WO2010041293A1 - 直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置 - Google Patents

直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置 Download PDF

Info

Publication number
WO2010041293A1
WO2010041293A1 PCT/JP2008/002829 JP2008002829W WO2010041293A1 WO 2010041293 A1 WO2010041293 A1 WO 2010041293A1 JP 2008002829 W JP2008002829 W JP 2008002829W WO 2010041293 A1 WO2010041293 A1 WO 2010041293A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
output
gate
phase
switch
Prior art date
Application number
PCT/JP2008/002829
Other languages
English (en)
French (fr)
Inventor
小島昭二
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2008/002829 priority Critical patent/WO2010041293A1/ja
Priority to US12/663,689 priority patent/US8319569B2/en
Priority to JP2010532716A priority patent/JPWO2010041293A1/ja
Publication of WO2010041293A1 publication Critical patent/WO2010041293A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated

Definitions

  • the present invention relates to digital data transmission technology.
  • the digital wireless communication system transmits / receives multi-bit information on a carrier signal. That is, the data rate is not directly limited to the carrier frequency.
  • a QAM (Quadrature ⁇ ⁇ Amplitude Modulation) transmission method which is the most basic orthogonal modulation / demodulation method can realize four-value transmission with one channel.
  • 64QAM 64-value transmission can be realized with one carrier. That is, the transfer capacity can be improved by such a multi-level modulation method without increasing the carrier frequency.
  • Such a modulation / demodulation method is not limited to wireless communication but can be performed by wired communication, and has already begun to be applied as a PAM (Pulse Amplitude Modulation), QPSK (Quadrature Phase Shift Keying), or DQPSK (Differential QPSK) method.
  • PAM Pulse Amplitude Modulation
  • QPSK Quadrature Phase Shift Keying
  • DQPSK Downifferential QPSK
  • the conventional quadrature amplitude modulator has to be configured using a high-speed device, so that it is not easy to design, or a high-frequency bipolar process or a Bi-CMOS process is required, which increases the manufacturing cost of the device. was there.
  • the present invention has been made in view of such a situation, and one of exemplary purposes thereof is to provide a quadrature amplitude modulator that can be implemented by a logic circuit.
  • the in-phase baseband data, a quadrature baseband data, the receiving relates quadrature amplitude modulator for generating a modulated signal (2N) 2 value quadrature amplitude modulation has been applied.
  • the quadrature amplitude modulator includes an oscillator and a multilevel driver. The oscillator generates a rectangular wave, a trapezoidal wave, or an in-phase carrier signal having a waveform similar to these, and a quadrature carrier signal whose phase is shifted by 1 ⁇ 4 period with respect to the in-phase carrier signal.
  • the multilevel driver generates an in-phase modulated signal by amplitude-modulating the in-phase carrier signal with an analog in-phase baseband signal having a discrete voltage level or current level according to the in-phase baseband data, and according to the quadrature baseband data.
  • a quadrature carrier signal is amplitude-modulated by an analog quadrature baseband signal having a discrete voltage level or current level to generate a quadrature modulated signal, the in-phase modulated signal and the quadrature modulated signal are combined, and the amplitude is discrete A modulated signal having a large value is generated.
  • a rectangular wave, a trapezoidal wave, or a similar waveform is also understood as a signal having a constant value at the peak and bottom of the period.
  • a modulated signal discretized (quantized) in the amplitude direction is generated by using a rectangular wave or a trapezoidal wave instead of a sine wave (cosine wave) as a carrier signal.
  • This quadrature amplitude modulator can be implemented mainly by a logic circuit.
  • Each of the analog in-phase baseband signal and the analog quadrature baseband signal may have a voltage value or a current value quantized at equal intervals.
  • the analog in-phase baseband signal and the analog quadrature baseband signal are each quantized to N values, the modulated signal is discretized to the minimum (2N-1) value, so that the circuit scale can be suppressed. .
  • the quadrature amplitude modulator receives 2-bit quaternary in-phase baseband data and 2-bit quaternary quadrature baseband data and performs 16-value quadrature amplitude modulation to generate a modulated signal.
  • the quadrature amplitude modulator includes an oscillator, first to tenth switches, first to fourth current sources, and first and second resistors.
  • the oscillator generates an in-phase carrier signal having a rectangular wave, a trapezoidal wave, or a waveform similar thereto, and an orthogonal carrier signal whose phase is shifted by 1 ⁇ 4 period with respect to the in-phase carrier signal.
  • the first switch includes first, second, and third terminals, and conducts between the first terminal and the third terminal or between the second terminal and the third terminal according to the first bit of the in-phase baseband data.
  • the first current source is connected to the third terminal of the first switch and generates a predetermined reference current.
  • the second switch includes first, second, and third terminals, the third terminal is connected to the first terminal of the first switch, and the first terminal and the third terminal according to the second bit of the in-phase baseband data. Conduction is established between the terminals or between the second terminal and the third terminal.
  • the third switch includes first, second, and third terminals, the third terminal is connected to the second terminal of the first switch, and the first terminal and the third terminal according to the second bit of the in-phase baseband data.
  • the second current source is connected to the third terminal of the third switch, and generates a current twice the reference current.
  • the fourth switch includes first, second, and third terminals, the third terminal is connected to the second terminal of the second switch and the first terminal of the third switch, and the first terminal according to the in-phase carrier signal And the third terminal or between the second terminal and the third terminal.
  • the fifth switch includes first, second, and third terminals, the third terminal is connected to the first terminal of the second switch and the second terminal of the third switch, and the first terminal according to the in-phase carrier signal And the third terminal or between the second terminal and the third terminal.
  • the sixth switch includes first, second, and third terminals, and conducts between the first terminal and the third terminal or between the second terminal and the third terminal according to the first bit of the orthogonal baseband data. .
  • the third current source is connected to the third terminal of the sixth switch and generates a predetermined reference current.
  • the seventh switch includes first, second, and third terminals, the third terminal is connected to the first terminal of the sixth switch, and the first terminal and the third terminal according to the second bit of the orthogonal baseband data. Conduction is established between the terminals or between the second terminal and the third terminal.
  • the eighth switch includes first, second, and third terminals, the third terminal is connected to the second terminal of the sixth switch, and the first terminal and the third terminal according to the second bit of the orthogonal baseband data.
  • the fourth current source is connected to the third terminal of the eighth switch and generates a current that is twice the reference current.
  • the ninth switch includes first, second, and third terminals, the third terminal is connected to the second terminal of the seventh switch and the first terminal of the eighth switch, and the first terminal according to the orthogonal carrier signal And the third terminal or between the second terminal and the third terminal.
  • the tenth switch includes first, second, and third terminals, the third terminal is connected to the first terminal of the seventh switch and the second terminal of the eighth switch, and the first terminal according to the orthogonal carrier signal And the third terminal or between the second terminal and the third terminal.
  • a reference voltage is applied to one end of the first resistor, and the other end is connected to the first terminal of the fourth switch, the second terminal of the fifth switch, the first terminal of the ninth switch, and the second terminal of the tenth switch. Is done.
  • a reference voltage is applied to one end of the second resistor, and the other end is connected to the second terminal of the fourth switch, the first terminal of the fifth switch, the second terminal of the ninth switch, and the first terminal of the tenth switch. Is done.
  • a signal generated at the other end of at least one of the first and second resistors is output as a modulated signal whose amplitude is discretized. According to this aspect, a discretized 16QAM signal can be generated.
  • the quadrature amplitude modulator receives 2-bit 4-value in-phase baseband data and 2-bit 4-value quadrature baseband data, and performs 16-value quadrature amplitude modulation to generate a modulated signal.
  • the quadrature amplitude modulator includes an oscillator, first and second negative exclusive OR gates, first to fourth exclusive OR gates, and third to sixth resistors.
  • the oscillator generates an in-phase carrier signal having a rectangular wave, a trapezoidal wave, or a waveform similar thereto, and an orthogonal carrier signal whose phase is shifted by 1 ⁇ 4 period with respect to the in-phase carrier signal.
  • the first negative exclusive OR gate receives the first bit and the second bit of the in-phase baseband data.
  • the first exclusive OR gate receives the in-phase carrier signal with the output of the first negative exclusive OR gate.
  • the second exclusive OR gate receives the second bit of the in-phase baseband data and the in-phase carrier signal.
  • the second negative exclusive OR gate receives the first bit and the second bit of the orthogonal baseband data.
  • the third exclusive OR gate receives the output of the second negative exclusive OR gate and the orthogonal carrier signal.
  • the fourth exclusive OR gate receives the second bit of the orthogonal baseband data and the orthogonal carrier signal. A voltage corresponding to the output of the first exclusive OR gate is applied to one end of the third resistor. A voltage corresponding to the output of the second exclusive OR gate is applied to one end of the fourth resistor.
  • a voltage corresponding to the output of the third exclusive OR gate is applied to one end of the fifth resistor.
  • a voltage corresponding to the output of the fourth exclusive OR gate is applied to one end of the sixth resistor.
  • the resistance values of the fourth and sixth resistors are equal, and the resistance values of the third and fifth resistors are twice that of the fourth and sixth resistors.
  • the other ends of the third, fourth, fifth, and sixth resistors are connected in common, and a voltage generated at the common connection point is output as a modulated signal whose amplitude is discretized.
  • the quadrature amplitude modulator includes an oscillator, first and second negative exclusive OR gates, first to fourth exclusive OR gates, an adder, and a D / A converter.
  • the oscillator generates an in-phase carrier signal having a rectangular wave, a trapezoidal wave, or a waveform similar thereto, and an orthogonal carrier signal whose phase is shifted by 1 ⁇ 4 period with respect to the in-phase carrier signal.
  • the first negative exclusive OR gate receives the first bit and the second bit of the in-phase baseband data.
  • the first exclusive OR gate receives the in-phase carrier signal with the output of the first negative exclusive OR gate.
  • the second exclusive OR gate receives the second bit of the in-phase baseband data and the in-phase carrier signal.
  • the second negative exclusive OR gate receives the first bit and the second bit of the orthogonal baseband data.
  • the third exclusive OR gate receives the output of the second negative exclusive OR gate and the orthogonal carrier signal.
  • the fourth exclusive OR gate receives the second bit of the orthogonal baseband data and the orthogonal carrier signal.
  • the adder adds the outputs of the first, second, third, and fourth exclusive OR gates.
  • the D / A converter converts the output of the adder into an analog signal.
  • the output signal of the D / A converter is output as the modulated signal whose amplitude is discretized.
  • the quadrature amplitude modulator may further include a latch circuit that latches the output of the adder according to a timing pulse asserted for each edge of the in-phase carrier signal and the quadrature carrier signal.
  • the adder includes a fifth exclusive OR gate that receives an output of the first exclusive OR gate and an output of the third exclusive OR gate, an output of the second exclusive OR gate, and a fourth exclusive OR.
  • a sixth exclusive OR gate that receives the output of the gate, a first AND gate that receives the outputs of the first and third exclusive OR gates, and a second exclusive OR gate;
  • a second AND gate for receiving the output and the output of the fourth exclusive OR gate;
  • a third AND gate for receiving the output of the first AND gate and the output of the sixth exclusive OR gate;
  • a seventh exclusive OR gate that receives the output of the gate and the output of the sixth exclusive OR gate; and a first OR gate that receives the output of the second AND gate and the output of the third AND gate. But you can.
  • the output of the fifth exclusive OR gate, the output of the seventh exclusive OR gate, and the output of the first OR gate may be output as the addition result.
  • the D / A converter may include eleventh to thirteenth switches, seventh and eighth resistors, first and second transistors, and eleventh, twelfth and thirteenth current sources.
  • the eleventh switch includes first, second, and third terminals, and conducts between the first terminal and the third terminal or between the second terminal and the third terminal according to the first bit of the output of the adder.
  • the twelfth switch includes first, second, and third terminals, and conducts between the first terminal and the third terminal or between the second terminal and the third terminal according to the second bit of the output of the adder.
  • the thirteenth switch includes first, second, and third terminals, and conducts between the first terminal and the third terminal or between the second terminal and the third terminal according to the third bit of the output of the adder.
  • the seventh resistor and the eighth resistor each have a fixed potential at one end.
  • the first transistor is provided between the other end of the seventh resistor and the commonly connected second terminal of the eleventh, twelfth and thirteenth switches.
  • the second transistor is provided between the other end of the eighth resistor and the commonly connected first terminal of the eleventh, twelfth and thirteenth switches.
  • the eleventh, twelfth, and thirteenth current sources supply current to the third terminals of the eleventh, twelfth, and thirteenth switches, respectively.
  • the ratio of the current values of the eleventh, twelfth and thirteenth current sources may be 1: 2: 4.
  • the D / A converter outputs the potential at the other end of each of the seventh and eighth resistors.
  • the D / A converter has a ninth resistor to which a voltage corresponding to the first bit of the output of the adder is applied at one end and a voltage corresponding to the second bit of the output of the adder to one end. And a tenth resistor and an eleventh resistor to which a voltage corresponding to the third bit of the output of the adder is applied at one end.
  • the ratio of the resistance values of the ninth, tenth, and eleventh resistors may be 4: 2: 1.
  • the other ends of the ninth, tenth, and eleventh resistors may be connected in common, and a voltage generated at the common connection point may be output.
  • the D / A converter may include an encoder that converts the output of the adder into a thermometer code, and a current addition circuit that adds current to each bit of the encoder output with equal weighting.
  • the D / A converter may include an encoder that converts the output of the adder into a thermometer code, and a voltage addition circuit that adds a voltage to each bit of the encoder output with equal weighting.
  • test apparatus that supplies a test signal subjected to digital multilevel modulation to a device under test.
  • the test apparatus includes a pattern generator that generates test data including in-phase and quadrature baseband data, and a quadrature amplitude modulator according to any one of the above-described modes that receives the test data and generates a modulated signal.
  • Still another embodiment of the present invention relates to a semiconductor device.
  • the apparatus includes: a functional device having a plurality of input / output ports; and a quadrature amplitude modulator according to any one of the above aspects that digitally modulates data output from the input / output ports of the functional device and outputs the data to the outside.
  • N is a natural number
  • An in-phase carrier signal having a rectangular wave, a trapezoidal wave, or a waveform similar to these, and an orthogonal carrier signal in which the phase of the in-phase carrier signal is shifted by 1 ⁇ 4 period are generated.
  • Digital N-value in-phase baseband data to be transmitted is converted into discrete analog in-phase baseband signals.
  • Digital N-value quadrature baseband data to be transmitted is converted into discrete analog quadrature baseband signals. 4).
  • the analog in-phase baseband signal is multiplied by the in-phase carrier signal to generate an in-phase modulated signal.
  • An analog quadrature baseband signal is multiplied by a quadrature carrier signal to generate a quadrature modulated signal.
  • the in-phase modulated signal and the quadrature modulated signal are combined to generate a modulated signal having a discrete amplitude value.
  • the order of each step is not limited, and can be changed as long as the processing is not hindered.
  • the amplitude of the modulated signal may be discretized to a (2N-1) value.
  • the circuit scale can be suppressed.
  • the corresponding N-value baseband data may be converted into voltage values or current values quantized at equal intervals.
  • the quadrature amplitude modulator according to an aspect of the present invention can be implemented with a logic circuit.
  • FIGS. 4A to 4C are circuit diagrams showing the configuration of the multi-value driver according to the first modification. It is a circuit diagram which shows the structure of the quadrature amplitude modulator which concerns on a 2nd modification. It is a circuit diagram which shows the structure of the quadrature amplitude modulator which concerns on a 3rd modification. It is a time chart which shows operation
  • FIGS. 9A and 9B are diagrams illustrating a configuration example of the 7-value D / A converter of FIG.
  • FIGS. 10A and 10B are diagrams showing another configuration example of the 7-value D / A converter of FIG. It is a block diagram which shows the structure of the test apparatus carrying the quadrature amplitude modulator which concerns on embodiment.
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected in addition to the case where the member A and the member B are physically directly connected. The case where it is indirectly connected through another member that does not affect the state is also included.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • FIG. 1 is a circuit diagram showing a configuration of a transmission system 300 using a quadrature amplitude modulator 100 according to an embodiment.
  • the transmission system 300 includes a quadrature amplitude modulator 100, a transmission channel 102, a baseband data generation unit 104, and a demodulator 200.
  • the quadrature amplitude modulator 100 generates a modulated signal M subjected to multilevel quadrature amplitude modulation, such as 16QAM, 64QAM, and 256QAM, and transmits the modulated signal M to the demodulator 200 via the transmission channel 102.
  • multilevel quadrature amplitude modulation such as 16QAM, 64QAM, and 256QAM
  • N 2 -value quadrature amplitude modulation is performed.
  • the transmission system 300 is used for data transmission between different semiconductor devices as an example. In this case, the baseband data generation unit 104 and the quadrature amplitude modulator 100 are mounted on the transmission-side semiconductor device, and the demodulator 200
  • the baseband data generation unit 104 generates m-bit (m is a natural number) in-phase baseband data and m-bit orthogonal baseband data.
  • N 2 m value.
  • the present invention is also effective for other 64QAM and 256QAM.
  • Each baseband data does not necessarily have a 2 m value, and may be an arbitrary natural number.
  • each IQ baseband component is designed to take an even value, but in the quadrature amplitude modulator 100 according to the embodiment, it may be an odd number, and a symbol is present at the zero point. It may be arranged. Even when the symbol point is arranged at the zero point, linearity (distortion) does not become a problem by outputting through a multi-value driver described later, and the symbol is also extracted on the demodulation side. Is possible.
  • the quadrature amplitude modulator 100 receives the (2 m ) -value in-phase baseband data (B1, B0) and the (2 m ) -value quadrature baseband data (B3, B2), and receives (2 m ) binary values.
  • a modulated signal M subjected to quadrature amplitude modulation is generated.
  • the quadrature amplitude modulator 100 includes oscillators 10i and 10q and a multi-value driver 11 (12i, 12q, 16i, 16q, 18i, 18q, 20).
  • the quadrature amplitude modulator 100 Unlike the conventional quadrature amplitude modulator that uses a sine wave or cosine wave as a carrier signal, the quadrature amplitude modulator 100 according to the embodiment generates a carrier signal having a rectangular wave, a trapezoidal wave, or a waveform similar thereto. Use.
  • the “rectangular wave, trapezoidal wave, or similar waveform” is also understood as a signal having a constant value at the peak and bottom of the period.
  • Each of the oscillators 10i and 10q generates an in-phase carrier signal RecSin having a rectangular wave, a trapezoidal wave, or a similar waveform, and an orthogonal carrier signal RecCos whose phase is shifted by 1 ⁇ 4 period with respect to the in-phase carrier signal RecSin.
  • the multi-value driver 11 executes the following processing. 1.
  • An in-phase modulated signal MI is generated by amplitude-modulating the in-phase carrier signal RecSin with an analog in-phase baseband signal BBI having a discrete voltage level or current level according to the in-phase baseband data (B1, B0).
  • the quadrature modulated signal MQ is generated by amplitude-modulating the quadrature carrier signal RecCos with the analog quadrature baseband signal BBQ having a discrete voltage level or current level corresponding to the quadrature baseband data (B3, B2). Further, the in-phase modulated signal MI and the quadrature modulated signal MQ are combined to generate a modulated signal M having a discrete amplitude value.
  • the frequency (carrier frequency) of the in-phase / quadrature carrier signals RecSin and RecCos may coincide with the frequency (symbol rate) of the baseband data, and the carrier frequency may be an integer multiple of the symbol rate.
  • a rectangular wave, a trapezoidal wave, or a similar waveform is also understood as a signal having a constant value at the peak and bottom of the period.
  • a modulated signal discretized (quantized) in the amplitude direction is generated by using a rectangular wave or a trapezoidal wave instead of a sine wave (cosine wave) as a carrier signal.
  • This quadrature amplitude modulator can be implemented mainly by a logic circuit.
  • the multi-value driver 11 includes D / A converters 12i and 12q, adders 16i and 16q, mixers 18i and 18q, and an adder 20.
  • the D / A converters 12i and 12q convert the baseband data (B1, B0) and (B3, B2) into analog baseband signals BBI and BBQ, respectively.
  • the analog baseband signals BBI and BBQ have voltage values or current values obtained by quantizing corresponding baseband data (B1, B0) and (B3, B2) at equal intervals, respectively.
  • the correspondence relationship between the baseband data and the amplitude of the analog baseband signal is as follows. (B1, B0) BBI (0,0) -1 (0,1) +1 (1,0) -3 (1,1) +3
  • the baseband data (B1, B0) is Hamming coded so that the baseband data differs by 1 bit between adjacent symbols. The same applies to the Q phase side.
  • the adders 16i and 16q shift the corresponding carrier signals RecSin and RecCos to appropriate levels, respectively. Assuming that carrier signals RecSin and RecCos are normalized to a peak level of 1 and a bottom level of 0, adders 16i and 16q shift the carrier signals by 0.5 in the negative direction. Note that the adders 16i and 16q are shown for convenience of analysis and easy understanding, and need not exist as actual circuit blocks.
  • the mixers 18i and 18q respectively multiply the analog baseband signals BBI and BBQ with the corresponding carrier signals RecSin and RecCos. That is, the mixer 18 amplitude-modulates the carrier signal using the baseband signal as a modulation signal.
  • the modulated signals MI and MQ are output from the mixers 18i and 18q, respectively.
  • the adder 20 adds the modulated signal MI on the I-phase side and the modulated signal MQ on the Q-phase side.
  • the modulated signal M generated in this way is expressed by the following mathematical formula.
  • M (1 + 2 ⁇ B1) ⁇ (2 ⁇ B0-1) ⁇ (RecSin ⁇ 0.5) + (1 + 2 ⁇ B3) ⁇ (2 ⁇ B2-1) ⁇ (RecCos ⁇ 0.5) (1) Get.
  • FIG. 2 shows the relationship between each combination of baseband data (B1, B0) and (B3, B2) and the corresponding modulated signal M.
  • the analog baseband signals BBI and BBQ are discretized (quantized) so that the symbol points are equally spaced, and by using a rectangular or trapezoidal carrier signal, the amplitude of the modulated signal M is ( It is discretized to take any value of 3, 2, 1, 0, -1, -2, -3). That is, it can be said that it is suitable for mounting by a digital (logic) circuit rather than an analog high-frequency circuit.
  • FIG. 3 is a time chart showing the operation of the quadrature amplitude modulator 100.
  • the modulated signal M ′ shown at the bottom indicates the waveform of the modulated signal that has propagated through the 90 cm differential strip line. Since the transmission channel 102 acts as a low-pass filter for the modulated signal M, the modulated signal M ′ reaching the demodulator 200 is similar to the 16QAM modulated signal when a sine wave is used as the carrier signal. It turns out that it becomes a waveform. Note that the demodulator 200 can demodulate the modulated signal M with or without a waveform.
  • the demodulator 200 has a general orthogonal demodulator configuration.
  • the demodulator 200 includes an amplifier 202, an oscillator 204, a phase shifter 206, mixers 208i and 208q, low-pass filters 210i and 210q, and A / D converters 212i and 212q.
  • the oscillator 204 generates a reference periodic signal (here, a sine wave signal) sin.
  • the phase shifter 206 shifts the phase of the sine wave signal sin by 90 degrees to generate a periodic signal cos that is orthogonal to the periodic signal sin.
  • the amplifier 202 amplifies the received modulated signal M ′.
  • the mixers 208 i and 208 q multiply the received modulated signal M ′ by the periodic signals sin and cos, respectively, and extract analog baseband components.
  • the low pass filters 210i and 210q remove high frequency components from the outputs of the mixers 208i and 208q, respectively.
  • the A / D converters 212i and 212q perform analog / digital conversion on the outputs of the corresponding low-pass filters 210i and 210q.
  • the baseband data B0 to B3 generated in the quadrature amplitude modulator 100 is demodulated.
  • FIGS. 4A to 4C are circuit diagrams showing the configuration of the multi-value driver 11a according to the first modification.
  • 4A shows the configuration of the multi-value driver 11a
  • FIG. 4B shows the operating state of the switch SW used in the multi-value driver 11a
  • FIG. 4C shows the configuration example of the switch SW. .
  • the multi-value driver 11a includes first to tenth switches SW1 to SW10, first to fourth current sources CS1 to CS4, and first and second resistors R1 and R2.
  • each of the switches SW1 to SW10 includes a first terminal T1, a second terminal T2, and a third terminal T3.
  • the switches SW1 to SW10 are connected to the first terminal T1 according to the value of the input control signal. Conduction is established between the third terminal T3 or between the second terminal T2 and the third terminal T3.
  • the switch SW can be constituted by a differential transistor pair of a MOSFET or a bipolar transistor. If the same function can be realized, the switch SW is not limited to those shown in FIG.
  • the multi-value driver 11a uses a so-called Gilbert cell mixer circuit, and is similarly configured on the in-phase component side and the quadrature component side.
  • the conduction state of the first switch SW1 is controlled according to the first bit B1 of the in-phase baseband data.
  • the first current source CS1 is connected to the third terminal T3 of the first switch SW1 and generates a predetermined reference current I.
  • the second switch SW2 has a third terminal T3 connected to the first terminal T1 of the first switch SW1, and the conduction state is controlled according to the second bit B0 of the in-phase baseband data.
  • the third terminal T3 is connected to the second terminal T2 of the first switch SW1, and the conduction state is controlled according to the second bit B0 of the in-phase baseband data.
  • the second current source CS2 is connected to the third terminal T3 of the third switch SW3, and generates a current 2 ⁇ I that is twice the reference current I.
  • the fourth switch SW4 has a third terminal T3 connected to the second terminal T2 of the second switch SW2 and the first terminal T1 of the third switch SW3, and the conduction state is controlled according to the in-phase carrier signal RecSin.
  • the fifth switch SW5 has a third terminal T3 connected to the first terminal T1 of the second switch SW2 and the second terminal T2 of the third switch SW3, and the conduction state is controlled according to the in-phase carrier signal RecSin.
  • the sixth switch SW6 conducts between the first terminal and the third terminal or between the second terminal and the third terminal according to the first bit of the orthogonal baseband data.
  • the orthogonal component side switches SW6 to SW10 and the current sources CS3 and CS4 correspond to the in-phase component side switches SW1 to SW5 and the current sources CS1 and CS2, respectively.
  • the first resistor R1 is applied with a stabilized reference voltage VH at one end, and the other end of the first terminal T1 of the fourth switch SW4, the second terminal T2 of the fifth switch SW5, and the ninth switch SW9.
  • the first terminal T1 is connected to the second terminal T2 of the tenth switch SW10.
  • the second resistor R2 has one end applied with the reference voltage VH, and the other end connected to the second terminal T2 of the fourth switch SW4, the first terminal T1 of the fifth switch SW5, the second terminal T2 of the ninth switch SW9, Connected to the first terminal T1 of the tenth switch SW10.
  • At least one of the signals M and MB generated at the other ends of the first resistor R1 and the second resistor R2 is output as a modulated signal M whose amplitude is discretized. Since the signals M and MB are complementary differential signals, both may be output in a differential format.
  • Each element of the multi-value driver 11a in FIG. 4A can be associated with each element of the multi-value driver 11 in FIG. That is, the current sources CS1 and CS2 and the switches SW1 to SW3 are the D / A converter 12i of FIG. 1, and currents corresponding to the in-phase baseband data B1 and B0 flow through the nodes n3 and n4.
  • the fourth switch SW4 when the configuration of the fourth switch SW4, the fifth switch SW5, the first resistor R1, and the second resistor R2 is added to the portion corresponding to the D / A converter 12i, it is grasped as a double balance type Gilbert cell mixer. Can be associated with the mixer 18i of FIG. The same applies to the orthogonal component side.
  • the voltage drop generated in the first resistor R1 and the second resistor R2 This is the sum of the multiplication result and the multiplication result on the orthogonal component side. That is, the first resistor R1 and the second resistor R2 that are commonly used can be associated with the adder 20 of FIG.
  • the operation of the multi-value driver 11a shown in FIG. Focus on the current on the in-phase component side.
  • a current I flows on the node n2 side and a current 2I flows on the node n1 side.
  • the data B1 is 1, no current flows on the node n2 side, and a current 3I flows on the node n1 side.
  • FIG. 5 is a circuit diagram showing a configuration of a quadrature amplitude modulator 100b according to a second modification.
  • the quadrature amplitude modulator 100b of FIG. 5 is characterized in that it is configured as a pure logic circuit.
  • the quadrature amplitude modulator 100b includes oscillators 10i and 10q and a multilevel driver 11b.
  • the multi-value driver 11b includes several logic gates and a third resistor R3 to a sixth resistor R6.
  • the first negative exclusive OR gate XNOR1 receives the first bit B1 and the second bit B2 of the in-phase baseband data.
  • the first exclusive OR gate XOR1 receives the in-phase carrier signal RecSin with the output of the first negative exclusive OR gate XNOR1.
  • the second exclusive OR gate XOR2 receives the second bit B0 of the in-phase baseband data and the in-phase carrier signal RecSin.
  • the second negative exclusive OR gate XNOR2 receives the first bit B3 and the second bit B2 of the orthogonal baseband data.
  • the third exclusive OR gate XOR3 receives the output of the second negative exclusive OR gate XNOR2 and the orthogonal carrier signal RecCos.
  • the fourth exclusive OR gate XOR4 receives the second bit B2 of the orthogonal baseband data and the orthogonal carrier signal RecCos.
  • the drivers DR1 to DR4 apply voltages AB0 to AB3 corresponding to the outputs of the corresponding exclusive OR gates XOR1 to XOR4 to the corresponding one ends of the third resistor R3 to the sixth resistor R6, respectively.
  • Each of the voltages AB0 to AB3 takes a binary value of low level (0 volt) or high level (A volt). Therefore, the driver DR can be composed of a CMOS buffer.
  • the drivers DR1 to DR4 are not necessary.
  • the resistance values of the fourth resistor R4 and the sixth resistor R6 are equal, and the resistance values of the third resistor R3 and the fifth resistor R5 are twice that of the fourth resistor R4 and the sixth resistor R6.
  • the other ends of the third resistor R3 to the sixth resistor R6 are connected in common, and the voltage generated at the common connection point is output as the modulated signal M whose amplitude is discretized.
  • Equation (3.4) A / 2 ⁇ A / 12 ⁇ ⁇ (2 ⁇ RecSin ⁇ 1) ⁇ (2 ⁇ B1 + 1) ⁇ (2 ⁇ B0-1) + (2 ⁇ RecCos ⁇ 1) ⁇ (2 ⁇ B3 + 1) ⁇ (2 ⁇ B2-1) ⁇ (3.4)
  • Equation (3.4) includes an offset term and has an inverted sign, but is understood to be essentially equivalent to Equation (1). That is, according to the quadrature amplitude modulator 100b of FIG. 5, a discretized 16QAM signal can be generated in the same manner as the quadrature amplitude modulator 100 of FIG.
  • the quadrature amplitude modulator 100b in FIG. 5 first performs the multiplication of the baseband data and the carrier signal. Thereafter, a process corresponding to digital / analog conversion is performed by adding the multiplication results.
  • the components of the quadrature amplitude modulator 100b in FIG. 5 and the quadrature amplitude modulator 100 in FIG. 1 are associated as follows. That is, paying attention to the in-phase component side, the gates XOR1 and XOR2 in FIG. 5 correspond to the mixer 18i in FIG. The drivers DR1 and DR2 and resistors R3 and R4 in FIG. 5 correspond to the D / A converter 12i in FIG. Further, it can be understood that the resistors R3 to R6 in FIG. 5 correspond to the adder 20 in FIG.
  • FIG. 6 is a circuit diagram showing a configuration of a quadrature amplitude modulator 100c according to the third modification.
  • the quadrature amplitude modulator 100c includes oscillators 10i and 10q and a multilevel driver 11c.
  • the quadrature amplitude modulator 100b of FIG. 5 is a circuit that performs analog addition represented by Expression (3.1).
  • the quadrature amplitude modulator 100c of FIG. 6 is different in that digital addition is performed and then D / A conversion is performed.
  • the multi-value driver 11c includes logic gates XNOR1, XNOR2, XOR1 to XOR4, a digital adder 30, latches L1 to L3, a 7-value D / A converter 32, a linear amplifier 34, and a retiming pulse generator 36.
  • the connection form of the negative exclusive OR gates XNOR1 and XNOR2, the exclusive OR gates XOR1 to XOR4 and the oscillators 10i and 10q is the same as that in FIG.
  • the digital adder 30 adds the output data LB0 to LB3 of the exclusive OR gates XOR1 to XOR4.
  • the latches L1 to L3 latch the data B2 to B0 from the digital adder 30 at the timing of the retiming pulse RET generated by the retiming pulse generator 36.
  • the retiming pulse RET is asserted for each positive edge and negative edge of the in-phase carrier signal RecSin and the quadrature carrier signal RecCos.
  • the retiming pulse RET can be suitably generated by the retiming pulse generator 36 shown in FIG.
  • Retiming pulse generation unit 36 includes logic gates NOT1, NOT2, pulsars P1-P4, delay circuits D1-D4, and gate OR10. Gates NOT1 and NOT2 invert carrier signals RecSin and RecCos. Each of the pulsars P1 to P4 generates a pulse that goes high for a predetermined time from the positive edge of the input signal.
  • Delay circuits D1 to D4 give predetermined delays to the pulses from the corresponding pulsers P1 to P4, respectively.
  • the gate OR10 outputs the logical sum of the delay circuits D1 to D4 as the retiming pulse RET.
  • FIG. 7 is a time chart showing the operation of the retiming pulse generator 36.
  • the 7-value D / A converter 32 converts the 3-bit data B2 to B0 held in the latches L1 to L3 into analog signals.
  • the linear amplifier 34 amplifies the output of the 7-value D / A converter 32 as necessary, and outputs it as a modulated signal M whose amplitude is discretized in seven stages. If the 7-value D / A converter 32 has sufficient load driving capability, the linear amplifier 34 can be omitted.
  • FIG. 8 is a circuit diagram showing a configuration example of the digital adder 30.
  • the digital adder 30 is a so-called ripple carry adder, and includes logic gates XOR5, XOR7, AND1 to AND3, and OR1.
  • the fifth exclusive OR gate XOR5 receives the output LB0 of the first exclusive OR gate XOR1 and the output LB2 of the third exclusive OR gate XOR3.
  • the sixth exclusive OR gate XOR6 receives the output LB1 of the second exclusive OR gate XOR2 and the output LB3 of the fourth exclusive OR gate XOR4.
  • the first AND gate AND1 receives the output LB0 of the first exclusive OR gate XOR1 and the output LB2 of the third exclusive OR gate XOR3.
  • the second AND gate AND2 receives the output LB1 of the second exclusive OR gate XOR2 and the output LB3 of the fourth exclusive OR gate XOR4.
  • the third AND gate AND3 receives the output of the first AND gate AND1 and the output of the sixth exclusive OR gate XOR6.
  • the seventh exclusive OR gate XOR7 receives the output of the first AND gate AND1 and the output of the sixth exclusive OR gate XOR6.
  • the first OR gate OR1 receives the output of the second AND gate AND2 and the output of the third AND gate AND3.
  • the output B0 of the fifth exclusive OR gate XOR5, the output B1 of the seventh exclusive OR gate XOR7, and the output B2 of the first OR gate OR1 are output as addition results.
  • FIGS. 9A and 9B are diagrams showing a configuration example of the 7-value D / A converter 32 of FIG.
  • the 7-value D / A converter 32 in FIG. 9A is a current addition type, and includes switches SW11 to SW13, current sources CS11 to CS13, transistors M1 and M2, and resistors R7 and R8. The operations of the switches SW11 to SW13 are as shown in FIG.
  • the eleventh switch SW11 to the thirteenth switch SW13 are controlled to be conductive according to the first bits B0 to B2 of the output of the digital adder 30, respectively.
  • the seventh resistor R7 and the eighth resistor R8 each have a fixed potential at one end.
  • the first transistor M1 is provided between the other end of the seventh resistor R7 and the commonly connected second terminal (T2) of the switches SW11 to SW13.
  • the second transistor M2 is provided between the other end of the eighth resistor R8 and the commonly connected first terminal (T1) of the switches SW11 to SW13.
  • the current sources CS11 to CS13 supply current to the third terminals (T3) of the switches SW11, SW12, and SW13.
  • the ratio of the current values of the current sources CS11, CS12, CS13 is set to 1: 2: 4.
  • the D / A converter 32 outputs the potentials TX and / TX at the other ends of the seventh resistor R7 and the eighth resistor R8 in a differential format.
  • the 7-value D / A converter 32 in FIG. 9B is a voltage addition type and includes a plurality of resistors R9 to R11 and drivers DR9 to DR11.
  • the drivers DR9 to DR11 generate binary voltages corresponding to the data B2 to B0 from the digital adder 30, respectively.
  • the resistors R9 to R11 are applied with voltages from the corresponding drivers DR9 to DR11 at their respective ends.
  • the other ends of the resistors R9 to R11 are connected in common.
  • the ratio of the resistance values of the resistors R9, R10, R11 is set to 4: 2: 1.
  • the potential at the common connection point of the resistors R9 to R11 is output.
  • FIGS. 10A and 10B are diagrams showing another configuration example of the 7-value D / A converter 32 of FIG.
  • the D / A converter 32 in FIG. 10A adds current with equal weighting to the encoder 40 that converts the outputs B2 to B0 of the digital adder 30 into thermometer codes and the bits b6 to b0 of the encoder 40.
  • Current adding circuit 42 includes a pair of a current source CS and a switch SW for each bit b0 to b6.
  • each level of the quantized modulated signal M can be arbitrarily adjusted independently by individually setting the current value of the current source CS for each bit. It becomes.
  • This configuration is useful when the quadrature amplitude modulator 100c is incorporated in a semiconductor test apparatus as will be described later. This is because the semiconductor test apparatus should supply a signal to the DUT (device under test) under various conditions, but if the amplitude level of the modulated signal M can be arbitrarily adjusted, a flexible test can be realized.
  • the 7-value D / A converter 32 converts the outputs B2 to B0 of the digital adder 30 into thermometer codes and the bits b6 to b0 of the output of the encoder 40 with equal weighting.
  • a voltage addition circuit 44 that performs voltage addition (average).
  • the voltage adding circuit 44 includes a pair of a driver DR and a resistor R for each bit b0 to b6.
  • each driver DR can be adjusted independently, it is equivalent to adjusting the current value of the current source CS in FIG.
  • the quadrature amplitude modulator 100 can be mounted in a transmission unit of a semiconductor device, and can also be used in a test apparatus that tests a semiconductor device capable of receiving a 16QAM signal, as will be described below.
  • FIG. 11 is a block diagram showing a configuration of a test apparatus 400 equipped with the quadrature amplitude modulator 100 according to the embodiment.
  • the test apparatus 400 includes a plurality of I / O terminals 402a, 402b, 402c,... Provided for each I / O port of the DUT.
  • the number of I / O ports is arbitrary, but in the case of a memory or MPU, tens to hundreds or more are provided.
  • Each of the plurality of I / O terminals 402 is connected to a corresponding I / O port of the DUT 410 via a transmission line.
  • the test apparatus 400 includes a plurality of data transmission / reception units 2a, 2b, 2c,... And determination units 8a, 8b, 8c,... Provided for each of the plurality of I / O terminals 402a, 402b, 402c,. Since the plurality of data transmission / reception units 2 and the determination unit 8 have the same configuration, only the configuration of the data transmission / reception unit 2a and the determination unit 8a is shown in detail.
  • Each data transmitter / receiver 2 (1) Using a pattern signal (baseband data) to be supplied to the DUT 410 as a modulation signal, a square wave or trapezoid wave carrier signal (carrier wave) is subjected to multi-level QAM modulation and output to the corresponding I / O port of the DUT 410 Function and (2) a function of receiving a modulated signal output from the DUT 410 and demodulating the modulated signal; Is provided. The demodulated data is compared with the expected value, and the quality of the DUT 410 is determined.
  • baseband data baseband data
  • carrier wave carrier wave
  • the data transmitter / receiver 2 includes a pattern generator 4, a timing generator 6, an output buffer BUF1, an input buffer BUF2, a digital modulator 100, and a digital demodulator 5.
  • the pattern generator 4 generates a test pattern to be supplied to the DUT 410.
  • Each data (also referred to as pattern data) of the test pattern has the number of bits corresponding to the digital modulation / demodulation format used for data transmission between the DUT 410 and the test apparatus 400. For example, in the case of 16QAM, each data is 4 bits, and in the case of 64QAM, it is 6 bits.
  • the timing generator 6 generates a timing signal and outputs it to the digital modulator 100.
  • the timing generator 6 can finely adjust the phase of the timing signal for each cycle of pattern data, for example, in the order of several ps to several ns.
  • the timing generator 6 and the pattern generator 4 can use a known circuit used in a test apparatus used in a conventional system that performs binary transmission.
  • the digital modulator 100 generates a modulated signal that has been subjected to quadrature amplitude modulation (for example, 16QAM) according to the pattern data, and outputs it as a test signal.
  • the test signal is output to the DUT 410 by the output buffer BUF1.
  • the digital modulator 100 is configured using the architecture of the quadrature amplitude modulator 100 described above.
  • the input buffer BUF2 receives the signal under test output from the DUT 410 and outputs it to the digital demodulator 5.
  • the digital demodulator 5 demodulates the modulated signal and extracts digital data.
  • the determination unit 8 a compares the data demodulated by the digital demodulator 5 with the expected value data output from the pattern generator 4.
  • the output buffer BUF1 and the input buffer BUF2 may be configured as bidirectional buffers.
  • test apparatus 400 Since a multi-level QAM signal can be generated on a logic circuit basis, the design becomes easy and the cost is reduced.
  • the quadrature amplitude modulator according to an aspect of the present invention can be used for inter-device communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

 直交振幅変調器100が提供される。発振器10は、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号RecSinと、同相キャリア信号RecSinに対して位相が1/4周期シフトした直交キャリア信号RecCosを生成する。多値ドライバ11は、同相ベースバンドデータ(B1、B0)に応じた離散的な電圧レベルまたは電流レベルを有するアナログ同相ベースバンド信号BBIにより同相キャリア信号RecSinを振幅変調して同相被変調信号MIを生成する。同様に、直交ベースバンドデータ(B3、B2)に応じた離散的な電圧レベルまたは電流レベルを有するアナログ直交ベースバンド信号BBQにより直交キャリア信号RecCosを振幅変調して直交被変調信号MQを生成する。多値ドライバ11は、被変調信号MI、MQを合成し、振幅が離散的な値をとる被変調信号Mを生成する。

Description

直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置
 本発明は、デジタルデータ伝送技術に関する。
 デジタル有線通信は従来、時間分割多重(TDM)方式による2値伝送が主流であり、大容量伝送を行う場合は、パラレル伝送、高速伝送によって実現してきた。パラレル伝送の物理的な限界に直面すると、シリアル伝送つまり、高速インタフェース(I/F)回路による数Gbps~10Gbps以上のデータレートでの高速伝送が行われる。しかしながら、データレートの高速化にも限界があり、伝送線路の高周波損失や反射によるBER(Bit Error Rate)の劣化が問題となる。
 一方、デジタル無線通信方式は、キャリア信号に多ビットの情報をのせて送受信する。つまり、データレートはキャリア周波数に直接的に制限されない。例えば、最も基本的な直交変復調方式であるQAM(Quadrature Amplitude Modulation)伝送方式は4値伝送を一つのチャネルで実現することが出来る。64QAMにいたっては、64値伝送がワンキャリアで実現できる。つまり、キャリア周波数を高めなくてもこのような多値変調方式によって、転送容量を向上させることが出来る。
 このような変復調方式は、無線通信に限らず有線通信でも可能であり、PAM(Pulse Amplitude Modulation)やQPSK(Quadrature Phase Shift Keying)あるいはDQPSK(Differential QPSK)方式として既に適用され始めている。特に、光通信分野においては、1本の光ファイバにどれだけ多くの情報をのせられるかがコスト的にも重要であり、2値TDMからこれらのデジタル変調を利用した伝送へと技術トレンドがシフトしている。近い将来、このようなデジタル多値変復調方式が、メモリやSoC(System On a Chip)をはじめとするデバイス間の有線インタフェースに適用される可能性がある。
米国特許第5,652,552号明細書
 従来の直交振幅変調器は高速なデバイスを用いて構成する必要があったため、設計が容易でなく、あるいは高周波バイポーラプロセスあるいはBi-CMOSプロセスが必要となるため、デバイスの製造コストが高くなるという問題があった。
 本発明はかかる状況に鑑みてなされたものであり、その例示的な目的のひとつは、ロジック回路でインプリメント可能な直交振幅変調器の提供にある。
 本発明のある態様は、同相ベースバンドデータと、直交ベースバンドデータと、を受け、(2N)値直交振幅変調が施された被変調信号を生成する直交振幅変調器に関する。直交振幅変調器は、発振器と多値ドライバを備える。発振器は、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号を生成する。多値ドライバは、同相ベースバンドデータに応じた離散的な電圧レベルまたは電流レベルを有するアナログ同相ベースバンド信号により同相キャリア信号を振幅変調して同相被変調信号を生成し、直交ベースバンドデータに応じた離散的な電圧レベルまたは電流レベルを有するアナログ直交ベースバンド信号により直交キャリア信号を振幅変調して直交被変調信号を生成し、同相被変調信号と直交被変調信号を合成し、振幅が離散的な値をとる被変調信号を生成する。
 「矩形波、台形波もしくはこれらに類する波形」とは、周期のピークおよびボトムにおいて、一定値をとる信号とも解される。この態様では、キャリア信号として、正弦波(余弦波)の代わりに矩形波や台形波を用いることにより、振幅方向に離散化(量子化)された被変調信号が生成される。この直交振幅変調器は、ロジック回路を主体としてインプリメントすることができる。
 アナログ同相ベースバンド信号、アナログ直交ベースバンド信号はそれぞれ、等間隔に量子化された電圧値もしくは電流値を有してもよい。
 このアナログ同相ベースバンド信号、アナログ直交ベースバンド信号がそれぞれ、N値に量子化されている場合、被変調信号は、最小の(2N-1)値に離散化されるため、回路規模を抑制できる。
 本発明の別の態様は、2ビット4値の同相ベースバンドデータと、2ビット4値の直交ベースバンドデータとを受け、16値直交振幅変調を施して被変調信号を生成する直交振幅変調器に関する。この直交振幅変調器は、発振器と、第1スイッチから第10スイッチと、第1から第4電流源および第1、第2抵抗を備える。
 発振器は、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する。
 第1スイッチは、第1、第2、第3端子を含み、同相ベースバンドデータの第1ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第1電流源は、第1スイッチの第3端子に接続され、所定の基準電流を生成する。
 第2スイッチは、第1、第2、第3端子を含み、第3端子が第1スイッチの第1端子と接続され、同相ベースバンドデータの第2ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第3スイッチは、第1、第2、第3端子を含み、第3端子が第1スイッチの第2端子と接続され、同相ベースバンドデータの第2ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第2電流源は、第3スイッチの第3端子に接続され、基準電流の2倍の電流を生成する。
 第4スイッチは、第1、第2、第3端子を含み、第3端子が第2スイッチの第2端子および第3スイッチの第1端子と接続され、同相キャリア信号に応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第5スイッチは、第1、第2、第3端子を含み、第3端子が第2スイッチの第1端子および第3スイッチの第2端子と接続され、同相キャリア信号に応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第6スイッチは、第1、第2、第3端子を含み、直交ベースバンドデータの第1ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第3電流源は、第6スイッチの第3端子に接続され、所定の基準電流を生成する。
 第7スイッチは、第1、第2、第3端子を含み、第3端子が第6スイッチの第1端子と接続され、直交ベースバンドデータの第2ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第8スイッチは、第1、第2、第3端子を含み、第3端子が第6スイッチの第2端子と接続され、直交ベースバンドデータの第2ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第4電流源は、第8スイッチの第3端子に接続され、基準電流の2倍の電流を生成する。
 第9スイッチは、第1、第2、第3端子を含み、第3端子が第7スイッチの第2端子および第8スイッチの第1端子と接続され、直交キャリア信号に応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第10スイッチは、第1、第2、第3端子を含み、第3端子が第7スイッチの第1端子および第8スイッチの第2端子と接続され、直交キャリア信号に応じて、第1端子と第3端子間、または第2端子と前記第3端子間が導通する。
 第1抵抗は、一端に基準電圧が印加され、他端が、第4スイッチの第1端子、第5スイッチの第2端子、第9スイッチの第1端子、第10スイッチの第2端子と接続される。
 第2抵抗は、一端に基準電圧が印加され、他端が、第4スイッチの第2端子、第5スイッチの第1端子、第9スイッチの第2端子、第10スイッチの第1端子と接続される。
 第1、第2抵抗の少なくとも一方の他端に生ずる信号が、振幅が離散化された被変調信号として出力される。
 この態様によれば、離散化された16QAM信号を生成できる。
 本発明の別の態様も、2ビット4値の同相ベースバンドデータと、2ビット4値の直交ベースバンドデータとを受け、16値直交振幅変調を施して被変調信号を生成する直交振幅変調器に関する。直交振幅変調器は、発振器と、第1、第2否定排他的論理和ゲート、第1から第4排他的論理和ゲート、および第3から第6抵抗を備える。
 発振器は、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する。
 第1否定排他的論理和ゲートは、同相ベースバンドデータの第1ビットと第2ビットを受ける。
 第1排他的論理和ゲートは、第1否定排他的論理和ゲートの出力と同相キャリア信号を受ける。
 第2排他的論理和ゲートは、同相ベースバンドデータの第2ビットと同相キャリア信号を受ける。
 第2否定排他的論理和ゲートは、直交ベースバンドデータの第1ビットと第2ビットを受ける。
 第3排他的論理和ゲートは、第2否定排他的論理和ゲートの出力と直交キャリア信号を受ける。
 第4排他的論理和ゲートは、直交ベースバンドデータの第2ビットと直交キャリア信号を受ける。
 第3抵抗は、一端に第1排他的論理和ゲートの出力に応じた電圧が印加される。
 第4抵抗は、一端に第2排他的論理和ゲートの出力に応じた電圧が印加される。
 第5抵抗は、一端に第3排他的論理和ゲートの出力に応じた電圧が印加される。
 第6抵抗は、一端に第4排他的論理和ゲートの出力に応じた電圧が印加される。
 第4、第6抵抗の抵抗値は等しく、第3、第5抵抗の抵抗値は、第4、第6抵抗の2倍である。第3、第4、第5、第6抵抗の他端は共通に接続され、共通接続点に生ずる電圧を、振幅が離散化された被変調信号として出力する。
 本発明の別の態様も、2ビット4値の同相ベースバンドデータと、2ビット4値の直交ベースバンドデータとを受け、16値直交振幅変調を施して被変調信号を生成する直交振幅変調器に関する。直交振幅変調器は、発振器と、第1、第2否定排他的論理和ゲート、第1から第4排他的論理和ゲート、加算器およびD/Aコンバータを備える。
 発振器は、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する。
 第1否定排他的論理和ゲートは、同相ベースバンドデータの第1ビットと第2ビットを受ける。
 第1排他的論理和ゲートは、第1否定排他的論理和ゲートの出力と同相キャリア信号を受ける。
 第2排他的論理和ゲートは、同相ベースバンドデータの第2ビットと同相キャリア信号を受ける。
 第2否定排他的論理和ゲートは、直交ベースバンドデータの第1ビットと第2ビットを受ける。
 第3排他的論理和ゲートは、第2否定排他的論理和ゲートの出力と直交キャリア信号を受ける。
 第4排他的論理和ゲートは、直交ベースバンドデータの第2ビットと直交キャリア信号を受ける。
 加算器は、第1、第2、第3、第4排他的論理和ゲートの出力を加算する。
 D/Aコンバータは、加算器の出力をアナログ信号に変換する。D/Aコンバータの出力信号が、振幅が離散化された前記被変調信号として出力される。
 この直交振幅変調器は、同相キャリア信号、直交キャリア信号のエッジごとにアサートされるタイミングパルスに応じて、加算器の出力をラッチするラッチ回路をさらに備えてもよい。
 加算器は、第1排他的論理和ゲートの出力と第3排他的論理和ゲートの出力を受ける第5排他的論理和ゲートと、第2排他的論理和ゲートの出力と第4排他的論理和ゲートの出力を受ける第6排他的論理和ゲートと、第1排他的論理和ゲートの出力と第3排他的論理和ゲートの出力を受ける第1論理積ゲートと、第2排他的論理和ゲートの出力と第4排他的論理和ゲートの出力を受ける第2論理積ゲートと、第1論理積ゲートの出力と第6排他的論理和ゲートの出力を受ける第3論理積ゲートと、第1論理積ゲートの出力と第6排他的論理和ゲートの出力を受ける第7排他的論理和ゲートと、第2論理積ゲートの出力と第3論理積ゲートの出力を受ける第1論理和ゲートと、を含んでもよい。第5排他的論理和ゲートの出力、第7排他的論理和ゲートの出力、第1論理和ゲートの出力を、加算結果として出力してもよい。
 D/Aコンバータは、第11から第13スイッチ、第7、第8抵抗、第1、第2トランジスタおよび第11、第12、第13電流源を含んでもよい。
 第11スイッチは、第1、第2、第3端子を含み、加算器の出力の第1ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第12スイッチは、第1、第2、第3端子を含み、加算器の出力の第2ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第13スイッチは、第1、第2、第3端子を含み、加算器の出力の第3ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 第7抵抗、第8抵抗は、それぞれの一端の電位が固定される。第1トランジスタは、第7抵抗の他端と、第11、第12、第13スイッチの共通接続された第2端子の間に設けられる。第2トランジスタは、第8抵抗の他端と、第11、第12、第13スイッチの共通接続された第1端子の間に設けられる。第11、第12、第13電流源はそれぞれ、第11、第12、第13スイッチの第3端子に、電流を供給する。第11、第12、第13電流源の電流値の比は、1:2:4であってよい。D/Aコンバータは、第7、第8抵抗それぞれの他端の電位を出力する。
 D/Aコンバータは、一端に前記加算器の出力の第1ビットに応じた電圧が印加される第9抵抗と、一端に前記加算器の出力の第2ビットに応じた電圧が印加される第10抵抗と、一端に前記加算器の出力の第3ビットに応じた電圧が印加される第11抵抗と、を含んでもよい。第9、第10、第11抵抗の抵抗値の比は、4:2:1であってもよく、それぞれの他端は共通に接続され、共通接続点に生ずる電圧が出力されてもよい。
 D/Aコンバータは、加算器の出力をサーモメータコードに変換するエンコーダと、エンコーダの出力の各ビットを、等しい重み付けで電流加算する電流加算回路と、を含んでもよい。
 D/Aコンバータは、加算器の出力をサーモメータコードに変換するエンコーダと、エンコーダの出力の各ビットを、等しい重み付けで電圧加算する電圧加算回路と、を含んでもよい。
 本発明の別の態様は、被試験デバイスにデジタル多値変調された試験信号を供給する試験装置に関する。この試験装置は、同相、直交ベースバンドデータを含む試験データを生成するパターン発生器と、試験データを受け、被変調信号を生成する上述のいずれかの態様の直交振幅変調器と、を備える。
 本発明の更に別の態様は、半導体装置に関する。この装置は、複数の入出力ポートを有する機能デバイスと、機能デバイスの入出力ポートから出力されるデータをデジタル変調し、外部へと出力する上述の何れかの態様の直交振幅変調器と、を備える。
 多値N(Nは自然数)直交振幅変調された信号を生成する直交振幅変調方法であって、以下の処理を行う。
 1. 矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、同相キャリア信号と位相が1/4周期シフトした直交キャリア信号を生成する。
 2. 伝送すべきデジタルN値の同相ベースバンドデータを離散的なアナログ同相ベースバンド信号に変換する。
 3. 伝送すべきデジタルN値の直交ベースバンドデータを離散的なアナログ直交ベースバンド信号に変換する。
 4. アナログ同相ベースバンド信号に同相キャリア信号を乗算し、同相被変調信号を生成する。
 5. アナログ直交ベースバンド信号に直交キャリア信号を乗算し、直交被変調信号を生成する。
 6. 同相被変調信号と直交被変調信号を合成し、振幅が離散的な値をとる被変調信号を生成する。
 各ステップの順序は限定されず、処理に支障を来さない範囲で入れ換えることができる。
 被変調信号の振幅は、(2N-1)値に離散化されてもよい。この場合、回路規模を抑制できる。
 アナログ直交ベースバンド信号、アナログ同相ベースバンド信号に変換するステップはそれぞれ、対応するN値のベースバンドデータを、等間隔に量子化された電圧値もしくは電流値に変換してもよい。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を、方法、装置などの間で変換したものもまた、本発明の態様として有効である。
 本発明のある態様の直交振幅変調器は、ロジック回路でインプリメントできる。
実施の形態に係る直交振幅変調器を利用した伝送システムの構成を示す回路図である。 IQベースバンドデータの組み合わせと、それに対応する被変調信号Mの関係を示す図である。 直交振幅変調器の動作を示すタイムチャートである。 図4(a)~(c)は、第1の変形例に係る多値ドライバの構成を示す回路図である。 第2の変形例に係る直交振幅変調器の構成を示す回路図である。 第3の変形例に係る直交振幅変調器の構成を示す回路図である。 リタイミングパルス発生部の動作を示すタイムチャートである。 デジタル加算器の構成例を示す回路図である。 図9(a)、(b)は、図6の7値D/Aコンバータの構成例を示す図である。 図10(a)、(b)は、図6の7値D/Aコンバータの別の構成例を示す図である。 実施の形態に係る直交振幅変調器を搭載した試験装置の構成を示すブロック図である。
符号の説明
100…直交振幅変調器、102…伝送チャネル、104…ベースバンドデータ生成部、200…復調器、300…伝送システム、400…試験装置、10…発振器、11…多値ドライバ、12…D/Aコンバータ、16…加算器、18…ミキサ、20…加算器、SW1…第1スイッチ、SW2…第2スイッチ、SW3…第3スイッチ、SW4…第4スイッチ、SW5…第5スイッチ、SW6…第6スイッチ、SW7…第7スイッチ、SW8…第8スイッチ、SW9…第9スイッチ、SW10…第10スイッチ、R1…第1抵抗、R2…第2抵抗、CS1…第1電流源、CS2…第2電流源、CS3…第3電流源、CS4…第4電流源、XNOR1…第1否定排他的論理和ゲート、XNOR2…第2否定排他的論理和ゲート、XOR1…第1排他的論理和ゲート、XOR2…第2排他的論理和ゲート、XOR3…第3排他的論理和ゲート、XOR4…第4排他的論理和ゲート、XOR5…第5排他的論理和ゲート、XOR6…第6排他的論理和ゲート、XOR7…第7排他的論理和ゲート、R3…第3抵抗、R4…第4抵抗、R5…第5抵抗、R6…第6抵抗、DR…ドライバ、30…デジタル加算器、32…7値D/Aコンバータ、34…リニアアンプ、36…リタイミングパルス発生部、R7…第7抵抗、R8…第8抵抗。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが部材Bに接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 図1は、実施の形態に係る直交振幅変調器100を利用した伝送システム300の構成を示す回路図である。伝送システム300は、直交振幅変調器100、伝送チャネル102、ベースバンドデータ生成部104、復調器200を備える。直交振幅変調器100は、16QAM、64QAM、256QAMなどの、多値直交振幅変調された被変調信号Mを生成し、伝送チャネル102を介して復調器200へと送信する。ここでは一般化して、N値の直交振幅変調を行うものとする。伝送システム300は、一例として異なる半導体デバイス間のデータ伝送に利用される。この場合、ベースバンドデータ生成部104および直交振幅変調器100は、送信側の半導体デバイスに搭載され、復調器200は受信側の半導体デバイスに搭載される。
 ベースバンドデータ生成部104は、mビット(mは自然数)の同相ベースバンドデータと、mビットの直交ベースバンドデータを生成する。各ベースバンドデータをバイナリ形式のデジタルアナログ変換器を用いてアナログ信号に変換すると、アナログベースバンド信号は、それぞれ、N=2値をとりうる。図1では、m=2の場合が例示されており、各ベースバンドデータは、2ビット(B0,B1)および(B2,B3)と表記され、16値QAMを実行する回路が示されるが、その他の64QAM、256QAMにも本発明は有効である。なお、各ベースバンドデータは、必ずしも2値をとる必要はなく、任意の自然数であってもよい。一般的には、IQのベースバンド成分はそれぞれ、偶数値をとるように信号設計されるが、実施の形態に係る直交振幅変調器100では、奇数であってもかまわず、ゼロ点にシンボルが配置されてもよい。ゼロ点にシンボル点が配置された場合であっても、後述の多値ドライバを介して出力することにより、線形性(歪み)が問題となることはなく、復調側においてもシンボルを抽出することが可能である。
 直交振幅変調器100は、(2)値の同相ベースバンドデータ(B1,B0)と、(2)値の直交ベースバンドデータ(B3,B2)と、を受け、(2値直交振幅変調が施された被変調信号Mを生成する。直交振幅変調器100は、発振器10i、10qと多値ドライバ11(12i、12q、16i、16q、18i、18q、20)を備える。
 従来の直交振幅変調器がキャリア信号として正弦波、余弦波を利用していたのと異なり、実施の形態に係る直交振幅変調器100は、矩形波、台形波もしくはこれらに類する波形のキャリア信号を利用する。「矩形波、台形波もしくはこれらに類する波形」とは、周期のピークおよびボトムにおいて、一定値をとる信号とも解される。
 発振器10i、10qはそれぞれ、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号RecSinと、同相キャリア信号RecSinに対して位相が1/4周期シフトした直交キャリア信号RecCosを生成する。
 多値ドライバ11は、以下の処理を実行する。
 1. 同相ベースバンドデータ(B1,B0)に応じた離散的な電圧レベルまたは電流レベルを有するアナログ同相ベースバンド信号BBIにより同相キャリア信号RecSinを振幅変調して同相被変調信号MIを生成する。また、直交ベースバンドデータ(B3,B2)に応じた離散的な電圧レベルまたは電流レベルを有するアナログ直交ベースバンド信号BBQにより直交キャリア信号RecCosを振幅変調して直交被変調信号MQを生成する。さらに同相被変調信号MIと直交被変調信号MQを合成し、振幅が離散的な値をとる被変調信号Mを生成する。
 同相・直交キャリア信号RecSin、RecCosの周波数(キャリア周波数)と、ベースバンドデータの周波数(シンボルレート)は、一致してもよいし、キャリア周波数はシンボルレートの整数倍であってもよい。
 「矩形波、台形波もしくはこれらに類する波形」とは、周期のピークおよびボトムにおいて、一定値をとる信号とも解される。この態様では、キャリア信号として、正弦波(余弦波)の代わりに矩形波や台形波を用いることにより、振幅方向に離散化(量子化)された被変調信号が生成される。この直交振幅変調器は、ロジック回路を主体としてインプリメントすることができる。
 多値ドライバ11は、D/Aコンバータ12i、12q、加算器16i、16q、ミキサ18i、18q、加算器20を備える。
 D/Aコンバータ12i、12qはそれぞれ、ベースバンドデータ(B1,B0)、(B3、B2)をアナログベースバンド信号BBI、BBQに変換する。アナログベースバンド信号BBI、BBQはそれぞれ、対応するベースバンドデータ(B1,B0)、(B3、B2)を、等間隔に量子化された電圧値もしくは電流値を有する。ベースバンドデータとアナログベースバンド信号の振幅の対応関係は以下の通りである。
 (B1,B0)  BBI
  (0,0)   -1
  (0,1)   +1
  (1,0)   -3
  (1,1)   +3
 この場合、後述するように、最終的に得られる被変調信号Mは、(2N-1)=(2×2-1)値に離散化され、これは最小値となるため、回路規模を抑制できる。なおベースバンドデータ(B1,B0)は、隣接するシンボル同士で、ベースバンドデータが1ビットだけ異なるようにハミング符号化されている。Q相側についても同様である。
 加算器16i、16qはそれぞれ、対応するキャリア信号RecSin、RecCosを適切なレベルにシフトさせる。キャリア信号RecSin、RecCosがピークレベルが1、ボトムレベルが0に正規化されていると仮定すれば、加算器16i、16qは、キャリア信号を負方向に0.5シフトさせる。なお、加算器16i、16qは以下の解析の便宜と理解の容易のために示されたものであり、現実の回路ブロックとして存在する必要はない。
 ミキサ18i、18qはそれぞれ、アナログベースバンド信号BBI、BBQを、対応するキャリア信号RecSin、RecCosと乗算する。すなわちミキサ18は、ベースバンド信号を変調信号として、キャリア信号を振幅変調する。ミキサ18i、18qからはそれぞれ、被変調信号MI、MQが出力される。
 加算器20は、I相側の被変調信号MIと、Q相側の被変調信号MQを加算する。このようにして生成される被変調信号Mは、以下の数式で表現される。
 M=MI+MQ
 MI=BBI×(RecSin-0.5)
 MQ=BBQ×(RecCos-0.5)
 BBI=(1+2×B1)×(2×B0-1)
 BBQ=(1+2×B3)×(2×B2-1)
 以上の式を整理すれば、
 M=(1+2×B1)×(2×B0-1)×(RecSin-0.5)
   +(1+2×B3)×(2×B2-1)×(RecCos-0.5)  …(1)
を得る。
 図2は、各ベースバンドデータ(B1,B0)、(B3,B2)の組み合わせと、それに対応する被変調信号Mの関係を示す。上述したように、シンボル点が等間隔となるようにアナログベースバンド信号BBI、BBQを離散化(量子化)し、矩形もしくは台形のキャリア信号を用いることにより、被変調信号Mの振幅は、(3,2,1,0,-1,-2,-3)のいずれかの値をとるように離散化される。つまり、アナログ高周波回路よりもむしろ、デジタル(ロジック)回路による実装に適しているといえる。
 図3は、直交振幅変調器100の動作を示すタイムチャートである。最下段に示される被変調信号M’は、90cmの差動ストリップラインを伝搬した被変調信号の波形を示す。被変調信号Mに対して、伝送チャネル102はローパスフィルタとして作用するため、復調器200に到達する被変調信号M’は、キャリア信号として正弦波を用いた場合の16QAMの被変調信号と似た波形となることがわかる。なお、復調器200は、波形がなまっていても、なまっていなくても、被変調信号Mを復調できる。
 図1に戻る。復調器200は一般的な直交復調器の構成を有している。復調器200は、アンプ202、発振器204、移相器206、ミキサ208i、208q、ローパスフィルタ210i、210q、A/Dコンバータ212i、212qを含む。発振器204は、基準となる周期信号(ここでは正弦波信号とする)sinを生成する。移相器206は正弦波信号sinの位相を90度シフトし、周期信号sinと直交する周期信号cosを生成する。アンプ202は受信した被変調信号M’を増幅する。ミキサ208i、208qは、受信した被変調信号M’に、周期信号sin、cosをそれぞれ掛け合わせ、アナログのベースバンド成分を抽出する。ローパスフィルタ210i、210qはそれぞれ、ミキサ208i、208qの出力の高周波成分を除去する。A/Dコンバータ212i、212qは、対応するローパスフィルタ210i、210qの出力を、アナログ/デジタル変換する。かくして、直交振幅変調器100において生成されたベースバンドデータB0~B3が復調される。
 続いて、図1の多値ドライバ11(直交振幅変調器100)の変形例を説明する。
 図4(a)~(c)は、第1の変形例に係る多値ドライバ11aの構成を示す回路図である。
 図4(a)は、多値ドライバ11aの構成を、図4(b)は、多値ドライバ11aに使用されるスイッチSWの動作状態を、図4(c)はスイッチSWの構成例を示す。
 多値ドライバ11aは、第1から第10スイッチSW1~SW10と、第1から第4電流源CS1~CS4および第1、第2抵抗R1、R2を備える。
 図4(b)に示すように、各スイッチSW1~SW10は、第1端子T1、第2端子T2、第3端子T3を含み、入力された制御信号の値に応じて、第1端子T1と第3端子T3間、または第2端子T2と第3端子T3間が導通する。図4(c)に示すように、たとえばスイッチSWは、MOSFETあるいはバイポーラトランジスタの差動トランジスタ対で構成可能である。同じ機能が実現できれば、スイッチSWは図4(c)のそれらには限定されない。
 図4(a)に戻る。多値ドライバ11aは、いわゆるギルバートセルミキサ回路を利用しており、同相成分側と直交成分側で同様に構成される。
 第1スイッチSW1は、同相ベースバンドデータの第1ビットB1に応じて、導通状態が制御される。第1電流源CS1は、第1スイッチSW1の第3端子T3に接続され、所定の基準電流Iを生成する。第2スイッチSW2は、第3端子T3が第1スイッチSW1の第1端子T1と接続され、同相ベースバンドデータの第2ビットB0に応じて、導通状態が制御される。
 第3スイッチSW3は、第3端子T3が第1スイッチSW1の第2端子T2と接続され、同相ベースバンドデータの第2ビットB0に応じて、導通状態が制御される。第2電流源CS2は、第3スイッチSW3の第3端子T3に接続され、基準電流Iの2倍の電流2×Iを生成する。
 第4スイッチSW4は、第3端子T3が第2スイッチSW2の第2端子T2および第3スイッチSW3の第1端子T1と接続され、同相キャリア信号RecSinに応じて、導通状態が制御される。
 第5スイッチSW5は、第3端子T3が第2スイッチSW2の第1端子T1および第3スイッチSW3の第2端子T2と接続され、同相キャリア信号RecSinに応じて、導通状態が制御される。第6スイッチSW6は、直交ベースバンドデータの第1ビットに応じて、第1端子と第3端子間、または第2端子と第3端子間が導通する。
 直交成分側のスイッチSW6~SW10、電流源CS3、CS4はそれぞれ、同相成分側のスイッチSW1~SW5、電流源CS1、CS2と対応している。
 第1抵抗R1は、その一端に、安定化された基準電圧VHが印加され、その他端が、第4スイッチSW4の第1端子T1、第5スイッチSW5の第2端子T2、第9スイッチSW9の第1端子T1、第10スイッチSW10の第2端子T2と接続される。
 第2抵抗R2は、その一端に基準電圧VHが印加され、その他端が、第4スイッチSW4の第2端子T2、第5スイッチSW5の第1端子T1、第9スイッチSW9の第2端子T2、第10スイッチSW10の第1端子T1と接続される。
 第1抵抗R1、第2抵抗R2の他端に生ずる信号M、MBの少なくとも一方が、振幅が離散化された被変調信号Mとして出力される。信号M、MBは相補的な差動信号であるから、差動形式にて両方を出力してもよい。
 図4(a)の多値ドライバ11aの各要素は、図1の多値ドライバ11の各要素と対応づけることができる。すなわち、電流源CS1、CS2およびスイッチSW1~SW3が、図1のD/Aコンバータ12iであり、ノードn3、n4には、同相ベースバンドデータB1、B0に応じた電流が流れる。
 また、D/Aコンバータ12iに相当する部分に、第4スイッチSW4、第5スイッチSW5および第1抵抗R1、第2抵抗R2の構成が加わると、ダブルバランス型のギルバートセルミキサとして把握されるため、図1のミキサ18iと対応づけることができる。直交成分側についても同様である。
 同相成分側と直交成分側のギルバートセルミキサは、負荷である第1抵抗R1、第2抵抗R2が共通であるため、第1抵抗R1、第2抵抗R2に生ずる電圧降下は、同相成分側の乗算結果と、直交成分側の乗算結果の和となる。すなわち、共通利用される第1抵抗R1、第2抵抗R2は、図1の加算器20と対応づけることができる。
 図4(a)の多値ドライバ11aの動作は以下の通りである。
 同相成分側の電流に着目する。データB1が0のとき、ノードn2側に電流Iが、ノードn1側に電流2Iが流れる。データB1が1のとき、ノードn2側に電流は流れず、ノードn1側には電流3Iが流れる。
 この関係を式で表すと、
 i(n1)=I×(2+B1)
 i(n2)=I×(1-B1)
 他のノードn3、n4、MI、MIBに流れる電流は、
 i(n3)=i(n1)×B0+i(n2)×(1-B0)
 i(n4)=i(n1)×(1-B0)+i(n2)×B0
 i(MI)=i(n3)×RecSin+i(n4)×(1-RecSin)
 i(MIB)=i(n3)×(1-RecSin)+i(n4)×RecSin
 ここで差動の電流成分i(MI)-i(MIB)を求めると、
 i(MI)-i(MIB)=
  i(n3)×RecSin+i(n4)×(1-RecSin)
 -{i(n3)×(1-RecSin)+i(n4)×RecSin}
 =I×(2×B1+1)×(2×B0-1)×(2×RecSin-1)
 を得る。同様に、直交成分側についての差動の電流成分i(MQ)-i(MQB)を求めると、
 i(MQ)-i(MQB)=
 =I×(2×B3+1)×(2×B2-1)×(2×RecCos-1)
を得る。
 出力ノードに着目すると、
 i(M)=i(MIB)+i(MQB)
 i(MB)=i(MI)+i(MQ)
 v(M)=VH-R×i(M)
 v(MB)=VH-R×i(MB)
 したがって差動振幅は、
 v(M)-v(MB)=R×{i(MI)+i(MQ)-i(MIB)-i(MQB)}
 =I×R×{(2×B1+1)×(2×B0-1)×(2×RecSin-1)
     +(2×B3+1)×(2×B2-1)×(2×RecCos-1)}  …(2)
を得る。
 式(2)において、I×R=0.5とおけば、式(1)と完全に等価であることから、図4(a)の多値ドライバ11aによれば、離散化された16QAM信号を好適に生成できることがわかる。
 図5は、第2の変形例に係る直交振幅変調器100bの構成を示す回路図である。図5の直交振幅変調器100bは、純粋なロジック回路として構成される点が特徴である。直交振幅変調器100bは、発振器10i、10qと、多値ドライバ11bで構成される。
 多値ドライバ11bは、いくつかの論理ゲートおよび第3抵抗R3~第6抵抗R6を含む。
 第1否定排他的論理和ゲートXNOR1は、同相ベースバンドデータの第1ビットB1と第2ビットB2を受ける。第1排他的論理和ゲートXOR1は、第1否定排他的論理和ゲートXNOR1の出力と同相キャリア信号RecSinを受ける。第2排他的論理和ゲートXOR2は、同相ベースバンドデータの第2ビットB0と同相キャリア信号RecSinを受ける。第2否定排他的論理和ゲートXNOR2は、直交ベースバンドデータの第1ビットB3と第2ビットB2を受ける。第3排他的論理和ゲートXOR3は、第2否定排他的論理和ゲートXNOR2の出力と直交キャリア信号RecCosを受ける。第4排他的論理和ゲートXOR4は、直交ベースバンドデータの第2ビットB2と直交キャリア信号RecCosを受ける。ドライバDR1~DR4はそれぞれ、第3抵抗R3~第6抵抗R6の対応する一端に、対応する排他的論理和ゲートXOR1~XOR4の出力に応じた電圧AB0~AB3を印加する。電圧AB0~AB3はそれぞれ、ローレベル(0ボルト)またはハイレベル(Aボルト)の2値をとる。したがってドライバDRはCMOSバッファで構成できる。排他的論理和ゲートXOR1~XOR4が十分な駆動能力を有する場合、ドライバDR1~DR4は不要である。第4抵抗R4、第6抵抗R6の抵抗値は等しく、第3抵抗R3、第5抵抗R5の抵抗値は、第4抵抗R4、第6抵抗R6の2倍である。第3抵抗R3~第6抵抗R6の他端は共通に接続され、共通接続点に生ずる電圧が、振幅が離散化された被変調信号Mとして出力される。
 図5の直交振幅変調器100bによって、図1の直交振幅変調器100と等価的な処理が実現される理由は、以下の考察から明らかになる。
 被変調信号Mは、
 M=A/6×(LB0+2×LB1+LB2+2×LB3)  …(3.1)
 XORゲートの入出力関係から、
 LB0=KB0×(1-RecSin)+(1-KB0)×RecSin
    =KB0×(1-2×RecSin)+RecSin
 LB1=KB1×(1-RecSin)+(1-KB1)×RecSin
    =KB1×(1-2×RecSin)+RecSin
 XNORゲートの入出力関係から、
 KB0=1-B1×(1-B0)-B0×(1-B1)
    =1-B0-B1×(1-2×B0)
 KB1=B0
 以上をまとめると、同相成分側において、
 LB0+2×LB1
 =KB0×(1-2×RecSin)+2×KB1×(1-2×RecSin)+3×RecSin
 =(1-2×RecSin)×(-B1×(1-2×B0)+1+B0)+3×RecSin
 =(1-2×RecSin)×(-0.5×(2×B1+1)×(1-2×B0)+3/2)+3×RecSin
 =-0.5×(1-2×RecSin)×(2×B1+1)×(1-2×B0)+3/2   …(3.2)
を得る。
 同様に、直交成分側において、式(3.3)を得る。
 LB2+2×LB3=-0.5×(1-2×RecCos)×(2×B3+1)×(1-2×B2)+3/2   …(3.3)
 式(3.2)、(3.3)を式(3.1)に代入すると、式(3.4)を得る。
 M=A/2-A/12×{(2×RecSin-1)×(2×B1+1)×(2×B0-1)+(2×RecCos-1)×(2×B3+1)×(2×B2-1)}   …(3.4)
 式(3.4)は、オフセット項を含んだり、符号が反転しているが、本質的には式(1)と等価であることが理解される。つまり図5の直交振幅変調器100bによれば、図1の直交振幅変調器100と同様に、離散化された16QAM信号を生成できる。
 図5の直交振幅変調器100bは、ベースバンドデータとキャリア信号の乗算を先に実行する。その後、乗算結果を足し合わせることにより、デジタル/アナログ変換に相当する処理を行う。
 図5の直交振幅変調器100bと図1の直交振幅変調器100の構成要素は以下のように対応づけられる。すなわち同相成分側に着目すると、図5のゲートXOR1、XOR2は、図1のミキサ18iに対応する。図5のドライバDR1、DR2、抵抗R3、R4は、図1のD/Aコンバータ12iに対応する。また、図5の抵抗R3~R6は、図1の加算器20に対応すると把握できる。
 なお、被変調信号Mが発生する出力ノードに、特性インピーダンスZ0の伝送線路が接続される場合、R=3×Z0とすることによりインピーダンス整合をとることができ、好ましい。
 図6は、第3の変形例に係る直交振幅変調器100cの構成を示す回路図である。直交振幅変調器100cは、発振器10i、10q、多値ドライバ11cを含む。
 図5の直交振幅変調器100bは、式(3.1)で表されるアナログ的な加算を実行する回路であった。これに対して、図6の直交振幅変調器100cは、デジタル的な加算を行い、その後にD/A変換する点で異なっている。
 多値ドライバ11cは、論理ゲートXNOR1、XNOR2、XOR1~XOR4、デジタル加算器30、ラッチL1~L3、7値D/Aコンバータ32、リニアアンプ34、リタイミングパルス生成部36を含む。
 否定排他的論理和ゲートXNOR1、XNOR2、排他的論理和ゲートXOR1~XOR4および発振器10i、10qの接続形態は図5のそれと同様である。
 デジタル加算器30は、排他的論理和ゲートXOR1~XOR4の出力データLB0~LB3を加算する。ラッチL1~L3は、リタイミングパルス発生部36により生成されるリタイミングパルスRETのタイミングで、デジタル加算器30からのデータB2~B0をラッチする。リタイミングパルスRETは、同相キャリア信号RecSin、直交キャリア信号RecCosのポジティブエッジおよびネガティブエッジごとにアサートされる。
 たとえばリタイミングパルスRETは、図6のリタイミングパルス発生部36により好適に生成できる。リタイミングパルス発生部36は、論理ゲートNOT1、NOT2、パルサーP1~P4、遅延回路D1~D4およびゲートOR10を含む。
 ゲートNOT1、NOT2は、キャリア信号RecSin、RecCosを反転する。パルサーP1~P4はそれぞれ、入力された信号のポジティブエッジから所定時間、ハイレベルとなるパルスを生成する。
 遅延回路D1~D4はそれぞれ、対応するパルサーP1~P4からのパルスに、所定の遅延を与える。ゲートOR10は、遅延回路D1~D4の論理和をリタイミングパルスRETとして出力する。図7は、リタイミングパルス発生部36の動作を示すタイムチャートである。
 図6に戻る。7値D/Aコンバータ32は、ラッチL1~L3に保持される3ビットのデータB2~B0をアナログ信号に変換する。リニアアンプ34は、7値D/Aコンバータ32の出力を必要に応じて増幅し、振幅が7段階に離散化された被変調信号Mとして出力する。なお、7値D/Aコンバータ32が十分な負荷駆動能力を有する場合、リニアアンプ34は省略することができる。
 図8は、デジタル加算器30の構成例を示す回路図である。デジタル加算器30は、いわゆるリプルキャリーアダーであり、論理ゲートXOR5、XOR7、AND1~AND3、OR1を含む。
 第5排他的論理和ゲートXOR5は、第1排他的論理和ゲートXOR1の出力LB0と第3排他的論理和ゲートXOR3の出力LB2を受ける。第6排他的論理和ゲートXOR6は、第2排他的論理和ゲートXOR2の出力LB1と第4排他的論理和ゲートXOR4の出力LB3を受ける。第1論理積ゲートAND1は、第1排他的論理和ゲートXOR1の出力LB0と第3排他的論理和ゲートXOR3の出力LB2を受ける。第2論理積ゲートAND2は、第2排他的論理和ゲートXOR2の出力LB1と第4排他的論理和ゲートXOR4の出力LB3を受ける。第3論理積ゲートAND3は、第1論理積ゲートAND1の出力と第6排他的論理和ゲートXOR6の出力を受ける。第7排他的論理和ゲートXOR7は、第1論理積ゲートAND1の出力と第6排他的論理和ゲートXOR6の出力を受ける。第1論理和ゲートOR1は、第2論理積ゲートAND2の出力と第3論理積ゲートAND3の出力を受ける。第5排他的論理和ゲートXOR5の出力B0、第7排他的論理和ゲートXOR7の出力B1、第1論理和ゲートOR1の出力B2が、加算結果として出力される。
 図9(a)、(b)は、図6の7値D/Aコンバータ32の構成例を示す図である。図9(a)の7値D/Aコンバータ32は電流加算型であり、スイッチSW11~SW13、電流源CS11~CS13、トランジスタM1、M2、抵抗R7、R8を備える。各スイッチSW11~SW13の動作は、図4(b)に示す通りである。
 第11スイッチSW11~第13スイッチSW13はそれぞれ、デジタル加算器30の出力の第1ビットB0~B2に応じて導通状態が制御される。
 第7抵抗R7、第8抵抗R8は、それぞれの一端の電位が固定される。第1トランジスタM1は、第7抵抗R7の他端と、スイッチSW11~SW13の共通接続された第2端子(T2)の間に設けられる。第2トランジスタM2は、第8抵抗R8の他端と、スイッチSW11~SW13の共通接続された第1端子(T1)の間に設けられる。電流源CS11~CS13は、スイッチSW11、SW12、SW13それぞれの第3端子(T3)に、電流を供給する。電流源CS11、CS12、CS13の電流値の比は、1:2:4に設定される。D/Aコンバータ32は、第7抵抗R7、第8抵抗R8それぞれの他端の電位TX、/TXを差動形式で出力する。
 図9(b)の7値D/Aコンバータ32は、電圧加算型であり、複数の抵抗R9~R11、ドライバDR9~DR11を備える。ドライバDR9~DR11はそれぞれ、デジタル加算器30からのデータB2~B0に応じた2値の電圧を生成する。抵抗R9~R11はそれぞれの一端には、対応するドライバDR9~DR11からの電圧が印加される。抵抗R9~R11の他端は共通に接続されている。抵抗R9、R10、R11の抵抗値の比は、4:2:1に設定される。抵抗R9~R11の共通接続点の電位が出力される。
 図10(a)、(b)は、図6の7値D/Aコンバータ32の別の構成例を示す図である。
 図10(a)のD/Aコンバータ32は、デジタル加算器30の出力B2~B0をサーモメータコードに変換するエンコーダ40と、エンコーダ40の出力b6~b0の各ビットを、等しい重み付けで電流加算する電流加算回路42と、を含む。電流加算回路42は、各ビットb0~b6ごとの電流源CSとスイッチSWのペアを備える。
 この7値D/Aコンバータ32によれば、ビットごとの電流源CSの電流値を個別に設定することにより、量子化された被変調信号Mの各レベルを、任意独立に調整することが可能となる。この構成は、後述のように直交振幅変調器100cを半導体試験装置に組み込む場合に有用である。なぜなら半導体試験装置は、DUT(被試験デバイス)に対して、さまざまな条件で信号を供給すべきところ、被変調信号Mの振幅レベルを任意に調整できれば、柔軟な試験が実現できるからである。
 図10(b)の7値D/Aコンバータ32は、デジタル加算器30の出力B2~B0をサーモメータコードに変換するエンコーダ40と、エンコーダ40の出力の各ビットb6~b0を、等しい重み付けで電圧加算(平均)する電圧加算回路44と、を含んでもよい。電圧加算回路44は、各ビットb0~b6ごとのドライバDRおよび抵抗Rのペアを備える。
 なお、各ドライバDRの振幅レベルを独立に調節可能とすれば、図10(a)の電流源CSの電流値を調整することと等価となる。
 続いて、実施の形態に係る直交振幅変調器100の好適なアプリケーションを説明する。直交振幅変調器100は、半導体デバイスの送信部に搭載できるほか、以下で説明するように、16QAM信号を受信可能な半導体デバイスを試験する試験装置にも利用できる。
 図11は、実施の形態に係る直交振幅変調器100を搭載した試験装置400の構成を示すブロック図である。試験装置400は、DUTのI/Oポートごとに設けられた複数のI/O端子402a、402b、402c、…を備える。I/Oポートの個数は任意であるが、メモリやMPUの場合、数十~百個以上設けられる。複数のI/O端子402はそれぞれ、DUT410の対応するI/Oポートと伝送路を介して接続されている。
 試験装置400は、複数のI/O端子402a、402b、402c、…ごとに設けられた複数のデータ送受信部2a、2b、2c…および判定部8a、8b、8c、…を備える。複数のデータ送受信部2および判定部8は同一の構成であるため、データ送受信部2aおよび判定部8aの構成のみが詳細に示される。
 各データ送受信部2は、
 (1)DUT410に供給すべきパターンデータ(ベースバンドデータ)を変調信号として、矩形波もしくは台形波のキャリア信号(搬送波)を多値QAM変調し、DUT410の対応するI/Oポートへと出力する機能と、
 (2)DUT410から出力される被変調信号を受け、これを復調する機能と、
 を備える。復調されたデータは、期待値と比較され、DUT410の良否が判定される。
 データ送受信部2は、パターン発生器4、タイミング発生器6、出力バッファBUF1、入力バッファBUF2、デジタル変調器100、デジタル復調器5を備える。
 パターン発生器4は、DUT410に対して供給すべき試験パターンを生成する。試験パターンの各データ(パターンデータともいう)は、DUT410と試験装置400の間のデータ伝送に使用されるデジタル変復調のフォーマットに応じたビット数を有している。たとえば16QAMの場合、各データは4ビットであり、64QAMの場合6ビットである。
 タイミング発生器6は、タイミング信号を生成し、デジタル変調器100へと出力する。タイミング発生器6は、パターンデータのサイクルごとにタイミング信号の位相を細かく、たとえば数ps~数nsのオーダーで調節可能である。タイミング発生器6およびパターン発生器4は、従来の2値伝送を行うシステムに使用される試験装置に使用される公知の回路を利用することができる。
 デジタル変調器100は、パターンデータに応じて、直交振幅変調(たとえば16QAM)された被変調信号を生成し、試験信号として出力する。試験信号は、出力バッファBUF1によってDUT410へと出力される。このデジタル変調器100は、上述した直交振幅変調器100のアーキテクチャを利用して構成される。
 入力バッファBUF2はDUT410から出力される被試験信号を受け、デジタル復調器5へと出力する。デジタル復調器5は被変調信号を復調し、デジタルのデータを抽出する。判定部8aは、デジタル復調器5により復調されたデータを、パターン発生器4から出力される期待値データと比較する。出力バッファBUF1および入力バッファBUF2は、双方向バッファとして構成されてもよい。
 以上が試験装置400の構成である。この試験装置400によれば、多値QAM信号をロジック回路ベースで生成できるため、設計が容易となり、また低コスト化に資することとなる。
 実施の形態にもとづき本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を離脱しない範囲において、多くの変形例や配置の変更が可能である。
 本発明のある態様の直交振幅変調器は、デバイス間通信に利用できる。

Claims (16)

  1.  同相ベースバンドデータと直交ベースバンドデータと、を受け、直交振幅変調が施された被変調信号を生成する直交振幅変調器であって、
     矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、前記同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号を生成する発振器と、
     前記同相ベースバンドデータに応じた離散的な電圧レベルまたは電流レベルを有するアナログ同相ベースバンド信号により前記同相キャリア信号を振幅変調して同相被変調信号を生成し、前記直交ベースバンドデータに応じた離散的な電圧レベルまたは電流レベルを有するアナログ直交ベースバンド信号により前記直交キャリア信号を振幅変調して直交被変調信号を生成し、前記同相被変調信号と前記直交被変調信号を合成し、振幅が離散的な値をとる被変調信号を生成する多値ドライバと、
     を備えることを特徴とする直交振幅変調器。
  2.  前記アナログ同相ベースバンド信号、前記アナログ直交ベースバンド信号はそれぞれ、等間隔に量子化された電圧値もしくは電流値を有することを特徴とする請求項1に記載の直交振幅変調器。
  3.  2ビット4値の同相ベースバンドデータと、2ビット4値の直交ベースバンドデータとを受け、16値直交振幅変調を施して被変調信号を生成する直交振幅変調器であって、
     矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、前記同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する発振器と、
     第1、第2、第3端子を含み、前記同相ベースバンドデータの第1ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第1スイッチと、
     前記第1スイッチの前記第3端子に接続され、所定の基準電流を生成する第1電流源と、
     第1、第2、第3端子を含み、前記第3端子が前記第1スイッチの前記第1端子と接続され、前記同相ベースバンドデータの第2ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第2スイッチと、
     第1、第2、第3端子を含み、前記第3端子が前記第1スイッチの前記第2端子と接続され、前記同相ベースバンドデータの第2ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第3スイッチと、
     前記第3スイッチの前記第3端子に接続され、前記基準電流の2倍の電流を生成する第2電流源と、
     第1、第2、第3端子を含み、前記第3端子が前記第2スイッチの前記第2端子および前記第3スイッチの前記第1端子と接続され、前記同相キャリア信号に応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第4スイッチと、
     第1、第2、第3端子を含み、前記第3端子が前記第2スイッチの前記第1端子および前記第3スイッチの前記第2端子と接続され、前記同相キャリア信号に応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第5スイッチと、
     第1、第2、第3端子を含み、前記直交ベースバンドデータの第1ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第6スイッチと、
     前記第6スイッチの前記第3端子に接続され、所定の基準電流を生成する第3電流源と、
     第1、第2、第3端子を含み、前記第3端子が前記第6スイッチの前記第1端子と接続され、前記直交ベースバンドデータの第2ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第7スイッチと、
     第1、第2、第3端子を含み、前記第3端子が前記第6スイッチの前記第2端子と接続され、前記直交ベースバンドデータの第2ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第8スイッチと、
     前記第8スイッチの前記第3端子に接続され、前記基準電流の2倍の電流を生成する第4電流源と、
     第1、第2、第3端子を含み、前記第3端子が前記第7スイッチの前記第2端子および前記第8スイッチの前記第1端子と接続され、前記直交キャリア信号に応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第9スイッチと、
     第1、第2、第3端子を含み、前記第3端子が前記第7スイッチの前記第1端子および前記第8スイッチの前記第2端子と接続され、前記直交キャリア信号に応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第10スイッチと、
     一端に基準電圧が印加され、他端が、前記第4スイッチの前記第1端子、前記第5スイッチの前記第2端子、前記第9スイッチの前記第1端子、前記第10スイッチの前記第2端子と接続された第1抵抗と、
     一端に前記基準電圧が印加され、他端が、前記第4スイッチの前記第2端子、前記第5スイッチの前記第1端子、前記第9スイッチの前記第2端子、前記第10スイッチの前記第1端子と接続された第2抵抗と、
     を備え、
     前記第1、第2抵抗の少なくとも一方の前記他端に生ずる信号を、振幅が離散化された前記被変調信号として出力することを特徴とする直交振幅変調器。
  4.  2ビット4値の同相ベースバンドデータと、2ビット4値の直交ベースバンドデータとを受け、16値直交振幅変調を施して被変調信号を生成する直交振幅変調器であって、
     矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、前記同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する発振器と、
     前記同相ベースバンドデータの第1ビットと第2ビットを受ける第1否定排他的論理和ゲートと、
     前記第1否定排他的論理和ゲートの出力と前記同相キャリア信号を受ける第1排他的論理和ゲートと、
     前記同相ベースバンドデータの第2ビットと前記同相キャリア信号を受ける第2排他的論理和ゲートと、
     前記直交ベースバンドデータの第1ビットと第2ビットを受ける第2否定排他的論理和ゲートと、
     前記第2否定排他的論理和ゲートの出力と前記直交キャリア信号を受ける第3排他的論理和ゲートと、
     前記直交ベースバンドデータの第2ビットと前記直交キャリア信号を受ける第4排他的論理和ゲートと、
     一端に前記第1排他的論理和ゲートの出力に応じた電圧が印加される第3抵抗と、
     一端に前記第2排他的論理和ゲートの出力に応じた電圧が印加される第4抵抗と、
     一端に前記第3排他的論理和ゲートの出力に応じた電圧が印加される第5抵抗と、
     一端に前記第4排他的論理和ゲートの出力に応じた電圧が印加される第6抵抗と、
     を備え、前記第4、第6抵抗の抵抗値は等しく、前記第3、第5抵抗の抵抗値は、前記第4、第6抵抗の2倍であり、前記第3、第4、第5、第6抵抗の他端は共通に接続され、共通接続点に生ずる電圧を、振幅が離散化された前記被変調信号として出力することを特徴とする直交振幅変調器。
  5.  2ビット4値の同相ベースバンドデータと、2ビット4値の直交ベースバンドデータとを受け、16値直交振幅変調を施して被変調信号を生成する直交振幅変調器であって、
     矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、前記同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する発振器と、
     前記同相ベースバンドデータの第1ビットと第2ビットを受ける第1否定排他的論理和ゲートと、
     前記第1否定排他的論理和ゲートの出力と前記同相キャリア信号を受ける第1排他的論理和ゲートと、
     前記同相ベースバンドデータの第2ビットと前記同相キャリア信号を受ける第2排他的論理和ゲートと、
     前記直交ベースバンドデータの第1ビットと第2ビットを受ける第2否定排他的論理和ゲートと、
     前記第2否定排他的論理和ゲートの出力と前記直交キャリア信号を受ける第3排他的論理和ゲートと、
     前記直交ベースバンドデータの第2ビットと前記直交キャリア信号を受ける第4排他的論理和ゲートと、
     前記第1、第2、第3、第4排他的論理和ゲートの出力を加算する加算器と、
     前記加算器の出力をアナログ信号に変換するD/Aコンバータと、
     を備え、前記D/Aコンバータの出力信号を、振幅が離散化された前記被変調信号として出力することを特徴とする直交振幅変調器。
  6.  前記加算器の出力を、タイミングパルスに応じてラッチするラッチ回路をさらに備え、前記タイミングパルスは、
     前記同相キャリア信号、前記直交キャリア信号のエッジごとにアサートされることを特徴とする請求項5に記載の直交振幅変調器。
  7.  前記加算器は、
     前記第1排他的論理和ゲートの出力と前記第3排他的論理和ゲートの出力を受ける第5排他的論理和ゲートと、
     前記第2排他的論理和ゲートの出力と前記第4排他的論理和ゲートの出力を受ける第6排他的論理和ゲートと、
     前記第1排他的論理和ゲートの出力と前記第3排他的論理和ゲートの出力を受ける第1論理積ゲートと、
     前記第2排他的論理和ゲートの出力と前記第4排他的論理和ゲートの出力を受ける第2論理積ゲートと、
     前記第1論理積ゲートの出力と前記第6排他的論理和ゲートの出力を受ける第3論理積ゲートと、
     前記第1論理積ゲートの出力と前記第6排他的論理和ゲートの出力を受ける第7排他的論理和ゲートと、
     前記第2論理積ゲートの出力と前記第3論理積ゲートの出力を受ける第1論理和ゲートと、
     を含み、前記第5排他的論理和ゲートの出力、前記第7排他的論理和ゲートの出力、前記第1論理和ゲートの出力を、加算結果として出力することを特徴とする請求項5に記載の直交振幅変調器。
  8.  前記D/Aコンバータは、
     第1、第2、第3端子を含み、前記加算器の出力の第1ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第11スイッチと、
     第1、第2、第3端子を含み、前記加算器の出力の第2ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第12スイッチと、
     第1、第2、第3端子を含み、前記加算器の出力の第3ビットに応じて、前記第1端子と前記第3端子間、または前記第2端子と前記第3端子間が導通する第13スイッチと、
     一端の電位が固定された第7抵抗と、
     一端の電位が固定された第8抵抗と、
     前記第7抵抗の他端と、前記第11、第12、第13スイッチの共通接続された前記第2端子の間に設けられた第1トランジスタと、
     前記第8抵抗の他端と、前記第11、第12、第13スイッチの共通接続された前記第1端子の間に設けられた第2トランジスタと、
     前記第11、第12、第13スイッチそれぞれの前記第3端子に電流を供給する第11、第12、第13電流源と、
     を含み、前記第11、第12、第13電流源の電流値の比は、1:2:4であり、前記第7、第8抵抗それぞれの前記他端の電位を出力することを特徴とする請求項5に記載の直交振幅変調器。
  9.  前記D/Aコンバータは、
     一端に前記加算器の出力の第1ビットに応じた電圧が印加される第9抵抗と、
     一端に前記加算器の出力の第2ビットに応じた電圧が印加される第10抵抗と、
     一端に前記加算器の出力の第3ビットに応じた電圧が印加される第11抵抗と、
     を含み、前記第9、第10、第11抵抗の抵抗値の比は、4:2:1であり、それぞれの他端は共通に接続され、共通接続点に生ずる電圧を出力することを特徴とする請求項5に記載の直交振幅変調器。
  10.  前記D/Aコンバータは、
     前記加算器の出力をサーモメータコードに変換するエンコーダと、
     前記エンコーダの出力の各ビットを、等しい重み付けで電流加算する電流加算回路と、
     を含むことを特徴とする請求項5に記載の直交振幅変調器。
  11.  前記D/Aコンバータは、
     前記加算器の出力をサーモメータコードに変換するエンコーダと、
     前記エンコーダの出力の各ビットを、等しい重み付けで電圧加算する電圧加算回路と、
     を含むことを特徴とする請求項5に記載の直交振幅変調器。
  12.  被試験デバイスにデジタル多値変調された試験信号を供給する試験装置であって、
     同相、直交ベースバンドデータを含む試験データを生成するパターン発生器と、
     前記試験データを受け、被変調信号を生成する請求項1から11のいずれかに記載の直交振幅変調器と、
     を備えることを特徴とする試験装置。
  13.  複数の入出力ポートを有する機能デバイスと、
     前記機能デバイスの前記入出力ポートから出力されるデータをデジタル変調し、外部へと出力する請求項1から11のいずれかに記載の直交振幅変調器と、
     を備えることを特徴とする半導体装置。
  14.  多値N(Nは自然数)直交振幅変調された信号を生成する直交振幅変調方法であって、
     矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、前記同相キャリア信号と位相が1/4周期シフトした直交キャリア信号を生成するステップと、
     伝送すべきデジタルN値の同相ベースバンドデータを離散的なアナログ同相ベースバンド信号に変換するステップと、
     伝送すべきデジタルN値の直交ベースバンドデータを離散的なアナログ直交ベースバンド信号に変換するステップと、
     前記アナログ同相ベースバンド信号に前記同相キャリア信号を乗算し、同相被変調信号を生成するステップと、
     前記アナログ直交ベースバンド信号に前記直交キャリア信号を乗算し、直交被変調信号を生成するステップと、
     前記同相被変調信号と前記直交被変調信号を合成し、振幅が離散的な値をとる被変調信号を生成するステップと、
     を備えることを特徴とする方法。
  15.  前記被変調信号の振幅は、(2N-1)値に離散化されていることを特徴とする請求項14に記載の方法。
  16.  アナログ直交ベースバンド信号、アナログ同相ベースバンド信号に変換するステップはそれぞれ、対応するN値のベースバンドデータを、等間隔に量子化された電圧値もしくは電流値に変換することを特徴とする請求項15に記載の方法。
PCT/JP2008/002829 2008-10-07 2008-10-07 直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置 WO2010041293A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/002829 WO2010041293A1 (ja) 2008-10-07 2008-10-07 直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置
US12/663,689 US8319569B2 (en) 2008-10-07 2008-10-07 Quadrature amplitude modulator and quadrature amplitude modulation method
JP2010532716A JPWO2010041293A1 (ja) 2008-10-07 2008-10-07 直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002829 WO2010041293A1 (ja) 2008-10-07 2008-10-07 直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置

Publications (1)

Publication Number Publication Date
WO2010041293A1 true WO2010041293A1 (ja) 2010-04-15

Family

ID=42100260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002829 WO2010041293A1 (ja) 2008-10-07 2008-10-07 直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置

Country Status (3)

Country Link
US (1) US8319569B2 (ja)
JP (1) JPWO2010041293A1 (ja)
WO (1) WO2010041293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049929A (ja) * 2012-08-31 2014-03-17 Asahi Kasei Electronics Co Ltd 送信器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3057239B1 (en) * 2015-02-16 2024-04-03 IMEC vzw A front-end system for a radio device
US10454588B1 (en) * 2018-04-30 2019-10-22 Futurewei Technologies, Inc. Band-multiplexed passive optical networks (PONs)
US10886612B2 (en) 2018-09-17 2021-01-05 Qualcomm Incorporated Bi-directional active phase shifting
US11316489B2 (en) 2019-08-30 2022-04-26 Qualcomm Incorporated Bidirectional variable gain amplification
US10784636B1 (en) 2019-10-14 2020-09-22 Qualcomm Incorporated Asymmetrical quadrature hybrid coupler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148940A (ja) * 1988-11-29 1990-06-07 Fujitsu Ltd ディジタル信号処理回路
JPH04318729A (ja) * 1991-04-18 1992-11-10 Anritsu Corp 変調装置
JPH06284158A (ja) * 1993-03-26 1994-10-07 Sony Corp 直交位相変調器
JPH0856212A (ja) * 1994-06-08 1996-02-27 Canon Inc 符号分割多重変復調装置
JPH08213846A (ja) * 1995-02-02 1996-08-20 Oki Electric Ind Co Ltd 変調波の歪み補正方法及び送信装置
JPH08508632A (ja) * 1994-01-25 1996-09-10 フィリップス エレクトロニクス エヌ ベー I/q直交位相変調器回路
JPH11313118A (ja) * 1998-04-27 1999-11-09 Matsushita Electric Ind Co Ltd 送受信方法及び送受信装置
JP2004289576A (ja) * 2003-03-24 2004-10-14 Hitachi Kokusai Electric Inc カーテシアン型送信機
JP2008092529A (ja) * 2006-10-05 2008-04-17 Advantest Corp 変調回路、信号発生器、試験装置、及び半導体チップ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421452B2 (ja) * 1994-12-07 2003-06-30 富士通株式会社 非線形歪補償装置
KR0137529B1 (ko) 1995-03-20 1998-07-01 김주용 4상 위상 변조기
US6470055B1 (en) * 1998-08-10 2002-10-22 Kamilo Feher Spectrally efficient FQPSK, FGMSK, and FQAM for enhanced performance CDMA, TDMA, GSM, OFDN, and other systems
EP0998025B1 (en) * 1998-10-30 2004-03-31 SGS-THOMSON MICROELECTRONICS S.r.l. Low noise I-Q Mixer
US6560293B1 (en) * 1999-05-04 2003-05-06 3Com Corporation Apparatus and method for FM remodulation of envelope modulated data signals
US6278741B1 (en) * 1999-10-22 2001-08-21 Wideband Computers, Inc. Timing recovery circuit in QAM modems
US7272271B2 (en) * 2001-09-26 2007-09-18 Celight, Inc. Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148940A (ja) * 1988-11-29 1990-06-07 Fujitsu Ltd ディジタル信号処理回路
JPH04318729A (ja) * 1991-04-18 1992-11-10 Anritsu Corp 変調装置
JPH06284158A (ja) * 1993-03-26 1994-10-07 Sony Corp 直交位相変調器
JPH08508632A (ja) * 1994-01-25 1996-09-10 フィリップス エレクトロニクス エヌ ベー I/q直交位相変調器回路
JPH0856212A (ja) * 1994-06-08 1996-02-27 Canon Inc 符号分割多重変復調装置
JPH08213846A (ja) * 1995-02-02 1996-08-20 Oki Electric Ind Co Ltd 変調波の歪み補正方法及び送信装置
JPH11313118A (ja) * 1998-04-27 1999-11-09 Matsushita Electric Ind Co Ltd 送受信方法及び送受信装置
JP2004289576A (ja) * 2003-03-24 2004-10-14 Hitachi Kokusai Electric Inc カーテシアン型送信機
JP2008092529A (ja) * 2006-10-05 2008-04-17 Advantest Corp 変調回路、信号発生器、試験装置、及び半導体チップ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049929A (ja) * 2012-08-31 2014-03-17 Asahi Kasei Electronics Co Ltd 送信器

Also Published As

Publication number Publication date
US20110074518A1 (en) 2011-03-31
JPWO2010041293A1 (ja) 2012-03-01
US8319569B2 (en) 2012-11-27

Similar Documents

Publication Publication Date Title
TWI417560B (zh) 數位調變訊號的測試裝置以及數位調變器、數位解調器、使用該些裝置的半導體裝置
WO2010046957A1 (ja) 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置
WO2010041293A1 (ja) 直交振幅変調器、変調方法およびそれらを利用した半導体装置および試験装置
JP5298194B2 (ja) 光信号変調方式
US10886879B2 (en) Digital modulator and digital-to-analog conversion techniques associated therewith
EP3041181B1 (en) Driver circuit for signal transmission and control method of driver circuit
CN101057413A (zh) 使用数字至rf转换的rf发射机
JP4717694B2 (ja) 光直交振幅変調回路および光送信器
JP2008167126A (ja) 光ディジタル伝送システムおよび方法
US8754631B2 (en) Test apparatus for digital modulated signal
US7046738B1 (en) 8-PSK transmit filtering using reduced look up tables
TWI408915B (zh) 數位調變訊號的測試裝置與數位調變器、調變方法以及使用上述的半導體裝置
JP5868271B2 (ja) 光送信装置および光送信方法
EP3474470A1 (en) Probabilistic signal shaping and forward error correction using subcarrier multiplexing
KR101243753B1 (ko) 복조 회로 및 복조 방법
CN102014092A (zh) 一种基于级联模式的四进制msk调制方法及装置
US6359936B1 (en) Modulator employing a memory reduction circuit
US11005569B1 (en) Optical transmitter having cascaded modulators
JP5161330B2 (ja) 光直交振幅変調回路および光送信器
US7138882B2 (en) Architecture for universal modulator
Secondini et al. Novel optical modulation scheme for 16-QAM format with quadrant differential encoding
JP3195531B2 (ja) 高速度デジタル・高周波数コンバータ
JP5161329B2 (ja) 光送信器および光直交振幅変調方法
JP2000504528A (ja) 定振幅特性を有する双直交振幅変調(q▲上2▼am)方法及びその装置
JP2023102835A (ja) 光変調装置、光変調プログラム、及び光変調方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12663689

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877242

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532716

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877242

Country of ref document: EP

Kind code of ref document: A1