WO2010035500A1 - 単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにpet装置 - Google Patents

単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにpet装置 Download PDF

Info

Publication number
WO2010035500A1
WO2010035500A1 PCT/JP2009/004939 JP2009004939W WO2010035500A1 WO 2010035500 A1 WO2010035500 A1 WO 2010035500A1 JP 2009004939 W JP2009004939 W JP 2009004939W WO 2010035500 A1 WO2010035500 A1 WO 2010035500A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal
compound
temperature
scintillator material
Prior art date
Application number
PCT/JP2009/004939
Other languages
English (en)
French (fr)
Inventor
奥田裕之
岡本直之
伊藤進朗
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/120,217 priority Critical patent/US8455833B2/en
Priority to EP09815919.7A priority patent/EP2336398A4/en
Priority to CN200980138423.7A priority patent/CN102165107B/zh
Priority to JP2010530745A priority patent/JP5454477B2/ja
Publication of WO2010035500A1 publication Critical patent/WO2010035500A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to a single crystal scintillator material for a positron emission nuclide tomographic imaging apparatus and a method for producing the same.
  • PET positron emission tomography
  • PET scintillator materials need to detect ⁇ -rays, and so far, such as BGO (bismuth germanium oxide), LSO (lutetium silicon oxide), GSO (gadolinium silicon oxide), LYSO (lutetium yttrium silicon oxide), etc.
  • Single crystal scintillator materials have been applied to PET. The characteristics of the scintillator material are evaluated by the amount of luminescence (fluorescence output), the fluorescence decay time, the energy resolution, and the like, but the above-described single crystal material is excellent in the characteristics necessary for application to PET.
  • melt growth methods such as the Czochralski method and the Bridgman method are widely used commercially.
  • Patent Document 1 describes an example of GSO in which Ce (cerium) is activated.
  • Patent Document 2 and Patent Document 3 disclose cerium-activated lutetium borate-based materials. Cerium-activated lutetium borate is expected to be an excellent scintillator material because it has a large light emission amount and a short fluorescence decay time.
  • Patent Document 3 also proposes application of cerium-activated lutetium borate materials to PET, but the cerium-activated lutetium borate materials disclosed in these documents are only powders. As described above, the methods described in Patent Document 2 and Patent Document 3 could not form a single crystal of cerium-activated lutetium borate having a size that can be used for PET.
  • Lutetium borate has a phase transition point (about 1350 ° C.) accompanied by a large volume change in a temperature region lower than the melting point (1650 ° C.). For this reason, when a conventional single crystal growth method that requires heating or melting the starting material to a high temperature is used, volume expansion occurs when passing through the phase transition point during cooling of the melt. There was a problem that the crystals collapsed.
  • Patent Document 4 discloses a method of manufacturing a single crystal material for scintillator by adding any element of Sc, Ga, and In to a lutetium borate-based material to suppress a phase transition of the crystal material. ing. However, the lutetium borate single crystal formed by the method described in Patent Document 4 suffers from characteristic deterioration such as a decrease in density due to an additive element and a decrease in light emission amount.
  • a cerium-activated lutetium borate single crystal material having a calcite-type crystal structure can be obtained by a simple method without adding an element such as Sc. it can.
  • this method there is a possibility that an extremely small amount of a solvent component is mixed in the produced cerium-activated lutetium borate single crystal and the original characteristics cannot be exhibited. For this reason, the inventors have studied to produce a cerium-activated lutetium borate single crystal in a solvent other than lead borate.
  • an object of the present invention is to provide a single crystal scintillator material having a larger light emission amount and an excellent fluorescence decay characteristic, a manufacturing method thereof, a radiation detector, and a PET apparatus.
  • the method for producing a single crystal scintillator material according to the present invention provides a solvent containing at least one selected from the group consisting of Li, Na, K, Rb, and Cs, W and / or Mo, and B and oxygen. mixing a step, a Ce compound and Lu compounds and the solvent, a step of melting the compound by heating to a temperature below 1350 ° C. 800 ° C. or higher, by cooling the compounds melted, the composition formula (Ce x And a step of precipitating and growing a single crystal represented by Lu 1-x ) BO 3 and having a Ce composition ratio x satisfying 0.0001 ⁇ x ⁇ 0.05.
  • the compound forming the solvent, the Ce compound, and the Lu compound are mixed and heated to a temperature of 800 ° C. or higher and 1350 ° C. or lower. It is a process.
  • the Ce composition ratio x satisfies 0.001 ⁇ x ⁇ 0.03.
  • the step of depositing and growing the single crystal is performed by a TSSG method.
  • the molten compound in the step of precipitating and growing the single crystal, is cooled to a temperature of 750 ° C. or higher and lower than 1350 ° C. at a temperature lowering rate of 0.001 ° C./hour or more and 5 ° C./hour or less.
  • the precipitation growth step is performed over 80 hours.
  • Single crystal scintillator material of the present invention are represented by formula (Ce x Lu 1-x) BO 3, comprises a single crystal portion in compositional ratio x of Ce satisfies 0.0001 ⁇ x ⁇ 0.05,
  • the content of Pb in the single crystal part is 50 ppm or less by mass ratio. That is, in the unit mass of 100% of the single crystal part, the Pb content is suppressed to 50 ppm or less by mass ratio.
  • the Ce composition ratio x satisfies 0.001 ⁇ x ⁇ 0.03.
  • the single crystal portion has a calcite type crystal structure.
  • the transmittance at a wavelength of 270 nm of the single crystal part mirror-finished to a thickness of 0.5 mm is 20% or more.
  • the radiation detector of the present invention includes a single crystal scintillator material according to the present invention and a detector that detects light emission from the single crystal scintillator material.
  • the PET apparatus of the present invention is a PET apparatus that includes a plurality of radiation detectors arranged in a ring shape and detects ⁇ rays from a subject, each of the plurality of radiation detectors according to the present invention. It is a radiation detector.
  • the method for producing a single crystal scintillator material according to the present invention provides a solvent containing at least one selected from the group consisting of Li, Na, K, Rb, and Cs, W and / or Mo, and B and oxygen.
  • a solvent containing at least one selected from the group consisting of Li, Na, K, Rb, and Cs, W and / or Mo, and B and oxygen mixing a step, a Ce compound and Lu compound and the solvent, a step of melting the compound by heating to a temperature below 1350 ° C. 800 ° C. or higher, by cooling the compounds melted, the composition formula (Ce x And a step of precipitating and growing a single crystal represented by Lu 1-x ) BO 3 and having a Ce composition ratio x satisfying 0.0001 ⁇ x ⁇ 0.05. More specifically, it is desirable to cool the molten compound and precipitate and grow the single crystal at a temperature lower than the phase transition point from the high-temperature vaterite phase to the calcite phase of ce
  • the solvent used in the production method of the present invention contains one or more alkali metals selected from the group consisting of Li, Na, K, Rb, and Cs, W and / or Mo, and B and oxygen.
  • alkali metals selected from the group consisting of Li, Na, K, Rb, and Cs, W and / or Mo, and B and oxygen.
  • the solvent used in the production method of the present invention contains W and / or Mo as an element that forms a low melting point compound with an alkali metal. From the viewpoint of bringing the density of the solvent close to the density of the single crystal material to be produced, it is desirable to form a low melting point compound between an element having a larger atomic weight and an alkali metal. For this reason, W is more preferably adopted than Mo. However, Mo is also a heavy element of the same genus as W, and its properties are similar to W. Therefore, even if Mo is used together with W or instead of W, the same effect can be expected.
  • This B contained in the solvent is an essential element as a component of the generated single crystal. This B forms a boric acid compound with an alkali metal and becomes a component of the solvent.
  • the typical shape of the single crystal portion after precipitation and crystal growth is generally a flat plate shape, but it does not exclude processing into other shapes.
  • the entire single crystal scintillator material of the present invention is composed of the above “single crystal part”, but a part other than the “single crystal part”, for example, a part that is polycrystallized is a single crystal. It may be included in the scintillator material, or a protective film or the like may be attached to the single crystal scintillator material.
  • Lutetium borate activated with rare earths exhibits scintillation characteristics that absorbs radiation such as X-rays and emits ultraviolet light or visible light.
  • lutetium borate activated with Ce can function as a very excellent scintillator material in that it emits a large amount of light and has a short fluorescence decay time.
  • the composition ratio x in the above composition formula indicates the ratio that Ce is replaced with the Lu site.
  • the composition ratio x is less than 0.0001, a sufficient amount of light emission cannot be obtained because Ce as a light emitting element is small.
  • the composition ratio x exceeds 0.05, the transmittance decreases, and the light emission amount also decreases.
  • more Ce can be substituted as compared with the method disclosed in PCT / JP2008 / 1717, so that the composition ratio x is 0.001 or more, and further 0.003 or more. Can do.
  • the composition ratio x is more preferably 0.03 or less. Therefore, a preferable range of the composition ratio x is 0.001 ⁇ x ⁇ 0.03.
  • Ce is almost uniformly doped in the entire single crystal, and the composition range is satisfied in all regions in the single crystal. Thereby, the whole single crystal can be made into the desired Ce substitution amount, and excellent fluorescence attenuation characteristics can be exhibited as the whole single crystal.
  • the lutetium borate single crystal has a calcite structure at a temperature lower than the phase transition point existing near 1350 ° C., and a vaterite structure at a temperature higher than the phase transition point.
  • a single crystal is precipitated and grown by dissolving and cooling a lutetium borate-based material in a solvent at a temperature of 1350 ° C. or less, a large volume change caused by a phase transition in the cooling process. Does not occur.
  • a calcite-type lutetium borate single crystal can be grown greatly.
  • the single crystal scintillator material of the present invention thus produced exhibits a high transmittance for visible light.
  • the transmittance at the peak of the emission wavelength reaches 50% or more.
  • the peak value of the emission wavelength depends on the composition of the single crystal, the peak of the emission wavelength of the cerium-activated lutetium borate single crystal in the above composition range is in the range of 350 nm to 450 nm.
  • the transmittance of the single crystal scintillator material of the present invention is characterized by being sufficiently high in a short wavelength region of 250 nm to 300 nm.
  • FIG. 1 shows the transmittance (thick line) of a single crystal scintillator material (Example 3) according to the present invention and the transmission of a single crystal scintillator material (Comparative Example 1) produced by the method disclosed in PCT / JP2008 / 1717. It is a graph which shows a rate.
  • the transmittance of the single crystal scintillator material of the present invention takes a minimum value in the vicinity of the wavelength of 340 nm, but realizes a relatively high value in the wavelength region other than the vicinity of the wavelength of 340 nm.
  • the transmittance in the short wavelength region of 250 nm to 300 nm is higher than the transmittance of the wavelength of 340 nm.
  • the transmittance of the single crystal scintillator material produced by the method disclosed in PCT / JP2008 / 1717 monotonously decreases as the wavelength becomes shorter in a short wavelength region of 350 nm or less.
  • Such a decrease in transmittance in the comparative example is caused by the fact that Pb is contained in the single crystal scintillator material.
  • the composition formula is represented by (Ce x Lu 1-x) BO 3, and the composition ratio x of Ce satisfies 0.0001 ⁇ x ⁇ 0.05 Even if it is a case, it may change a lot depending on the content of Pb.
  • the lead content can be reduced to 50 ppm or less by mass ratio. Therefore, a transmittance of 20% or more (preferably 30%) at a wavelength of 270 nm, which is a substantially median value in the wavelength region of 250 nm to 300 nm. Can be realized.
  • the intensity ratio of outgoing light (light emitted from the sample) when the intensity of light incident on the sample is 100 is defined as “transmittance”. Specifically, the measurement is performed as follows.
  • a single crystal scintillator material was cut out parallel to the (001) plane, and then the surface was flattened by mirror polishing, and the surface roughness was adjusted to 0.005 ⁇ m or less and a thickness of 0.5 mm.
  • the magnitude of transmittance is affected not only by absorption inside the sample, but also by reflection at the surface of the sample.
  • the influence of reflection in each sample can be regarded as the same level. Therefore, it is possible to compare the absorption characteristics of the samples with sufficiently high accuracy by the transmittance measured for the sample adjusted as described above.
  • An ultraviolet-visible spectrophotometer is used for the transmittance measurement.
  • the lutetium borate single crystal has a vaterite structure at a temperature higher than the phase transition point existing near 1350 ° C. and a calcite structure at a temperature lower than the phase transition point.
  • the conventional single crystal manufacturing method it is necessary to melt the raw material at a high temperature, and thus it is inevitable that the temperature of the crystal precipitated by cooling the melt passes through this phase transition point in the cooling process. . Therefore, there is a problem that the volume of the precipitated crystal is greatly changed by the phase transition and the crystal collapses, and it is extremely difficult to produce a single crystal of lutetium borate having a phase transition point lower than the melting point. It was.
  • the present inventors have determined that an alkali metal such as Li and W and / or Mo as a metal that forms a low melting point compound with this alkali metal and B and A solvent containing oxygen is used as the main solvent, and the lutetium borate material is dissolved in the solvent at a temperature lower than the phase transition point, and then this solution is gradually cooled to obtain a simple cerium-activated lutetium borate material. It has been found that crystals can be precipitated. According to the present invention, lead other than lead inevitably mixed in the raw material as impurities is not mixed, and therefore a colorless transparent single crystal scintillator material having a lead content of 50 ppm or less can be obtained. .
  • an alkali metal such as Li and W and / or Mo as a metal that forms a low melting point compound with this alkali metal and B and A solvent containing oxygen is used as the main solvent, and the lutetium borate material is dissolved in the solvent at a temperature lower than the phase transition point, and
  • Starting materials (lutetium borate materials and solvents)
  • a mixture of an alkali metal compound selected from Li, Na, K, Rb, and Cs, a W and / or Mo compound, a boron compound, a Ce compound, a Lu compound, and the like at a required ratio is used.
  • alkali metal compound carbonates, bicarbonates, hydroxides and oxides such as Li 2 CO 3 , NaHCO 3 , KOH and Cs 2 O can be used, but carbonates are preferable because of easy handling.
  • Alkali halides such as NaCl, KBr, LiF, and CsI can also be used as the alkali metal compound. Alkali halides may be used alone or in combination with an alkali carbonate or the like. In order to lower the melting point of the compound serving as the solvent, it is desirable to include two or more kinds of alkali metals.
  • WO 3 or MoO 3 can be used.
  • boron compound B 2 O 3 , H 3 BO 3 or the like can be used.
  • Ce compound examples include CeO 2 , Ce (OH) 3 , and Ce 2 O 3. Among them, CeO 2 and Ce 2 O 3 are preferable in that high-purity mass-produced products are in circulation and are easily available. preferable.
  • Lu compound Lu 2 O 3 is preferably used.
  • boron and W and / or Mo are blended in a molar ratio of 10:90 to 80:20 to obtain a solvent. From the viewpoint of precipitating larger crystals, it is preferable that the compounding ratio of boron and W and / or Mo is 30:70 to 60:40.
  • the blending ratio of the alkali metal is preferably 0.5 to 2 mol with respect to 1 mol of W and / or Mo and boron in total.
  • the solvent may be referred to as at least one selected from alkaline earth metal compounds such as BaCO 3 , SrCO 3 , and CaCO 3 (hereinafter referred to as “BaCO 3 etc.”). ) May be included.
  • BaCO 3 or the like is contained in the solvent, it is preferable to blend such that BaCO 3 or the like is 0.1 mol or less with respect to 1 mol of the alkali metal.
  • Each compound is mixed in this solvent in such a ratio that Lu is 0.002 to 0.3 mol with respect to 1 mol of the alkali metal and Ce is 0.0001 to 0.5 mol with respect to 1 mol of Lu. More preferably, each compound is mixed with this solvent in such a ratio that Lu is 0.02 to 0.3 mol with respect to 1 mol of the alkali metal and Ce is 0.0001 to 0.5 mol with respect to 1 mol of Lu.
  • the compound for the solvent is melted, and the Lu compound and the Ce compound are dissolved in the melted solvent.
  • As starting material may be blended so that the above ratio with a previously separately regulated Na 2 WO 4, Li 2 B 2 O 4 or the like.
  • the temperature may be raised to a temperature higher than the holding temperature and then held in the above temperature range. Further, the temperature may be raised in several stages from a relatively high temperature increase rate to a relatively low temperature increase rate.
  • the temperature may be once raised to 1350 ° C. or higher and then held at a temperature lower than 1350 ° C.
  • the molten melt is cooled from the holding temperature (800 ° C. to 1350 ° C.) to a temperature lower than the holding temperature of 750 ° C. to less than 1350 ° C. (Referred to as temperature range), preferably from 0.001 ° C./hour to 5 ° C./hour, and more preferably from 0.003 ° C./hour to 2 ° C./hour.
  • temperature range preferably from 0.001 ° C./hour to 5 ° C./hour, and more preferably from 0.003 ° C./hour to 2 ° C./hour.
  • the temperature may be maintained for 30 minutes or longer within a temperature range of 800 ° C. or higher and lower than 1350 ° C. in order to grow crystals greatly.
  • it is desirable that the first slow cooling temperature region is gradually cooled in several stages from a relatively low cooling rate to a relatively high cooling rate.
  • the temperature of the molten solution After the slow cooling in the first slow cooling temperature region, further until the temperature of the molten solution reaches a temperature of 500 ° C. or higher and 800 ° C. or lower (the temperature range is hereinafter referred to as a second slow cooling temperature region). It may be gradually cooled at a temperature decreasing rate of 01 ° C./hour or more and 30 ° C./hour or less, preferably 0.1 ° C./hour or more and 20 ° C./hour or less. After completion of the slow cooling (after completion of slow cooling in the first slow cooling temperature region or after completion of slow cooling in the first slow cooling temperature region + second slow cooling temperature region) Cooling may be performed at a relatively high temperature decrease rate of time to 300 ° C./hour.
  • Such temperature control is not limited to controlling the entire melt and melt at the same temperature, and it is sufficient that at least a portion where crystals are precipitated is controlled at the temperature.
  • the temperature of the molten solution may be controlled at partially different temperatures. For example, a large crystal can be formed by controlling the portion where the crystal is grown within the above temperature range and controlling the other portion where the crystal is not desired to be precipitated at a higher temperature.
  • the temperature of only the seed material or the like may be controlled instead of the entire melted melt in the crucible.
  • the solidified solvent may adhere to the single crystal in the crucible or the single crystal taken out from the crucible. Since the solvent used in the present invention has high solubility in water, the cerium-activated lutetium borate single crystal can be easily separated and removed from the solvent by immersing the single crystal in water or washing with running water. it can. Before performing this separation, the molten solvent may be poured out by reheating to a temperature of 500 ° C. or higher and 700 ° C. or lower and then washed with water. In the course of cooling to precipitate and grow a single crystal, the temperature of the mixture is kept at a temperature of 500 ° C. or higher and 700 ° C. or lower (for example, 550 ° C.) for several hours (for example, 5 hours), and then taken out and melted. It may be washed out with water.
  • crystal growth method Specific examples of the crystal growth method include a flux method (slow cooling method, temperature difference method), a Bridgman method, and a TSSG (Top Seed Solution Growth) method.
  • a flux method slow cooling method, temperature difference method
  • a Bridgman method a Bridgman method
  • a TSSG Topic Seed Solution Growth
  • a large crystal can be grown, and the grown crystal and the solution can be easily separated.
  • a specific example of crystal growth by the TSSG method will be described with reference to FIG.
  • FIG. 2 shows a crystal growth apparatus using the TSSG method.
  • the apparatus shown in FIG. 2 has an electric furnace 3 whose temperature can be controlled by a heater 2, and a platinum crucible 1 in which a raw material solution 7 is placed on a crucible base 4 in the electric furnace 3.
  • the adjusted raw material is put into the crucible 1 and the heater 2 is heated to melt the raw material.
  • the seed material 6 attached to the tip of the pulling shaft 5 is brought into contact with the raw material solution 7, and the crystal is grown while being held or pulled as it is.
  • the cerium-activated lutetium borate single crystal obtained by the above production method is a colorless and transparent hexagonal plate-like single crystal having a transmittance of 40% or more at an emission wavelength peak, and no contamination of coloring impurities is observed. It has a structure.
  • the emission by X-ray excitation is about 800% or more for a peak wavelength of 365 nm to 410 nm and the same volume of BGO, and 140% for LYSO, which has the largest emission amount in a single crystal for scintillators currently in practical use. It has the above high light emission amount.
  • Another method for producing a single crystal scintillator material according to the present invention comprises a solvent containing at least one selected from the group consisting of Li, Na, K, Rb, and Cs, W and / or Mo, and B and oxygen.
  • a step of preparing, Ce compound and a mixture of Lu compound and the solvent, the single crystal satisfying the composition formula (Ce x Lu 1-x) BO 3 0.0001 ⁇ x ⁇ 0.05 is represented by a high temperature a step of melting the compound phase transition accompanied by significant volume change to calcite phase from vaterite phase by heating at a temperature not occur in the course of cooling, by cooling the compounds melted, the composition formula (Ce x And a step of precipitating and growing a single crystal represented by Lu 1-x ) BO 3 and having a Ce composition ratio x satisfying 0.0001 ⁇ x ⁇ 0.05.
  • the phase transition point is 1350 ° C.
  • the pressure applied from the atmosphere to the molten compound and solvent is changed from the normal pressure, the phase transition temperature shifts from 1350 ° C.
  • the phase transition temperature shifts from 1350 ° C. In these cases, the temperature for precipitation growth is set to a temperature lower than the shifted phase transition point.
  • Example 1 the crystal was grown by the flux method (slow cooling method).
  • a platinum crucible having a diameter of 50 mm and a depth of 60 mm was prepared, Na 2 CO 3 : 15.30 g, Li 2 CO 3 : 5.80 g, WO 3 : 33.50 g, B 2 O 3 : 6.20 g, Lu 2 O 3 : 4.20 g, CeO 2 : 0.02 g was weighed. Then, it mixed with the mortar and filled in the said crucible.
  • the platinum crucible was put in an alumina crucible having a diameter of 60 mm and a depth of 70 mm, and the crystal was grown by the heat pattern shown in FIG.
  • the vertical axis in FIG. 3 is temperature
  • the horizontal axis is time. The description is omitted during the cooling process.
  • the temperature is first raised to 800 ° C. at 200 ° C./Hr, then raised to 1000 ° C. at 100 ° C./Hr, and further up to 1200 ° C. at 50 ° C./Hr. The temperature was raised. After maintaining at 1200 ° C. for 8 hours, the temperature was decreased to 600 ° C. at 5 ° C./Hr, and thereafter the temperature was continuously decreased at 100 ° C./Hr.
  • the solidified material in the crucible was washed with water to remove the solvent component, and the crystal remaining in the crucible was taken out.
  • FIG. 4 is a photograph showing the obtained crystal.
  • the crystal had a LuBO 3 calcite structure. Other phases such as the vaterite structure were not included.
  • crystallization was measured with the electron beam microanalyzer (EPMA), it confirmed that it was 0.1 at% or more. That is, the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 is 0.001 or more, satisfied the relation of 0.0001 ⁇ x ⁇ 0.05.
  • the content of Pb was measured by ICP emission spectroscopic analysis, it was 50 ppm or less by mass ratio.
  • FIG. 5 is a graph showing an X-ray excitation emission spectrum in which the crystal body is caused to emit light by X-ray excitation from a CuK ⁇ radiation source, and the data attached with “Alkaline solvent” is the spectrum of the crystal body of the example. It is.
  • a cerium-activated lutetium borate single crystal X-ray excitation emission spectrum formed by a flux method using lead borate as a solvent described in PCT / JP2008 / 1717 (supplied as “lead borate solvent”) Data) and an X-ray excitation emission spectrum of LYSO (lutetium yttrium silicon oxide single crystal, density 7.1 g / cm 3 ) grown by the CZ method.
  • LYSO lutetium yttrium silicon oxide single crystal, density 7.1 g / cm 3
  • the peak wavelength of light emission was 367 nm.
  • the amount of light emitted from the crystal of the example was about 150% of the amount of light emitted from the cerium-activated lutetium borate single crystal formed using the lead borate solvent, and about 140% of the amount of light emitted from LYSO.
  • Example 2 a crystal was grown by the TSSG method using the apparatus shown in FIG.
  • a platinum crucible 1 having a diameter of 50 mm and a depth of 50 mm is prepared, Na 2 CO 3 : 25.50 g, Li 2 CO 3 : 9.60 g, WO 3 : 55.90 g, B 2 O 3 : 10.30 g, Lu 2 O 3 : 7.10 g and CeO 2 : 0.03 g were weighed, mixed in a mortar, and filled in the crucible.
  • the temperature of the crucible 1 was controlled by a heater 2 disposed around the crucible 1, and crystals were grown with the heat pattern shown in FIG.
  • the vertical axis in FIG. 6 is temperature
  • the horizontal axis is time. The description is omitted during the cooling process.
  • the seed material 6 width 3 mm, width 3 mm, with a temperature of 150 ° C./Hr to 1200 ° C. and held for 2 hours, and then attached to the tip of the pulling shaft 5 rotated at 30 rpm.
  • a lutetium borate crystal having a thickness of 2 mm was dropped from the upper part of the crucible and brought into contact with the solution surface.
  • the temperature was lowered to 1080 ° C. at 0.5 ° C./Hr, and then the pulling shaft 5 was raised to separate the seed material from the solution surface, and then the temperature was continuously lowered at 150 ° C./Hr. .
  • the grown crystal was washed with running water to remove the attached solvent, and the crystal was taken out.
  • FIG. 7 is a photograph showing the obtained crystal.
  • FIG. 7 shows a grid for indicating the size of the crystal.
  • the grid interval (the size of the squares) is 1 mm.
  • this crystal has a size of 5 mm or more on the diagonal.
  • the thickness of this crystal is 0.5 mm or more.
  • the diagonal is the length of the maximum dimension of the crystal, and the thickness is the length of the minimum dimension of the crystal.
  • the crystal had a LuBO 3 calcite structure. Other phases such as the vaterite structure were not included.
  • crystallization was measured with the electron beam microanalyzer (EPMA), it confirmed that it was 0.05 at% or more. That is, the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 are 0.0005, satisfied the relation of 0.0001 ⁇ x ⁇ 0.05.
  • the peak wavelength of the emission was 365 nm.
  • Example 3 a crystal was grown by the TSSG method using the apparatus shown in FIG.
  • a platinum crucible 1 having a diameter of 50 mm and a depth of 50 mm is prepared, Na 2 CO 3 : 19.80 g, Li 2 CO 3 : 13.80 g, WO 3 : 57.70 g, B 2 O 3 : 9.30 g, Lu 2 O 3 : 3.50 g and CeO 2 : 0.03 g were weighed. Then, it mixed with the mortar and filled in the said crucible.
  • the temperature of the crucible 1 was controlled by a heater 2 disposed around the crucible 1, and crystals were grown in a heat pattern shown in FIG.
  • the vertical axis in FIG. 8 is temperature
  • the horizontal axis is time. The description is omitted during the cooling process.
  • the seed material 6 (width 3 mm, width 3 mm, first heated to 1120 ° C. at 150 ° C./Hr and held for 2 hours, and then attached to the tip of the pulling shaft 5 rotated at 30 rpm.
  • a lutetium borate crystal having a thickness of 2 mm was dropped from the upper part of the crucible and brought into contact with the solution surface. After maintaining for 4 hours in that state, the temperature was lowered to 1070 ° C. at 0.5 ° C./Hr, and then the pulling shaft 5 was raised to separate the seed material from the solution surface, and then the temperature was continuously lowered at 150 ° C./Hr. .
  • the grown crystal was washed with running water to remove the attached solvent, and the crystal was taken out.
  • FIG. 9 is a photograph showing the obtained crystal.
  • FIG. 9 shows a grid for indicating the size of the crystal.
  • the grid interval (the size of the squares) is 1 mm.
  • this crystal has a size of 5 mm or more on the diagonal.
  • the thickness of this crystal is 0.5 mm or more.
  • the crystal had a LuBO 3 calcite structure. Other phases such as the vaterite structure were not included.
  • crystallization was measured with the electron beam microanalyzer (EPMA), it confirmed that it was 0.05 at% or more. That is, the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 are 0.0015, satisfied the relation of 0.0001 ⁇ x ⁇ 0.05.
  • content of Pb was measured by ICP emission spectral analysis, it was 50 ppm or less by mass ratio.
  • the peak wavelength of the emission was 365 nm.
  • the obtained crystal was cut out in parallel to the (001) plane and then subjected to a diamond wrap process.
  • the sample was prepared by adjusting the surface roughness to 5 nm or less and the thickness to 0.5 mm.
  • This sample was set in a sample holder having a hole with a diameter of 2 mm, and the transmittance was measured in the wavelength region of 250 to 550 nm with an ultraviolet-visible spectrophotometer (manufactured by JASCO: V-530). The measurement result is shown in FIG. It was confirmed that the transmittance at a wavelength of 270 nm was about 53% and exceeded 20%.
  • Comparative Example 1 the crystal was grown by the flux method (slow cooling method).
  • a platinum crucible having a diameter of 45 mm and a depth of 50 mm was prepared.
  • Na 2 CO 3 : 32.00 g, BaCO 3 : 28.00 g, B 2 O 3 : 10.60 g, Lu 2 O 3 : 4.20 g, CeO 2 : 0.02 g was weighed. Then, it mixed with the mortar and filled in the said crucible.
  • the platinum crucible was put in an alumina crucible having a diameter of 60 mm and a depth of 70 mm, and the crystal was grown by the heat pattern shown in FIG.
  • the solidified material in the crucible was washed with water to dissolve and remove the solvent component, and the powder remaining in the crucible was taken out. As a result of measuring the obtained powder with an X-ray diffractometer, it was confirmed that this powder was not LuBO 3 .
  • Ba was used as a part of the solvent raw material instead of W and / or Mo, so that the intended LuBO 3 single crystal could not be produced.
  • Comparative Example 2 a crystal was grown by the TSSG method using the apparatus shown in FIG.
  • a platinum crucible 1 having a diameter of 40 mm and a depth of 50 mm was prepared, and PbO: 100 g, B 2 O 3 : 18 g, Lu 2 O 3 : 10 g, and CeO 2 : 0.1 g were weighed. Then, it mixed with the mortar and filled in the said crucible.
  • the temperature of the crucible 1 was controlled by a heater 2 disposed around the crucible 1, and crystals were grown with the heat pattern shown in FIG.
  • the vertical axis in FIG. 10 is temperature, and the horizontal axis is time. The description is omitted during the cooling process.
  • the temperature was first raised to 450 ° C. at 210 ° C./Hr, then raised to 1150 ° C. at 200 ° C./Hr and held for 2 hours. Thereafter, the seed material 6 (platinum plate having a width of 5 mm and a thickness of 0.5 mm) attached to the tip of the pulling shaft 5 rotated at 30 rpm was lowered from the upper part of the crucible and brought into contact with the solution surface. In this state, the temperature was further maintained for 6 hours, and the temperature was lowered to 950 ° C. at 1 ° C./Hr. Then, the pulling shaft 5 was raised to separate the platinum plate from the solution surface, and then the temperature was continuously lowered at 150 ° C./Hr.
  • the seed material 6 platinum plate having a width of 5 mm and a thickness of 0.5 mm
  • the crystal had a LuBO 3 calcite structure.
  • crystallization was measured with the electron beam microanalyzer (EPMA), it confirmed that it was 0.05 at% or more in all the area
  • the content of Pb was measured by ICP emission spectroscopic analysis, it was 400 ppm by mass ratio.
  • FIG. 1 shows the result of measuring the transmittance by the same method as in Example 3.
  • the transmittance at a wavelength of 270 nm was about 3%, and it was confirmed that the transmittance decreased on the short wavelength side.
  • Example 4 the crystal was grown by the flux method (slow cooling method).
  • a platinum crucible having a diameter of 50 mm and a depth of 60 mm was prepared.
  • K 2 CO 3 : 13.50 g, Li 2 CO 3 : 14.43 g, WO 3 : 39.41 g, MoO 3 : 3.64 g, B 2 O 3 : 7.30 g, Lu 2 O 3 : 2.85 g, CeO 2 : 0.01 g were weighed. Thereafter, crystal growth was performed in the same manner as in Example 1. As a result, a cerium-activated lutetium borate single crystal having a diagonal size of 5 mm and a thickness of 1 mm could be obtained.
  • the crystal When the same measurement as in Example 3 was performed, the crystal had a calcite structure. Other phases such as the vaterite structure were not included.
  • the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.001, the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and it was confirmed that the transmittance at a wavelength of 270 nm was about 55%.
  • Example 5 the crystal was grown by the flux method (slow cooling method).
  • a platinum crucible having a diameter of 50 mm and a depth of 60 mm was prepared.
  • Na 2 CO 3 : 9.90 g, Li 2 CO 3 : 6.90 g, MoO 3 : 17.92 g, B 2 O 3 : 4.64 g, Lu 2 O 3 : 1.76 g and CeO 2 : 0.02 g were weighed. Thereafter, crystal growth was performed in the same manner as in Example 1. As a result, a cerium-activated lutetium borate single crystal having a diagonal size of 5 mm and a thickness of 1 mm could be obtained. When the same measurement as in Example 3 was performed, the crystal had a calcite structure.
  • composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.003, the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and the transmittance at a wavelength of 270 nm was confirmed to be about 50%.
  • Example 6 the crystal was grown by the flux method (slow cooling method).
  • a platinum crucible having a diameter of 50 mm and a depth of 60 mm was prepared, Na 2 CO 3 : 13.69 g, Cs 2 CO 3 : 28.05 g, WO 3 : 33.27 g, B 2 O 3 : 5.50 g, Lu 2 O 3 : 2.99 g and CeO 2 : 0.01 g were weighed. Thereafter, crystal growth was performed in the same manner as in Example 1. As a result, a cerium-activated lutetium borate single crystal having a diagonal size of 5 mm and a thickness of 1 mm could be obtained.
  • the crystal When the same measurement as in Example 3 was performed, the crystal had a calcite structure. Other phases such as the vaterite structure were not included.
  • the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.0005, and the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and it was confirmed that the transmittance at a wavelength of 270 nm was about 55%.
  • Example 7 the crystal was grown by the TSSG method.
  • a platinum crucible 1 having a diameter of 75 mm and a depth of 75 mm is prepared, Na 2 CO 3 : 184.8 g, Li 2 CO 3 : 128.8 g, WO 3 : 538.9 g, B 2 O 3 : 86.7 g, Lu 2 O 3 : 33.1 g and CeO 2 : 0.1 g were weighed. Then, it mixed with the mortar and filled in the said crucible. The temperature of the crucible 1 was controlled by a heater 2 disposed around the crucible 1, and crystals were grown in a heat pattern shown in FIG. The vertical axis in FIG. 11 is temperature, and the horizontal axis is time. The description is omitted during the cooling process.
  • a crystal growth apparatus using the TSSG method used in this example is shown in FIG.
  • Example 7 for the purpose of stirring the solution, the crucible base 4 ′ was rotated, and the crucible was grown while being normally reversed at 30 rpm, a rotation time of 60 seconds, and a stop interval of 30 seconds. First, the temperature was raised to 1200 ° C. at 150 ° C./Hr and held for 24 hours, and then the temperature was lowered to 1150 ° C. at 10 ° C./Hr.
  • the seed material 6 (5 mm wide, 1 mm thick lutetium borate crystal attached to the tip of the pulling shaft 5 rotated at 30 rpm so that the rotation direction is opposite to that of the crucible ) was lowered from the top of the crucible and brought into contact with the solution surface.
  • the temperature was further maintained for 2 hours, and then the temperature was lowered to 1140 ° C. at 0.02 ° C./Hr.
  • the pulling shaft 5 was raised to separate the crystal from the solution surface, and then the temperature was continuously lowered at 150 ° C./Hr. .
  • the target cerium-activated lutetium borate single crystal grew on the tip of the seed material.
  • FIG. 13 is a photograph showing the crystal obtained in Example 7.
  • the columnar part on the upper right is a seed material, and the other part is a grown crystal.
  • This crystal had a diagonal of 20 mm and a thickness of 1 mm.
  • the grid interval (the size of the squares) is the same as in FIG.
  • the crystal When the same measurement as in Example 3 was performed, the crystal had a calcite structure. Other phases such as the vaterite structure were not included.
  • the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.0005, and the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and the transmittance at a wavelength of 270 nm was confirmed to be about 55%.
  • Example 8 In this example, except that the apparatus of FIG. 12 was used, crystal growth was performed in the same manner as in Example 2. As a result, a cerium-activated lutetium borate single crystal having a diagonal of 20 mm and a thickness of 1.5 mm could be obtained. It was. When the same measurement as in Example 3 was performed, the crystal had a calcite structure. Other phases such as the vaterite structure were not included.
  • the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.001, the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and the transmittance at a wavelength of 270 nm was confirmed to be about 55%.
  • Example 9 In this example, except that the apparatus of FIG. 12 was used, crystal growth was performed in the same manner as in Example 3. As a result, a cerium-activated lutetium borate single crystal having a diagonal of 20 mm and a thickness of 1.5 mm could be obtained. It was. When the same measurement as in Example 3 was performed, the crystal had a calcite structure. Other phases such as the vaterite structure were not included.
  • the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.002, the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and the transmittance at a wavelength of 270 nm was confirmed to be about 55%.
  • Example 10 the crystal was grown by the flux method (slow cooling method).
  • a platinum crucible having a diameter of 50 mm and a depth of 60 mm was prepared.
  • Na 2 CO 3 : 15.84 g, Li 2 CO 3 : 11.04 g, WO 3 : 46.19 g, B 2 O 3 : 7.43 g, Lu 2 O 3 : 2.77 g and CeO 2 : 0.07 g were weighed. In this example, first, the temperature was raised to 1200 ° C. at 200 ° C./Hr, then the temperature was lowered to 800 ° C. at 0.5 ° C./Hr, and then the temperature was continuously lowered at 150 ° C./Hr.
  • the solidified material in the crucible is washed with water to remove the solvent component, and the crystal remaining in the crucible is taken out to obtain a cerium-activated lutetium borate single crystal having a diagonal size of 5 mm and a thickness of 1 mm. I was able to.
  • the crystal had a calcite structure. Other phases such as the vaterite structure were not included.
  • the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.006, the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and the transmittance at a wavelength of 270 nm was confirmed to be about 45%.
  • Example 11 the crystal was grown by the flux method (slow cooling method).
  • a platinum crucible having a diameter of 50 mm and a depth of 60 mm was prepared.
  • Li 2 CO 3 : 23.49 g, WO 3 : 49.14 g, B 2 O 3 : 7.87 g, Lu 2 O 3 : 2.77 g, CeO 2 : 0.01 g was weighed.
  • the temperature was first raised to 1200 ° C. at 200 ° C./Hr, then lowered to 1135 ° C. at 0.5 ° C./Hr, and then the temperature was continuously lowered at 150 ° C./Hr.
  • the solidified material in the crucible is washed with water to remove the solvent component, and the crystal remaining in the crucible is taken out to obtain a cerium-activated lutetium borate single crystal having a diagonal size of 5 mm and a thickness of 1 mm. I was able to.
  • the crystal had a calcite structure. Other phases such as the vaterite structure were not included.
  • the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.001, the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and the transmittance at a wavelength of 270 nm was confirmed to be about 55%.
  • Example 12 the crystal was grown by the flux method (slow cooling method).
  • a platinum crucible having a diameter of 50 mm and a depth of 60 mm was prepared.
  • Na 2 CO 3 : 8.92 g, Li 2 CO 3 : 6.22 g, WO 3 : 39.01 g, B 2 O 3 : 6.64 g, Lu 2 O 3 : 4.46 g, CeO 2 : 0.02 g were weighed.
  • the temperature was first raised to 1200 ° C. at 200 ° C./Hr, then lowered to 1050 ° C. at 0.5 ° C./Hr, and then lowered at 150 ° C./Hr.
  • the solidified material in the crucible is washed with water to remove the solvent component, and the crystal remaining in the crucible is taken out to obtain a cerium-activated lutetium borate single crystal having a diagonal size of 5 mm and a thickness of 1 mm. I was able to.
  • the crystal had a calcite structure. Other phases such as the vaterite structure were not included.
  • the composition ratio x of Ce in the composition formula (Ce x Lu 1-x) BO 3 of this crystal was 0.001, the content of Pb were 50ppm or less in mass ratio.
  • the peak wavelength of light emission was 365 nm, and the transmittance at a wavelength of 270 nm was confirmed to be about 55%.
  • Example 14 shows the transmittance (thick line) of the single crystal scintillator material (Example 4) according to the present invention and the transmittance of the single crystal scintillator material of Comparative Example 1.
  • the measurement method was the same as the measurement method performed when acquiring the data of FIG.
  • the minimum value near the wavelength of 340 nm realizes a higher value than the minimum value of Example 3.
  • the lead content can be reduced to 50 ppm or less by mass ratio. Therefore, a transmittance of 20% or more (preferably 30%) at a wavelength of 270 nm, which is a substantially median value in the wavelength region of 250 nm to 300 nm. Can be realized.
  • FIG. 16 is a perspective view showing a configuration example of a scintillator array according to the present invention.
  • a plurality of bar-shaped scintillator crystals 11 are arranged in a grid (a grid pattern) via a reflector.
  • Each scintillator crystal 11 is a single crystal scintillator material of the present invention.
  • the reflector 12 is made of a material that transmits ⁇ rays but has a high reflectance at the wavelength of light emitted from the scintillator crystal 11.
  • FIG. 17 is a cross-sectional view showing a configuration example of a radiation detector according to the present invention.
  • This radiation detector includes a single crystal scintillator material according to the present invention and a known detector that detects light emission from the single crystal scintillator material.
  • the illustrated radiation detector includes an array of scintillator crystals 11 and a photomultiplier tube 13 shown in FIG. Specifically, the scintillator array and the photomultiplier tube 13 are joined via the optical grease 14 so that the end face of the scintillator crystal 11 and the light receiving side surface of the photomultiplier tube 13 are optically coupled. ing.
  • the scintillator crystal 11 is covered with the reflective material 12 on the side on which the ⁇ rays 15 are incident.
  • FIG. 18 is a diagram showing a configuration example of a PET apparatus according to the present invention.
  • a plurality of radiation detectors are arranged so as to form a ring.
  • Each radiation detector has the configuration shown in FIG.
  • a scintillator crystal 11 covered with a reflective material is arranged on the inner periphery of the ring.
  • Photomultiplier tubes 13 are arranged on the outer periphery of the ring.
  • a subject 16 stands by near the center of the ring. The subject 16 is administered a drug labeled with a radioisotope that emits positrons.
  • a pair of ⁇ rays 15 are generated by positron annihilation at the affected part of the subject 16 and emitted in two directions.
  • the ⁇ -ray 15 is converted into light by the scintillator crystal 11.
  • the light is amplified by the photomultiplier tube 13 and detected by an electric signal output from the photomultiplier tube 13.
  • the cerium-activated lutetium borate single crystal scintillator material obtained by the production method of the present invention has a larger amount of light emission than conventional single crystal materials for scintillators and has excellent scintillator characteristics. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Abstract

 本発明による単結晶シンチレータ材料の製造方法は、Li、Na、K、Rb、Csから選ばれる1種以上と、Wおよび/またはMoと、Bおよび酸素を含有する溶媒にCe化合物およびLu化合物を混合し、800℃以上1350℃以下の温度に加熱して前記化合物を溶融させる工程と、溶融した前記化合物を冷却することにより、組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程とを含む。

Description

単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにPET装置
 本発明は、陽電子放出核種断層撮像装置用単結晶シンチレータ材料およびその製造方法に関する。
 近年、医療分野において、陽電子放出核種断層撮像装置(Positron Emission Tomography:以下、「PET」と称する。)による診断が広く行われるようになり、更に性能の高いPET装置を実現するため、優れたシンチレータ材料の探索が進められている。
 PETのシンチレータ材料はγ線を検出することが必要であり、これまで、BGO(ビスマス ゲルマニウム オキサイド)や、LSO(ルテチウム シリコン オキサイド)、GSO(ガドリニウム シリコン オキサイド)、LYSO(ルテチウム イットリウム シリコン オキサイド)などの単結晶シンチレータ材料がPETに適用されている。シンチレータ材料の特性は、発光量(蛍光出力)、蛍光減衰時間、エネルギー分解能などによって評価されるが、上記の単結晶材料は、PETに適用するのに必要な特性に優れている。これらの単結晶を作製する方法としては、チョクラルスキー法やブリッジマン法などの融液成長法が、商業的に広く用いられている。
 PETを普及させるためには、診断のスループットを向上させることが必要である。そのためには、これまでのシンチレータ材料よりも更に発光量が大きく蛍光減衰時間の短い単結晶シンチレータ材料の開発が必須である。
 特許文献1には、Ce(セリウム)を賦活したGSOの例が記載されている。一方、特許文献2や特許文献3には、セリウム賦活ホウ酸ルテチウム系材料が開示されている。セリウム賦活ホウ酸ルテチウムは、大きい発光量と短い蛍光減衰時間を兼ね備えていることから、優れたシンチレータ材料となることが期待される。特許文献3は、セリウム賦活ホウ酸ルテチウム系材料についてPETへの適用も提案しているが、これらの文献に開示されているセリウム賦活ホウ酸ルテチウム系材料は、粉末に過ぎない。このように、特許文献2および特許文献3に記載されている方法では、PETに使用可能な大きさを有するセリウム賦活ホウ酸ルテチウムの単結晶を形成できなかった。
 ホウ酸ルテチウムは、大きな体積変化を伴う相転移点(約1350℃)が融点(1650℃)より低い温度領域に存在する。このため、出発原料を高温に加熱して溶融または溶解させることが必要な従来の単結晶育成方法を用いると、溶融物の冷却時において、相転移点を通過する際に体積膨張が生じるため、結晶が崩壊してしまうという問題があった。特許文献4には、ホウ酸ルテチウム系材料にSc、Ga、Inのいずれかの元素を添加することにより、結晶材料の相転移を抑制することによってシンチレータ用単結晶材料を製造する方法が開示されている。しかしながら、特許文献4に記載されている方法で形成されたホウ酸ルテチウム系の単結晶には、添加元素による密度の低下や、発光量減少などの特性劣化が生じてしまう。
 これらの課題を解決するため、出願人は、PCT/JP2008/1717号(2008年7月1日出願)において、ホウ酸鉛系の溶媒を用いたフラックス法により作成した、セリウム賦活ホウ酸ルテチウムの単結晶を開示している。
特開2003-300795号公報 特開2005-298678号公報 特開2006-52372号公報 特開2007-224214号公報
 PCT/JP2008/1717号に開示の方法によれば、Scなどの元素を添加することなく、カルサイト型結晶構造を有しているセリウム賦活ホウ酸ルテチウム単結晶材料を簡便な方法で得ることができる。しかしながら、この方法によれば、生成したセリウム賦活ホウ酸ルテチウム単結晶内に極微量の溶媒成分が混入して本来の特性が発揮できなくなってしまう可能性があった。そのため発明者らは、ホウ酸鉛系以外の溶媒でセリウム賦活ホウ酸ルテチウム単結晶を生成することを課題として研究を行った。
 そこで本発明は、従来より大きい発光量と優れた蛍光減衰特性を有する単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにPET装置の提供を目的とする。
 本発明による単結晶シンチレータ材料の製造方法は、Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、Ce化合物およびLu化合物を前記溶媒と混合し、800℃以上1350℃以下の温度に加熱して前記化合物を溶融させる工程と、溶融した前記化合物を冷却することにより、組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程とを含む。
 好ましい実施形態において、前記溶媒を用意する工程および前記化合物を溶融させる工程は、前記溶媒を形成する化合物と、Ce化合物と、Lu化合物とを混合し、800℃以上1350℃以下の温度に加熱する工程である。
 好ましい実施形態において、前記Ceの組成比率xが0.001≦x≦0.03を満足する。
 好ましい実施形態において、前記単結晶を析出成長させる工程は、TSSG法により行う。
 好ましい実施形態において、前記単結晶を析出成長させる工程において、溶融した前記化合物の温度が750℃以上1350℃未満の温度まで0.001℃/時間以上5℃/時間以下の降温速度で冷却する。
 好ましい実施形態において、前記析出成長させる工程は、80時間以上の時間をかけて行う。
 本発明の単結晶シンチレータ材料は、組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶部を有し、前記単結晶部のPbの含有量が質量比率で50ppm以下である。すなわち、この単結晶部の単位質量100%において、Pb含有量が質量比率で50ppm以下に抑えられている。
 好ましい実施形態において、前記Ceの組成比率xが0.001≦x≦0.03を満足する。
 好ましい実施形態において、前記単結晶部はカルサイト型結晶構造を有している。
 好ましい実施形態において、厚さ0.5mmに鏡面加工された前記単結晶部の波長270nmにおける透過率は、20%以上である。
 本発明の放射線検出器は、本発明に係る単結晶シンチレータ材料と、前記単結晶シンチレータ材料からの発光を検出する検出器を備える。
 本発明のPET装置は、リング状に配列された複数の放射線検出器を備え、被検体からのγ線を検出するPET装置であって、前記複数の放射線検出器の各々は、本発明に係る放射線検出器である。
 本発明によれば、着色するような不純物の混入が見られず従来よりも大きい発光量を有する、無色透明の単結晶シンチレータ材料を得ることができる。
本発明による単結晶および比較例の透過率を示すグラフである。 本発明で用いた結晶育成装置を示す図である。 本発明の実施例1における結晶育成のヒートパターンを示すグラフである。 本発明の実施例1で作製された結晶体を示す写真である。 CuKα線源からのX線励起によって実施例の結晶体を発光させた、X線励起発光スペクトルを示す。 本発明の実施例2における結晶育成のヒートパターンを示すグラフである。 本発明の実施例2で作製された結晶体を示す写真である。 本発明の実施例3における結晶育成のヒートパターンを示すグラフである。 本発明の実施例3で作製された結晶体を示す写真である。 本発明の比較例2における結晶育成のヒートパターンを示すグラフである。 本発明の実施例7における結晶育成のヒートパターンを示すグラフである。 本発明で用いた他の結晶育成装置を示す図である。 本発明の実施例7で作製された結晶体を示す写真である。 本発明による単結晶および比較例の透過率を示すグラフである。 本発明の結晶のCeについて、配合比と組成比率xの関係を示すグラフである。 シンチレータアレイの構成例を示す斜視図である。 本発明の放射線検出器の構成例を示す断面図である。 本発明のPET装置の一例を示す断面図である。
 本発明による単結晶シンチレータ材料の製造方法は、Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、Ce化合物およびLu化合物を前記溶媒と混合し、800℃以上1350℃以下の温度に加熱して前記化合物を溶融させる工程と、溶融した前記化合物を冷却することにより、組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程とを含む。より詳しくは、溶融した前記化合物を冷却し、セリウム賦活ホウ酸ルテチウムの高温バテライト相からカルサイト相への相転移点よりも低い温度で前記単結晶を析出成長させることが望ましい。
 本発明の製造方法に用いる溶媒は、Li、Na、K、Rb、Csからなる群から選ばれる1種以上のアルカリ金属と、Wおよび/またはMoと、Bおよび酸素とを含有する。溶媒の融点を下げるため、アルカリ金属は2種以上含むことが望ましく、Li、Naが好適に使用できる。上述のアルカリ金属およびその化合物は、互いに性質が非常に似通っていることが知られており、K、Rb、Csを用いても、Li、Naを用いた場合の効果と同様の効果が期待できる。
 さらに、本発明の製造方法に用いる溶媒は、アルカリ金属との間で低融点の化合物を形成する元素として、Wおよび/またはMoを含有する。溶媒の密度を大きくすることによって、生成する単結晶材料の密度に近づけるという観点から、より原子量の大きな元素とアルカリ金属との間で低融点化合物を形成することが望ましい。このため、MoよりもWが好適に採用される。ただし、Moも、Wと同属の重元素であり、その性質もWに類似しているため、Wとともに、あるいは、Wに代えてMoを使用しても、同様の効果が期待できる。
 溶媒に含まれるBは、生成する単結晶の成分として必須の元素である。このBは、アルカリ金属とホウ酸化合物を形成して溶媒の成分ともなる。
 上記溶媒にCe化合物およびLu化合物などの、単結晶成分となる原料を溶融させた後、徐冷して単結晶を析出させる。
 本発明の製造方法によれば、組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する無色透明の単結晶部を有する単結晶シンチレータ材料を得ることができる。本発明における単結晶部の析出・結晶成長後における典型的な形状は、概略的に平板状であるが、他の形状に加工することを排除しない。
 なお、典型的には、本発明の単結晶シンチレータ材料の全体が上記の「単結晶部」によって構成されるが、「単結晶部」以外の部分、例えば一部多結晶化した部分が単結晶シンチレータ材料に含まれていてもよいし、保護被膜などが単結晶シンチレータ材料に付着していてもよい。
 希土類を賦活したホウ酸ルテチウムはX線などの放射線を吸光して紫外線または可視光線を発するシンチレーション特性を示す。特に、Ceで賦活されたホウ酸ルテチウムは、発光量が大きく、蛍光減衰時間が短いという点で非常に優れたシンチレータ材料として機能することが可能である。
 上記の組成式における組成比率xは、CeがLuサイトに置換する割合を示している。この組成比率xが0.0001未満であると、発光元素であるCeが少ないため十分な発光量が得られない。また、組成比率xが0.05を超えると、透過率が低下してしまい、やはり発光量が減少する。本発明によれば、PCT/JP2008/1717号に開示された方法に比べ、より多くのCeを置換させることができるため、組成比率xを0.001以上、更には0.003以上とすることができる。組成比率xは0.03以下であることがより好ましい。従って、好ましい組成比率xの範囲は、0.001≦x≦0.03である。
 本発明の好ましい実施形態における単結晶シンチレータ材料は、Ceが単結晶全体にほぼ均一にドーピングされており、単結晶内のすべての領域において上記組成範囲を満足する。これにより、単結晶全体を所望のCe置換量とすることができ、単結晶全体として優れた蛍光減衰特性を発揮させることができる。
 ホウ酸ルテチウム単結晶は、1350℃付近に存在する相転移点より低い温度ではカルサイト構造をとり、相転移点よりも高い温度ではバテライト構造をとる。後述するように、本発明では、1350℃以下の温度でホウ酸ルテチウム系材料の溶媒への溶解および冷却を行うことにより単結晶を析出成長させるため、冷却過程における相転移に起因する大きな体積変化が生じない。その結果、カルサイト型構造のホウ酸ルテチウム単結晶を大きく成長させることが可能になる。
 このようにして作製される本発明の単結晶シンチレータ材料は、可視光に対する高い透過率を示す。例えば厚さ2mm以下の単結晶では、発光波長のピークにおける透過率が50%以上に達すると考えられる。発光波長のピーク値は、単結晶の組成にもよるが、上記組成範囲におけるセリウム賦活ホウ酸ルテチウム単結晶の発光波長のピークは350nm~450nmの範囲に存在する。
 また、本発明の単結晶シンチレータ材料の透過率は、250nm~300nmの短波長領域において十分に高いという特徴を有する。図1は、本発明による単結晶シンチレータ材料(実施例3)の透過率(太線)と、PCT/JP2008/1717号に開示された方法によって作製された単結晶シンチレータ材料(比較例1)の透過率を示すグラフである。
 図1からわかるように、本発明の単結晶シンチレータ材料の透過率は、波長340nm付近で極小値を取るが、波長340nm近傍以外の波長領域では相対的に高い値を実現している。また、本発明の単結晶シンチレータ材料では、250nm~300nmの短波長領域における透過率が、波長340nmの透過率よりも高くなっている。
 一方、PCT/JP2008/1717号に開示されている方法によって作製された単結晶シンチレータ材料の透過率は、350nm以下の短波長領域において、波長が短くなるに従って単調に低下している。比較例における、このような透過率の低下は、この単結晶シンチレータ材料にPbが含まれていることに起因している。
 このように単結晶シンチレータ材料の透過率は、その組成式が(CexLu1-x)BO3で表され、かつ、Ceの組成比率xが0.0001≦x≦0.05を満足する場合であっても、Pbの含有量によって大きく変化する場合がある。本発明によれば、鉛含有量を質量比率で50ppm以下に低減することができるため、250nm~300nmの波長領域の略中央値である波長270nmにおいて、20%以上の透過率(好ましくは30%以上)を実現できる。
 なお、本明細書では、サンプルに入射する光の強度を100とした場合における出射光(サンプルから出射される光)の強度比率を「透過率」と定義する。具体的には、次のようにして測定する。
 測定サンプルとしては、単結晶シンチレータ材料を(001)面に対して平行に切り出した後、その表面を鏡面研磨によって平坦化し、表面粗さが0.005μm以下、厚さ0.5mmに調整されたものを用いる。一般的には、透過率の大きさはサンプル内部における吸収のみならず、サンプルの表面における反射によっても影響される。しかし、サンプルの表面粗さを上記程度に調整することにより、各サンプルにおける反射の影響を同程度とみなすことができる。従って、上記のように調整されたサンプルを測定される透過率により、サンプルの持つ吸収特性を十分に高い精度で比較することが可能である。透過率の測定には、紫外可視分光光度計を用いる。
 次に、本発明の単結晶シンチレータ材料の製造方法をさらに詳細に説明する。
 前述の通り、ホウ酸ルテチウム単結晶は、1350℃付近に存在する相転移点よりも高い温度ではバテライト構造をとり、相転移点よりも低い温度ではカルサイト構造をとる。従来の単結晶製造方法では、原材料を高温に溶融することが必要であるため、溶融物の冷却によって析出した結晶体の温度が冷却過程で、この相転移点を通過することが避けられなかった。そのため、析出した結晶体の体積が相転移によって大きく変化し、結晶体が崩壊してしまうという問題があり、融点よりも低い相転移点を有するホウ酸ルテチウムの単結晶の作製は極めて困難であった。
 前述の、PCT/JP2008/1717号に開示される、ホウ酸鉛を溶媒とするフラックス法は、この問題を解決し、従来は困難であったセリウム賦活ホウ酸ルテチウムの単結晶を簡便に生成できる、非常に優れた方法であった。しかしながら、この方法によって作成したセリウム賦活ホウ酸ルテチウムの単結晶は、僅かながら黄色に着色されていた。発明者らの分析によれば、この単結晶には溶媒の成分である鉛が極微量に混入している可能性があり、それによって着色されていると推定される。また、鉛の混入は生成する単結晶の発光量に影響があると考えられる。
 そこで、本発明者らは、フラックス法で用いる溶媒について更なる研究を重ねた結果、Liなどのアルカリ金属と、このアルカリ金属と低融点化合物を形成する金属としてWおよび/またはMoと、Bおよび酸素とを含有する溶媒を主溶媒として用い、ホウ酸ルテチウム系材料を相転移点より低い温度で溶媒に溶解した後、この溶解物を徐冷することにより、セリウム賦活ホウ酸ルテチウム系材料の単結晶を析出させることが可能であることを見出した。本発明によれば、不純物として不可避に原材料に混入する鉛以外の鉛が混入することがないので、鉛の含有量が質量比率で50ppm以下の、無色透明の単結晶シンチレータ材料を得ることができる。
 以下、本発明の単結晶シンチレータ材料の製造方法を具体的に説明する。
 [出発原料(ホウ酸ルテチウム系材料および溶媒)]
 出発原料としては、Li、Na、K、Rb、Csから選ばれるアルカリ金属の化合物、Wおよび/またはMoの化合物、ホウ素化合物、Ce化合物、Lu化合物などを所要の割合で混合したものを用いる。
 アルカリ金属の化合物としては、Li2CO3、NaHCO3、KOHやCs2Oなど炭酸塩、炭酸水素塩、水酸化物や酸化物を用いることができるが、取り扱いの容易さから炭酸塩が好ましい。アルカリ金属の化合物として、NaClやKBr、LiF、CsIなどのアルカリのハロゲン化物を用いることもできる。アルカリのハロゲン化物は単独で用いても良いし、アルカリの炭酸塩などと混合して用いても良い。溶媒となる化合物の融点を下げるために、2種類以上のアルカリ金属を含めることが望ましい。
 Wおよび/またはMoの化合物としては、WO3やMoO3を用いることができる。またホウ素化合物としては、B23、H3BO3などを用いることができる。
 Ce化合物としては、CeO2、Ce(OH)3、Ce23などが挙げられ、その中でも高純度の量産品が流通しており手に入りやすいという点でCeO2、Ce23が好ましい。Lu化合物としては、Lu23が好適に用いられる。
 これらの出発原料を以下の割合で調整する。まず、ホウ素とWおよび/またはMoを、mol比で10:90~80:20となるように配合して溶媒とする。より大きな結晶を析出させるという観点から、ホウ素とWおよび/またはMoの配合比は30:70~60:40となるように配合するのが好ましい。アルカリ金属の配合比は、Wおよび/またはMoとホウ素の合計1molに対し、0.5mol~2molとなるように配合するのが好ましい。
 溶媒には、融点や粘度を調整する目的で、BaCO3、SrCO3、CaCO3などの、アルカリ土類金属の化合物から選ばれる少なくとも1種(以下、「BaCO3など」と称する場合がある。)を含有させてもよい。BaCO3などを溶媒に含有させる場合には、アルカリ金属1molに対してBaCO3などが0.1mol以下となるように配合することが好ましい。
 この溶媒に、Luをアルカリ金属1molに対して0.002~0.3mol、CeをLu1molに対して0.0001~0.5molとなるような比率で各化合物を混合する。より好ましくは、この溶媒に、Luをアルカリ金属1molに対して0.02~0.3mol、CeをLu1molに対して0.0001~0.5molとなるような比率で各化合物を混合する。これらの混合物を加熱していくと、上記溶媒のための化合物が溶融し、Lu化合物およびCe化合物が、溶融した溶媒に溶解する。出発原料として、あらかじめ個別に調整されたNa2WO4、Li224等を用いて上記比率になるように配合しても良い。
 [結晶育成の温度制御]
(1)昇温・温度保持
 上記出発原料を50℃/時間~500℃/時間の昇温速度で800℃以上、ホウ酸ルテチウムの相転移点である1350℃以下の温度に昇温させ、そのまま1時間~12時間温度保持して全体を溶融させる。ホウ酸ルテチウムの融点は1650℃であるが、それより低い上記範囲の温度で溶融した溶媒に溶解するので、冷却工程で結晶の相転移点を通過せずに、カルサイト構造の単結晶を析出させることができる。
 昇温・温度保持工程は、保持温度よりも高い温度までいったん昇温させた後、上記温度範囲で保持してもよい。また、比較的高い昇温速度から比較的低い昇温速度へと、いくつかの段階に分けて昇温させてもよい。
 結晶成長を目的とした保持・冷却(徐冷)が1350℃(相転移温度)以下であれば、一度1350℃以上に温度を上げた後、1350℃未満の温度で保持してもよい。
 Ce化合物およびLu化合物を前記溶媒と混合して1350℃超でホウ酸ルテチウムの沸点以下の温度に昇温すると、500℃以上1350℃以下の温度を通過する際に前記化合物は液相となった溶媒に全て融ける。例えば、いったん1400℃に昇温したとしても、溶融工程自体は昇温の途中で為されることになる。
 (2)冷却
 続いて、上記溶融溶解物を、上記保持温度(800℃以上1350℃以下)から、750℃以上1350℃未満の上記保持温度より低い温度まで(前記温度範囲を以下第1徐冷温度領域と称する)、好ましくは0.001℃/時間以上5℃/時間以下で徐冷することが好ましく、0.003℃/時間以上2℃/時間以下で徐冷することがより好ましい。最初の冷却段階をこのような低い速度でゆっくりと徐冷することにより、析出する結晶を大きく成長させることができる。途中結晶を大きく成長させる為に800℃以上1350℃未満の温度範囲内で30分以上温度を保持してもよい。また、結晶をより大きく成長させるという観点から、第1徐冷温度領域では、比較的低い冷却速度から比較的高い冷却速度へと、いくつかの段階に分けて徐冷することが望ましい。
 第1徐冷温度領域での徐冷の後、さらに、溶融溶解物の温度が500℃以上800℃以下の温度に達するまで(前記温度範囲を以下第2徐冷温度領域と称する)、0.01℃/時間以上、30℃/時間以下、好ましくは0.1℃/時間以上、20℃/時間以下の降温速度で徐冷してもよい。上記徐冷終了後(第1徐冷温度領域での徐冷終了後、または、第1徐冷温度領域での徐冷+第2徐冷温度領域での徐冷終了後)は、50℃/時間~300℃/時間の比較的高い降温速度で冷却を行っても良い。
 このような温度制御は、上記溶融溶解物全体を同一温度に制御することに限定されるものではなく、溶融溶解物全体のうち少なくとも結晶を析出させる部分のみ上記温度に制御されていればよい。成長する結晶の大きさを制御する等の目的で、溶融溶解物の温度を部分的に異なる温度で制御してもよい。例えば、結晶を成長させる部分は上記温度範囲に制御し、結晶を析出させたくないその他の部分はそれよりも高い温度に制御することで、大きな結晶を形成することができる。また後述のTSSG法等種子材料等を用いる方法においても、坩堝内の溶融溶解物全体ではなく当該種子材料等のみを温度制御するようにしてもよい。
 坩堝中の単結晶や坩堝から取り出した単結晶には、固化した溶媒が付着している場合がある。本発明で用いる溶媒は、水への溶解度が高いため、単結晶を水中に浸漬、あるいは流水による洗浄を行うなどして、溶媒からセリウム賦活ホウ酸ルテチウム単結晶を容易に分離して取り出すことができる。この分離を行う前に500℃以上700℃以下の温度に再加熱することにより、溶融した溶媒を流し出してから水洗しても良い。また、単結晶を析出成長させるための冷却途中において、上記混合物の温度を500℃以上700℃以下の温度(例えば550℃)で数時間(例えば5時間)保持した後取り出し、溶融している溶媒を流し出してから水洗してもよい。
 [結晶成長法]
 具体的な結晶成長法としては、フラックス法(徐冷法,温度差法)、ブリッジマン法、TSSG(Top Seeded Solution Growth)法などが挙げられる。TSSG法によれば、大きな結晶を育成することができ、さらに育成した結晶と溶液との分離が容易になる。以下、TSSG法による結晶育成の具体例について図2を参照して説明する。
 図2にTSSG法による結晶育成装置を示す。図2の装置はヒータ2によって温度制御可能な電気炉3を有しており、電気炉3内の坩堝台4上に原料溶液7を入れた白金製の坩堝1を設置している。このような構成の装置において、坩堝1に調整された原料を入れ、ヒータ2を加熱することで原料を溶解する。引上げ軸5の先端に取り付けられた種子材料6を原料溶液7に接触させ、そのまま保持、あるいは引上げながら結晶を育成する。種子材料6としては、育成しようとする結晶と同一種の結晶を用いるのが一般的でありかつ望ましいが、原料溶液7に溶解しにくい異種の結晶や、白金等も種子材料6としてよく用いられる。
 また、大型の結晶を育成するためには、坩堝を大型化する必要がある。一方で、大型の坩堝を用いる場合、溶液中に意図しない温度分布や濃度分布が生じやすくなる可能性がある。このような環境下では、品質の良い結晶を再現よく育成することは困難である。このような問題を解決し、常に育成に適した溶液を維持するためには、溶液を撹拌しながら結晶育成を行うことが好ましい。
 上記製造方法により得られるセリウム賦活ホウ酸ルテチウム単結晶は、発光波長ピークにおける透過率が40%以上、無色透明の六角板状単結晶であり着色するような不純物の混入が認められず、カルサイト構造を有している。X線励起での発光は、ピーク波長が365nm~410nm、同一体積のBGOに対して約800%以上、現在実用化されているシンチレータ用単結晶で最も発光量が大きいLYSOに対しても140%以上の高い発光量を有している。
 本発明による他の単結晶シンチレータ材料の製造方法は、Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、Ce化合物およびLu化合物を前記溶媒と混合し、組成式(CexLu1-x)BO3で表されて0.0001≦x≦0.05を満足する単結晶が、高温バテライト相からカルサイト相への著しい体積変化を伴う相転移を冷却の過程で生じない温度で加熱して前記化合物を溶融させる工程と、溶融した前記化合物を冷却することにより、組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程とを含む。
 相転移点が1350℃にあることは先に述べたが、溶融した化合物及び溶媒に雰囲気から印加される圧力を常圧から変えると、相転移の温度が1350℃からシフトする。また、溶融した化合物及び溶媒に電場を印加しても、相転移の温度が1350℃からシフトする。これらの場合には、析出成長させるときの温度はシフトした相転移点以下にする。
 (実施例1)
 本実施例では、フラックス法(徐冷法)により結晶体を成長させた。直径50mm、深さ60mmの白金坩堝を用意し、Na2CO3:15.30g、Li2CO3:5.80g、WO3:33.50g、B23:6.20g、Lu23:4.20g、CeO2:0.02gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この白金坩堝を、直径60mm、深さ70mmのアルミナ坩堝に入れてふたをし、図3に示すヒートパターンで結晶を育成した。図3の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。
 本実施例では、図3からわかるように、まず200℃/Hrで800℃まで昇温させ、次に100℃/Hrで1000℃まで昇温させた後、更に50℃/Hrで1200℃まで昇温させた。1200℃で8時間保持した後、5℃/Hrで600℃まで降温させ、その後は100℃/Hrで降温を続けた。
 1200℃付近の温度で溶融溶解した混合物からは、冷却により組成式(CexLu1-x)BO3で表される結晶体が成長した。
 冷却後、坩堝内の固化物を水で洗浄することで溶媒成分を除去し、坩堝内に残った結晶体を取り出した。
 図4は、得られた結晶体を示す写真である。
 得られた結晶体についてX線回折装置による測定を行った結果、結晶体がLuBO3のカルサイト構造を有していることを確認した。バテライト構造等の他の相は含まれていなかった。また、得られた結晶体の希土類全体に対するCe濃度を電子線マイクロアナライザ(EPMA)により測定したところ、0.1at%以上であることを確認した。すなわち、組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.001以上であり、0.0001≦x≦0.05の関係を満足していた。またPbの含有量をICP発光分光分析で測定したところ、質量比率で50ppm以下であった。
 図5は、CuKα線源からのX線励起によって結晶体を発光させた、X線励起発光スペクトルを示すグラフであり、「アルカリ系溶媒」と付記しているデータが実施例の結晶体のスペクトルである。図5のグラフには、PCT/JP2008/1717号に記載のホウ酸鉛を溶媒とするフラックス法で形成したセリウム賦活ホウ酸ルテチウム単結晶X線励起発光スペクトル(「ホウ酸鉛系溶媒」と付記しているデータ)と、CZ法にて育成したLYSO(ルテチウム イットリウム シリコン オキサイド単結晶、密度7.1g/cm3)のX線励起発光スペクトルも合わせて示している。
 図5からわかるように、発光のピーク波長は367nmであった。また、実施例の結晶体の発光量は、ホウ酸鉛系溶媒を用いて形成したセリウム賦活ホウ酸ルテチウム単結晶の発光量のおよそ150%、LYSOの発光量のおよそ140%であった。
 (実施例2)
 本実施例では、図2に示す装置を用いてTSSG法により結晶体を成長させた。直径50mm、深さ50mmの白金製の坩堝1を用意し、Na2CO3:25.50g、Li2CO3:9.60g、WO3:55.90g、B23:10.30g、Lu23:7.10g、CeO2:0.03gを秤量後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝1を、その周囲に配置されたヒータ2により温度制御して、図6に示すヒートパターンで結晶を育成した。図6の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。
 本実施例では、図6からわかるように、まず150℃/Hrで1200℃まで昇温させ2時間保持した後、30rpmで回転させた引上げ軸5の先端に取り付けた種子材料6(幅3mm、厚さ2mmのホウ酸ルテチウム結晶)を、坩堝上部から降下して溶液表面に接触させた。その状態でさらに4時間保持した後0.5℃/Hrで1080℃まで降温させた後、引上げ軸5を上昇させて種子材料を溶液表面から離した後、150℃/Hrで降温を続けた。
 溶液に接触させていた種子材料の先端には、組成式(CexLu1-x)BO3で表される結晶体が成長した。
 冷却後、成長結晶を流水によって洗浄して付着している溶媒を除去し、結晶体を取り出した。
 図7は、得られた結晶体を示す写真である。図7には、結晶体のサイズを示すためのグリッドが記載されている。グリッドの間隔(マス目の大きさ)は、1mmである。図7から明らかなように、この結晶体は、対角5mm以上のサイズを有している。この結晶体の厚さは0.5mm以上である。対角とは結晶の最大寸法の長さであり、厚さとは結晶の最小寸法の長さとする。
 得られた結晶体についてX線回折装置による測定を行った結果、結晶体がLuBO3のカルサイト構造を有していることを確認した。バテライト構造等の他の相は含まれていなかった。また、得られた結晶体の希土類全体に対するCe濃度を電子線マイクロアナライザ(EPMA)により測定したところ、0.05at%以上であることを確認した。すなわち、組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.0005であり、0.0001≦x≦0.05の関係を満足していた。
 更に、CuKα線源からのX線励起によって実施例の結晶体を発光させたところ、発光のピーク波長は365nmであった。
 波長270nmにおける透過率は、53%であり、20%を超えていることが確認された。
 (実施例3)
 本実施例では、図2に示す装置を用いてTSSG法により結晶体を成長させた。直径50mm、深さ50mmの白金製の坩堝1を用意し、Na2CO3:19.80g、Li2CO3:13.80g、WO3:57.70g、B23:9.30g、Lu23:3.50g、CeO2:0.03gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝1を、その周囲に配置されたヒータ2により温度制御して、図8に示すヒートパターンで結晶を育成した。図8の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。
 本実施例では、図8からわかるように、まず150℃/Hrで1120℃まで昇温させ2時間保持した後、30rpmで回転させた引上げ軸5の先端に取り付けた種子材料6(幅3mm、厚さ2mmのホウ酸ルテチウム結晶)を、坩堝上部から降下して溶液表面に接触させた。その状態でさらに4時間保持した後0.5℃/Hrで1070℃まで降温させた後、引上げ軸5を上昇させて種子材料を溶液表面から離した後、150℃/Hrで降温を続けた。
 溶液に接触させていた種子材料の先端には、組成式(CexLu1-x)BO3で表される結晶体が成長した。
 冷却後、成長結晶を流水によって洗浄して付着している溶媒を除去し、結晶体を取り出した。
 図9は、得られた結晶体を示す写真である。図9には、結晶体のサイズを示すためのグリッドが記載されている。グリッドの間隔(マス目の大きさ)は、1mmである。図9から明らかなように、この結晶体は、対角5mm以上のサイズを有している。この結晶体の厚さは0.5mm以上である。
 得られた結晶体についてX線回折装置による測定を行った結果、結晶体がLuBO3のカルサイト構造を有していることを確認した。バテライト構造等の他の相は含まれていなかった。また、得られた結晶体の希土類全体に対するCe濃度を電子線マイクロアナライザ(EPMA)により測定したところ、0.05at%以上であることを確認した。すなわち、組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.0015であり、0.0001≦x≦0.05の関係を満足していた。また、Pbの含有量をICP発光分光分析で測定したところ、質量比率で50ppm以下であった。
 更に、CuKα線源からのX線励起によって実施例の結晶体を発光させたところ、発光のピーク波長は365nmであった。
 また、得られた結晶体を(001)面に対して平行に切り出した後、ダイヤラップ加工を行った。この加工により、表面粗さ5nm以下、厚さ0.5mmに調整してサンプルを作製した。このサンプルを直径2mmの穴の試料ホルダーにセットし、紫外可視分光光度計(日本分光製: V-530)により、250~550nmの波長域で透過率を測定した。この測定結果は、図1に示されている。波長270nmにおける透過率は、約53%であり、20%を超えていることが確認された。
 (比較例1)
 本比較例では、フラックス法(徐冷法)により結晶体を成長させた。直径45mm、深さ50mmの白金坩堝を用意し、Na2CO3:32.00g、BaCO3:28.00g、B23:10.60g、Lu23:4.20g、CeO2:0.02gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この白金坩堝を、直径60mm、深さ70mmのアルミナ坩堝に入れてふたをし、図3に示すヒートパターンで結晶を育成した。
 冷却後、坩堝内の固化物を水で洗浄することで溶媒成分を溶解除去し、坩堝内に残った粉体を取り出した。得られた粉体についてX線回折装置による測定を行った結果、この粉体はLuBO3ではないことが確認できた。この比較例では、Wおよび/またはMoに代えてBaを溶媒原料の一部として用いたため、目的とするLuBO3の単結晶を作製することができなかった。
 (比較例2)
 本比較例では、図2に示す装置を用いてTSSG法により結晶体を成長させた。直径40mm、深さ50mmの白金製の坩堝1を用意し、PbO:100g、B23:18g、Lu23:10g、CeO2:0.1gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝1を、その周囲に配置されたヒータ2により温度制御して、図10に示すヒートパターンで結晶を育成した。図10の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。
 本比較例では、図10からわかるように、まず210℃/Hrで450℃まで昇温させ、次に200℃/Hrで1150℃まで昇温させ2時間保持した。この後、30rpmで回転させた引上げ軸5の先端に取り付けた種子材料6(幅5mm、厚さ0.5mmの白金板)を、坩堝上部から降下して溶液表面に接触させた。その状態でさらに6時間保持した後1℃/Hrで950℃まで降温させた後、引上げ軸5を上昇させて白金板を溶液表面から離した後、150℃/Hrで降温を続けた。
 溶液に接触させていた白金板の先端には、組成式(CexLu1-x)BO3で表される結晶体が成長した。
 冷却後、白金板と成長結晶を塩酸によって洗浄して付着している溶媒を除去し、結晶体を取り出した。
 得られた結晶体についてX線回折装置による測定を行った結果、結晶体がLuBO3のカルサイト構造を有していることを確認した。また、得られた結晶体の希土類全体に対するCe濃度を電子線マイクロアナライザ(EPMA)により測定したところ、すべての領域で0.05at%以上であることを確認した。すなわち、組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.0005であり、0.0001≦x≦0.05の関係を満足していた。またPbの含有量をICP発光分光分析で測定したところ、質量比率で400ppmであった。
 更に、CuKα線源からのX線励起によって比較例の結晶体を発光させたところ、発光のピーク波長は365nmであった。また、図1には、実施例3と同様の方法で透過率を測定した結果が示されている。波長270nmの透過率は約3%であり、短波長側で透過率が低下していることが確認された。
 (実施例4)
 本実施例では、フラックス法(徐冷法)により結晶体を成長させた。直径50mm、深さ60mmの白金坩堝を用意し、K2CO3:13.50g、Li2CO3:14.43g、WO3:39.41g、MoO3:3.64g、B23:7.30g、Lu23:2.85g、CeO2:0.01gを秤量した。その後、実施例1と同様に結晶育成を行ったところ、対角5mm、厚さ1mmのセリウム賦活ホウ酸ルテチウム単結晶を得ることができた。実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.001であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は約55%であることが確認された。
 (実施例5)
 本実施例では、フラックス法(徐冷法)により結晶体を成長させた。直径50mm、深さ60mmの白金坩堝を用意し、Na2CO3:9.90g、Li2CO3:6.90g、MoO3:17.92g、B23:4.64g、Lu23:1.76g、CeO2:0.02gを秤量した。その後、実施例1と同様に結晶育成を行ったところ、対角5mm、厚さ1mmのセリウム賦活ホウ酸ルテチウム単結晶を得ることができた。実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.003であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は、約50%であることが確認された。
 (実施例6)
 本実施例では、フラックス法(徐冷法)により結晶体を成長させた。直径50mm、深さ60mmの白金坩堝を用意し、Na2CO3:13.69g、Cs2CO3:28.05g、WO3:33.27g、B23:5.50g、Lu23:2.99g、CeO2:0.01gを秤量した。その後、実施例1と同様に結晶育成を行ったところ、対角5mm、厚さ1mmのセリウム賦活ホウ酸ルテチウム単結晶を得ることができた。実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.0005であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は約55%であることが確認された。
 (実施例7)
 本実施例では、TSSG法により結晶体を成長させた。直径75mm、深さ75mmの白金製の坩堝1を用意し、Na2CO3:184.8g、Li2CO3:128.8g、WO3:538.9g、B23:86.7g、Lu23:33.1g、CeO2:0.1gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝1を、その周囲に配置されたヒータ2により温度制御し、図11に示すヒートパターンで結晶を育成した。図11の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。本実施例で用いたTSSG法による結晶育成装置を図12に示す。
 実施例7では、溶液を攪拌する目的で、坩堝台4´を回転させて坩堝を30rpm、回転時間60秒、停止間隔30秒で正反転させながら育成を行った。まず150℃/Hrで1200℃まで昇温させ24時間保持した後、10℃/Hrで1150℃まで降温させた。2時間保持した後、坩堝と同じタイミングで、坩堝と回転方向が反対になるように30rpmで回転させた引上げ軸5の先端に取り付けた種子材料6(幅5mm、厚さ1mmのホウ酸ルテチウム結晶)を、坩堝上部から降下して溶液表面に接触させた。その状態でさらに2時間保持し、ついで0.02℃/Hrで1140℃まで降温させた後、引上げ軸5を上昇させて結晶を溶液表面から離した後、150℃/Hrで降温を続けた。種子材料の先端には目的とするセリウム賦活ホウ酸ルテチウム単結晶が成長した。
 図13は、実施例7で得られた結晶体を示す写真である。右上の柱状部位は種子材料であり、他の部位は育成した結晶体である。この結晶体の対角は20mm、厚さは1mmであった。グリッドの間隔(マス目の大きさ)は、図7と同様である。
 図13の試料では、結晶体の透明部分から、1mm×1mm×1mmの立方体以上の大きさの単結晶部を切り出すことができた。なお、条件を変えた実験で、結晶体を析出成長させる時に相転移温度を通過した場合には、結晶が崩壊して1mm×1mm×1mmの立方体よりもはるかに小さい粉末となり、単結晶部は残らなかった。
 実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.0005であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は、約55%であることが確認された。
 (実施例8)
 本実施例では、図12の装置を用いた以外は、実施例2と同様に結晶育成を行ったところ、対角20mm、厚さ1.5mmのセリウム賦活ホウ酸ルテチウム単結晶を得ることができた。実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.001であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は、約55%であることが確認された。
 (実施例9)
 本実施例では、図12の装置を用いた以外は、実施例3と同様に結晶育成を行ったところ、対角20mm、厚さ1.5mmのセリウム賦活ホウ酸ルテチウム単結晶を得ることができた。実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.002であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は、約55%であることが確認された。
 (実施例10)
 本実施例では、フラックス法(徐冷法)により結晶体を成長させた。直径50mm、深さ60mmの白金坩堝を用意し、Na2CO3:15.84g、Li2CO3:11.04g、WO3:46.19g、B23:7.43g、Lu23:2.77g、CeO2:0.07gを秤量した。本実施例では、まず200℃/Hrで1200℃まで昇温させた後、0.5℃/Hrで800℃まで降温させ、その後は150℃/Hrで降温を続けた。冷却後、坩堝内の固化物を水で洗浄することで溶媒成分を除去し、坩堝内に残った結晶体を取り出したところ、対角5mm、厚さ1mmのセリウム賦活ホウ酸ルテチウム単結晶を得ることができた。実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.006であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は、約45%であることが確認された。
 (実施例11)
 本実施例では、フラックス法(徐冷法)により結晶体を成長させた。直径50mm、深さ60mmの白金坩堝を用意し、Li2CO3:23.49g、WO3:49.14g、B23:7.87g、Lu23:2.77g、CeO2:0.01gを秤量した。本実施例では、まず200℃/Hrで1200℃まで昇温させた後、0.5℃/Hrで1135℃まで降温させ、その後は150℃/Hrで降温を続けた。冷却後、坩堝内の固化物を水で洗浄することで溶媒成分を除去し、坩堝内に残った結晶体を取り出したところ、対角5mm、厚さ1mmのセリウム賦活ホウ酸ルテチウム単結晶を得ることができた。実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.001であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は、約55%であることが確認された。
 (実施例12)
 本実施例では、フラックス法(徐冷法)により結晶体を成長させた。直径50mm、深さ60mmの白金坩堝を用意し、Na2CO3:8.92g、Li2CO3:6.22g、WO3:39.01g、B23:6.64g、Lu23:4.46g、CeO2:0.02gを秤量した。本実施例では、まず200℃/Hrで1200℃まで昇温させた後、0.5℃/Hrで1050℃まで降温させ、その後は150℃/Hrで降温を続けた。冷却後、坩堝内の固化物を水で洗浄することで溶媒成分を除去し、坩堝内に残った結晶体を取り出したところ、対角5mm、厚さ1mmのセリウム賦活ホウ酸ルテチウム単結晶を得ることができた。実施例3と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CexLu1-x)BO3におけるCeの組成比率xは、0.001であり、Pbの含有量は質量比率で50ppm以下であった。また、発光のピーク波長は365nmであり、波長270nmにおける透過率は、約55%であることが確認された。
 (比較例3)
 本比較例では、フラックス法(徐冷法)により結晶体成長を試みた。直径50mm、深さ60mmの白金坩堝を用意し、Na2CO3:20.31g、Li2CO3:14.15g、WO3:22.21g、B23:3.98g、Lu23:3.66g、CeO2:0.02gを秤量した。その後は実施例12と同様に結晶育成を行った。冷却後、坩堝内の固化物を水で洗浄することで溶媒成分を除去したが、粒径0.1mm以下の粉末状の残留物しかなく、目的とする結晶を得ることはできなかった。
 (比較例4)
 本比較例では、フラックス法(徐冷法)により結晶体成長を試みた。直径50mm、深さ60mmの白金坩堝を用意し、Na2CO3:23.25g、Li2CO3:16.21g、B23:31.3g、Lu23:4.24g、CeO2:0.02gを秤量した。その後、実施例12と同様に結晶育成を行った。冷却後、坩堝内の固化物を水で洗浄することで溶媒成分を除去したが、粒径0.1mm以下の粉末状の残留物しかなく、目的とする結晶を得ることはできなかった。
 (比較例5)
 本比較例では、フラックス法(徐冷法)により結晶体成長を試みた。直径50mm、深さ60mmの白金坩堝を用意し、Na2CO3:9.88g、Li2CO3:6.89g、WO3:43.23g、Lu23:3.81g、CeO2:0.02gを秤量した。その後は実施例12と同様に結晶育成を行った。冷却後、坩堝内の固化物を水で洗浄することで溶媒成分を除去したが、粒径0.1mm以下の粉末状の残留物しかなく、目的とする結晶を得ることはできなかった。
 図14のグラフに、本発明による単結晶シンチレータ材料(実施例4)の透過率(太線)と、比較例1の単結晶シンチレータ材料の透過率を示す。測定方法は図1のデータを取得するときに行った測定方法と同様にした。
 図14からわかるように、波長340nm付近の極小値は実施例3の極小値よりも高い値を実現している。本発明によれば、鉛含有量を質量比率で50ppm以下に低減することができるため、250nm~300nmの波長領域の略中央値である波長270nmにおいて、20%以上の透過率(好ましくは30%以上)を実現できる。
 図15のグラフに、実施例の結晶におけるCeの配合比と組成比率xの関係を示す。プロットしたデータは、一直線状に並んでおり、配合比と組成比率xはほぼリニアな関係にある。この結果から、組成比率xが配合比で制御可能であることがわかる。
 図16は、本発明によるシンチレータアレイの構成例を示す斜視図である。この図に示される構成例において、複数本の棒形状のシンチレータ結晶11は、反射材を介してグリッド状(碁盤の目状)に配置されている。各シンチレータ結晶11は、本発明の単結晶シンチレータ材料である。
 隣接するシンチレータ結晶11の間(ギャップ)は反射材12で埋められており、シンチレータアレイの外周部にも反射材12が配置されている。反射材12は、γ線を透過するが、シンチレータ結晶11から発せられる光の波長において高い反射率を有する材料から形成されている。
 このシンチレータアレイでは、外周面のうち、5つの面が反射材12で覆われているが、1面のみが反射材12で覆われておらず、露出している。より詳細には、シンチレータ結晶11の一端面は反射材12に覆われておらず、この端面から光を外部に放出することができる。
 図17は、本発明による放射線検出器の構成例を示す断面図である。この放射線検出器は、本発明による単結晶シンチレータ材料と、単結晶シンチレータ材料からの発光を検出する公知の検出器とを備えている。図示される放射線検出器では、図16に示すシンチレータ結晶11のアレイと光電子増倍管13とを備えている。具体的には、シンチレータ結晶11の端面と光電子増倍管13の受光側の面が光学的に結合されるように、光学グリス14を介して、シンチレータアレイと光電子増倍管13とが接合されている。シンチレータ結晶11は、γ線15が入射する側で、反射材12に被覆されている。
 図18は、本発明によるPET装置の構成例を示す図である。リングを為すように、複数の放射線検出器が配列されている。各放射線検出器は、図17に示す構成を有している。
 リングの内周には、反射材で被覆されたシンチレータ結晶11が並べられている。リングの外周には、光電子増倍管13が並べられている。リングの中心付近には、被検者16が待機する。被検者16には、陽電子を放出する放射性同位元素で標識された薬剤が投与されている。
 γ線15は、被検者16の患部で陽電子消滅によって一対生成され、2つの方向に放出される。γ線15は、シンチレータ結晶11によって光に変換される。その光は光電子増倍管13で増幅され、光電子倍増管13が出力する電気信号によって検出される。
 本発明の製造方法により得られたセリウム賦活ホウ酸ルテチウム単結晶シンチレータ材料は、従来のシンチレータ用単結晶材料よりも発光量が大きく、優れたシンチレータ特性を有しているため、PET装置を好適に用いられ得る。
 1 坩堝
 2 ヒータ
 3 電気炉
 4 坩堝台
 4´ 坩堝台
 5 引上げ軸
 6 種子材料
 7 原料溶液
 11 シンチレータ結晶
 12 反射材
 13 光電子増倍管(PMT)
 14 光学グリス
 15 γ線
 16 被検者

Claims (13)

  1.  Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、
     Ce化合物およびLu化合物を前記溶媒と混合し、800℃以上1350℃以下の温度に加熱して前記化合物を溶融させる工程と、
     溶融した前記化合物を冷却することにより、組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程と、
    を含む単結晶シンチレータ材料の製造方法。
  2.  前記溶媒を用意する工程および前記化合物を溶融させる工程は、前記溶媒を形成する化合物と、Ce化合物と、Lu化合物とを混合し、800℃以上1350℃以下の温度に加熱する工程である、請求項1に記載の単結晶シンチレータ材料の製造方法。
  3.  Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、
     Ce化合物およびLu化合物を前記溶媒と混合し、加熱して前記化合物を溶融させる工程と、
     溶融した前記化合物を冷却することにより、組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程と、
    を含み、
     前記単結晶の析出成長は、高温バテライト相からカルサイト相への相転移の温度よりも低い温度で実行する、単結晶シンチレータ材料の製造方法。
  4.  前記Ceの組成比率xが0.001≦x≦0.03を満足する請求項1に記載の単結晶シンチレータ材料の製造方法。
  5.  前記単結晶を析出成長させる工程は、TSSG法により行う、請求項1に記載の単結晶シンチレータ材料の製造方法。
  6.  前記単結晶を析出成長させる工程において、溶融した前記化合物の温度が750℃以上1350℃未満の温度まで0.001℃/時間以上5℃/時間以下の降温速度で冷却する、請求項1に記載の単結晶シンチレータ材料の製造方法。
  7.  前記析出成長させる工程は、80時間以上の時間をかけて行う、請求項6に記載の単結晶シンチレータ材料の製造方法。
  8.  組成式(CexLu1-x)BO3で表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶部を有し、前記単結晶部のPbの含有量が質量比率で50ppm以下である単結晶シンチレータ材料。
  9.  前記Ceの組成比率xが0.001≦x≦0.03を満足する請求項8に記載の単結晶シンチレータ材料。
  10.  前記単結晶部はカルサイト型結晶構造を有している請求項8に記載の単結晶シンチレータ材料。
  11.  厚さ0.5mmに鏡面加工された前記単結晶部の波長270nmにおける透過率は、20%以上である請求項8に記載の単結晶シンチレータ材料。
  12.  請求項8から11のいずれかに記載の単結晶シンチレータ材料と、
     前記単結晶シンチレータ材料からの発光を検出する検出器と
    を備える放射線検出器。
  13.  リング状に配列された複数の放射線検出器を備え、被検体からのγ線を検出するPET装置であって、
     前記複数の放射線検出器の各々は、請求項12に記載の放射線検出器である、PET装置。
PCT/JP2009/004939 2008-09-29 2009-09-28 単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにpet装置 WO2010035500A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/120,217 US8455833B2 (en) 2008-09-29 2009-09-28 Single crystal scintillator material, method for producing same, radiation detector and PET system
EP09815919.7A EP2336398A4 (en) 2008-09-29 2009-09-28 MONOCRYSTALLINE SCINTILLATOR MATERIAL, MANUFACTURING METHOD THEREOF, RADIATION DETECTOR, AND PET SYSTEM
CN200980138423.7A CN102165107B (zh) 2008-09-29 2009-09-28 单晶闪烁体材料及其制造方法、放射线检测器和pet装置
JP2010530745A JP5454477B2 (ja) 2008-09-29 2009-09-28 単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにpet装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-250978 2008-09-29
JP2008250978 2008-09-29
JP2008329041 2008-12-25
JP2008-329041 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010035500A1 true WO2010035500A1 (ja) 2010-04-01

Family

ID=42059512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004939 WO2010035500A1 (ja) 2008-09-29 2009-09-28 単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにpet装置

Country Status (5)

Country Link
US (1) US8455833B2 (ja)
EP (1) EP2336398A4 (ja)
JP (1) JP5454477B2 (ja)
CN (1) CN102165107B (ja)
WO (1) WO2010035500A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251273A (zh) * 2011-07-18 2011-11-23 福建福晶科技股份有限公司 一种金红石晶体的熔盐生长方法
US10809393B2 (en) * 2015-04-23 2020-10-20 Fermi Research Alliance, Llc Monocrystal-based microchannel plate image intensifier
US10490397B1 (en) * 2018-07-18 2019-11-26 Thermo Finnigan Llc Methods and systems for detection of ion spatial distribution
US12018399B2 (en) 2019-08-21 2024-06-25 Meishan Boya Advanced Materials Co., Ltd. Crystals for detecting neutrons, gamma rays, and x rays and preparation methods thereof
US12054848B2 (en) * 2019-08-21 2024-08-06 Meishan Boya Advanced Materials Co., Ltd. Crystals for detecting neutrons, gamma rays, and x rays and preparation methods thereof
CN114057402B (zh) * 2021-11-15 2022-10-11 海南大学 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用
CN114214722A (zh) * 2021-12-15 2022-03-22 山东重山光电材料股份有限公司 一种高质量大尺寸lbo晶体的制备方法
CN114262933A (zh) * 2021-12-16 2022-04-01 山东重山光电材料股份有限公司 一种硼10-lbo晶体的生长方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948697A (ja) * 1995-07-31 1997-02-18 Sony Corp リチウムトリボレート単結晶の製造方法
JP2003300795A (ja) 2002-02-05 2003-10-21 Hitachi Chem Co Ltd Gso単結晶及びpet用シンチレータ
JP2005298678A (ja) 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd セリウム付活ホウ酸ルテチウム系輝尽性蛍光体、放射線像変換パネルおよび放射線画像記録再生方法
JP2006052372A (ja) 2004-07-16 2006-02-23 Juzu Internatl Pte Ltd シンチレータ材料
JP2007224214A (ja) 2006-02-24 2007-09-06 Mitsui Mining & Smelting Co Ltd シンチレータ用単結晶材料及び製造方法
JP2008001717A (ja) 1996-03-15 2008-01-10 Mitsubishi Gas Chem Co Inc 高純度2,6−ジメチルナフタレンの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304397A1 (de) 2002-02-05 2003-08-14 Hitachi Chemical Co Ltd GSO-Einkristall und Szintillator für die PET
WO2005111173A2 (en) * 2004-04-14 2005-11-24 Deep Photonics Corporation Method and structure for non-linear optics
CN101084290B (zh) * 2004-12-21 2012-07-18 日立金属株式会社 荧光材料以及其制造方法,使用荧光材料的放射线检测器,与x射线ct装置
WO2009004791A1 (ja) * 2007-07-03 2009-01-08 Hitachi Metals, Ltd. 単結晶シンチレータ材料およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948697A (ja) * 1995-07-31 1997-02-18 Sony Corp リチウムトリボレート単結晶の製造方法
JP2008001717A (ja) 1996-03-15 2008-01-10 Mitsubishi Gas Chem Co Inc 高純度2,6−ジメチルナフタレンの製造方法
JP2003300795A (ja) 2002-02-05 2003-10-21 Hitachi Chem Co Ltd Gso単結晶及びpet用シンチレータ
JP2005298678A (ja) 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd セリウム付活ホウ酸ルテチウム系輝尽性蛍光体、放射線像変換パネルおよび放射線画像記録再生方法
JP2006052372A (ja) 2004-07-16 2006-02-23 Juzu Internatl Pte Ltd シンチレータ材料
JP2007224214A (ja) 2006-02-24 2007-09-06 Mitsui Mining & Smelting Co Ltd シンチレータ用単結晶材料及び製造方法
WO2007099772A1 (ja) * 2006-02-24 2007-09-07 Mitsui Mining & Smelting Co., Ltd. シンチレータ用単結晶材料及び製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAREL W.E. VAN EIJK: "Inorganic-scintillator development", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A, vol. 460, 2001, pages 1 - 14, XP004230586 *
See also references of EP2336398A4

Also Published As

Publication number Publication date
CN102165107A (zh) 2011-08-24
CN102165107B (zh) 2014-04-16
US8455833B2 (en) 2013-06-04
EP2336398A1 (en) 2011-06-22
EP2336398A4 (en) 2014-01-08
JPWO2010035500A1 (ja) 2012-02-16
US20110176657A1 (en) 2011-07-21
JP5454477B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5454477B2 (ja) 単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにpet装置
JP6644010B2 (ja) 向上した耐放射線性を有する多重ドープルテチウム系オキシオルトシリケートシンチレータ
JP4393511B2 (ja) 希土類フッ化物固溶体材料(多結晶及び/又は単結晶)、及びその製造方法並びに放射線検出器及び検査装置
RU2242545C1 (ru) Сцинтиляционное вещество (варианты)
US20080067391A1 (en) Scintillator crystal and radiation detector
CA2622381C (en) High light yield fast scintillator
US20140291580A1 (en) Cerium doped rare-earth ortosilicate materials having defects for improvement of scintillation parameters
JP2007045869A (ja) 低吸湿性ハロゲン置換フッ化物シンチレータ材料、及び放射線検出器及び検査装置
WO2015185988A1 (en) Cerium doped rare-earth ortosilicate materials having defects for improvement or scintillation parameters
US9963356B2 (en) Alkali metal hafnium oxide scintillators
JP6303146B2 (ja) 単結晶、放射線検出器及び放射線検出器の使用方法
US7347956B2 (en) Luminous material for scintillator comprising single crystal of Yb mixed crystal oxide
JP2011202118A (ja) 単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにpet装置
JP5293602B2 (ja) 単結晶シンチレータ材料およびその製造方法
US10538861B1 (en) Scintillator crystal growth using non-stoichiometric melts
Lecoq et al. Crystal engineering
WO2011016880A1 (en) Novel lanthanide doped strontium-barium cesium halide scintillators
JP7178043B2 (ja) Lso系シンチレータ結晶
US10174244B2 (en) Doped halide scintillators
US8384035B2 (en) Lanthanide doped barium phosphorous oxide scintillators
JP2016085229A (ja) X線検出器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138423.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010530745

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13120217

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009815919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009815919

Country of ref document: EP