WO2010041308A1 - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
WO2010041308A1
WO2010041308A1 PCT/JP2008/068219 JP2008068219W WO2010041308A1 WO 2010041308 A1 WO2010041308 A1 WO 2010041308A1 JP 2008068219 W JP2008068219 W JP 2008068219W WO 2010041308 A1 WO2010041308 A1 WO 2010041308A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
amount
cylinder
sub
combustion engine
Prior art date
Application number
PCT/JP2008/068219
Other languages
English (en)
French (fr)
Inventor
灘 光博
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010513562A priority Critical patent/JPWO2010041308A1/ja
Priority to PCT/JP2008/068219 priority patent/WO2010041308A1/ja
Publication of WO2010041308A1 publication Critical patent/WO2010041308A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel injection control device for an internal combustion engine represented by a diesel engine.
  • in-cylinder preheating sub-injection (hereinafter also referred to as pre-injection or pilot injection) is executed prior to main injection from the fuel injection valve (hereinafter also referred to as main injection).
  • main injection the fuel injection valve
  • the present invention relates to a countermeasure for optimizing the injection amount in the sub-injection for a possible compression self-ignition internal combustion engine.
  • a fuel injection valve (hereinafter referred to as an injector) may be used depending on the engine speed, accelerator operation amount, cooling water temperature, intake air temperature, and the like.
  • the fuel injection control for adjusting the fuel injection timing and the fuel injection amount is performed.
  • the combustion of the diesel engine consists of premixed combustion and diffusion combustion.
  • a combustible mixture is first generated by vaporization and diffusion of fuel (ignition delay period).
  • this combustible air-fuel mixture self-ignites almost simultaneously in several places in the combustion chamber, and the combustion proceeds rapidly (premixed combustion).
  • fuel injection into the combustion chamber is continued, and combustion is continuously performed (diffusion combustion). Thereafter, since unburned fuel exists even after the fuel injection is completed, heat generation is continued for a while (afterburn period).
  • the flame propagation speed increases, the amount of fuel burned at a time increases too much, and the pressure in the cylinder increases rapidly, generating vibration and noise.
  • Such a phenomenon is called diesel knocking and often occurs particularly during low-load operation.
  • the generation amount of nitrogen oxides hereinafter referred to as “NOx”) increases as the combustion temperature rapidly rises, and exhaust emission deteriorates.
  • Such execution of the secondary injection can alleviate the initial combustion accompanying the start of the subsequent main injection, and can suppress the occurrence of diesel knocking. Further, when the main injection is executed, the fuel at the time of the sub-injection has already been ignited, and the fire has been generated in advance, so that it is possible to avoid the occurrence of misfire. For this reason, the low temperature startability is improved by the sub-injection, and the generation of white smoke at a low temperature is also reduced. Furthermore, since the amount of fuel injection during the ignition delay period is reduced by this sub-injection, premixed combustion is also suppressed. In addition, during the premixed combustion, the heat generation rate becomes high, so that the generation of NOx may be promoted. However, by suppressing the premixed combustion by the sub-injection, the generation of NOx and the premixed combustion are suppressed. The accompanying noise generation will be reduced as well.
  • Patent Document 1 when it is predicted that the engine will shift to the set operation region on the high load side when the sub-injection amount and the main injection amount are respectively increased and corrected when the engine is in an acceleration operation state. Further, it is disclosed to limit the increase correction of the sub injection amount. As a result, it is possible to avoid excessively intense combustion in the latter half of the acceleration operation.
  • Patent Document 2 discloses that the air-fuel ratio of the premixed gas is set to the lean side or the rich side when it is determined that the ignition of the premixed gas due to the sub-injection is premature ignition. ing. As a result, stable combustion can be realized regardless of the engine load.
  • Patent Document 3 discloses that the sub-injection amount is increased as the cooling water temperature is higher, thereby making it possible to supply the minimum necessary amount of HC that provides the best reduction of NOx. JP 2001-241345 A JP 2004-197599 A Japanese Patent No. 3861418
  • the injection amount in the sub-injection can be appropriately obtained during the transient operation of the engine.
  • the inventor of the present invention has found that this is not possible. This will be specifically described below.
  • the injection amount of the pre-injection is defined in advance as an injection amount according to the in-cylinder temperature and the engine operating state (engine load, etc.) in a state where the engine is in a steady operation by experiments and simulations. That is, the relationship between the in-cylinder temperature and the engine operating state and the injection amount of the pre-injection is mapped and stored in the ROM of the engine ECU, and the current in-cylinder temperature and the engine operating state are applied to the map, The injection amount of the pre-injection is read, and the pre-injection is executed with the read injection amount.
  • an appropriate pre-injection amount can be obtained by executing pre-injection according to the map.
  • the amount of preheating in the cylinder can be appropriately obtained, and necessary torque can be secured and exhaust emission can be improved by optimizing the in-cylinder combustion state.
  • the amount of preheating required in the actual cylinder (hereinafter referred to as the required amount of preheating) changes as follows.
  • the cooling capacity of the engine cooling system is substantially constant, so the amount of heat stored in the cylinder gradually increases as the internal friction increases. It will become. For this reason, the required preheating amount decreases in such an operating state.
  • the injection amount of the pre-injection is corrected to be increased accordingly. Even if this increase correction is made, the preheating amount does not immediately reach the required preheating amount (the amount of heat is deprived by the amount of heat stored above (the amount of heat is deprived by the amount of heat capacity of the cylinder head, etc.)) The amount of fuel that can contribute to space preheating is reduced), and the state of insufficient preheating continues. And when it becomes high load operation temporarily in this way, since it will return to light load operation immediately, the state of insufficient preheating will be invited also at the time of the next high load operation.
  • the in-cylinder temperature is in a converged state (a state in which a relatively high in-cylinder temperature is maintained) in a state where the vehicle is continuously traveling at high speed (for example, when traveling on a highway).
  • a converged state a state in which a relatively high in-cylinder temperature is maintained
  • the required amount of preheating in the cylinder is reduced, but the heat storage generated during the high-speed cruise travel remains in the cylinder.
  • the amount of preheating is not immediately reduced to the required amount of preheating, leading to an excessive amount of preheating.
  • the injection timing of the main injection is set to the retard side or the EGR amount is increased to improve the exhaust emission
  • the preheat amount is insufficient
  • the misfire limit It is difficult to sufficiently secure a margin for the above (a possible amount of retarding the injection timing and a possible amount of increasing the EGR amount).
  • the combustion in the cylinder is deteriorated.
  • the preheating amount is excessive, the combustion speed at the initial stage of the expansion stroke is significantly increased. As a result, the amount of NOx generated increases or the combustion noise increases, leading to an increase in engine noise.
  • the inventor of the present invention pays attention to the reason that the above-described problem occurs because the map that defines the injection amount of the pre-injection described above is created on the assumption that the engine is in a steady operation state. did. That is, the control logic for determining the injection amount of the pre-injection so far has not taken into account the transient operation of the engine as described above.
  • the inventor of the present invention needs to execute pre-injection with an injection amount different from the injection amount specified in the above map (map assuming a steady operation state) in the transient operation state of the engine.
  • the headline, the present invention has been reached.
  • the present invention has been made in view of such a point, and an object of the present invention is to optimize the fuel injection amount in the sub-injection with respect to the internal combustion engine that can execute the sub-injection prior to the main injection.
  • An object of the present invention is to provide a fuel injection control device that can be realized.
  • the solution principle of the present invention taken in order to achieve the above object is that when the internal combustion engine is in a transient operation, an excess or deficiency of the in-cylinder preheat amount is larger than that in a steady operation at substantially the same load. Therefore, the sub-injection amount is controlled according to the excess / deficiency of the in-cylinder preheating amount so that an appropriate in-cylinder preheating amount can be obtained even during the transient operation of the internal combustion engine.
  • the present invention relates to a compression auto-ignition capable of performing at least main injection and sub-injection that is performed prior to the main injection and contributes to preheating in the cylinder as the fuel injection operation from the fuel injection valve.
  • a fuel injection control device for an internal combustion engine of the type is assumed. With respect to the fuel injection control device of the internal combustion engine, during transient operation due to a load change of the internal combustion engine, depending on whether the in-cylinder preheat amount is excessive or insufficient until the in-cylinder temperature substantially converges to a predetermined temperature corresponding to the load.
  • a sub-injection amount correcting means for correcting the injection amount of the sub-injection.
  • the cylinder according to the in-cylinder temperature difference obtained by subtracting the in-cylinder steady temperature, which is the predetermined temperature that converges according to the load, from the in-cylinder transient temperature during transient operation of the internal combustion engine.
  • An excess or deficiency of the internal preheat amount is obtained, and the injection amount of the sub-injection is corrected according to this excess or deficiency.
  • the in-cylinder transient temperature is lower than the in-cylinder steady temperature, and the in-cylinder preheat amount is lower than a predetermined temperature corresponding to the current load. Corrects the amount of sub-injection to be increased. Thereby, the shortage of the in-cylinder preheating amount is eliminated, and the in-cylinder transient temperature rapidly approaches the in-cylinder steady temperature. As a result, the amount of preheating in the cylinder can be appropriately obtained, and it becomes possible to secure necessary torque and improve exhaust emission by optimizing the in-cylinder combustion state.
  • the in-cylinder transient temperature is higher than the in-cylinder steady temperature and the in-cylinder preheating amount is higher than a predetermined temperature corresponding to the current load
  • the sub-injection injection amount is corrected to decrease.
  • the excess amount of the in-cylinder preheating amount is eliminated, and in this case, the in-cylinder transient temperature rapidly approaches the in-cylinder steady temperature.
  • the amount of preheating in the cylinder can be appropriately obtained, and it becomes possible to secure necessary torque and improve exhaust emission by optimizing the in-cylinder combustion state.
  • the injection amount in the sub-injection is corrected to increase or decrease
  • the injection amount of the sub-injection is increased according to the in-cylinder temperature difference during transient operation accompanying an increase in the load of the internal combustion engine.
  • the amount of sub-injection is corrected to be reduced according to the in-cylinder temperature difference.
  • the injection amount of the sub-injection is corrected to increase (during steady operation)
  • the amount of sub-injection corresponding to that load is corrected to the increase side), and the amount of preheating corresponding to the state of transient operation is added.
  • the sub-injection injection amount is corrected to decrease (during steady operation)
  • the amount of sub-injection corresponding to the load is corrected to a decrease side)
  • the preheating amount is subtracted according to the state of transient operation. This makes it possible to obtain a preheat amount corresponding to the transient state of the internal combustion engine.
  • the following are examples of specific operations when the sub-injection is corrected for weight reduction.
  • the number of sub-injections is reduced without reducing the injection amount per sub-injection.
  • the injection amount per sub-injection is reduced.
  • the injection amount per sub-injection is set to the minimum limit injection amount of the fuel injection valve.
  • the endothermic reaction of the fuel injected by this sub-injection can be suppressed by setting the injection amount per sub-injection to the minimum limit injection amount. That is, it is possible to suppress the ignition delay of the sub-injection and to ensure the in-cylinder preheating effect by the fuel injected by the sub-injection with almost no delay.
  • the in-cylinder preheating amount when the internal combustion engine is in a transient operation, an excess or deficiency of the in-cylinder preheating amount is generated as compared with the case of steady operation with substantially the same load.
  • the sub-injection amount is controlled according to the excess and deficiency so that an appropriate in-cylinder preheating amount can be obtained even during transient operation of the internal combustion engine. For this reason, it becomes possible to secure necessary torque and improve exhaust emission by optimizing the in-cylinder combustion state.
  • FIG. 1 is a schematic configuration diagram of an engine and its control system according to the embodiment.
  • FIG. 2 is a cross-sectional view showing a combustion chamber of a diesel engine and its peripheral portion.
  • FIG. 3 is a block diagram showing a configuration of a control system such as an ECU.
  • FIG. 4 is a waveform diagram showing a change state of the heat generation rate during the expansion stroke.
  • FIG. 5 is a diagram showing the relationship between the temperature difference ⁇ T between the in-cylinder transient temperature and the in-cylinder steady temperature and the correction coefficient for calculating the injection amount of the pre-injection.
  • FIG. 6 is a diagram showing a fuel injection pattern according to the first embodiment of pre-injection increase correction.
  • FIG. 7 is a diagram showing a fuel injection pattern according to the second embodiment of the pre-injection increase correction.
  • FIG. 8 is a diagram showing a fuel injection pattern according to the first embodiment of pre-injection reduction correction.
  • FIG. 9 is a diagram showing a fuel injection pattern according to the second embodiment of pre-injection reduction correction.
  • FIG. 1 is a schematic configuration diagram of an engine 1 and its control system according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the combustion chamber 3 of the diesel engine and its periphery.
  • the engine 1 is configured as a diesel engine system having a fuel supply system 2, a combustion chamber 3, an intake system 6, an exhaust system 7 and the like as main parts.
  • the fuel supply system 2 includes a supply pump 21, a common rail 22, an injector (fuel injection valve) 23, a shutoff valve 24, a fuel addition valve 26, an engine fuel passage 27, an addition fuel passage 28, and the like.
  • the supply pump 21 pumps fuel from the fuel tank, makes the pumped fuel high pressure, and supplies it to the common rail 22 via the engine fuel passage 27.
  • the common rail 22 has a function as a pressure accumulation chamber that holds (accumulates) the high-pressure fuel supplied from the supply pump 21 at a predetermined pressure, and distributes the accumulated fuel to the injectors 23.
  • the injector 23 includes a piezoelectric element (piezo element) therein, and is configured by a piezo injector that is appropriately opened to supply fuel into the combustion chamber 3. Details of the fuel injection control from the injector 23 will be described later.
  • the supply pump 21 supplies a part of the fuel pumped up from the fuel tank to the fuel addition valve 26 via the addition fuel passage 28.
  • the added fuel passage 28 is provided with the shutoff valve 24 for shutting off the added fuel passage 28 and stopping fuel addition in an emergency.
  • the fuel addition valve 26 is configured so that the fuel addition amount to the exhaust system 7 becomes a target addition amount (addition amount that makes the exhaust A / F become the target A / F) by an addition control operation by the ECU 100 described later.
  • it is constituted by an electronically controlled on-off valve whose valve opening timing is controlled so that the fuel addition timing becomes a predetermined timing. That is, a desired fuel is injected and supplied from the fuel addition valve 26 to the exhaust system 7 (from the exhaust port 71 to the exhaust manifold 72) at an appropriate timing.
  • the intake system 6 includes an intake manifold 63 connected to an intake port 15a formed in the cylinder head 15 (see FIG. 2), and an intake pipe 64 constituting an intake passage is connected to the intake manifold 63. Further, an air cleaner 65, an air flow meter 43, and a throttle valve 62 are arranged in this intake passage in order from the upstream side. The air flow meter 43 outputs an electrical signal corresponding to the amount of air flowing into the intake passage via the air cleaner 65.
  • the exhaust system 7 includes an exhaust manifold 72 connected to an exhaust port 71 formed in the cylinder head 15, and exhaust pipes 73 and 74 constituting an exhaust passage are connected to the exhaust manifold 72.
  • a maniverter (exhaust gas purification device) 77 including a NOx storage catalyst (NSR catalyst: NOx Storage Reduction catalyst) 75 and a DPNR catalyst (Diesel Particle-NOx Reduction catalyst) 76 is disposed in the exhaust passage.
  • NSR catalyst NOx Storage Reduction catalyst
  • DPNR catalyst Diesel Particle-NOx Reduction catalyst
  • the NSR catalyst 75 is an NOx storage reduction catalyst.
  • alumina Al 2 O 3
  • Alkali metal such as barium (Ba), alkaline earth such as calcium (Ca), rare earth such as lanthanum (La) and yttrium (Y), and noble metal such as platinum (Pt) were supported. It has a configuration.
  • the NSR catalyst 75 occludes NOx in a state where a large amount of oxygen is present in the exhaust gas, has a low oxygen concentration in the exhaust gas, and a large amount of reducing component (for example, an unburned component (HC) of the fuel).
  • reducing component for example, an unburned component (HC) of the fuel.
  • NOx is reduced to NO 2 or NO and released.
  • NO NOx released as NO 2 or NO the N 2 is further reduced due to quickly reacting with HC or CO in the exhaust.
  • HC and CO are oxidized to H 2 O and CO 2 by reducing NO 2 and NO. That is, by appropriately adjusting the oxygen concentration and HC component in the exhaust gas introduced into the NSR catalyst 75, HC, CO, and NOx in the exhaust gas can be purified.
  • the oxygen concentration and HC component in the exhaust gas can be adjusted by the fuel addition operation from the fuel addition valve 26.
  • the DPNR catalyst 76 is, for example, a NOx occlusion reduction catalyst supported on a porous ceramic structure, and PM in the exhaust gas is collected when passing through the porous wall. Further, when the air-fuel ratio of the exhaust gas is lean, NOx in the exhaust gas is stored in the NOx storage reduction catalyst, and when the air-fuel ratio becomes rich, the stored NOx is reduced and released. Further, the DPNR catalyst 76 carries a catalyst that oxidizes and burns the collected PM (for example, an oxidation catalyst mainly composed of a noble metal such as platinum).
  • a cylinder block 11 constituting a part of the engine body is formed with a cylindrical cylinder bore 12 for each cylinder (four cylinders), and a piston 13 is formed inside each cylinder bore 12. Is accommodated so as to be slidable in the vertical direction.
  • the combustion chamber 3 is formed above the top surface 13 a of the piston 13. That is, the combustion chamber 3 is defined by the lower surface of the cylinder head 15 attached to the upper part of the cylinder block 11 via the gasket 14, the inner wall surface of the cylinder bore 12, and the top surface 13 a of the piston 13.
  • a cavity (concave portion) 13 b is formed in a substantially central portion of the top surface 13 a of the piston 13, and this cavity 13 b also constitutes a part of the combustion chamber 3.
  • the piston 13 has a small end portion 18a of a connecting rod 18 connected by a piston pin 13c, and a large end portion of the connecting rod 18 is connected to a crankshaft which is an engine output shaft.
  • a glow plug 19 is disposed toward the combustion chamber 3.
  • the glow plug 19 functions as a start-up assisting device that is heated red when an electric current is applied immediately before the engine 1 is started and a part of the fuel spray is blown onto the glow plug 19 to promote ignition and combustion.
  • the cylinder head 15 is formed with an intake port 15a for introducing air into the combustion chamber 3 and an exhaust port 71 for discharging exhaust gas from the combustion chamber 3, and an intake valve for opening and closing the intake port 15a. 16 and an exhaust valve 17 for opening and closing the exhaust port 71 are provided.
  • the intake valve 16 and the exhaust valve 17 are disposed to face each other with the cylinder center line P interposed therebetween. That is, the engine 1 is configured as a cross flow type.
  • the cylinder head 15 is provided with the injector 23 that directly injects fuel into the combustion chamber 3.
  • the injector 23 is disposed at a substantially upper center of the combustion chamber 3 in a standing posture along the cylinder center line P, and injects fuel introduced from the common rail 22 toward the combustion chamber 3 at a predetermined timing. It has become.
  • the engine 1 is provided with a supercharger (turbocharger) 5.
  • the turbocharger 5 includes a turbine wheel 52 and a compressor wheel 53 that are connected via a turbine shaft 51.
  • the compressor wheel 53 is disposed facing the intake pipe 64, and the turbine wheel 52 is disposed facing the exhaust pipe 73.
  • the turbocharger 5 performs a so-called supercharging operation in which the compressor wheel 53 is rotated using the exhaust flow (exhaust pressure) received by the turbine wheel 52 to increase the intake pressure.
  • the turbocharger 5 in the present embodiment is a variable nozzle type turbocharger, and a variable nozzle vane mechanism (not shown) is provided on the turbine wheel 52 side. By adjusting the opening of the variable nozzle vane mechanism, the engine 1 supercharging pressure can be adjusted.
  • the intake pipe 64 of the intake system 6 is provided with an intercooler 61 for forcibly cooling the intake air whose temperature has been raised by supercharging in the turbocharger 5.
  • the throttle valve 62 provided further downstream than the intercooler 61 is an electronically controlled on-off valve whose opening degree can be adjusted steplessly. It has a function of narrowing down the area and adjusting (reducing) the supply amount of the intake air.
  • the engine 1 is provided with an exhaust gas recirculation passage (EGR passage) 8 that connects the intake system 6 and the exhaust system 7.
  • the EGR passage 8 is configured to reduce the combustion temperature by recirculating a part of the exhaust gas to the intake system 6 and supplying it again to the combustion chamber 3, thereby reducing the amount of NOx generated.
  • the EGR passage 8 is opened and closed steplessly by electronic control, and the exhaust gas passing through the EGR passage 8 (recirculating) is cooled by an EGR valve 81 that can freely adjust the exhaust flow rate flowing through the passage.
  • An EGR cooler 82 is provided.
  • the air flow meter 43 outputs a detection signal corresponding to the flow rate (intake air amount) of the intake air upstream of the throttle valve 62 in the intake system 6.
  • the intake air temperature sensor 49 is disposed in the intake manifold 63 and outputs a detection signal corresponding to the temperature of the intake air.
  • the intake pressure sensor 48 is disposed in the intake manifold 63 and outputs a detection signal corresponding to the intake air pressure.
  • the A / F (air-fuel ratio) sensor 44 outputs a detection signal that continuously changes in accordance with the oxygen concentration in the exhaust gas downstream of the manipulator 77 of the exhaust system 7.
  • the exhaust temperature sensor 45 outputs a detection signal corresponding to the temperature of the exhaust gas (exhaust temperature) downstream of the manipulator 77 of the exhaust system 7.
  • the rail pressure sensor 41 outputs a detection signal corresponding to the fuel pressure stored in the common rail 22.
  • the throttle opening sensor 42 detects the opening of the throttle valve 62.
  • the ECU 100 includes a CPU 101, a ROM 102, a RAM 103, a backup RAM 104, and the like.
  • the ROM 102 stores various control programs, maps that are referred to when the various control programs are executed, and the like.
  • the CPU 101 executes various arithmetic processes based on various control programs and maps stored in the ROM 102.
  • the RAM 103 is a memory that temporarily stores calculation results in the CPU 101, data input from each sensor, and the like.
  • the backup RAM 104 is a non-volatile memory that stores data to be saved when the engine 1 is stopped, for example.
  • the CPU 101, the ROM 102, the RAM 103, and the backup RAM 104 are connected to each other via the bus 107 and to the input interface 105 and the output interface 106.
  • the input interface 105 is connected to the rail pressure sensor 41, the throttle opening sensor 42, the air flow meter 43, the A / F sensor 44, the exhaust temperature sensor 45, the intake pressure sensor 48, and the intake temperature sensor 49. Further, the input interface 105 includes a water temperature sensor 46 that outputs a detection signal corresponding to the cooling water temperature of the engine 1, an accelerator opening sensor 47 that outputs a detection signal corresponding to the depression amount of the accelerator pedal, and the engine 1. A crank position sensor 40 that outputs a detection signal (pulse) each time the output shaft (crankshaft) rotates by a certain angle is connected. On the other hand, the injector 23, the fuel addition valve 26, the throttle valve 62, the EGR valve 81, and the like are connected to the output interface 106.
  • the ECU 100 executes various controls of the engine 1 based on the outputs of the various sensors described above. Furthermore, the ECU 100 executes pilot injection, pre-injection, main injection (main injection), after-injection, and post-injection, which will be described later, as fuel injection control of the injector 23.
  • Pilot injection is an injection operation in which a small amount of fuel is injected in advance prior to main injection (main injection) from the injector 23. That is, after the pilot injection is performed, the fuel injection is temporarily interrupted, and the compressed gas temperature (in-cylinder temperature) is sufficiently increased until the main injection is started to reach the fuel self-ignition temperature. This ensures good ignitability of the fuel injected in the main injection. That is, the pilot injection function in this embodiment is specialized for preheating in the cylinder. In other words, the pilot injection in this embodiment is an injection operation (preheating fuel supply operation) for preheating the gas in the combustion chamber 3.
  • the injection amount per pilot injection is set to the minimum limit injection amount (for example, 1.5 mm 3 ) of the injector 23, and the number of injections is set. This ensures the necessary total pilot injection amount.
  • the interval of pilot injection that is dividedly injected is determined by the responsiveness of the injector 23 (speed of opening and closing operation). This interval is set to 200 ⁇ s, for example.
  • the injection start timing of the pilot injection is set, for example, at a crank angle and after 80 ° before compression top dead center (BTDC) of the piston 13. Note that the injection amount, interval, and injection start timing per pilot injection are not limited to the above values.
  • Pre-injection is an injection operation in which a small amount of fuel is injected in advance prior to main injection from the injector 23.
  • the pre-injection is an injection operation for suppressing the ignition delay of the fuel due to the main injection and leading to stable diffusion combustion, and is also called sub-injection.
  • the pre-injection in the present embodiment has not only a function of suppressing the initial combustion speed by the main injection described above but also a preheating function of increasing the in-cylinder temperature.
  • the basic injection amount of the pre-injection is set to 10%, for example.
  • the ratio of the pre-injection amount to the total fuel injection amount is set according to the amount of heat required for preheating the inside of the cylinder.
  • the feature of this embodiment is the injection mode (injection timing and injection amount) of this pre-injection. That is, an injection mode for appropriately obtaining the preheating amount for the cylinder is obtained. For this reason, the injection amount of the pre-injection is changed as necessary in order to secure an appropriate preheating amount (the basic injection amount (an injection amount of 10% with respect to the total fuel injection amount)). Will be changed). A specific pre-injection mode will be described later.
  • the main injection is an injection operation (torque generation fuel supply operation) for generating torque of the engine 1.
  • the injection amount in the pre-injection is subtracted from the total fuel injection amount to obtain the required torque determined according to the operating state such as the engine speed, the accelerator operation amount, the coolant temperature, the intake air temperature, etc. Is set as the injection amount.
  • a total fuel injection amount that is the sum of the injection amount in the pre-injection and the injection amount in the main injection is calculated with respect to the torque request value of the engine 1. That is, the total fuel injection amount is calculated as an amount for generating the torque required for the engine 1.
  • the torque request value of the engine 1 is determined according to the engine speed, the amount of accelerator operation, the operating state such as the cooling water temperature, the intake air temperature, etc., and the usage status of auxiliary equipment. For example, the higher the engine speed (the engine speed calculated based on the detection value of the crank position sensor 40), the larger the accelerator operation amount (the accelerator pedal depression amount detected by the accelerator opening sensor 47). The higher the required accelerator torque of the engine 1, the higher the accelerator opening.
  • the ratio (division ratio) of the injection amount in the pre-injection with respect to the total fuel injection amount is set. That is, the pre-injection amount is set as an amount divided by the above-described division ratio with respect to the total fuel injection amount.
  • This division ratio (pre-injection amount) is obtained as a value that achieves both “suppression of fuel ignition delay by main injection” and “suppression of the peak value of the heat generation rate of combustion by main injection”. By suppressing these, it is possible to reduce the combustion noise and the amount of NOx generated while securing a high engine torque.
  • the division ratio for obtaining the basic injection amount for pre-injection is set to 10%.
  • After injection is an injection operation for increasing the exhaust gas temperature. Specifically, in this embodiment, after-injection is performed at a timing at which most of the combustion energy of the fuel supplied by this after-injection is obtained as exhaust heat energy without being converted into engine torque. I have to. Also in this after injection, as in the case of the pilot injection described above, this after injection is performed by performing a plurality of after injections with a minimum injection rate (for example, an injection amount of 1.5 mm 3 per injection). Therefore, the necessary total after injection amount is secured.
  • a minimum injection rate for example, an injection amount of 1.5 mm 3 per injection
  • the post-injection is an injection operation for directly introducing fuel into the exhaust system 7 to increase the temperature of the manipulator 77. For example, when the accumulated amount of PM trapped in the DPNR catalyst 76 exceeds a predetermined amount (for example, detected by detecting a differential pressure before and after the manipulator 77), post injection is performed. .
  • the fuel injection pressure at the time of executing each fuel injection described above is determined by the internal pressure of the common rail 22.
  • the common rail internal pressure generally, the target value of the fuel pressure supplied from the common rail 22 to the injector 23, that is, the target rail pressure, increases as the engine load (engine load) increases and the engine speed (engine speed) increases. It will be expensive. That is, when the engine load is high, the amount of air sucked into the combustion chamber 3 is large. Therefore, a large amount of fuel must be injected from the injector 23 into the combustion chamber 3, and therefore the injection from the injector 23 is performed. The pressure needs to be high.
  • the target rail pressure is generally set based on the engine load and the engine speed.
  • the optimum values vary depending on the temperature conditions of the engine 1 and the intake air.
  • the ECU 100 adjusts the fuel discharge amount of the supply pump 21 so that the common rail pressure becomes equal to the target rail pressure set based on the engine operating state, that is, the fuel injection pressure matches the target injection pressure. To measure. Further, the ECU 100 determines the fuel injection amount and the fuel injection form based on the engine operating state. Specifically, the ECU 100 calculates the engine rotation speed based on the detection value of the crank position sensor 40 and obtains the depression amount (accelerator opening) to the accelerator pedal based on the detection value of the accelerator opening sensor 47. The total fuel injection amount (the sum of the injection amount in the pre-injection and the injection amount in the main injection) is determined based on the engine speed and the accelerator opening.
  • Base target pressure setting method In the diesel engine 1, it is important to simultaneously satisfy various requirements such as improvement of exhaust emission by reducing the amount of NOx generated, reduction of combustion noise during the combustion stroke, and sufficient securing of engine torque.
  • the inventor of the present invention can appropriately control the change state of the heat generation rate in the cylinder during the combustion stroke (change state represented by the heat generation rate waveform) as a method for simultaneously satisfying these requirements. Focusing on the effectiveness, we found a target fuel pressure setting method as described below as a method for controlling the change state of the heat generation rate.
  • the solid line in FIG. 4 shows an ideal heat generation rate waveform related to combustion of fuel injected by main injection, with the horizontal axis representing the crank angle and the vertical axis representing the heat generation rate.
  • FIG. 4 shows a heat release rate waveform when one main injection (the first divided main injection when a plurality of divided main injections are performed) is performed for easy understanding.
  • TDC in the figure indicates the crank angle position corresponding to the compression top dead center of the piston 13.
  • combustion of fuel injected by main injection is started from the compression top dead center (TDC) of the piston 13, and a predetermined piston position after the compression top dead center (for example, compression top dead center).
  • the heat generation rate reaches a maximum value (peak value) at 10 ° (at the time of ATDC 10 °), and a predetermined piston position after compression top dead center (for example, 25 ° after compression top dead center (ATDC 25 °)).
  • the combustion of the fuel injected in the main injection ends at the time). In order to end the combustion by this time, in the present embodiment, the fuel injection in the main injection is ended by 22 ° (ATDC 22 °) after the compression top dead center. If combustion of the air-fuel mixture is performed in such a state of change in heat generation rate, for example, 50% of the air-fuel mixture in the cylinder burns at 10 ° (ATDC 10 °) after compression top dead center. Completed status. That is, about 50% of the total heat generation amount in the expansion stroke is generated by ATDC 10 °, and the engine 1 can be operated with high thermal efficiency.
  • the waveform shown with a dashed-dotted line in FIG. 4 has shown the heat release rate waveform which concerns on combustion of the fuel injected by the said pre-injection.
  • the amount of heat of 10 [J] is generated by the combustion of the fuel injected by the pre-injection.
  • This value is not limited to this.
  • pilot injection is also performed prior to the pre-injection, thereby sufficiently increasing the in-cylinder temperature and ensuring good ignitability of the fuel injected in the main injection.
  • the waveform indicated by a two-dot chain line ⁇ in FIG. 4 is a heat generation rate waveform when the fuel injection pressure is set higher than an appropriate value, and both the combustion speed and the peak value are too high, and the combustion This is a state in which there is concern about an increase in sound and an increase in NOx generation.
  • the waveform indicated by the two-dot chain line ⁇ in FIG. 4 is a heat release rate waveform when the fuel injection pressure is set lower than the appropriate value, and the timing at which the combustion speed is low and the peak appears is greatly retarded. There is a concern that sufficient engine torque cannot be ensured by shifting to.
  • the target fuel pressure setting method is a technical idea that the combustion efficiency is improved by optimizing the change state of the heat generation rate (optimization of the heat generation rate waveform). It is based on.
  • an equal fuel injection pressure line is an equal power line (power) obtained from the rotational speed and torque of the engine 1 (
  • a fuel pressure setting map assigned to the (equal output region) is created, and the target fuel pressure is determined according to this fuel pressure setting map. That is, in this fuel pressure setting map, the equal power line and the equal fuel injection pressure line are set to substantially coincide.
  • valve opening period injection rate waveform
  • the fuel injection quantity during the valve opening period can be defined. Control can be simplified and optimized.
  • the feature of this embodiment is in the control of the injection mode (injection timing and injection amount) of the pre-injection. Specifically, during the transient operation of the engine 1, the pre-injection is executed in a different injection form from that during the steady operation of the engine 1.
  • Whether the engine 1 is in a steady operation state or a transient operation state is determined based on, for example, the amount of change in the accelerator operation amount detected by the accelerator opening sensor 47 per unit time. . That is, when the amount of change in the accelerator operation amount per unit time is equal to or greater than a predetermined amount, it is determined that the vehicle is in the transient operation state. Further, it may be performed based on the amount of change per unit time of the throttle opening detected by the throttle opening sensor 42.
  • the occurrence state of the transient operation of the engine 1 for example, when the vehicle is traveling in an urban area, the light load operation of the engine 1 (a state in which the accelerator pedal depressing operation amount by the driver is relatively small: for example, the depressing operation)
  • the accelerator pedal is depressed greatly and the operation is shifted to a high load operation from the state where the amount is about 10%.
  • the vehicle continues to travel at a high speed, such as when a high-load operation in which the accelerator pedal is depressed relatively large (for example, about 50% of the depression amount of the accelerator pedal) is continued.
  • a high-load operation in which the accelerator pedal is depressed relatively large for example, about 50% of the depression amount of the accelerator pedal
  • This pre-injection amount setting map is a map for obtaining a pre-injection amount corresponding to the in-cylinder temperature and the engine operating state (engine load or the like) in a state where the engine 1 is in a steady operation in advance through experiments and simulations. That is, the relationship between the in-cylinder temperature and the engine operating state and the injection amount of the pre-injection is mapped and stored in the ROM 102, and the current in-cylinder temperature and the engine operating state are displayed on the map when the engine 1 is in steady operation.
  • the injection amount of the pre-injection is read out, and the pre-injection is executed with the read-out injection amount.
  • pre-injection based on the pre-injection amount setting map created on the assumption that the engine 1 is in a steady operation state is not executed in this embodiment. Will be executed. Specifically, the injection amount is corrected to increase or decrease by multiplying the injection amount in the pre-injection obtained from the pre-injection amount setting map based on the current engine load and the like by a correction coefficient described later. (Injection amount correction operation by the sub injection amount correction means). This will be specifically described below.
  • in-cylinder steady temperature is subtracted from “in-cylinder transient temperature”, and pre-injection is performed according to the value ( ⁇ T: hereinafter referred to as “in-cylinder temperature difference”).
  • ⁇ T hereinafter referred to as “in-cylinder temperature difference”.
  • in-cylinder transient temperature refers to the in-cylinder temperature in a situation where the in-cylinder temperature has not yet converged when the amount of pre-injection is changed due to the occurrence of a transient operation of the engine 1. It is.
  • the “in-cylinder steady temperature” is the in-cylinder temperature when it is assumed that the current transient operation of the engine 1 (the operation state corresponding to the current engine load) is continued and the in-cylinder temperature has converged. . That is, this “in-cylinder steady temperature” corresponds to the in-cylinder temperature in a situation where appropriate in-cylinder preheating is performed according to the current load when the engine 1 is in a steady operation state.
  • the injection amount increase correction and reduction correction in the pre-injection in the present embodiment is to correct the injection amount in that period so that the excess or deficiency of the in-cylinder preheating amount can be solved as quickly as possible. is there.
  • the in-cylinder temperature is estimated or measured.
  • the relationship between the engine load and the in-cylinder temperature is obtained by experiment or the like and mapped, and the in-cylinder temperature is obtained from the engine load using this map.
  • a pressure sensor may be provided in the cylinder, and the in-cylinder temperature may be obtained from the in-cylinder pressure using a predetermined equation of state.
  • the in-cylinder temperature can be directly measured by this temperature sensor.
  • ⁇ T “cylinder transient temperature” ⁇ “cylinder steady temperature”
  • the “in-cylinder temperature difference” ( ⁇ T) is a negative value, and this “in-cylinder transient temperature” is “in-cylinder constant temperature”.
  • the correction coefficient becomes a value exceeding “1.0”, and the larger the difference between the “in-cylinder transient temperature” and the “in-cylinder steady temperature”, the more the increase side of the pre-injection injection amount.
  • the amount of correction increases. In other words, the pre-injection is greatly corrected for increase. By this increase correction of the pre-injection, the shortage of the in-cylinder preheating amount is resolved, and the “in-cylinder transient temperature” rapidly approaches the “in-cylinder steady temperature”.
  • the amount of preheating in the cylinder can be appropriately obtained, and the required torque can be secured and the exhaust emission can be improved by optimizing the in-cylinder combustion state.
  • the “in-cylinder temperature difference” ( ⁇ T) is a positive value.
  • the correction coefficient becomes a value lower than “1.0”, and the larger the difference between “in-cylinder transient temperature” and “in-cylinder steady temperature”, the smaller the correction amount is.
  • the amount of correction increases. That is, the pre-injection is greatly corrected for reduction.
  • This pre-injection reduction correction eliminates the excess amount of the in-cylinder preheating amount. In this case as well, the “in-cylinder transient temperature” quickly approaches the “in-cylinder steady temperature”.
  • the amount of preheating in the cylinder can be appropriately obtained, and the required torque can be secured and the exhaust emission can be improved by optimizing the in-cylinder combustion state. Moreover, since the excessive preheating state can be eliminated at an early stage, it is possible to prevent an increase in the amount of NOx generated and an increase in combustion noise accompanying an increase in the combustion speed.
  • FIG. 6 shows an example of a change in the fuel injection pattern during the execution period of the pre-injection and the main injection in the present embodiment.
  • FIG. 6A shows the fuel injection pattern before the pre-injection increase correction (fuel injection pattern during steady operation), and
  • FIG. 6B shows the pre-injection increase correction when the correction amount is relatively small.
  • FIG. 6C shows the fuel injection pattern when the pre-injection increase correction is performed and the correction amount is relatively large.
  • the pre-injection is executed on the advance side close to the compression top dead center (TDC) of the piston 13.
  • TDC compression top dead center
  • the injection amount of the pre-injection is set to the minimum limit injection amount (1.5 mm 3 ) of the injector 23. This value is not limited to this.
  • the main injection starts slightly on the advance side from the compression top dead center (TDC) of the piston 13 and ends on the retard side from the compression top dead center (TDC).
  • TDC compression top dead center
  • TDC compression top dead center
  • the pre-injection (hereinafter, this pre-injection is referred to as the advance side pre-injection) is executed more advanced than the pre-injection (hereinafter, this pre-injection is referred to as the retard side pre-injection). That is, the total injection amount as the pre-injection is additionally increased.
  • the injection amount of the advance side pre-injection is set to the minimum injection rate (1.5 mm 3 ) of the injector 23.
  • the injection mode (injection timing and injection amount) of the retarded side pre-injection is not changed from the steady operation of the engine 1 (the state shown in FIG. 6A), and the above-described ideal The state where the heat release rate waveform is obtained is maintained.
  • the injection amount of the pre-injection is increased in this way, the torque of the engine 1 resulting from the pre-injection also increases accordingly. Therefore, the main injection is performed so that a torque decrease amount corresponding to this torque increase can be obtained.
  • the amount of injection is corrected to decrease. Thereby, the engine torque according to the said torque request value can be obtained.
  • the injection amount of the pre-injection is further increased. become.
  • the injection amount in the retard side pre-injection is increased.
  • the start timing of the retard side pre-injection is not changed, and the end timing of the retard side pre-injection is shifted to the retard side, thereby increasing the injection amount in the retard side pre-injection.
  • This increase is set based on the correction coefficient obtained from FIG. For example, the injection amount in the retard side pre-injection is increased from 1.5 mm 3 to 2.0 mm 3 .
  • the torque of the engine 1 resulting from the pre-injection increases accordingly, so that a torque reduction amount corresponding to this torque increase can be obtained.
  • the amount of injection in the main injection is corrected to decrease.
  • the “in-cylinder transient temperature” is increased by significantly increasing the injection amount in the pre-injection, and as a result, the ⁇ T is decreased. Since the correction coefficient becomes smaller (becomes closer to 1.0), the injection amount of the pre-injection is reduced. Specifically, the pre-injection injection mode shown in FIG. 6C is changed to the pre-injection injection mode shown in FIG. 6B. When the in-cylinder preheating amount is sufficiently obtained, the in-cylinder temperature converges, and the transient operation state is eliminated, the initial state shown in FIG.
  • the pre-injection amount increase correction is performed by executing two pre-injections.
  • the pre-injection amount increase correction may be performed by three or more pre-injections. Good.
  • the shortest valve closing period determined by the performance of the injector 23 (the injector 23 is closed)
  • the shortest period from when the valve is opened to when the valve is opened is set as 200 ⁇ s, for example. This interval is not limited to the above value.
  • the interval between the injection end timing of the retard side pre-injection and the injection start timing of the main injection is longer than the shortest valve closing period (200 ⁇ s). It is set long. This is because, when there is a request for further increase of the pre-injection amount, it is necessary to shift the end timing of the retard side pre-injection to the retard side as shown in FIG.
  • FIG. 7 shows an example of a change in the fuel injection pattern during the execution period of the pre-injection and the main injection in the present embodiment.
  • FIG. 7A shows the fuel injection pattern before the pre-injection increase correction (fuel injection pattern during steady operation), and
  • FIG. 7B shows the pre-injection increase correction when the correction amount is relatively small.
  • FIG. 7C shows the fuel injection pattern when the pre-injection increase correction is performed and the correction amount is relatively large.
  • the pre-injection is performed on the advance side close to the compression top dead center (TDC) of the piston 13.
  • TDC compression top dead center
  • the injection amount of the pre-injection is set to the minimum limit injection amount (1.5 mm 3 ) of the injector 23. This value is not limited to this.
  • the main injection starts slightly on the advance side from the compression top dead center (TDC) of the piston 13 and ends on the retard side from the compression top dead center (TDC).
  • TDC compression top dead center
  • TDC compression top dead center
  • the “in-cylinder temperature difference” ( ⁇ T) becomes a negative value, and during the transient operation, It is judged that there is a shortage of preheating amount. For this reason, as shown in FIG.7 (b), the injection quantity in pre-injection is increased. In this case, the pre-injection start timing is not changed, and the pre-injection end timing is shifted to the retard side, thereby increasing the injection amount in the pre-injection. This increase is set based on the correction coefficient obtained from FIG. For example, the injection amount in this pre-injection is increased from 1.5 mm 3 to 2.0 mm 3 . Thus, the shortage of the in-cylinder preheating amount is resolved, and the “in-cylinder transient temperature” rapidly approaches the “in-cylinder steady temperature”.
  • the injection start timing of the pre-injection is not changed from the steady operation of the engine 1, and the state where the ideal heat generation rate waveform described above is obtained is maintained.
  • the injection amount of the pre-injection when the injection amount of the pre-injection is increased in this way, the torque of the engine 1 resulting from the pre-injection also increases accordingly. Therefore, the main injection is performed so that a torque decrease amount corresponding to this torque increase can be obtained. The amount of injection is corrected to decrease. Thereby, the engine torque according to the said torque request value can be obtained.
  • the injection amount of the pre-injection is further increased. become.
  • the pre-injection (hereinafter, this pre-injection is referred to as the advance angle) relative to the pre-injection (hereinafter, this pre-injection is referred to as the retard-side pre-injection).
  • side pre-injection the total injection amount as the pre-injection is additionally increased.
  • the injection amount of the advance side pre-injection is set to the minimum injection rate (1.5 mm 3 ) of the injector 23. That is, an injection increase of 1.5 mm 3 is performed with respect to the pre-injection injection amount before the occurrence of transient operation.
  • the torque of the engine 1 resulting from the pre-injection increases accordingly.
  • the injection amount in the main injection is corrected to decrease so that a torque reduction amount can be obtained.
  • FIG. 8 shows an example of a change in the fuel injection pattern during the execution period of the pre-injection and the main injection in the present embodiment.
  • FIG. 8A shows the fuel injection pattern before the pre-injection reduction correction (fuel injection pattern during steady operation), and
  • FIG. 8B shows the fuel injection pattern at the time of pre-injection reduction correction.
  • the pre-injection is performed on the advance side close to the compression top dead center (TDC) of the piston 13.
  • the injection amount of the pre-injection is set to an injection amount (for example, 2.5 mm 3 ) larger than the minimum limit injection amount of the injector 23. This value is not limited to this.
  • the interval between the injection end timing of the pre-injection and the injection start timing of the main injection is set to the shortest valve closing period (200 ⁇ s). This interval is not limited to the above value.
  • the pre-injection is reduced. Specifically, as shown in FIG. 8B, the injection amount in the pre-injection is reduced with the minimum limit injection amount (1.5 mm 3 ) as the lower limit value. This reduced amount is set based on the correction coefficient obtained from FIG. In this case, the start timing of the pre-injection is not changed, and the end timing of the retard side pre-injection is shifted to the advance side, thereby reducing the injection amount in the pre-injection.
  • the injection amount in the pre-injection is reduced in this way, the torque of the engine 1 resulting from the pre-injection is reduced accordingly, so that the main injection is performed so that a torque increase amount corresponding to the torque decrease is obtained.
  • the injection amount at is corrected to increase.
  • FIG. 9 shows an example of changes in the fuel injection pattern during the execution period of the pre-injection and the main injection in the present embodiment.
  • FIG. 9A shows a fuel injection pattern before the pre-injection reduction correction (fuel injection pattern during steady operation), and
  • FIG. 9B shows a fuel injection pattern at the time of pre-injection reduction correction.
  • the pre-injection is executed on the advance side of the compression top dead center (TDC) of the piston 13 (from the compression top dead center of the piston 13).
  • TDC compression top dead center
  • the pre-injection start timing and end timing are set on the advance side).
  • pre-injection at the minimum limit injection amount of the injector 23 is executed twice as an injection form of pre-injection.
  • an interval that is a period between the injection end timing of the advance side pre-injection and the injection start timing of the retard side pre-injection, and the injection end timing of the retard side pre-injection and the injection start timing of the main injection Intervals that are periods between are set to the shortest valve closing period (200 ⁇ s), respectively. This interval is not limited to the above value.
  • the “in-cylinder temperature difference” ( ⁇ T) becomes a positive value, and during the transient operation, It is determined that an excessive amount of preheating has occurred. For this reason, the pre-injection is reduced. More specifically, as shown in FIG. 9B, the total injection amount in the pre-injection is reduced so that the advance side pre-injection is not executed. In this case, the injection form of the pre-injection on the retard side is not changed.
  • the injection amount in the pre-injection is reduced in this way, the torque of the engine 1 resulting from the pre-injection is reduced accordingly, so that the main injection is performed so that a torque increase amount corresponding to the torque decrease is obtained.
  • the injection amount at is corrected to increase.
  • the excess or deficiency of the in-cylinder preheating amount can be eliminated as quickly as possible by correcting the amount of injection in the pre-injection to increase or decrease. it can. As a result, it is possible to secure necessary torque and improve exhaust emission by optimizing the in-cylinder combustion state.
  • the NSR catalyst 75 and the DPNR catalyst 76 are provided as the manipulator 77, but the NSR catalyst 75 and a DPF (Diesel Particle Filter) may be provided.
  • DPF Diesel Particle Filter
  • the in-cylinder preheating amount during the transient operation is optimized by performing the increase correction and the decrease correction for the pre-injection.
  • the present invention is not limited to this, and it is also within the scope of the technical idea to optimize the in-cylinder preheating amount during transient operation by performing an increase correction and a decrease correction for pilot injection. Further, it is also within the scope of the technical idea of the present invention to optimize the in-cylinder preheating amount during transient operation by performing increase correction and decrease correction for both pre-injection and pilot injection.
  • the present invention can be applied to fuel injection control when pre-injection is executed prior to main injection in a common rail in-cylinder direct injection multi-cylinder diesel engine mounted on an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 コモンレール式ディーゼルエンジンに対し、エンジンの過渡運転が発生した場合、「筒内過渡温度」から「筒内定常温度」を減算して「筒内温度差」(ΔT)を求め、その「筒内温度差」が負の値である場合にはプレ噴射の噴射量を多くするプレ噴射増量補正を行い、「筒内温度差」が正の値である場合にはプレ噴射の噴射量を少なくするプレ噴射減量補正を行う。これにより、気筒内の予熱量が適切に得られ、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善が図れる。

Description

内燃機関の燃料噴射制御装置
 本発明は、ディーゼルエンジンに代表される内燃機関の燃料噴射制御装置に係る。特に、本発明は、燃料噴射弁からの主噴射(以下、メイン噴射と呼ぶ場合もある)に先立って筒内予熱用の副噴射(以下、プレ噴射またはパイロット噴射と呼ぶ場合もある)が実行可能な圧縮自着火式の内燃機関に対し、この副噴射での噴射量の適正化を図るための対策に関する。
 従来から周知のように、自動車用エンジン等として使用されるディーゼルエンジンでは、エンジン回転数、アクセル操作量、冷却水温度、吸気温度等に応じて、燃料噴射弁(以下、インジェクタと呼ぶ場合もある)からの燃料噴射タイミングや燃料噴射量を調整する燃料噴射制御が行われている。
 上記ディーゼルエンジンの燃焼は、予混合燃焼と拡散燃焼とにより成り立っている。インジェクタからの燃料噴射が開始されると、まず燃料の気化拡散により可燃混合気が生成される(着火遅れ期間)。次に、この可燃混合気が燃焼室の数ヶ所でほぼ同時に自己着火し、急速に燃焼が進む(予混合燃焼)。さらに、燃焼室内への燃料噴射が継続され、燃焼が継続的に行われる(拡散燃焼)。その後、燃料噴射が終了した後にも未燃燃料が存在するため、しばらくの間、熱発生が続けられる(後燃え期間)。
 また、ディーゼルエンジンでは、着火遅れ期間が長くなるほど、あるいは着火遅れ期間における燃料の気化が激しいほど、着火後の火炎伝播速度が増大する。この火炎伝播速度が大きくなると、一時に燃える燃料の量が多くなり過ぎて、シリンダ内の圧力が急激に増大し、振動や騒音が発生する。こうした現象はディーゼルノッキングとよばれており、特に低負荷運転時に発生することが多い。また、このような状況では、燃焼温度の急激な上昇に伴って窒素酸化物(以下、「NOx」と呼ぶ)の発生量も増大し、排気エミッションが悪化してしまう。
 そこで、こうしたディーゼルノッキングを防止したり、NOx発生量を低減するために、各種の燃料噴射制御装置が開発されている。例えば、エンジントルク発生に寄与する燃焼を行わせるメイン噴射に先立って、少量の燃料を噴射する副噴射(パイロット噴射やプレ噴射)を行うものが挙げられる。つまり、パイロット噴射やプレ噴射の実行後、燃料噴射を一旦中断し、その燃料が着火状態(いわゆる火種)になったところでメイン噴射を実行することが提案されている(下記の特許文献1~3を参照)。
 こうした副噴射の実行により、その後のメイン噴射の開始に伴う初期燃焼を緩和でき、ディーゼルノッキングの発生を抑制することができる。また、メイン噴射実行時には副噴射時の燃料が既に着火しており、予め火種ができた状態となっているため、失火の発生を回避することもできる。このため、副噴射によって低温始動性が向上するようになるとともに、低温時における白煙の発生も低減されるようになる。さらに、この副噴射によって着火遅れ期間中の燃料噴射量が減少するため、予混合燃焼も抑制される。また、予混合燃焼中は熱発生率が高くなるためNOxの生成が促進される可能性があるが、上記副噴射により予混合燃焼が抑制されることで、NOxの発生、並びに予混合燃焼に伴う騒音の発生も、同様に低減されることになる。
 尚、特許文献1には、エンジンが加速運転状態になったときに副噴射量および主噴射量をそれぞれ増量補正するに際し、エンジンが高負荷側の設定運転領域まで移行すると予測された場合には、副噴射量の増量補正を制限することが開示されている。これにより、加速運転の後期に燃焼が過度に激しくなることを回避できるようにしている。
 また、特許文献2には、副噴射に起因する予混合気の着火が過早着火であると判断された場合に、予混合気の空燃比をリーン側またはリッチ側に設定することが開示されている。これにより、エンジン負荷に関わらず安定した燃焼を実現可能としている。
 更に、特許文献3には、冷却水温度が高いほど副噴射量を増加させ、これにより、NOxの還元が最良となる必要最小限のHCを供給可能とすることが開示されている。
特開2001-241345号公報 特開2004-197599号公報 特許第3861418号公報
 ところで、これまで、上述したような副噴射(以下、プレ噴射で代表して説明する)を実行する場合に、エンジンの過渡運転時にあっては、その副噴射での噴射量が適正に得られてない可能性があることを本発明の発明者は見出した。以下、具体的に説明する。
 上記プレ噴射の噴射量は、予め実験やシミュレーションにより、エンジンを定常運転にした状態で筒内温度やエンジン運転状態(エンジン負荷など)に応じた噴射量として規定されている。つまり、この筒内温度およびエンジン運転状態とプレ噴射の噴射量との関係をマップ化してエンジンECUのROMに記憶させておき、現在の筒内温度およびエンジン運転状態を上記マップに当て嵌めて、プレ噴射の噴射量を読み出し、この読み出した噴射量でプレ噴射を実行するようにしている。
 このため、エンジンが定常運転状態であって筒内温度が所定温度に収束している場合には、上記マップに従ったプレ噴射を実行することで、適切なプレ噴射量が得られる。これにより、気筒内の予熱量が適切に得られ、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善を図ることができる。
 ところで、実際の気筒内で必要となる予熱量(以下、要求予熱量と呼ぶ)は以下のように変化している。
 例えば、エンジンのトルクが一定で回転数が上昇していく運転状態では、エンジン冷却系の冷却能力が略一定であることから、エンジン内部のフリクションの増加に伴って筒内の蓄熱量が次第に大きくなっていく。このため、このような運転状態では要求予熱量は低下していくことになる。
 また、エンジンの回転数が一定でトルクが上昇していく運転状態では、筒内での熱発生量が増加していくために筒内の蓄熱量が次第に大きくなっていく。従って、この場合にも要求予熱量は低下していくことになる。
 このため、例えばエンジンの軽負荷運転が継続している状態(例えば市街地走行時)から一時的に高負荷運転に移行した場合、それに伴ってプレ噴射の噴射量を増量補正することにはなるが、この増量補正を行っても直ちに予熱量が要求予熱量には到達せず(上記蓄熱分だけ熱量が奪われてしまって(シリンダヘッド等の熱容量分だけ熱量が奪われてしまって)気筒内空間の予熱に寄与できる燃料量が少なくなってしまい)、予熱量不足の状態が継続することになる。そして、このように一時的に高負荷運転となった場合、直ちに軽負荷運転に戻ることになるので、次回の高負荷運転時においても予熱量不足の状態を招いてしまうことになる。
 一方、車両の高速巡航走行が継続している状態(例えば高速道路の走行時)では筒内温度が収束状態(比較的高い筒内温度が維持された状態)となっているが、この状態から車両が減速する場合、気筒内の要求予熱量は減少するにも拘わらず、気筒内には上記高速巡航走行時に発生していた上記蓄熱分が残存しているため、プレ噴射の減量補正を行っても直ちに予熱量が要求予熱量まで低下することがなく、予熱量過剰状態を招いてしまうことになる。
 このような予熱量不足や予熱量過剰の状態では、筒内の燃焼状態を理想的な燃焼とすることが困難になり、エンジントルクが十分に得られなかったり、排気エミッションの悪化を招いたりする可能性がある。
 具体的には、排気エミッションを改善するためにメイン噴射の噴射タイミングを遅角側に設定したり、EGR量の増量を行ったりしている場合に、予熱量不足が生じていると、失火限界に対する余裕分(噴射タイミングの遅角可能量や、EGR量の増量可能量)を十分に確保することが難しい。その結果、筒内での燃焼が悪化することになる。逆に、予熱量過剰の状態では、膨張行程初期時の燃焼速度が大幅に上昇してしまう。その結果、NOx発生量が増加したり燃焼音が大きくなってエンジン騒音の増大に繋がってしまうことになる。
 以上のような不具合が生じる原因は、上述したプレ噴射の噴射量を規定するマップが、エンジンが定常運転状態となっていることを前提として作成されたためであることに本発明の発明者は着目した。つまり、これまでのプレ噴射の噴射量を決定する制御ロジックでは、上述したようなエンジンの過渡運転時については考慮されていなかった。
 そこで、本発明の発明者は、エンジンの過渡運転状態では、上記マップ(定常運転状態を前提とするマップ)で規定される噴射量とは異なる噴射量でプレ噴射を実行する必要があることを見出し、本発明に至った。
 尚、上記各特許文献においても、エンジンの過渡運転時に応じて適切な筒内予熱量を得るためにプレ噴射の噴射量を設定する技術的思想については開示されていない。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、主噴射に先立って副噴射を実行可能とした内燃機関に対し、副噴射での燃料噴射量の最適化を図ることが可能な燃料噴射制御装置を提供することにある。
 -課題の解決原理-
 上記の目的を達成するために講じられた本発明の解決原理は、内燃機関が過渡運転となった場合には、略同一負荷で定常運転である場合に比べて筒内予熱量の過不足分が生じているので、この筒内予熱量の過不足分に応じて副噴射量を制御し、内燃機関の過渡運転時であっても適切な筒内予熱量が得られるようにしている。
 -解決手段-
 具体的に、本発明は、燃料噴射弁からの燃料噴射動作として、少なくとも、主噴射と、この主噴射に先立って行われ且つ気筒内の予熱に寄与する副噴射とが実行可能な圧縮自着火式の内燃機関の燃料噴射制御装置を前提とする。この内燃機関の燃料噴射制御装置に対し、内燃機関の負荷変化による過渡運転時、筒内温度がその負荷に応じた所定温度に略収束するまでの間、筒内予熱量の過不足分に応じて副噴射の噴射量を補正する副噴射量補正手段を備えさせている。
 より具体的には、内燃機関の過渡運転時における筒内過渡温度から、上記負荷に応じて収束する上記所定温度である筒内定常温度を減算することで求められる筒内温度差に応じて筒内予熱量の過不足分を求め、この過不足分に応じて副噴射の噴射量を補正するようにしている。
 この特定事項により、内燃機関が定常運転から過渡運転に移行した場合、上記筒内過渡温度が筒内定常温度よりも低く、筒内予熱量が、現負荷に応じた所定温度よりも低い場合には副噴射の噴射量を増量補正する。これにより、筒内予熱量の不足分が解消されていき、筒内過渡温度は筒内定常温度に急速に近付いていく。その結果、気筒内の予熱量が適切に得られ、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善を図ることが可能になる。一方、上記筒内過渡温度が筒内定常温度よりも高く、筒内予熱量が、現負荷に応じた所定温度よりも高い場合には副噴射の噴射量を減量補正する。これにより、筒内予熱量の過剰分が解消されていき、この場合にも筒内過渡温度は筒内定常温度に急速に近付いていく。その結果、気筒内の予熱量が適切に得られ、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善を図ることが可能になる。
 上記副噴射での噴射量を増量補正や減量補正する場合の具体的な運転状態としては、内燃機関の負荷上昇に伴う過渡運転時には上記筒内温度差に応じて副噴射の噴射量を増量補正する一方、内燃機関の負荷下降に伴う過渡運転時には上記筒内温度差に応じて副噴射の噴射量を減量補正するようにしている。
 例えば、内燃機関の軽負荷運転が継続している状態でドライバによる急激なアクセル踏み込み操作が行われて内燃機関の負荷が上昇した場合には、副噴射の噴射量が増量補正(定常運転時でのその負荷に対応した副噴射の噴射量よりも増量側に補正)され、過渡運転の状態に応じた予熱量の加算が行われることになる。逆に、内燃機関の高負荷運転が継続している状態でドライバによる急激なアクセル戻し操作が行われて内燃機関の負荷が下降した場合には、副噴射の噴射量が減量補正(定常運転時でのその負荷に対応した副噴射の噴射量よりも減量側に補正)され、過渡運転の状態に応じた予熱量の減算が行われることになる。これにより内燃機関の過渡状態に応じた予熱量を得ることが可能になる。
 上記副噴射を増量補正する際の具体的な動作としては以下のものが挙げられる。先ず、副噴射1回当たりの噴射量を増量することなく、副噴射の噴射回数を増加するものである。また、副噴射1回当たりの噴射量を増量するものである。
 上記副噴射を減量補正する際の具体的な動作としては以下のものが挙げられる。先ず、副噴射1回当たりの噴射量を減量することなく、副噴射の噴射回数を削減するものである。また、副噴射1回当たりの噴射量を減量するものである。
 また、副噴射の噴射回数を増減することで噴射量を調整するものにあっては、その副噴射1回当たりの噴射量を、燃料噴射弁の最小限界噴射量に設定している。このように副噴射1回当たりの噴射量を最小限界噴射量に設定することで、この副噴射で噴射された燃料の吸熱反応を抑制することができる。つまり、副噴射の着火遅れを抑制し、この副噴射で噴射された燃料による筒内予熱効果を、遅れを殆ど生じさせることなく確保することが可能になる。
 本発明では、内燃機関が過渡運転となった場合には、略同一負荷で定常運転である場合に比べて筒内予熱量の過不足分が生じていることに鑑み、この筒内予熱量の過不足分に応じて副噴射量を制御し、内燃機関の過渡運転時であっても適切な筒内予熱量が得られるようにしている。このため、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善を図ることが可能になる。
図1は、実施形態に係るエンジンおよびその制御系統の概略構成図である。 図2は、ディーゼルエンジンの燃焼室およびその周辺部を示す断面図である。 図3は、ECU等の制御系の構成を示すブロック図である。 図4は、膨張行程時の熱発生率の変化状態を示す波形図である。 図5は、筒内過渡温度と筒内定常温度との温度差ΔTと、プレ噴射の噴射量を算出するための補正係数との関係を示す図である。 図6は、プレ噴射増量補正の第1実施形態に係る燃料噴射パターンを示す図である。 図7は、プレ噴射増量補正の第2実施形態に係る燃料噴射パターンを示す図である。 図8は、プレ噴射減量補正の第1実施形態に係る燃料噴射パターンを示す図である。 図9は、プレ噴射減量補正の第2実施形態に係る燃料噴射パターンを示す図である。
符号の説明
1     エンジン(内燃機関)
23    インジェクタ(燃料噴射弁)
 以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は、自動車に搭載されたコモンレール式筒内直噴型多気筒(例えば直列4気筒)ディーゼルエンジン(圧縮自着火式内燃機関)に本発明を適用した場合について説明する。
 -エンジンの構成-
 先ず、本実施形態に係るディーゼルエンジン(以下、単にエンジンという)の概略構成について説明する。図1は本実施形態に係るエンジン1およびその制御系統の概略構成図である。また、図2は、ディーゼルエンジンの燃焼室3およびその周辺部を示す断面図である。
 図1に示すように、本実施形態に係るエンジン1は、燃料供給系2、燃焼室3、吸気系6、排気系7等を主要部とするディーゼルエンジンシステムとして構成されている。
 燃料供給系2は、サプライポンプ21、コモンレール22、インジェクタ(燃料噴射弁)23、遮断弁24、燃料添加弁26、機関燃料通路27、添加燃料通路28等を備えて構成されている。
 上記サプライポンプ21は、燃料タンクから燃料を汲み上げ、この汲み上げた燃料を高圧にした後、機関燃料通路27を介してコモンレール22に供給する。コモンレール22は、サプライポンプ21から供給された高圧燃料を所定圧力に保持(蓄圧)する蓄圧室としての機能を有し、この蓄圧した燃料を各インジェクタ23に分配する。インジェクタ23は、その内部に圧電素子(ピエゾ素子)を備え、適宜開弁して燃焼室3内に燃料を噴射供給するピエゾインジェクタにより構成されている。このインジェクタ23からの燃料噴射制御の詳細については後述する。
 また、上記サプライポンプ21は、燃料タンクから汲み上げた燃料の一部を、添加燃料通路28を介して燃料添加弁26に供給する。添加燃料通路28には、緊急時において添加燃料通路28を遮断して燃料添加を停止するための上記遮断弁24が備えられている。
 また、上記燃料添加弁26は、後述するECU100による添加制御動作によって排気系7への燃料添加量が目標添加量(排気A/Fが目標A/Fとなるような添加量)となるように、また、燃料添加タイミングが所定タイミングとなるように開弁時期が制御される電子制御式の開閉弁により構成されている。つまり、この燃料添加弁26から所望の燃料が適宜のタイミングで排気系7(排気ポート71から排気マニホールド72)に噴射供給される構成となっている。
 吸気系6は、シリンダヘッド15(図2参照)に形成された吸気ポート15aに接続される吸気マニホールド63を備え、この吸気マニホールド63に、吸気通路を構成する吸気管64が接続されている。また、この吸気通路には、上流側から順にエアクリーナ65、エアフローメータ43、スロットルバルブ62が配設されている。上記エアフローメータ43は、エアクリーナ65を介して吸気通路に流入される空気量に応じた電気信号を出力するようになっている。
 排気系7は、シリンダヘッド15に形成された排気ポート71に接続される排気マニホールド72を備え、この排気マニホールド72に対して、排気通路を構成する排気管73,74が接続されている。また、この排気通路には、NOx吸蔵触媒(NSR触媒:NOx Storage Reduction触媒)75およびDPNR触媒(Diesel Paticulate-NOx Reduction触媒)76を備えたマニバータ(排気浄化装置)77が配設されている。以下、これらNSR触媒75およびDPNR触媒76について説明する。
 NSR触媒75は、吸蔵還元型NOx触媒であって、例えばアルミナ(Al23)を担体とし、この担体上に例えばカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)のようなアルカリ土類、ランタン(La)、イットリウム(Y)のような希土類と、白金(Pt)のような貴金属とが担持された構成となっている。
 このNSR触媒75は、排気中に多量の酸素が存在している状態においてはNOxを吸蔵し、排気中の酸素濃度が低く、かつ還元成分(例えば燃料の未燃成分(HC))が多量に存在している状態においてはNOxをNO2若しくはNOに還元して放出する。NO2やNOとして放出されたNOxは、排気中のHCやCOと速やかに反応することによってさらに還元されてN2となる。また、HCやCOは、NO2やNOを還元することで、自身は酸化されてH2OやCO2となる。即ち、NSR触媒75に導入される排気中の酸素濃度やHC成分を適宜調整することにより、排気中のHC、CO、NOxを浄化することができるようになっている。本実施形態のものでは、この排気中の酸素濃度やHC成分の調整を上記燃料添加弁26からの燃料添加動作によって行うことが可能となっている。
 一方、DPNR触媒76は、例えば多孔質セラミック構造体にNOx吸蔵還元型触媒を担持させたものであり、排気ガス中のPMは多孔質の壁を通過する際に捕集される。また、排気ガスの空燃比がリーンの場合、排気ガス中のNOxはNOx吸蔵還元型触媒に吸蔵され、空燃比がリッチになると、吸蔵したNOxは還元・放出される。さらに、DPNR触媒76には、捕集したPMを酸化・燃焼する触媒(例えば白金等の貴金属を主成分とする酸化触媒)が担持されている。
 ここで、ディーゼルエンジンの燃焼室3およびその周辺部の構成について、図2を用いて説明する。この図2に示すように、エンジン本体の一部を構成するシリンダブロック11には、各気筒(4気筒)毎に円筒状のシリンダボア12が形成されており、各シリンダボア12の内部にはピストン13が上下方向に摺動可能に収容されている。
 ピストン13の頂面13aの上側には上記燃焼室3が形成されている。つまり、この燃焼室3は、シリンダブロック11の上部にガスケット14を介して取り付けられたシリンダヘッド15の下面と、シリンダボア12の内壁面と、ピストン13の頂面13aとにより区画形成されている。そして、ピストン13の頂面13aの略中央部には、キャビティ(凹陥部)13bが凹設されており、このキャビティ13bも燃焼室3の一部を構成している。
 このピストン13は、コネクティングロッド18の小端部18aがピストンピン13cにより連結されており、このコネクティングロッド18の大端部はエンジン出力軸であるクランクシャフトに連結されている。これにより、シリンダボア12内でのピストン13の往復移動がコネクティングロッド18を介してクランクシャフトに伝達され、このクランクシャフトが回転することでエンジン出力が得られるようになっている。また、燃焼室3に向けてグロープラグ19が配設されている。このグロープラグ19は、エンジン1の始動直前に電流が流されることにより赤熱し、これに燃料噴霧の一部が吹きつけられることで着火・燃焼が促進される始動補助装置として機能する。
 上記シリンダヘッド15には、燃焼室3へ空気を導入する吸気ポート15aと、燃焼室3から排気ガスを排出する上記排気ポート71とがそれぞれ形成されていると共に、吸気ポート15aを開閉する吸気バルブ16および排気ポート71を開閉する排気バルブ17が配設されている。これら吸気バルブ16および排気バルブ17はシリンダ中心線Pを挟んで対向配置されている。つまり、本エンジン1はクロスフロータイプとして構成されている。また、シリンダヘッド15には、燃焼室3の内部へ直接的に燃料を噴射する上記インジェクタ23が取り付けられている。このインジェクタ23は、シリンダ中心線Pに沿う起立姿勢で燃焼室3の略中央上部に配設されており、上記コモンレール22から導入される燃料を燃焼室3に向けて所定のタイミングで噴射するようになっている。
 更に、図1に示す如く、このエンジン1には、過給機(ターボチャージャ)5が設けられている。このターボチャージャ5は、タービンシャフト51を介して連結されたタービンホイール52およびコンプレッサホイール53を備えている。コンプレッサホイール53は吸気管64内部に臨んで配置され、タービンホイール52は排気管73内部に臨んで配置されている。このためターボチャージャ5は、タービンホイール52が受ける排気流(排気圧)を利用してコンプレッサホイール53を回転させ、吸気圧を高めるといった所謂過給動作を行うようになっている。本実施形態におけるターボチャージャ5は、可変ノズル式ターボチャージャであって、タービンホイール52側に可変ノズルベーン機構(図示省略)が設けられており、この可変ノズルベーン機構の開度を調整することにより、エンジン1の過給圧を調整することができる。
 吸気系6の吸気管64には、ターボチャージャ5での過給によって昇温した吸入空気を強制冷却するためのインタークーラ61が設けられている。このインタークーラ61よりも更に下流側に設けられた上記スロットルバルブ62は、その開度を無段階に調整することができる電子制御式の開閉弁であり、所定の条件下において吸入空気の流路面積を絞り、この吸入空気の供給量を調整(低減)する機能を有している。
 また、エンジン1には、吸気系6と排気系7とを接続する排気還流通路(EGR通路)8が設けられている。このEGR通路8は、排気の一部を適宜吸気系6に還流させて燃焼室3へ再度供給することにより燃焼温度を低下させ、これによってNOx発生量を低減させるものである。また、このEGR通路8には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調整することができるEGRバルブ81と、EGR通路8を通過(還流)する排気を冷却するためのEGRクーラ82とが設けられている。
 -センサ類-
 エンジン1の各部位には、各種センサが取り付けられており、それぞれの部位の環境条件や、エンジン1の運転状態に関する信号を出力する。
 例えば、上記エアフローメータ43は、吸気系6内のスロットルバルブ62上流において吸入空気の流量(吸入空気量)に応じた検出信号を出力する。吸気温センサ49は、吸気マニホールド63に配置され、吸入空気の温度に応じた検出信号を出力する。吸気圧センサ48は、吸気マニホールド63に配置され、吸入空気圧力に応じた検出信号を出力する。A/F(空燃比)センサ44は、排気系7のマニバータ77の下流において排気中の酸素濃度に応じて連続的に変化する検出信号を出力する。排気温センサ45は、同じく排気系7のマニバータ77の下流において排気ガスの温度(排気温度)に応じた検出信号を出力する。レール圧センサ41はコモンレール22内に蓄えられている燃料の圧力に応じた検出信号を出力する。スロットル開度センサ42はスロットルバルブ62の開度を検出する。
 -ECU-
 ECU100は、図3に示すように、CPU101、ROM102、RAM103およびバックアップRAM104などを備えている。ROM102は、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU101は、ROM102に記憶された各種制御プログラムやマップに基づいて各種の演算処理を実行する。RAM103は、CPU101での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリである。バックアップRAM104は、例えばエンジン1の停止時にその保存すべきデータ等を記憶する不揮発性のメモリである。
 以上のCPU101、ROM102、RAM103およびバックアップRAM104は、バス107を介して互いに接続されるとともに、入力インターフェース105および出力インターフェース106と接続されている。
 入力インターフェース105には、上記レール圧センサ41、スロットル開度センサ42、エアフローメータ43、A/Fセンサ44、排気温センサ45、吸気圧センサ48、吸気温センサ49が接続されている。さらに、この入力インターフェース105には、エンジン1の冷却水温に応じた検出信号を出力する水温センサ46、アクセルペダルの踏み込み量に応じた検出信号を出力するアクセル開度センサ47、および、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力するクランクポジションセンサ40などが接続されている。一方、出力インターフェース106には、上記インジェクタ23、燃料添加弁26、スロットルバルブ62、および、EGRバルブ81などが接続されている。
 そして、ECU100は、上記した各種センサの出力に基づいて、エンジン1の各種制御を実行する。さらに、ECU100は、インジェクタ23の燃料噴射制御として、後述するパイロット噴射、プレ噴射、メイン噴射(主噴射)、アフタ噴射、ポスト噴射を実行する。
 -燃料噴射形態-
 以下、本実施形態における上記パイロット噴射、プレ噴射、メイン噴射、アフタ噴射、ポスト噴射の各動作の概略について説明する。
 (パイロット噴射)
 パイロット噴射は、インジェクタ23からのメイン噴射(主噴射)に先立ち、予め少量の燃料を噴射する噴射動作である。つまり、このパイロット噴射の実行後、燃料噴射を一旦中断し、メイン噴射が開始されるまでの間に圧縮ガス温度(気筒内温度)を十分に高めて燃料の自着火温度に到達させるようにし、これによってメイン噴射で噴射される燃料の着火性を良好に確保するようにしている。即ち、この実施形態におけるパイロット噴射の機能は、気筒内の予熱に特化したものとなっている。言い換えれば、この実施形態におけるパイロット噴射は、燃焼室3内でのガスの予熱を行うための噴射動作(予熱用燃料の供給動作)となっている。
 具体的には、噴霧の分配や局所濃度の適正化を図るために、パイロット噴射の1回当たりの噴射量をインジェクタ23の最小限界噴射量(例えば1.5mm3)とし、噴射回数を設定することで必要な総パイロット噴射量を確保するようにしている。このようにして分割噴射されるパイロット噴射のインターバルは、インジェクタ23の応答性(開閉動作の速さ)によって決定される。このインターバルは、例えば200μsに設定される。また、パイロット噴射の噴射開始タイミングとしては、例えばクランク角度で、ピストン13の圧縮上死点前(BTDC)80°以降に設定される。尚、パイロット噴射の1回当たりの噴射量や、インターバル、噴射開始タイミングは、上記値に限定されるものではない。
 (プレ噴射)
 プレ噴射は、インジェクタ23からのメイン噴射に先立ち、予め少量の燃料を噴射する噴射動作である。プレ噴射は、メイン噴射による燃料の着火遅れを抑制し、安定した拡散燃焼に導くための噴射動作であって、副噴射とも呼ばれる。また、本実施形態におけるプレ噴射は、上述したメイン噴射による初期燃焼速度を抑制する機能ばかりでなく、気筒内温度を高める予熱機能をも有するものとなっている。
 具体的に、本実施形態では、エンジン回転数、アクセル操作量、冷却水温度、吸気温度等の運転状態に応じて決定される要求トルクを得るための総燃料噴射量(プレ噴射での噴射量とメイン噴射での噴射量との和)に対して例えば10%としてプレ噴射の基本噴射量が設定される。この総燃料噴射量に対するプレ噴射量の比率は、気筒内を予熱する際に必要となる熱量等に応じて設定される。
 本実施形態の特徴は、このプレ噴射の噴射形態(噴射タイミングおよび噴射量)にある。つまり、気筒内に対する予熱量を適切に得るための噴射形態が得られるようにしている。このため、上記プレ噴射の噴射量としては、適切な予熱量を確保するために必要に応じて変更されることになる(上記基本噴射量(総燃料噴射量に対して10%の噴射量)から変更されることになる)。具体的なプレ噴射の噴射形態については後述する。
 (メイン噴射)
 メイン噴射は、エンジン1のトルク発生のための噴射動作(トルク発生用燃料の供給動作)である。本実施形態では、エンジン回転数、アクセル操作量、冷却水温度、吸気温度等の運転状態に応じて決定される要求トルクを得るための上記総燃料噴射量から上記プレ噴射での噴射量を減算した噴射量として設定される。
 ここで、上述したプレ噴射およびメイン噴射の基本的な制御プロセスについて簡単に説明する。
 まず、エンジン1のトルク要求値に対して、上記プレ噴射での噴射量とメイン噴射での噴射量との和である総燃料噴射量が算出される。つまり、エンジン1に要求されるトルクを発生させるための量として総燃料噴射量が算出される。
 上記エンジン1のトルク要求値は、エンジン回転数、アクセル操作量、冷却水温度、吸気温度等の運転状態、補機類等の使用状況に応じて決定される。例えば、エンジン回転数(クランクポジションセンサ40の検出値に基づいて算出されるエンジン回転数)が高いほど、また、アクセル操作量(アクセル開度センサ47により検出されるアクセルペダルの踏み込み量)が大きいほど(アクセル開度が大きいほど)エンジン1のトルク要求値としては高く得られる。
 このようにして総燃料噴射量が算出された後、この総燃料噴射量に対するプレ噴射での噴射量の比率(分割率)を設定する。つまり、プレ噴射量は、総燃料噴射量に対して上記分割率で分割された量として設定されることになる。この分割率(プレ噴射量)は、「メイン噴射による燃料の着火遅れの抑制」と「メイン噴射による燃焼の熱発生率のピーク値の抑制」とを両立する値として求められる。これらを抑制することで、高いエンジントルクを確保しながらも、燃焼音の低減やNOx発生量の低減を図ることが可能になる。尚、本実施形態では、上述した如くプレ噴射の基本噴射量を得るための上記分割率を10%としている。
 (アフタ噴射)
 アフタ噴射は、排気ガス温度を上昇させるための噴射動作である。具体的に、本実施形態では、このアフタ噴射により供給された燃料の燃焼エネルギがエンジンのトルクに変換されることなく、その大部分が排気の熱エネルギとして得られるタイミングでアフタ噴射を実行するようにしている。また、このアフタ噴射においても、上述したパイロット噴射の場合と同様に、最小噴射率(例えば1回当たりの噴射量1.5mm3)とし、複数回数のアフタ噴射を実行することで、このアフタ噴射で必要な総アフタ噴射量を確保するようにしている。
 (ポスト噴射)
 ポスト噴射は、排気系7に燃料を直接的に導入して上記マニバータ77の昇温を図るための噴射動作である。例えば、DPNR触媒76に捕集されているPMの堆積量が所定量を超えた場合(例えばマニバータ77の前後の差圧を検出することにより検知)、ポスト噴射が実行されるようになっている。
 -燃料噴射圧-
 上述した各燃料噴射を実行する際の燃料噴射圧は、コモンレール22の内圧により決定される。このコモンレール内圧として、一般に、コモンレール22からインジェクタ23へ供給される燃料圧力の目標値、即ち目標レール圧は、エンジン負荷(機関負荷)が高くなるほど、および、エンジン回転数(機関回転数)が高くなるほど高いものとされる。即ち、エンジン負荷が高い場合には燃焼室3内に吸入される空気量が多いため、インジェクタ23から燃焼室3内に向けて多量の燃料を噴射しなければならず、よってインジェクタ23からの噴射圧力を高いものとする必要がある。また、エンジン回転数が高い場合には噴射可能な期間が短いため、単位時間当たりに噴射される燃料量を多くしなければならず、よってインジェクタ23からの噴射圧力を高いものとする必要がある。このように、目標レール圧は一般にエンジン負荷およびエンジン回転数に基づいて設定される。
 上記パイロット噴射やメイン噴射などの燃料噴射における燃料噴射パラメータについて、その最適値はエンジン1や吸入空気等の温度条件によって異なるものとなる。
 例えば、上記ECU100は、コモンレール圧がエンジン運転状態に基づいて設定される目標レール圧と等しくなるように、即ち燃料噴射圧が目標噴射圧と一致するように、サプライポンプ21の燃料吐出量を調量する。また、ECU100はエンジン運転状態に基づいて燃料噴射量および燃料噴射形態を決定する。具体的には、ECU100は、クランクポジションセンサ40の検出値に基づいてエンジン回転速度を算出するとともに、アクセル開度センサ47の検出値に基づいてアクセルペダルへの踏み込み量(アクセル開度)を求め、このエンジン回転速度およびアクセル開度に基づいて総燃料噴射量(プレ噴射での噴射量とメイン噴射での噴射量との和)を決定する。
 -目標燃料圧力の設定手法-
 次に、本実施形態において目標燃料圧力を設定する際の技術的思想について説明する。
 (目標燃料圧力の基本設定手法)
 ディーゼルエンジン1においては、NOx発生量を削減することによる排気エミッションの改善、燃焼行程時の燃焼音の低減、エンジントルクの十分な確保といった各要求を連立することが重要である。本発明の発明者は、これら要求を連立するための手法として、燃焼行程時における気筒内での熱発生率の変化状態(熱発生率波形で表される変化状態)を適切にコントロールすることが有効であることに着目し、この熱発生率の変化状態をコントロールするための手法として以下に述べるような目標燃料圧力の設定手法を見出した。
 図4の実線は、横軸をクランク角度、縦軸を熱発生率とし、メイン噴射で噴射された燃料の燃焼に係る理想的な熱発生率波形を示している。この図4では、理解を容易にするために1回のメイン噴射(複数回の分割メイン噴射が行われる場合には第1回目の分割メイン噴射)が行われた場合の熱発生率波形を示している。図中のTDCはピストン13の圧縮上死点に対応したクランク角度位置を示している。この熱発生率波形としては、例えば、ピストン13の圧縮上死点(TDC)からメイン噴射で噴射された燃料の燃焼が開始され、圧縮上死点後の所定ピストン位置(例えば、圧縮上死点後10°(ATDC10°)の時点)で熱発生率が極大値(ピーク値)に達し、更に、圧縮上死点後の所定ピストン位置(例えば、圧縮上死点後25°(ATDC25°)の時点)で上記メイン噴射において噴射された燃料の燃焼が終了するようになっている。この時点までに燃焼を終了させるために、本実施形態では、圧縮上死点後22°(ATDC22°)までにメイン噴射での燃料噴射を終了させるようになっている。このような熱発生率の変化状態で混合気の燃焼を行わせるようにすれば、例えば圧縮上死点後10°(ATDC10°)の時点で気筒内の混合気のうちの50%が燃焼を完了した状況となる。つまり、膨張行程における総熱発生量の約50%がATDC10°までに発生し、高い熱効率でエンジン1を運転させることが可能となる。
 尚、図4に一点鎖線で示す波形は、上記プレ噴射で噴射された燃料の燃焼に係る熱発生率波形を示している。これにより、メイン噴射で噴射された燃料の安定した拡散燃焼が実現される。例えば、このプレ噴射で噴射された燃料の燃焼によって10[J]の熱量が発生する。この値は、これに限定されるものではなく。例えば、上記総燃料噴射量に応じて適宜設定される。また、図示していないが、プレ噴射に先立ってパイロット噴射も行われており、これにより気筒内温度を十分に高めて、メイン噴射で噴射される燃料の着火性を良好に確保している。
 また、図4に二点鎖線αで示す波形は、燃料噴射圧力が、適正値よりも高く設定された場合の熱発生率波形であり、燃焼速度およびピーク値が共に高くなりすぎており、燃焼音の増大やNOx発生量の増加が懸念される状態である。一方、図4に二点鎖線βで示す波形は、燃料噴射圧力が、適正値よりも低く設定された場合の熱発生率波形であり、燃焼速度が低く且つピークの現れるタイミングが大きく遅角側に移行していることで十分なエンジントルクが確保できないことが懸念される状態である。
 上述したように、本実施形態に係る目標燃料圧力の設定手法は、熱発生率の変化状態の適正化(熱発生率波形の適正化)を図ることで燃焼効率の向上を図るといった技術的思想に基づくものである。
 そして、それを実現するための目標燃料圧力の設定手法としては、等燃料噴射圧力ライン(等燃料噴射圧力領域)が、エンジン1の回転数およびトルクから求められる出力(パワー)の等パワーライン(等出力領域)に割り付けられた燃圧設定マップを作成しておき、この燃圧設定マップに従って目標燃料圧力を決定するようにしている。つまり、この燃圧設定マップでは、等パワーラインと等燃料噴射圧力ラインとが略一致するように設定されている。
 この燃圧設定マップに従って燃料圧力を決定することで、インジェクタ23の開弁期間(噴射率波形)を制御すれば、その開弁期間中における燃料噴射量を規定することが可能になり、燃料噴射量制御の簡素化および適正化を図ることができる。
 このようにして作成された燃圧設定マップに従い、エンジン1の運転状態に適した目標燃料圧力を設定し、サプライポンプ21の制御等を行うようになっている。
 -プレ噴射制御-
 本実施形態の特徴は、上記プレ噴射の噴射形態(噴射タイミングおよび噴射量)の制御にある。具体的には、エンジン1の過渡運転時には、エンジン1の定常運転時とは異なる噴射形態でプレ噴射を実行するようにしている。
 尚、エンジン1の運転状態が定常運転状態であるか過渡運転状態であるかの判別は、例えば上記アクセル開度センサ47によって検出されるアクセル操作量の単位時間当たりの変化量に基づいて行われる。つまり、アクセル操作量の単位時間当たりの変化量が所定量以上である場合に過渡運転状態であると判定する。また、スロットル開度センサ42によって検出されるスロットル開度の単位時間当たりの変化量に基づいて行うようにしてもよい。
 ここでいうエンジン1の過渡運転の発生状況としては、例えば、車両の市街地走行時などであって、エンジン1の軽負荷運転(ドライバによるアクセルペダルの踏み込み操作量が比較的少ない状態:例えば踏み込み操作量10%程度)が継続している状態から、アクセルペダルが大きく踏み込まれて高負荷運転に移行した場合が挙げられる。また、車両の高速巡航走行が継続している場合などであって、アクセルペダルが比較的大きく踏み込まれている高負荷運転(例えばアクセルペダルの踏み込み操作量50%程度)が継続している状態から、アクセルペダルの踏み込み量が小さくなって低負荷運転に移行した場合も挙げられる。
 エンジン1が定常運転状態となっている場合には、上記ECU100のROM102に予め記憶されているプレ噴射量設定マップに従ってプレ噴射が実行される。このプレ噴射量設定マップは、予め実験やシミュレーションにより、エンジン1を定常運転にした状態で筒内温度やエンジン運転状態(エンジン負荷など)に応じたプレ噴射量を得るためのマップである。つまり、この筒内温度およびエンジン運転状態とプレ噴射の噴射量との関係をマップ化してROM102に記憶させておき、エンジン1の定常運転時には、現在の筒内温度およびエンジン運転状態を上記マップに当て嵌めて、プレ噴射の噴射量を読み出し、この読み出した噴射量でプレ噴射を実行するようにしている。
 このため、エンジン1が定常運転状態であって筒内温度が所定温度に収束している場合には、上記プレ噴射量設定マップに従ったプレ噴射を実行することで、適切なプレ噴射量が得られる。これにより、気筒内の予熱量が適切に得られ、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善を図ることができる。
 一方、上述したようなアクセル操作量の変更などによってエンジン1に過渡運転が発生した場合(アクセルペダルが大きく踏み込まれて高負荷運転に移行した場合や、アクセルペダルの踏み込み量が小さくなって低負荷運転に移行した場合)、本実施形態では、エンジン1が定常運転状態となっていることを前提として作成された上記プレ噴射量設定マップに基づくプレ噴射は実行せず、後述するようなプレ噴射を実行することになる。具体的には、現在のエンジン負荷等に基づいて上記プレ噴射量設定マップから求められたプレ噴射での噴射量に対し、後述する補正係数を乗算することで噴射量を増量補正または減量補正するようにしている(副噴射量補正手段による噴射量補正動作)。以下、具体的に説明する。
 先ず、エンジン1の過渡運転が発生した場合、「筒内過渡温度」から「筒内定常温度」を減算し、その値(ΔT:以下、「筒内温度差」と呼ぶ)に応じてプレ噴射での噴射量を増量補正または減量補正するための補正係数を求める。
 ここで、「筒内過渡温度」とは、エンジン1の過渡運転が発生したことで、プレ噴射の噴射量が変更された場合に、未だ筒内温度が収束していない状況での筒内温度である。また、「筒内定常温度」とは、現在のエンジン1の過渡運転(現在のエンジン負荷に応じた運転状態)が継続されて、筒内温度が収束したと仮定した場合の筒内温度である。つまり、この「筒内定常温度」は、エンジン1が定常運転状態となっている場合に、現在の負荷に応じて適切な筒内予熱が行われている状況での筒内温度に相当する。
 このため、過渡運転時には、「筒内過渡温度」が、その収束温度である「筒内定常温度」に近付いていくことになるが、この収束に達するまでの期間は筒内予熱量に過不足が生じている。本実施形態におけるプレ噴射での噴射量の増量補正や減量補正は、その期間での噴射量を補正することで、筒内予熱量の過不足を可及的迅速に解消できるようにするものである。
 尚、筒内温度は推定または測定される。筒内温度の推定動作としては、エンジン負荷と筒内温度との関係を実験等により求めてマップ化しておき、このマップによりエンジン負荷から筒内温度を求める。また、筒内に圧力センサを設けておき、所定の状態方程式を使用して筒内圧力から筒内温度を求めるようにしてもよい。また、筒内に温度センサが設置可能な構成が実現された場合には、この温度センサによって筒内温度を直接的に測定することができる。
 図5は、上記「筒内過渡温度」から「筒内定常温度」を減算して得られた「筒内温度差」(ΔT=「筒内過渡温度」-「筒内定常温度」)と、プレ噴射での噴射量を増量補正または減量補正するための補正係数との関係を示している。
 このように、「筒内過渡温度」が「筒内定常温度」に対して低い場合には「筒内温度差」(ΔT)は負の値となり、この「筒内過渡温度」が「筒内定常温度」に対して低いほど、その絶対値も大きくなっていく。そして、この場合、上記補正係数が「1.0」を超える値となり、「筒内過渡温度」と「筒内定常温度」との差が大きいほど、プレ噴射の噴射量に対して増量側の補正量が大きくなっていく。つまり、プレ噴射が大幅に増量補正されることになる。このプレ噴射の増量補正により、筒内予熱量の不足分が解消されていき、「筒内過渡温度」は「筒内定常温度」に急速に近付いていく。
 その結果、気筒内の予熱量が適切に得られることになり、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善を図ることができる。また、排気エミッションを改善するためにメイン噴射の噴射タイミングを遅角側に設定したり、EGR量の増量を行ったりしている場合の失火限界に対する余裕分を十分に確保することが可能になり、これによっても排気エミッションの改善を図ることができる。
 逆に、「筒内過渡温度」が「筒内定常温度」に対して高い場合には「筒内温度差」(ΔT)は正の値となり、この「筒内過渡温度」が「筒内定常温度」に対して高いほど、その絶対値も大きくなっていく。そして、この場合、上記補正係数が「1.0」を下回る値となり、「筒内過渡温度」と「筒内定常温度」との差が大きいほど、プレ噴射の噴射量に対して減量側の補正量が大きくなっていく。つまり、プレ噴射が大幅に減量補正されることになる。このプレ噴射の減量補正により、筒内予熱量の過剰分が解消されていき、この場合にも「筒内過渡温度」は「筒内定常温度」に急速に近付いていく。
 その結果、この場合も、気筒内の予熱量が適切に得られることになり、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善を図ることができる。また、予熱過剰状態を早期に解消できるため、燃焼速度の上昇に伴うNOx発生量の増加や燃焼音の増大も防止することができる。
 以上が、本実施形態におけるプレ噴射量補正動作の基本思想である。
 次に、上述したエンジン1の過渡運転時におけるプレ噴射の噴射形態についての複数の実施形態を説明する。ここでは、プレ噴射を増量補正する場合の2つの実施形態、および、プレ噴射を減量補正する場合の2つの実施形態について説明する。
 (プレ噴射増量補正の第1実施形態)
 先ず、プレ噴射を増量補正する場合の第1実施形態について説明する。
 図6は、本実施形態におけるプレ噴射およびメイン噴射の実行期間中における燃料噴射パターンの変化の一例を示している。図6(a)はプレ噴射の増量補正前の燃料噴射パターン(定常運転時の燃料噴射パターン)を、図6(b)はプレ噴射の増量補正時であって補正量が比較的少ない場合の燃料噴射パターンを、図6(c)はプレ噴射の増量補正時であって補正量が比較的多い場合の燃料噴射パターンをそれぞれ示している。
 図6(a)に示すように、エンジン1の定常運転時には、プレ噴射は、ピストン13の圧縮上死点(TDC)に近接した進角側で実行されている。また、この図6(a)では、プレ噴射の噴射量はインジェクタ23の最小限界噴射量(1.5mm3)に設定されている。この値は、これに限定されるものではない。
 また、メイン噴射は、ピストン13の圧縮上死点(TDC)よりも僅かに進角側で開始され、圧縮上死点(TDC)よりも遅角側で終了している。これにより、上述した理想的な熱発生率波形(図4の実線を参照)が得られることになる。
 そして、エンジン1の過渡運転時において、「筒内過渡温度」が「筒内定常温度」に対して低い場合には、上記「筒内温度差」(ΔT)が負の値となり、過渡運転時の予熱量不足が生じていると判断される。このため、上記プレ噴射(以下、このプレ噴射を遅角側プレ噴射と呼ぶ)よりも進角側にプレ噴射(以下、このプレ噴射を進角側プレ噴射と呼ぶ)を実行する。つまり、プレ噴射としての噴射総量を追加増量する。この進角側プレ噴射の噴射量としては、インジェクタ23の最小噴射率(1.5mm3)に設定されている。即ち、過渡運転発生前のプレ噴射量に対して1.5mm3の噴射増量が行われる。これにより、筒内予熱量の不足分が解消されていき、「筒内過渡温度」は「筒内定常温度」に急速に近付いていく。
 尚、この場合、遅角側プレ噴射の噴射形態(噴射タイミングおよび噴射量)については、エンジン1の定常運転時(図6(a)に示す状態)から変更しないようにし、上述した理想的な熱発生率波形が得られる状態を維持している。また、このようにプレ噴射の噴射量を増量した場合、それに伴ってプレ噴射に起因するエンジン1のトルクも大きくなるため、このトルク増大分に応じたトルク減少量が得られるようにメイン噴射での噴射量を減量補正する。これにより、上記トルク要求値に応じたエンジントルクを得ることができる。
 また、アクセルペダルの踏み込み量が更に大きくなるなどしてエンジン1の過渡状態が大きくなり、筒内予熱量をよりいっそう高くする必要が生じた場合には、プレ噴射の噴射量を更に増量することになる。
 具体的には、図6(c)に示すように、遅角側プレ噴射での噴射量を増量する。この場合、遅角側プレ噴射の開始タイミングについては変更せず、遅角側プレ噴射の終了タイミングを遅角側に移行させることで、この遅角側プレ噴射での噴射量を増量する。この増量分は図5により求められる補正係数に基づいて設定される。例えば、この遅角側プレ噴射での噴射量が1.5mm3から2.0mm3に増量される。
 このように遅角側プレ噴射での噴射量を増量した場合にも、それに伴ってプレ噴射に起因するエンジン1のトルクが大きくなるため、このトルク増大分に応じたトルク減少量が得られるようにメイン噴射での噴射量を減量補正する。
 また、この図6(c)に示すように、プレ噴射での噴射量を大幅に増量させたことで「筒内過渡温度」が高くなっていき、その結果、上記ΔTが小さくなっていくと、上記補正係数としては小さくなっていくため(1.0に近付いていくため)、プレ噴射の噴射量は減量されていくことになる。具体的には、図6(c)に示すプレ噴射の噴射形態から図6(b)に示すプレ噴射の噴射形態に変更していく。そして、筒内予熱量が十分に得られて筒内温度が収束し、過渡運転状態が解消されると、図6(a)に示す初期状態に戻ることになる。
 尚、本実施形態では、2回のプレ噴射を実行することでプレ噴射量の増量補正を行うようにしていたが、3回以上のプレ噴射によってプレ噴射量の増量補正を行うようにしてもよい。
 また、進角側プレ噴射の噴射終了タイミングと遅角側プレ噴射の噴射開始タイミングとの間の期間であるインターバルとしては、例えばインジェクタ23の性能によって決定される最短閉弁期間(インジェクタ23が閉弁してから開弁を開始するまでの最短期間:例えば200μs)として設定される。このインターバルは上記値に限定されるものではない。また、図6(b)に示す噴射パターンにおいて、遅角側プレ噴射の噴射終了タイミングとメイン噴射の噴射開始タイミングとの間の期間であるインターバルとしては、上記最短閉弁期間(200μs)よりも長く設定されている。これは、更なるプレ噴射量の増量要求があった場合に、図6(c)に示す如く、遅角側プレ噴射の終了タイミングを遅角側に移行させる必要があるからである。
 (プレ噴射増量補正の第2実施形態)
 次に、プレ噴射を増量補正する場合の第2実施形態について説明する。
 図7は、本実施形態におけるプレ噴射およびメイン噴射の実行期間中における燃料噴射パターンの変化の一例を示している。図7(a)はプレ噴射の増量補正前の燃料噴射パターン(定常運転時の燃料噴射パターン)を、図7(b)はプレ噴射の増量補正時であって補正量が比較的少ない場合の燃料噴射パターンを、図7(c)はプレ噴射の増量補正時であって補正量が比較的多い場合の燃料噴射パターンをそれぞれ示している。
 図7(a)に示すように、エンジン1の定常運転時には、プレ噴射は、ピストン13の圧縮上死点(TDC)に近接した進角側で実行されている。また、この図7(a)では、プレ噴射の噴射量はインジェクタ23の最小限界噴射量(1.5mm3)に設定されている。この値は、これに限定されるものではない。
 また、メイン噴射は、ピストン13の圧縮上死点(TDC)よりも僅かに進角側で開始され、圧縮上死点(TDC)よりも遅角側で終了している。これにより、上述した理想的な熱発生率波形(図4の実線を参照)が得られることになる。
 そして、エンジン1の過渡運転時において、「筒内過渡温度」が「筒内定常温度」に対して低い場合には、上記「筒内温度差」(ΔT)が負の値となり、過渡運転時の予熱量不足が生じていると判断される。このため、図7(b)に示すように、プレ噴射での噴射量を増量する。この場合、プレ噴射の開始タイミングについては変更せず、プレ噴射の終了タイミングを遅角側に移行させることで、このプレ噴射での噴射量を増量する。この増量分は図5により求められる補正係数に基づいて設定される。例えば、このプレ噴射での噴射量が1.5mm3から2.0mm3に増量される。これにより、筒内予熱量の不足分が解消されていき、「筒内過渡温度」は「筒内定常温度」に急速に近付いていく。
 尚、この場合、プレ噴射の噴射開始タイミングについては、エンジン1の定常運転時から変更しないようにし、上述した理想的な熱発生率波形が得られる状態を維持している。
 また、このようにプレ噴射の噴射量を増量した場合、それに伴ってプレ噴射に起因するエンジン1のトルクも大きくなるため、このトルク増大分に応じたトルク減少量が得られるようにメイン噴射での噴射量を減量補正する。これにより、上記トルク要求値に応じたエンジントルクを得ることができる。
 また、アクセルペダルの踏み込み量が更に大きくなるなどしてエンジン1の過渡状態が大きくなり、筒内予熱量をよりいっそう高くする必要が生じた場合には、プレ噴射の噴射量を更に増量することになる。
 具体的には、図7(c)に示すように、上記プレ噴射(以下、このプレ噴射を遅角側プレ噴射と呼ぶ)よりも進角側にプレ噴射(以下、このプレ噴射を進角側プレ噴射と呼ぶ)を実行する。つまり、プレ噴射としての噴射総量を追加増量する。この進角側プレ噴射の噴射量としては、インジェクタ23の最小噴射率(1.5mm3)に設定されている。即ち、過渡運転発生前のプレ噴射噴射量に対して1.5mm3の噴射増量が行われる。
 このようにプレ噴射の噴射回数を増加させることでプレ噴射での噴射量を増量した場合にも、それに伴ってプレ噴射に起因するエンジン1のトルクが大きくなるため、このトルク増大分に応じたトルク減少量が得られるようにメイン噴射での噴射量を減量補正する。
 また、この図7(c)に示すように、プレ噴射での噴射量を大幅に増量させたことで「筒内過渡温度」が高くなっていき、その結果、上記ΔTが小さくなっていくと、上記補正係数としては小さくなっていくため(1.0に近付いていくため)、プレ噴射の噴射量は減量されていくことになる。具体的には、図7(c)に示すプレ噴射の噴射形態から図7(b)に示すプレ噴射の噴射形態に変更していく。そして、筒内予熱量が十分に得られて筒内温度が収束し、過渡運転状態が解消されると、図7(a)に示す初期状態に戻ることになる。
 尚、本実施形態では、1回のプレ噴射を増量補正した後に更なる増量補正が必要となった場合には2回のプレ噴射を実行するようにしていたが、3回以上のプレ噴射によってプレ噴射量の増量補正を行うようにしてもよい。
 (プレ噴射減量補正の第1実施形態)
 次に、プレ噴射を減量補正する場合の第1実施形態について説明する。
 図8は、本実施形態におけるプレ噴射およびメイン噴射の実行期間中における燃料噴射パターンの変化の一例を示している。図8(a)はプレ噴射の減量補正前の燃料噴射パターン(定常運転時の燃料噴射パターン)を、図8(b)はプレ噴射の減量補正時の燃料噴射パターンをそれぞれ示している。
 図8(a)に示すように、エンジン1の定常運転時には、プレ噴射は、ピストン13の圧縮上死点(TDC)に近接した進角側で実行されている。また、この図8(a)では、プレ噴射の噴射量はインジェクタ23の最小限界噴射量よりも多い噴射量(例えば2.5mm3)に設定されている。この値は、これに限定されるものではない。
 また、この場合、プレ噴射の噴射終了タイミングとメイン噴射の噴射開始タイミングとの間の期間であるインターバルとしては、上記最短閉弁期間(200μs)に設定されている。このインターバルは上記値に限定されるものではない。
 そして、エンジン1の過渡運転時において、「筒内過渡温度」が「筒内定常温度」に対して高い場合には、上記「筒内温度差」(ΔT)が正の値となり、過渡運転時の予熱量過剰が生じていると判断される。このため、上記プレ噴射を減量することになる。具体的には、図8(b)に示すように、プレ噴射での噴射量を最小限界噴射量(1.5mm3)を下限値として減量する。この減量分は図5により求められる補正係数に基づいて設定される。この場合、プレ噴射の開始タイミングについては変更せず、遅角側プレ噴射の終了タイミングを進角側に移行させることで、このプレ噴射での噴射量を減量する。
 このようにプレ噴射での噴射量を減量した場合には、それに伴ってプレ噴射に起因するエンジン1のトルクが小さくなるため、このトルク減少分に応じたトルク増大量が得られるようにメイン噴射での噴射量を増量補正する。
 この図8(b)に示すように、プレ噴射での噴射量を減量させたことで「筒内過渡温度」が低くなっていき、その結果、上記ΔTが大きくなっていくと、プレ噴射の噴射量を増量していくことになる。そして、筒内予熱量の過剰分か解消されて筒内温度が収束し、過渡運転状態が解消されると、図8(a)に示す初期状態に戻ることになる。
 (プレ噴射減量補正の第2実施形態)
 次に、プレ噴射を減量補正する場合の第2実施形態について説明する。
 図9は、本実施形態におけるプレ噴射およびメイン噴射の実行期間中における燃料噴射パターンの変化の一例を示している。図9(a)はプレ噴射の減量補正前の燃料噴射パターン(定常運転時の燃料噴射パターン)を、図9(b)はプレ噴射の減量補正時の燃料噴射パターンをそれぞれ示している。
 図9(a)に示すように、エンジン1の定常運転時には、プレ噴射は、ピストン13の圧縮上死点(TDC)よりも進角側で実行される(ピストン13の圧縮上死点よりも進角側にプレ噴射の開始タイミングと終了タイミングとが設定される)。また、この図9(a)では、プレ噴射の噴射形態として、インジェクタ23の最小限界噴射量でのプレ噴射が2回実行されている。
 この場合、進角側プレ噴射の噴射終了タイミングと遅角側プレ噴射の噴射開始タイミングとの間の期間であるインターバル、および、遅角側プレ噴射の噴射終了タイミングとメイン噴射の噴射開始タイミングとの間の期間であるインターバルとしては、それぞれ上記最短閉弁期間(200μs)に設定されている。このインターバルは上記値に限定されるものではない。
 そして、エンジン1の過渡運転時において、「筒内過渡温度」が「筒内定常温度」に対して高い場合には、上記「筒内温度差」(ΔT)が正の値となり、過渡運転時の予熱量過剰が生じていると判断される。このため、上記プレ噴射を減量することになる。具体的には、図9(b)に示すように、進角側のプレ噴射を非実行とするようにしてプレ噴射での総噴射量を減量する。この場合、遅角側のプレ噴射の噴射形態については変更しない。
 このようにプレ噴射での噴射量を減量した場合には、それに伴ってプレ噴射に起因するエンジン1のトルクが小さくなるため、このトルク減少分に応じたトルク増大量が得られるようにメイン噴射での噴射量を増量補正する。
 この図9(b)に示すように、プレ噴射での噴射量を減量させたことで「筒内過渡温度」が低くなっていき、その結果、上記ΔTが大きくなっていくと、プレ噴射の噴射量を増量していくことになる。そして、筒内予熱量の過剰分か解消されて筒内温度が収束し、過渡運転状態が解消されると、図9(a)に示す初期状態に戻ることになる。
 以上説明してきたように、各実施形態によれば、プレ噴射での噴射量を増量補正したり減量補正したりすることにより、筒内予熱量の過不足を可及的迅速に解消することができる。その結果、筒内燃焼状態の適正化による必要トルクの確保および排気エミッションの改善を図ることができる。
 -他の実施形態-
 以上説明した各実施形態では、自動車に搭載される直列4気筒ディーゼルエンジンに本発明を適用した場合について説明した。本発明は、自動車用に限らず、その他の用途に使用されるエンジンにも適用可能である。また、気筒数やエンジン形式(直列型エンジン、V型エンジン等の別)についても特に限定されるものではない。
 また、上記各実施形態では、マニバータ77として、NSR触媒75およびDPNR触媒76を備えたものとしたが、NSR触媒75およびDPF(Diesel Paticulate Filter)を備えたものとしてもよい。
 また、上記各実施形態では、プレ噴射に対して増量補正や減量補正を行うことで、過渡運転時における筒内予熱量の適正化を図るようにしていた。本発明はこれに限らず、パイロット噴射に対して増量補正や減量補正を行うことで、過渡運転時における筒内予熱量の適正化を図ることも技術的思想の範疇である。更には、プレ噴射とパイロット噴射との両方に対して増量補正や減量補正を行って過渡運転時における筒内予熱量の適正化を図ることも本発明の技術的思想の範疇である。
 本発明は、自動車に搭載されるコモンレール式筒内直噴型多気筒ディーゼルエンジンにおいて、メイン噴射に先立ってプレ噴射を実行する場合の燃料噴射制御に適用することが可能である。

Claims (8)

  1.  燃料噴射弁からの燃料噴射動作として、少なくとも、主噴射と、この主噴射に先立って行われ且つ気筒内の予熱に寄与する副噴射とが実行可能な圧縮自着火式の内燃機関の燃料噴射制御装置において、
     内燃機関の負荷変化による過渡運転時、筒内温度がその負荷に応じた所定温度に略収束するまでの間、筒内予熱量の過不足分に応じて副噴射の噴射量を補正する副噴射量補正手段を備えていることを特徴とする内燃機関の燃料噴射制御装置。
  2.  上記請求項1記載の内燃機関の燃料噴射制御装置において、
     上記副噴射量補正手段は、内燃機関の過渡運転時における筒内過渡温度から、上記負荷に応じて収束する上記所定温度である筒内定常温度を減算することで求められる筒内温度差に応じて筒内予熱量の過不足分を求め、この過不足分に応じて副噴射の噴射量を補正するよう構成されていることを特徴とする内燃機関の燃料噴射制御装置。
  3.  上記請求項2記載の内燃機関の燃料噴射制御装置において、
     上記副噴射量補正手段は、内燃機関の負荷上昇に伴う過渡運転時は上記筒内温度差に応じて副噴射の噴射量を増量補正する一方、内燃機関の負荷下降に伴う過渡運転時は上記筒内温度差に応じて副噴射の噴射量を減量補正するよう構成されていることを特徴とする内燃機関の燃料噴射制御装置。
  4.  上記請求項1、2または3記載の内燃機関の燃料噴射制御装置において、
     上記副噴射量補正手段は、副噴射の噴射量を増量補正する際、副噴射1回当たりの噴射量を増量することなく、副噴射の噴射回数を増加するよう構成されていることを特徴とする内燃機関の燃料噴射制御装置。
  5.  上記請求項1、2または3記載の内燃機関の燃料噴射制御装置において、
     上記副噴射量補正手段は、副噴射の噴射量を増量補正する際、副噴射1回当たりの噴射量を増量するよう構成されていることを特徴とする内燃機関の燃料噴射制御装置。
  6.  上記請求項1、2または3記載の内燃機関の燃料噴射制御装置において、
     上記副噴射量補正手段は、副噴射の噴射量を減量補正する際、副噴射1回当たりの噴射量を減量することなく、副噴射の噴射回数を削減するよう構成されていることを特徴とする内燃機関の燃料噴射制御装置。
  7.  上記請求項1、2または3記載の内燃機関の燃料噴射制御装置において、
     上記副噴射量補正手段は、副噴射の噴射量を減量補正する際、副噴射1回当たりの噴射量を減量するよう構成されていることを特徴とする内燃機関の燃料噴射制御装置。
  8.  上記請求項4または6記載の内燃機関の燃料噴射制御装置において、
     上記副噴射1回当たりの噴射量は、燃料噴射弁の最小限界噴射量に設定されていることを特徴とする内燃機関の燃料噴射制御装置。
PCT/JP2008/068219 2008-10-07 2008-10-07 内燃機関の燃料噴射制御装置 WO2010041308A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010513562A JPWO2010041308A1 (ja) 2008-10-07 2008-10-07 内燃機関の燃料噴射制御装置
PCT/JP2008/068219 WO2010041308A1 (ja) 2008-10-07 2008-10-07 内燃機関の燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068219 WO2010041308A1 (ja) 2008-10-07 2008-10-07 内燃機関の燃料噴射制御装置

Publications (1)

Publication Number Publication Date
WO2010041308A1 true WO2010041308A1 (ja) 2010-04-15

Family

ID=42100273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068219 WO2010041308A1 (ja) 2008-10-07 2008-10-07 内燃機関の燃料噴射制御装置

Country Status (2)

Country Link
JP (1) JPWO2010041308A1 (ja)
WO (1) WO2010041308A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252390A (ja) * 2010-05-31 2011-12-15 Mazda Motor Corp ディーゼルエンジンの燃焼制御装置
JP2012012972A (ja) * 2010-06-30 2012-01-19 Mazda Motor Corp 自動車搭載用ディーゼルエンジン
JP2012012998A (ja) * 2010-06-30 2012-01-19 Mazda Motor Corp 自動車搭載用ディーゼルエンジン
JP2012041896A (ja) * 2010-08-20 2012-03-01 Mazda Motor Corp 圧縮自着火エンジンの制御装置
CN102933825A (zh) * 2010-05-11 2013-02-13 马自达汽车株式会社 用于汽车的柴油引擎、控制装置和控制方法
JP2015137585A (ja) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 内燃機関の制御装置
JP2015137586A (ja) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 内燃機関の制御装置
JP2018178723A (ja) * 2017-04-03 2018-11-15 株式会社デンソー 内燃機関制御システム
US10385798B2 (en) 2014-06-11 2019-08-20 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
WO2019212009A1 (ja) * 2018-05-02 2019-11-07 マツダ株式会社 圧縮着火式エンジンの制御装置
EP3674532A1 (en) * 2018-12-25 2020-07-01 Mazda Motor Corporation Control device for compression ignition engine, compression ignition engine, vehicle, method of controlling compression ignition engine, and computer program product
JP2022092597A (ja) * 2020-12-10 2022-06-22 セメス カンパニー,リミテッド 基板処理装置及び温度制御方法
JP7413970B2 (ja) 2020-10-12 2024-01-16 株式会社豊田自動織機 内燃機関の制御システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6069697B2 (ja) * 2012-12-26 2017-02-01 日産自動車株式会社 ディーゼルエンジンの制御装置及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064891A (ja) * 1998-08-19 2000-02-29 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2005061239A (ja) * 2003-08-13 2005-03-10 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2005232990A (ja) * 2004-02-17 2005-09-02 Toyota Motor Corp ディーゼルエンジンの燃料噴射制御装置
JP2008014249A (ja) * 2006-07-06 2008-01-24 Toyota Motor Corp 圧縮着火式内燃機関の燃焼制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064891A (ja) * 1998-08-19 2000-02-29 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2005061239A (ja) * 2003-08-13 2005-03-10 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2005232990A (ja) * 2004-02-17 2005-09-02 Toyota Motor Corp ディーゼルエンジンの燃料噴射制御装置
JP2008014249A (ja) * 2006-07-06 2008-01-24 Toyota Motor Corp 圧縮着火式内燃機関の燃焼制御システム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933825A (zh) * 2010-05-11 2013-02-13 马自达汽车株式会社 用于汽车的柴油引擎、控制装置和控制方法
US9234478B2 (en) 2010-05-11 2016-01-12 Mazda Motor Corporation Diesel engine for automobile, control device and control method
JP2011252390A (ja) * 2010-05-31 2011-12-15 Mazda Motor Corp ディーゼルエンジンの燃焼制御装置
JP2012012972A (ja) * 2010-06-30 2012-01-19 Mazda Motor Corp 自動車搭載用ディーゼルエンジン
JP2012012998A (ja) * 2010-06-30 2012-01-19 Mazda Motor Corp 自動車搭載用ディーゼルエンジン
JP2012041896A (ja) * 2010-08-20 2012-03-01 Mazda Motor Corp 圧縮自着火エンジンの制御装置
JP2015137585A (ja) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 内燃機関の制御装置
JP2015137586A (ja) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 内燃機関の制御装置
US9784207B2 (en) 2014-01-22 2017-10-10 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10066574B2 (en) 2014-01-22 2018-09-04 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10385798B2 (en) 2014-06-11 2019-08-20 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2018178723A (ja) * 2017-04-03 2018-11-15 株式会社デンソー 内燃機関制御システム
WO2019212009A1 (ja) * 2018-05-02 2019-11-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2019194455A (ja) * 2018-05-02 2019-11-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7052536B2 (ja) 2018-05-02 2022-04-12 マツダ株式会社 圧縮着火式エンジンの制御装置
US11448156B2 (en) 2018-05-02 2022-09-20 Mazda Motor Corporation Control apparatus for compression-ignition type engine
EP3674532A1 (en) * 2018-12-25 2020-07-01 Mazda Motor Corporation Control device for compression ignition engine, compression ignition engine, vehicle, method of controlling compression ignition engine, and computer program product
US10989135B2 (en) 2018-12-25 2021-04-27 Mazda Motor Corporation Control device for compression ignition engine
JP7413970B2 (ja) 2020-10-12 2024-01-16 株式会社豊田自動織機 内燃機関の制御システム
JP2022092597A (ja) * 2020-12-10 2022-06-22 セメス カンパニー,リミテッド 基板処理装置及び温度制御方法
JP7401510B2 (ja) 2020-12-10 2023-12-19 セメス カンパニー,リミテッド 基板処理装置及び温度制御方法

Also Published As

Publication number Publication date
JPWO2010041308A1 (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5086887B2 (ja) 内燃機関の燃料噴射制御装置
WO2010041308A1 (ja) 内燃機関の燃料噴射制御装置
JP4793381B2 (ja) 内燃機関の燃料噴射制御装置
JP4404154B2 (ja) 内燃機関の燃料噴射制御装置
WO2010035341A1 (ja) 内燃機関の燃料噴射制御装置
WO2010122643A1 (ja) 内燃機関の制御装置
JP2009167821A (ja) 内燃機関の燃料噴射制御装置
JP5229258B2 (ja) 内燃機関の燃焼重心判定方法及び燃焼制御装置
JP4873098B2 (ja) 内燃機関の制御装置
JP2009293383A (ja) 内燃機関の燃料噴射制御装置および内燃機関の自動適合装置
JP2009299490A (ja) 内燃機関の燃料噴射制御装置
JP4930637B2 (ja) 内燃機関の燃料噴射制御装置
JP4840515B2 (ja) 内燃機関の燃料噴射制御装置
JP4793382B2 (ja) 内燃機関の燃料噴射制御装置
JP5218461B2 (ja) 内燃機関の燃焼制御装置
JP5126421B2 (ja) 内燃機関の燃焼制御装置
WO2012105038A1 (ja) 内燃機関の燃料噴射制御装置
JP5267746B2 (ja) 内燃機関の燃焼制御装置
JP4924759B2 (ja) 内燃機関の燃料噴射制御装置
JP2009293596A (ja) 内燃機関の燃料噴射制御装置
JP4894815B2 (ja) 車両用内燃機関の燃料圧力制御装置
JP4858647B2 (ja) 内燃機関の燃料噴射圧力制御装置
WO2010035340A1 (ja) 内燃機関の燃料噴射制御装置
JP4973602B2 (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010513562

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877256

Country of ref document: EP

Kind code of ref document: A1