Beschreibung
Rohrbündel-Wärmetαuscher zur Regelung eines breiten Leistungsbereiches
Die Erfindung bezieht sich auf einen Rohrbündel-Wärmetauscher zur Regelung eines breiten Leistungsbereiches.
Für die Kühlung von Mediumströmen, insbesondere Gasen in zahlreichen verfahrenstechnischen Anlagen, wie z. B. Vergasungsanlagen, thermischen und katalytischen Spaltanlagen, Dampfreformierungsanlagen etc., werden in der Regel Wärmetauscher, insbesondere Rohrbündel-Wärmetauscher (Kühler), eingesetzt, in denen die zu kühlenden Mediumströme durch gerade Heizflächenrohre strömen und dabei die vorhandene Wärme des heißen Mediumstromes über die Rohrwand an das die Rohre umgebende Kühlmedium abgeben.
Die Hauptaufgabe eines derartigen Wärmetauschers bzw. Rohrbündel-Wärmetauschers ist wie oben angeführt die Übertragung von Wärme zwischen zwei Medien, wobei dem einen Medium (heißes Medium) eine bestimmte Wärmemenge abgeführt und dem anderen Medium (Kühlmedium) eine adäquate Wärmemenge zugeführt wird. Die Menge der übertragenen Wärme hängt bekanntlich von der Größe des Wärmetauschers, von den Wärmeübertragungskoeffizienten der beiden Medien und von der Temperaturdifferenz zwischen beiden Medien ab. Bei einphasigen Medien verändert sich mit der Wärmezuführung oder Wärmeabführung die Mediumtemperatur. Der Temperaturverlauf über die Apparatelänge des Wärmetauschers ist in diesem Fall einer exponentiellen Funktion ähnlich.
Ein Rohrbündel-Wärmetauscher besteht in der Regel aus einer großen Anzahl von Heizflächenrohren, einem die Heizflächenrohre umgebenden und einen Mantelraum bildenden Druckmantel und zwei Rohrplatten, zwischen denen die Heizflächenrohre angeordnet sind. Das eine Medium strömt durch die Rohreintrittskammer des Wärmetauschers, danach durch die Heizflächenrohre und die Rohraustrittskammer des Wärmetauschers. Das zweite Medium strömt über einen Stutzen in den Mantelraum des
Wärmetauschers, umströmt mehrmals die einzelnen Heizflächen röhre und strömt anschließend durch einen zweiten Stutzen aus dem Wärmetauscher raus.
Die beiden Medien können in einem Wärmetauscher bzw. Rohrbündel-Wärmetauscher in der gleichen axialen Richtung des Wärmetauschers (Gleichstrom) oder eines der beiden Medien in der gegensätzlichen Richtung zum anderen Medium (Gegenstrom) innerhalb des Wärmetauschers strömen. Der Temperaturverlauf des Wärmetausches der Medien beim Gegenstrom und Gleichstrom ist unterschiedlich und führt daher zu einer unterschiedlich hohen mittleren logarithmischen Temperaturdifferenz zwischen beiden Medien. Die übertragende Wärmemenge zwischen den beiden Medien ist daher für beide Schaltungen, d.h. Gegenstrom- bzw. Gleichstromschaltung, unterschiedlich groß.
Die Leistung des Wärmetauschers bzw. Rohrbündel-Wärmetauschers kann sich durch Fouling (Ablagerungen bzw. Verschmutzungen innerhalb der Heizflächenrohre) oder andere Einflüsse mit der Betriebszeit des Rohrbündel-Wärmetauschers ändern, was zu einem Bedarf eines Regeleingriffes führt. Gleichzeitig besteht oft die Notwendigkeit, die zu übertragende Wärmemenge oder die Mediumaustrittstemperaturen an die gewünschte Betriebslast anzupassen. Für die Regelung der Mediumaustrittstemperaturen und damit der thermischen Leistung des Rohrbündel-Wärmetauschers wird häufig eine Bypassregelung, bestehend aus einer Bypassleitung und einem Dreiwegemischventil, d.h einem geregelten Dreiwegeventil, eingesetzt. Dabei wird ein Teil des Mediumstromes vor dem Einleiten in den Rohrbündel-Wärmetauscher dem Hauptstrom entnommen und um den Rohrbündel-Wärmetauscher geführt bzw. gebypasst. Die reduzierte Strömungsmenge eines Mediums verringert den Wärmeübergang und beeinflusst über die veränderte Mediumaustrittstemperatur die mittlere logarithmische Temperaturdifferenz. Der mit dieser Bypassanordnung erzielbare Regelbereich bzw. Regeleingriff ist jedoch relativ klein.
Die Aufgabe der vorliegenden Erfindung besteht darin, einen Rohrbündel- Wärmetauscher mit einem Bypasssystem zu schaffen, bei dem die vorgenannten Nachteile vermieden werden bzw. bei dem die Austrittstemperaturen der Medien und die zu übertragende Wärmemenge in einem sehr breiten Bereich regelbar ist.
Die vorstehend genannte Aufgabe wird hinsichtlich des Rohrbündel-Wärmetauschers durch die Gesamtheit der Merkmale des Patentanspruches 1 gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.
Durch die erfindungsgemäße Lösung wird ein Rohrbündel-Wärmetauscher geschaffen, der die nachfolgenden Vorteile aufweist:
Es wird ein Rohrbündel-Wärmetauscher mit einem breiten Regelbereich verfügbar gemacht und damit eine bessere Regelung von Rohrbündel-Wärmetauscher am kalten Ende einer Abhitzestrecke ermöglicht.
In vorteilhafter Ausgestaltung ist das regelbar ausgebildete Dreiwegeventil bezüglich des Kühlmediumstromes in der Ablaufseite des Rohrbündel-Wärmetauschers angeordnet. Der Vorteil dieser Anordnung liegt in der genauen Regelbarkeit der Mediumaustrittstemperatur. In weiterer vorteilhafter Ausgestaltung ist neben dem einen geregelten Dreiwegeventil das weitere Dreiwegeventile als Umschaltventil ausgebildet. Mit dem als Umschaltventil ausgebildeten Dreiwegeventil kann der komplette Kühlmediumstrom klar definiert in das vordere oder hintere Ende des Mantelraumes geleitet bzw. aus dem vorderen oder hinteren Ende des Mantelraumes herausgeleitet und somit ein Gleich- oder Gegenstrom des Kühlmediums zum ersten Mediumstrom im Mantelraum bewerkstelligt werden.
Zweckmäßig ist es, das als Umschaltventil ausgebildete Dreiwegeventil bezüglich des Kühlmediumstromes in der Zulaufseite des Rohrbündel-Wärmetauschers anzuordnen.
Bei einer vorteilhaften Ausbildung der Erfindung ist neben dem einen geregelten Dreiwegeventil das weitere Dreiwegeventile ebenfalls ein geregeltes Dreiwegeventil. In diesem Fall kann regeltechnisch gesteuert werden, welches von beiden Dreiwegeventilen als Umschaltventil arbeitet.
In besonders vorteilhafter Weise ist innerhalb der Bypassleitung eine Durchflussmesseinrichtung angeordnet. Mittels dieser Durchflussmesseinrichtung(en)
können die Teilmαssenströme innerhalb der Bypassleitung genauestens erfasst werden und damit als Regelgrößen auf den Regelungsprozess und das geregelte Dreiwegeventile einwirken.
In zweckmäßiger Weise sind die Stutzen am hinteren Ende des Druckmantels und/oder die Stutzen am vorderen Ende des Druckmantels in Richtung der Längsachse L des Rohrbündel-Wärmetauschers gesehen jeweils gleichauf liegen. Dadurch ergibt sich ein kurzer Weg beim Durchströmen des Mantelraumes im Falle einer Bypassung eines Teilmassenstromes des Kühlmediums.
Ferner sieht eine vorteilhafte Ausbildung der Erfindung vor, dass die Stutzen am hinteren Ende des Druckmantels und/oder die Stutzen am vorderen Ende des Druckmantels bezogen auf eine senkrecht zur Längsachse L des Rohrbündel-Wärmetauschers liegenden Ebene E auf dieser jeweils in einem beliebigen Winkel zueinander liegen. Dadurch kann der Widerstand bzw. der Druckverlust des zu bypassenden Teilstromes des Kühlmediumstromes verringert bzw. klein gehalten werden.
Nachstehend sind Ausführungsbeispiele der Erfindung an Hand der Zeichnung und der Beschreibung näher erläutert.
Es zeigt:
Fig. 1 einen schematisch dargestellten Längsschnitt durch einen Rohrbündel- Wärmetauscher, bei dem das Kühlmedium im Gegenstrom durch den Wärmetauscher geleitet wird,
Fig. 2 wie Figur 1 , wobei jedoch ein Teilstrom des Kühlmediumstromes durch die zweite Bypassleitung geführt wird,
Fig. 3 einen schematisch dargestellten Längsschnitt durch einen Rohrbündel- Wärmetauscher, bei dem das Kühlmedium im Gleichstrom durch den Wärmetauscher geleitet wird,
Fig. 4 wie Figur 3, wobei jedoch ein Teilstrom des Kühlmediumstromes vor der Durchleitung durch den Mαntelrαum des Rohrbündel-Wärmetαuschers abgezweigt und der Ablaufleitung zugeführt wird,
Fig. 5 eine alternative Ausführung zu Figur 2,
Fig. 6 einen auf Ebene der Stutzen und gemäß Schnitt A-A in Figur 1 schematisch dargestellten Querschnitt durch den Rohrbündel-Wärmetauscher.
Figur 1 zeigt einen Rohrbündel-Wärmetauscher 1 schematisch dargestellt im Längsschnitt. Derartige Rohrbündel-Wärmetauscher 1 werden in zahlreichen verfahrenstechnischen Anlagen, wie z. B. Vergasungsanlagen, thermischen und katalytischen Spaltanlagen, Dampfreformierungsanlagen etc., benötigt, in denen ein Prozessgas, ein Abgas oder dgl. produziert wird. Der Rohrbündel-Wärmetauscher 1 dient in der Regel zum Kühlen des vorgenannten heißen Gases bzw. eines ersten Mediumstromes 7, der durch eine nicht dargestellte Leitung in die Rohreintrittskammer 9 des Rohrbündel-Wärmetauschers 1 eingeführt und von hier durch eine Vielzahl von geraden Heizflächenrohren 2 hindurchgeleitet wird, anschließend in der Rohraustrittskammer 10 des Rohrbündel-Wärmetauschers 1 gesammelt und mittels nicht dargestellter Leitung aus dem Rohrbündel-Wärmetauscher 1 abgeführt wird. Die Heizflächenrohre 2, durch die ein indirekter Wärmetausch mit einem die Heizflächenrohre 2 umgebenden Kühlmedium 8 stattfindet, sind dabei jeweils voneinander beabstandet zwischen zwei Rohrplatten 3, 4 angeordnet und mit diesen fest und gasdicht - in der Regel verschweißt - verbunden.
Die gesamten Heizflächenrohre 2 werden von einem einen Mantelraum 5 bildenden Druckmantel 6 umfasst. Jeweils an den beiden Enden des Druckmantels 6 sind zwei Stutzen für die Ein- bzw. Ausleitung des Kühlmediumstromes 8 in den bzw. aus dem Mantelraum 5. Der besseren Zuordnung wegen wird hier das an die Rohraustrittskammer 10 angrenzende Ende des Druckmantels 6 als hinteres Ende 15 und das an die Rohreintrittskammer 9 angrenzende Ende des Druckmantels 6 als vorderes Ende 16 bezeichnet. Erfindungsgemäß sind zwei Stutzen 1 1 , 12 am hinteren
Ende 15 und zwei Stutzen 13, 14 am vorderen Ende 16 angeordnet, wobei der jeweils erste Stutzen 11 , 13 am hinteren sowie am vorderen Ende 15, 16 für die Zuleitung des Kühlmediumstromes 8 in den Mantelraum 5 und der jeweils zweite Stutzen 12, 14 am hinteren sowie am vorderen Ende 15, 16 für die Ableitung des Kühlmediumstromes 8 aus dem Mantelraum 5 dient. Erfindungsgemäß sind die zwei Stutzen 11 , 13 für die Zuleitung des Kühlmediumstromes 8 jeweils mit einer ersten und zweiten Bypassleitung 21 a, 21 b verbunden, wobei beide Bypassleitungen 21 a, 21 b zu einem ersten Dreiwegeventil 19 führen und jeweils an dieses angeschlossen sind. Als dritte Leitung ist die Zulaufleitung 17 mit dem Dreiwegeventil 19 verbunden, durch die der Kühlmediumstrom m0 8 dem Rohrbündel-Wärmetauscher 1 zugeführt wird.
Auf der Ablaufseite des Rohrbündel-Wärmetauschers 1 sind erfindungsgemäß die zwei Stutzen 12, 14 für die Ableitung des Kühlmediumstromes 8 jeweils mit einer dritten und vierten Bypassleitung 22a, 22b verbunden, wobei beide Bypassleitungen 22a, 22b zu einem zweiten Dreiwegeventil 20 führen und jeweils an dieses angeschlossen sind. Als dritte Leitung ist die Ablaufleitung 18 mit dem Dreiwegeventil 20 verbunden, durch die der Kϋhlmediumstrom m0 8 aus dem Rohrbündel-Wärmetauscher 1 abgeführt wird. Erfindungsgemäß ist eines der zwei Dreiwegeventile 19, 20 regelbar ausgebildet.
Die Figuren 1 und 2 zeigen Schaltungen des erfindungsgemäßen Rohrbündel- Wärmetauschers 1 auf, bei der der Kühlmediumstrom 8 im Gegenstrom zu dem ersten Mediumstrom 7 den Wärmetauscher durchströmt. Die Figuren 1 und 2 zeigen dabei bevorzugte Varianten auf, die beim zweiten Dreiwegeventil 20 in der Ablaufleitung 18 ein geregeltes Dreiwegeventil und beim ersten Dreiwegeventil 19 in der Zulaufleitung 17 ein als Umschaltventil ausgebildetes Dreiwegeventil vorsieht. Gemäß der Figur 1 ist das als Umschaltventil ausgebildete Dreiwegeventil 19 derart gesteuert, dass der Zulauf des Kühlmediumstromes 8 durch die Zulaufleitung 17 und die erste Bypassleitung 21 a in das hintere Ende 15 des Mantelraumes 5 geleitet wird und das Dreiwegeventil 20 derart geregelt, dass der komplette zugeführte Massenstrom m0 des Kühlmediumstromes 8 durch den Mantelraum 5 geleitet und durch die dritte Bypassleitung 22a und die Ablaufleitung 18 abgeleitet wird. Figur 2 zeigt hinsichtlich des als Umschaltventil ausgebildeten Dreiwegeventils 19 keine Änderung gegenüber der Schaltung der Figur 1 auf, d.h. der Zulauf des Kühlmediumstromes 8 erfolgt in das
^
hintere Ende 15 des Mαntelrαumes 5, wobei jedoch nunmehr das Dreiwegeventil 20 derart geregelt ist, dass ein Teilstrom m2 des kompletten zugeführten Massenstromes m0 des Kühlmediumstromes 8 durch die vierte Bypassleitung 22b und der restliche Teilstrom m, durch den Mantelraum 5 geleitet und durch die dritte Bypassleitung 22a und beide Teilströme m, und m2 gemeinsam durch die Ablaufleitung 18 abgeleitet wird. Das als Umschaltventil ausgebildete Dreiwegeventil 19 ist ein angesteuertes Leitorgan und leitet den zugeführten Kühlmediumstrom 8 zu einem der zwei vorhandenen Ausgänge, als da sind die Bypassleitungen 21 a und 21 b.
Die Figuren 3 und 4 zeigen Schaltungen des erfindungsgemäßen Rohrbündel- Wärmetauscher 1 auf, bei der der Kühlmediumstrom 8 im Gleichstrom zu dem ersten Mediumstrom 7 den Rohrbündel-Wärmetauscher 1 durchströmt, d.h. beide Mediumströme 7, 8 weisen dieselbe Richtung innerhalb des Rohrbündelwärmetauschers 1 auf. Die Figuren 3 und 4 zeigen wie schon vorhin bei den Figuren 1 und 2 bevorzugte Varianten auf, die beim zweiten Dreiwegeventil 20 in der Ablaufleitung 18 ein geregeltes Dreiwegeventil und beim ersten Dreiwegeventil 19 in der Zulaufleitung 17 ein als Umschaltventil ausgebildetes Dreiwegeventil vorsieht. Abweichend zu Figur 1 ist das als Umschaltventil ausgebildete Dreiwegeventil 19 gemäß der Figur 3 derart gesteuert, dass der Zulauf des Kühlmediumstromes 8 durch die zweite Bypassleitung 21b in das vordere Ende 16 des Mantelraumes 5 geleitet wird und das Dreiwegeventil 20 derart geregelt, dass der komplette zugeführte Massenstrom m0 des Kühlmediumstromes 8 durch den Mantelraum 5 geleitet und anschließend durch die vierte Bypassleitung 22b und durch die Ablaufleitung 18 stromabwärts des Dreiwegeventils 20 abgeleitet wird. Figur 4 zeigt hinsichtlich des als Umschaltventil ausgebildeten Dreiwegeventils 19 keine Änderung gegenüber der Schaltung der Figur 3 auf, d.h. der Zulauf des Kühlmediumstromes 8 erfolgt in das vordere Ende 16 des Mantelraumes 5, wobei jedoch nunmehr das Dreiwegeventil 20 derart geregelt ist, dass ein Teilstrom m2 des kompletten zugeführten Massenstromes m0 des Kühlmediumstromes 8 durch die dritte Bypassleitung 22a zwischen Stutzen 14 und Dreiwegeventil 20 und der restliche Teilstrom (Ti1 durch den Mantelraum 5 und die vierte Bypassleitung 22b geleitet und beide Teilströme Pn1 und m2 gemeinsam durch die Ablaufleitung 18 abgeleitet wird.
Q
Mit den in den Figuren 1 bis 4 aufgezeigten Schaltungen ist es möglich, einen Rohrbündel-Wärmetauscher 1 in einem sehr breiten Regelbereich zu betreiben, da die zu übertragende Wärmemenge bzw. die Mediumaustrittstemperaturen zum einen durch Verändern der Durchströmungsrichtung eines der beiden Medien von Gleich- in Gegenstrom bzw. umgekehrt verändert werden kann und zum anderen durch das geregelte Dreiwegeventil die Kühlmediumströme geregelt auf den Mantelraum 5 sowie die Bypassleitung(en) 21 a, 21 b, 22a, 22b aufgeteilt und damit sehr differenziert die zu übertragende Wärmemenge bzw. die Mediumaustrittstemperaturen geregelt werden kann bzw. können.
Neben den in den Figuren 1 bis 4 aufgezeigten bevorzugten Schaltungsvarianten kann das erste Dreiwegeventil 19, d.h. das in der Zulaufleitung 17 befindliche Dreiwegeventil, als geregeltes Dreiwegeventil ausgebildet werden und das zweite Dreiwegeventil 20, d.h. das in der Ablaufleitung 18 befindliche Dreiwegeventil, als Umschaltventil ausgebildetes Dreiwegeventil ausgebildet werden. Figur 5 zeigt diese Variante auf, bei der das Dreiwegeventil 19 den durch die Zulaufleitung 17 zufließenden Massenstrom m0 des Kühlmittelstromes 8 regelt, indem es einen Teilmassenstrom ITi1 durch die erste Bypassleitung 21a dem Mantelraum 5 zuführt und einen Teilmassenstrom m2 durch die zweite Bypassleitung 21 b und somit am Mantelraum 5 des Rohrbündel-Wärmetauschers 1 vorbei und in das vordere Ende 16 des Mantelraums 5 leitet. Der komplette Massenstrom m0 tritt dann unter entsprechender Stellung des als Umschaltventil ausgebildeten Dreiwegeventils 20 durch die dritte Bypassleitung 22a und die Ablaufleitung 18 aus dem Rohrbündel-Wärmetauscher 1 aus. Vorteilhaft bei der Schaltung gemäß der Figur 5 ist, dass das geregelte Dreiwegeventil 19 im Zulauf und damit im kalten Bereich des Kühlmediumstromes 8 angeordnet ist. Dies kann gegenüber Anordnungen, bei denen Kühlmediumströme 8 am Ablauf sehr stark erhitzt austreten, von Vorteil sein, da dadurch der Kontakt des geregelten Dreiwegeventils 19 mit dem stark erhitzen Kühlmediumstrom 8 vermieden wird. Im Gegensatz zu den Anordnungen gemäß der Figuren 1 bis 4 nimmt hier das als Umschaltventil ausgebildete Dreiwegeventil 20 den abgeführten Kühlmediumstrom 8 in einem der zwei vorhandenen Eingänge auf, als da sind die Bypassleitungen 22a und 22b.
g
Anstelle eines als Umschaltventil ausgebildeten Dreiwegeventils kann ein weiteres geregeltes Dreiwegeventil eingesetzt werden, was hieße, dass beide Dreiwegeventile 19, 20 geregelt ausgebildet werden. In einem solchen Fall ist es allerdings sinnvoll, dass eines der beiden geregelten Dreiwegeventile 19, 20 die Funktion eines reinen Umschaltventils übernimmt.
Gemäß der Figuren 1 bis 5 liegen die Stutzen 11 , 12 am hinteren Ende 15 des Druckmantels 6 und die Stutzen 13, 14 am vorderen Ende 16 des Druckmantels 6 in Richtung der Längsachse L des Rohrbündel-Wärmetauschers 1 gesehen jeweils gleichauf. Möglich ist es auch, die jeweiligen Stutzen 11 , 12 am hinteren Ende 15 und/oder die jeweiligen Stutzen 13, 14 am vorderen Ende 16 in Richtung der Längsachse L des Rohrbündel-Wärmetauschers 1 gesehen versetzt anzuordnen.
Während bei den Figuren 1 bis 5 die Stutzen 1 1 , 12 am hinteren Ende 15 sowie die Stutzen 13, 14 am vorderen Ende 16 zumindest in der schematischen Darstellung jeweils gegenüber angeordnet sind, d.h. am Umfang des Druckmantels unter 180° zueinander liegen, zeigt Figur 6 eine weitere Möglichkeit auf, bei der die Stutzen 11 , 12 beispielhaft auf einer Ebene E, die senkrecht zur Längsachse L des Rohrbündel- Wärmetauschers 1 liegt, unter 45° zueinander liegen. Dieser Winkel zwischen den beiden Stutzen kann beliebig ausgebildet werden und hängt unter anderem von der Enge der Durchgänge zwischen den Heizflächenrohren 2 innerhalb des Mantelraumes 5 ab. Sind die Durchgänge sehr eng, wird man eher einen kleineren Winkel zwischen den beiden Stutzen 1 1 , 12 wählen um einen relativ widerstandsfreien Durchfluss und Austritt für einen der Bypassleitung 22b zugedachten Teilmassenstrom des Kühlmediumstromes 8 zu ermöglichen. Das oben gesagte gilt ebenfalls für die Stutzen 13, 14 am vorderen Ende 16 des Druckmantels 6.
Um die Regelung der durch den Mantelraum 5 und gegebenenfalls durch die Bypassleitungen 21 a, 21 b, 22a, 22b durchzuleitenden Massenströme m0 bzw. Pn1 und m2 des Kühlmediumstromes 8 durch das Dreiwegeventil 19, 20 bewerkstelligen zu können, sind unter anderem gemäß Figuren 1 bis 5 beispielhaft in den Bypassieitungen 21 b, 22b Durchflussmesseinrichtungen 23, 24 angeordnet. Der in der Zulaufleitung 17 zugeführte Gesamtmassenstrom m0 des Kühlmediumstromes 8 ist anlagenseitig bekannt
^
und kann bzw. muss für eine regelungsseitige Aufteilung in die zwei Teilmassenströme ITi1 und ITi2 entsprechend herangezogen werden.
Bezugszeichenliste:
1 Rohrbündel-Wärmetαuscher
2 Heizflächenrohr
3 Rohrplatte, eingangseitig
4 Rohrplatte, ausgangseitig
5 Mantel räum
6 Druckmantel
7 Erster Mediumstrom
8 Kühlmediumstrom
9 Rohreintrittskammer
10 Rohraustrittskammer
11 Erster Stutzen am hinteren Ende des Druckmantels
12 Zweiter Stutzen am hinteren Ende des Druckmantels
13 Erster Stutzen am vorderen Ende des Druckmantels
14 Zweiter Stutzen am vorderen Ende des Druckmantels
15 Hinteres Ende des Druckmantels
16 Vorderes Ende des Druckmantels
17 Zulaufleitung
18 Ablaufleitung
19 Erstes Dreiwegeventil
20 Zweites Dreiwegeventil 21a Erste Bypassleitung 21 b Zweite Bypassleitung 22a Dritte Bypassleitung 22b Vierte Bypassleitung
23 Durchflussmesseinrichtung
24 Durchflussmesseinrichtung