten einkristallinen Graphits, die aus wenigen Graphen- Monolagen bestehen.
In einer bevorzugten Ausführungsform bilden die Graphene und/oder Kohlenstoff-Nanoröhren und/oder Fullerenen ein Komposit. Das bedeutet, dass die Graphene mit Kohlenstoff-Nanoröhren, die Graphene mit Fullerenen, die Fullerene mit Kohlenstoff-Nanoröhren oder alle Komponenten zusammen ein Komposit bilden können. Besonders bevorzugt sind die Graphene orthogonal auf den Kohlenstoff-Nanoröhren und/oder Fullerenen angeordnet, wobei sie beispielsweise den Abschluss einer Röhre in axialer Richtung darstellen, oder die Graphene und Fullerene sind orthogonal auf den Kohlenstoff-Nanoröhren angeordnet. Eine orthogonale Anordnung von Graphenen auf Fullerenen bedeutet quasi eine tangentiale Anordnung der Graphene auf den Fullerenen. Eine orthogonale Anordnung von Fullerenen auf Kohlenstoff-Nanoröhren kann man sich wie ein Zepter vorstellen, wobei das Fulleren an einem Ende einer Kohlenstoff-Nanoröhre sitzt.
Das Metallband besitzt vorzugsweise eine Dicke von 0,06 bis 3 mm, besonders bevorzugt von 0,08 bis 2,7 mm.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung eines mit Kohlenstoff-Nanoröhren und/oder Fullerenen und Metall beschichteten Metallbandes umfassend die Schritte des
a) Beschichtens eines Metallbandes mit einer Diffusionssperrschicht,
b) Aufbringens einer keimbildenden Schicht auf die Diffusionssperrschicht,
c) Unterwerfens des nach Schritt a) und b) behandelten Metallbandes einer organische, gasförmige Verbindungen enthaltenden Atmosphäre,
d) Bildens von Kohlenstoff-Nanoröhren und/oder Fullerenen auf dem Metallband bei einer Temperatur von 200 0C bis 1500 0C,
e) Durchdringens der Kohlenstoff-Nanoröhren und/oder Fullerene mit einem Metall.
In dem erfindungsgemäßen Verfahren ist es bevorzugt, dass das Metallband beidseitig mit der Diffusionssperrschicht beschichtet wird. Auf die Diffusionssperrschicht wird vorteilhaft eine keimbildende Schicht aufgebracht, welche das säulenartige Auswachsen der Kohlenstoff-Nanoröhren bzw. das Abscheiden von Fullerenen unterstützt. Die keimbildende Schicht, die in dem Verfahren verwendet wird, umfasst bevorzugt ein Metallsalz, ausgewählt aus Metallen der Fe-Gruppe, der 8., 9. und 10. Nebengruppe des Periodensystems der Elemente.
Das so behandelte Metallband wird anschließend einer Atmosphäre ausgesetzt, die vorzugsweise eine Kohlenwasserstoffatmosphäre ist. Besonders bevorzugt ist die Kohlenwasserstoffatmosphäre einer Methanatmosphäre, wobei ferner der Atmosphäre bzw. Kohlenwasserstoffatmosphäre ein Trägergas zugesetzt wird. Als Trägergas kann beispielsweise Argon dienen.
Das Bilden der Kohlenstoff-Nanoröhren und/oder Fullerene auf dem Metallband erfolgt gewöhnlich bei einer Temperatur von 200 0C bis 1500 0C. Bei einer Temperatur von 200 0C bis 900 0C bilden sich vorwiegend mehrwandige Kohlenstoff-Nanoröhren (MWCNTs). Bei einer Temperatur größer 900 0C bis etwa 1500 0C werden bevorzugt einwandige Kohlenstoff-Nanoröhren (SWCNTs) gebildet. Die Qualität der Kohlenstoff-Nanoröhren kann verbessert werden, wenn das Wachstum in einer feuchten Umgebung erfolgt. Die Bildung der Kohlenstoff-Nanoröhren auf dem Metallband erfolgt säulenförmig, was durch die keimbildende Schicht unterstützt wird. Die Fullerene scheiden sich bevorzugt kugelförmig auf dem Metallband ab.
Anschließend erfolgt noch ein Durchdringen der Kohlenstoff-Nanoröhren und/oder Fullerene mit einem Metall. Als Metalle dienen die bereits oben genannten Metalle Sn, Ni, Ag, Au, Pd, Cu oder W sowie ihre Legierungen.
Die Durchdringung der Kohlenstoff-Nanoröhren und/oder Fullerene mit dem Metall erfolgt vorzugsweise über ein Vakuumverfahren, beispielsweise CVD (chemical vapour deposition) oder PVD (physical vapour deposition), elektrolytisch, stromlos reduktiv oder durch Einschmelzen/Infiltrieren.
Bevorzugt werden in die Beschichtung auch Graphene eingebracht. Bevorzugt bilden die Graphene und/oder Kohlenstoff-Nanoröhren und/oder Fullerenen ein Komposit. Das bedeutet, dass die Graphene mit Kohlenstoff-Nanoröhren, die Graphene mit Fullerenen, die Fullerene mit Kohlenstoff-Nanoröhren oder alle drei Komponenten zusammen ein Komposit bilden können. Besonders bevorzugt werden die Graphene orthogonal auf den Kohlenstoff-Nanoröhren und/oder Fullerenen angeordnet, wobei sie beispielsweise den Abschluss einer Röhre in axialer Richtung darstellen, oder die Graphene und Fullerene werden orthogonal auf den Kohlenstoff-Nanoröhren angeordnet. Eine orthogonale Anordnung von Graphenen auf Fullerenen bedeutet quasi eine tangentiale Anordnung der Graphene auf den Fullerenen. Eine orthogonale Anordnung von Fullerenen auf Kohlenstoff-Nanoröhren kann man sich wie ein Zepter vorstellen, wobei das Fulleren an einem Ende einer Kohlenstoff-Nanoröhre sitzt.
Ein so hergestelltes mit Metall und Kohlenstoff-Nanoröhren und/oder Fullerenen (und Graphenen) beschichtetes Metallband zeichnet sich durch einen verbesserten Reibwert, einen guten Kontaktübergangswiderstand, eine gute Verschleißbeständigkeit und eine gute Umformbarkeit aus und eignet sich somit hervorragend als elektromechanisches Bauteil, beispielsweise für Steckverbinder, Schalter, Relaisfedern oder dergleichen. Insbesondere in Kombination mit Graphenen in Form des oben beschriebenen Komposits kann eine elektrische und thermische Leitfähigkeit in horizontaler und vertikaler Richtung bereitgestellt werden, was besonders vorteilhaft ist.

Claims

Patentansprüche
1. Metallband, umfassend eine Beschichtung aus Kohlenstoff-Nanoröhren, und/oder Fullerenen und Metall.
2. Metallband nach Anspruch 1 , ferner umfassend eine Diffusionssperrschicht auf beiden Seiten des Metallbandes.
3. Metallband nach Anspruch 2, dadurch gekennzeichnet, dass die Diffusionssperrschicht ein Nicht-Isolator ist.
4. Metallband nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Diffusionssperrschicht ein Übergangsmetall umfasst.
5. Metallband nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Metall der Beschichtung ausgewählt ist aus der Gruppe umfassend Sn, Ni, Ag, Au, Pd, Cu, W oder deren Legierungen.
6. Metallband nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kohlenstoff-Nanoröhren säulenartig auf dem Metallband angeordnet sind.
7. Metallband nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kohlenstoff-Nanoröhren einwandige oder mehrwandige Kohlenstoff-Nanoröhren sind.
8. Metallband nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Metallband eine Dicke von 0,06 bis 3 mm aufweist.
9. Metallband nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung Graphene enthält.
10. Metallband nach Anspruch 9, dadurch gekennzeichnet, dass die Graphene und/oder Kohlenstoff-Nanorohren und/oder Fullerene ein Komposit bilden.
11. Metallband nach Anspruch 9, dadurch gekennzeichnet, dass die Graphene und/oder Fullerene orthogonal auf den Kohlenstoff-Nanorohren angeordnet sind oder dass die Graphene orthogonal auf den Kohlenstoff- Nanorohren und/oder Fullerenen angeordnet sind.
12. Metallband nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Metallband vorgestanzt ist.
13. Verfahren zur Herstellung eines mit Kohlenstoff-Nanorohren und/oder Fullerenen und Metall beschichteten Metallbandes umfassend die Schritte des
a) Beschichtens eines Metallbandes mit einer Diffusionssperrschicht,
b) Aufbringens einer keimbildenden Schicht auf die Diffusionssperrschicht,
c) Unterwerfens des nach Schritt a) und b) behandelten Metallbandes einer organische, gasförmige Verbindungen enthaltenden Atmosphäre,
d) Bildens von Kohlenstoff-Nanorohren und/oder Fullerenen auf dem Metallband bei einer Temperatur von 200 0C bis 1500 0C,
e) Durchdringens der Kohlenstoff-Nanorohren und/oder Fullerene mit einem Metall.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Metallband beidseitig mit der Diffusionssperrschicht beschichtet wird.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass als keimbildende Schicht ein Metallsalz, ausgewählt aus Metallen der Fe- Gruppe, der 8., der 9. oder der 10. Nebengruppe des Periodensystems der Elemente, verwendet wird.
16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die keimbildende Schicht partiell aufgebracht wird (partielle Beschichtung).
17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass das Metallband einer Kohlenwasserstoffatmosphäre ausgesetzt wird.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass neben der Kohlenwasserstoffatmosphäre ein Trägergas eingesetzt wird.
19. Verfahren nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass das Metallband einer Atmosphäre mit einer organischen, gasförmigen Verbindung mit einem Feuchtgehalt von 50 -
90% unterworfen wird.
20. Verfahren nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, dass die Temperatur zur Bildung der Kohlenstoff- Nanoröhren und/oder Fullerene 200 0C bis 900 0C beträgt.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass mehrwandige Kohlenstoff-Nanoröhren (MWCNTs) gebildet werden.
22. Verfahren nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass die Temperatur zur Bildung der Kohlenstoff- Nanoröhren und/oder Fullerene > 900 0C bis 1500 0C beträgt.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass einwandige Kohlenstoff-Nanoröhren (SWCNTs) gebildet werden.
24. Verfahren nach einem der Ansprüche 13 bis 23, dadurch gekennzeichnet, dass die Bildung der Kohlenstoff-Nanoröhren säulenförmig auf dem Metallband erfolgt.
25. Verfahren nach einem der Ansprüche 13 bis 24, dadurch gekennzeichnet, dass die Durchdringung der Kohlenstoff-Nanoröhren und/oder Fullerene mit dem Metall über ein Vakuumverfahren, elektrolytisch, stromlos reduktiv oder durch einschmelzen/infltrieren erfolgt.
26. Verfahren nach einem der Ansprüche 13 bis 25, dadurch gekennzeichnet, dass in die Beschichtung Graphene eingebracht werden.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass die Graphene orthogonal auf den Kohlenstoff-Nanoröhren und/oder Fullerenen angeordnet werden, oder dass die Graphene und/oder Fullerene orthogonal auf den Kohlenstoff-Nanoröhren angeordnet werden.
28. Verfahren nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass die Graphene und/oder Kohlenstoff-Nanoröhren und/oder Fullerenen ein Komposit bilden.
29. Verwendung eines Metallbandes nach einem der Ansprüche 1 bis 12 oder hergestellt nach einem Verfahren nach einem der Ansprüche 13 bis 28 als elektromechanisches Bauelement oder Stanzgitter.
PCT/DE2009/001236 2008-10-24 2009-09-03 Metall/cnt- und/oder fulleren-komposit-beschichtung auf bandwerkstoffen WO2010045904A2 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP09744030.9A EP2342366B1 (de) 2008-10-24 2009-09-03 Metall/cnt- und/oder fulleren-komposit-beschichtung auf bandwerkstoffen
CN200980127356.9A CN102099506B (zh) 2008-10-24 2009-09-03 带材上的金属/cnt-和/或富勒烯-复合材料-涂层
JP2011532490A JP5551173B2 (ja) 2008-10-24 2009-09-03 テープ材料上の金属/cnt−及び/又はフラーレン複合体コーティング
RU2011108261/02A RU2485214C2 (ru) 2008-10-24 2009-09-03 Композитное покрытие из металла и cnt и/или фуллеренов на ленточных материалах
KR1020117008885A KR101318536B1 (ko) 2008-10-24 2009-09-03 스트립 재료 상의 금속/cnt 및/또는 풀러렌 조성물 코팅
MX2011003316A MX344640B (es) 2008-10-24 2009-09-03 Recubrimiento de compuesto de metal/cnt y/o fulerenos en materiales en tiras.
CA2731922A CA2731922A1 (en) 2008-10-24 2009-09-03 Metal/cnt and/or fullerene composite coating on strip materials
BRPI0919567A BRPI0919567A2 (pt) 2008-10-24 2009-09-03 revestimento de metal/cnt e/ou de compostos de fulereno sobre materiais de tiras
US13/125,195 US20110203831A1 (en) 2008-10-24 2009-09-03 Metal/cnt and/or fullerene composite coating on strip materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008053030A DE102008053030A1 (de) 2008-10-24 2008-10-24 Metall/CNT-und/oder Fulleren-Komposit-Beschichtung auf Bandwerkstoffen
DE102008053030.1 2008-10-24

Publications (2)

Publication Number Publication Date
WO2010045904A2 true WO2010045904A2 (de) 2010-04-29
WO2010045904A3 WO2010045904A3 (de) 2010-07-01

Family

ID=42046380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/001236 WO2010045904A2 (de) 2008-10-24 2009-09-03 Metall/cnt- und/oder fulleren-komposit-beschichtung auf bandwerkstoffen

Country Status (11)

Country Link
US (1) US20110203831A1 (de)
EP (1) EP2342366B1 (de)
JP (1) JP5551173B2 (de)
KR (1) KR101318536B1 (de)
CN (1) CN102099506B (de)
BR (1) BRPI0919567A2 (de)
CA (1) CA2731922A1 (de)
DE (1) DE102008053030A1 (de)
MX (1) MX344640B (de)
RU (1) RU2485214C2 (de)
WO (1) WO2010045904A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9106985B2 (en) 2013-01-20 2015-08-11 International Business Machines Corporation Networking device port multiplexing
WO2018067174A1 (en) * 2016-10-07 2018-04-12 Hewlett-Packard Development Company, L.P. Coating for a vapor chamber

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853540B2 (en) * 2011-04-19 2014-10-07 Commscope, Inc. Of North Carolina Carbon nanotube enhanced conductors for communications cables and related communications cables and methods
US9487880B2 (en) * 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
KR101878740B1 (ko) * 2012-04-05 2018-07-17 삼성전자주식회사 금속 부식 방지 시스템
US9155198B2 (en) * 2012-05-17 2015-10-06 Eagantu Ltd. Electronic module allowing fine tuning after assembly
CN102719693B (zh) * 2012-06-11 2014-04-16 上海交通大学 石墨烯与碳纳米管混杂增强金属基复合材料及其制备方法
CN103286318B (zh) * 2013-04-03 2014-11-12 华中科技大学 一种纳米贵金属-碳纳米管-石墨烯复合材料的制备方法及其产品
CN103225076B (zh) * 2013-05-10 2014-12-24 南京信息工程大学 一种耐磨石墨烯表面改性方法
KR102216543B1 (ko) 2014-06-16 2021-02-17 삼성전자주식회사 그래핀-금속 접합 구조체 및 그 제조방법, 그래핀-금속 접합 구조체를 구비하는 반도체 소자
CN104357788B (zh) * 2014-10-30 2017-01-25 安徽鼎恒再制造产业技术研究院有限公司 一种Ni‑Gr‑B纳米涂层及其制备方法
CN104726924A (zh) * 2015-03-25 2015-06-24 西南石油大学 一种镍钨多壁碳纳米管复合镀液、镀膜及其制备方法
CN105506717A (zh) * 2015-12-25 2016-04-20 西南石油大学 一种高含MWCNTs-镍-钨的复合镀层及其制备方法
CN106591822B (zh) * 2016-11-28 2018-10-19 广东工业大学 一种石墨烯强化铜基复合涂层的制备方法和应用
CN107058784B (zh) * 2017-01-12 2018-09-11 哈尔滨工业大学 用于涂锡焊带的CNTs-Sn复合材料焊料的制备方法
CN107119262A (zh) * 2017-05-27 2017-09-01 华南理工大学 一种镍金属基体表面催化生长碳纳米管薄膜的方法
CN108922652A (zh) * 2018-05-23 2018-11-30 江苏时瑞电子科技有限公司 一种氧化锌压敏电阻用耐腐蚀电极浆料及其制备方法
RU2724227C1 (ru) * 2019-11-19 2020-06-22 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ изготовления термоакустического излучателя на основе графена
KR102366576B1 (ko) * 2020-05-29 2022-02-23 한국화학연구원 나노복합체 및 이를 함유하는 경화성 조성물
JP2023550102A (ja) * 2020-11-19 2023-11-30 矢崎総業株式会社 バスバー用アルミニウム-炭素金属マトリックス複合体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116957A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Carbon nanotube thermal pads
US20080241545A1 (en) * 2007-03-30 2008-10-02 Tsinghua University Thermal interface material and method for fabricating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU450618A1 (ru) * 1972-06-15 1974-11-25 Экспериментальный научно-исследовательский институт кузнечно-прессового машиностроения Устройство дл размотки ленточного материала и намотки выштампованной ленты
GB9418937D0 (en) * 1994-09-20 1994-11-09 Isis Innovation Opening and filling carbon nanotubes
JP2000281995A (ja) * 1999-03-30 2000-10-10 Polymatech Co Ltd 熱伝導性接着フィルムおよび半導体装置
KR20040030553A (ko) * 2001-03-26 2004-04-09 에이코스 인코포레이티드 탄소 나노튜브를 함유하는 코팅막
RU2002116979A (ru) * 2002-06-25 2004-01-27 Александр Илларионович Плугин Способ получения фуллеренсодержащих материалов
FR2844510B1 (fr) * 2002-09-12 2006-06-16 Snecma Propulsion Solide Structure fibreuse tridimensionnelle en fibres refractaires, procede pour sa realisation et application aux materiaux composites thermostructuraux
JP3991156B2 (ja) * 2003-08-20 2007-10-17 日立造船株式会社 カーボンナノチューブの製造装置
FR2860780B1 (fr) * 2003-10-13 2006-05-19 Centre Nat Rech Scient Procede de synthese de structures filamentaires nanometriques et composants pour l'electronique comprenant de telles structures
US7449133B2 (en) * 2006-06-13 2008-11-11 Unidym, Inc. Graphene film as transparent and electrically conducting material
AU2007332084A1 (en) * 2006-12-14 2008-06-19 University Of Wollongong Nanotube and carbon layer nanostructured composites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116957A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Carbon nanotube thermal pads
US20080241545A1 (en) * 2007-03-30 2008-10-02 Tsinghua University Thermal interface material and method for fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BULT J ET AL: "Electrical switching using compliant metal infiltrated Multi-Wall nanotube arrays" MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS - MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS - NANOSCALE TRIBOLOGY-IMPACT FOR MATERIALS AND DEVICES 24-28 MARCH 2008 MATERIALS RESEARCH SOCIETY USA, Bd. 1085, 30. Dezember 2010 (2010-12-30), Seiten 13-18, XP002577934 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9106985B2 (en) 2013-01-20 2015-08-11 International Business Machines Corporation Networking device port multiplexing
WO2018067174A1 (en) * 2016-10-07 2018-04-12 Hewlett-Packard Development Company, L.P. Coating for a vapor chamber
US10851460B2 (en) 2016-10-07 2020-12-01 Hewlett-Packard Development Company, L.P. Coating for a vapor chamber

Also Published As

Publication number Publication date
DE102008053030A1 (de) 2010-04-29
RU2011108261A (ru) 2012-11-27
KR20110069820A (ko) 2011-06-23
EP2342366A2 (de) 2011-07-13
KR101318536B1 (ko) 2013-10-16
RU2485214C2 (ru) 2013-06-20
MX344640B (es) 2017-01-04
CN102099506A (zh) 2011-06-15
CA2731922A1 (en) 2010-04-29
US20110203831A1 (en) 2011-08-25
MX2011003316A (es) 2011-04-27
JP2012506356A (ja) 2012-03-15
EP2342366B1 (de) 2018-02-28
BRPI0919567A2 (pt) 2015-12-08
JP5551173B2 (ja) 2014-07-16
WO2010045904A3 (de) 2010-07-01
CN102099506B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
EP2342366B1 (de) Metall/cnt- und/oder fulleren-komposit-beschichtung auf bandwerkstoffen
DE102008053027A1 (de) Verfahren zum Herstellen einer Kohlenstoff-Nanoröhren,Fullerene und/oder Graphene enthaltenden Beschichtung
DE102009054427B4 (de) Verfahren zum Aufbringen von Gemengen aus Kohlenstoff und Metallpartikeln auf ein Substrat, nach dem Verfahren erhältliches Substrat und dessen Verwendung
Kim et al. Annealing effect on disordered multi-wall carbon nanotubes
CN107851476B (zh) 碳纳米管集合体、碳纳米管复合材料和碳纳米管线材
JP2017171545A (ja) カーボンナノチューブ線材の製造方法
CN102714073A (zh) 复合电线及其制造方法
US20200399748A1 (en) Metal Matrix Composite Comprising Nanotubes And Method Of Producing Same
KR20140014080A (ko) 탄소나노튜브를 포함하는 탄소 재료 및 탄소나노튜브 제조 방법
US20190031512A1 (en) Carbon nanotube composite and carbon nanotube wire
Sugime et al. Low-temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using Co/Al/Mo catalyst on conductive supports
McIntyre et al. Enhanced copper–carbon nanotube hybrid conductors with titanium adhesion layer
Ilari et al. Carbon–metal interfaces analyzed by aberration-corrected TEM: How copper and nickel nanoparticles interact with MWCNTs
EP3112497A1 (de) Graphenbesschichtung auf einem magnesiumlegierungssubstrat
He et al. Stability of iron-containing nanoparticles for selectively growing single-walled carbon nanotubes
US11512390B2 (en) Method of site-specific deposition onto a free-standing carbon article
US20170022587A1 (en) Carbon-based nanotube/metal composite and methods of making the same
WO2012107525A1 (de) Verfahren zur herstellung von graphen-nanolagen
Zheng et al. Preparation of Nickel‐Copper Bilayers Coated on Single‐Walled Carbon Nanotubes
DE102009002178A1 (de) Strangförmiges Kompositleitermaterial
Bai et al. Controlling the catalytic synthesis of SiC nanowires, carbon nanotubes, and graphene from a multilayer film precursor
McIntyre Titanium Interconnection in Metallized Carbon Nanotube Conductors
JP2000178703A (ja) 羽毛状銅繊維体、その製造方法、及び、銅製微小コイル
Mattevi Carbon Nanotubes grown by chemical vapour deposition: a catalyst activation study
Ob’edkov et al. SYNTHESIS AND INVESTIGATION OF IRON-CONTAINING MWCNTS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127356.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09744030

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2731922

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/003316

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20117008885

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13125195

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2734/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011532490

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009744030

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011108261

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0919567

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110420