WO2010030131A2 - 리튬 이차전지용 양극 활물질 - Google Patents
리튬 이차전지용 양극 활물질 Download PDFInfo
- Publication number
- WO2010030131A2 WO2010030131A2 PCT/KR2009/005149 KR2009005149W WO2010030131A2 WO 2010030131 A2 WO2010030131 A2 WO 2010030131A2 KR 2009005149 W KR2009005149 W KR 2009005149W WO 2010030131 A2 WO2010030131 A2 WO 2010030131A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transition metal
- active material
- lithium
- cathode active
- nickel
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 100
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 239000013543 active substance Substances 0.000 title abstract 4
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 122
- 150000003624 transition metals Chemical class 0.000 claims abstract description 63
- 230000003647 oxidation Effects 0.000 claims abstract description 62
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 62
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 53
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 42
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 claims abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 220
- 239000011572 manganese Substances 0.000 claims description 143
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 28
- 239000006182 cathode active material Substances 0.000 claims description 28
- 239000013078 crystal Substances 0.000 claims description 27
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 229910021314 NaFeO 2 Inorganic materials 0.000 claims description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 3
- -1 lithium transition metal Chemical class 0.000 description 76
- 239000002905 metal composite material Substances 0.000 description 45
- 230000000052 comparative effect Effects 0.000 description 27
- 239000007774 positive electrode material Substances 0.000 description 23
- 235000002639 sodium chloride Nutrition 0.000 description 18
- 239000010410 layer Substances 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 12
- 150000002696 manganese Chemical class 0.000 description 12
- 150000002815 nickel Chemical class 0.000 description 12
- 239000002131 composite material Substances 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 229910001428 transition metal ion Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 150000001868 cobalt Chemical class 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- VGYDTVNNDKLMHX-UHFFFAOYSA-N lithium;manganese;nickel;oxocobalt Chemical compound [Li].[Mn].[Ni].[Co]=O VGYDTVNNDKLMHX-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000011356 non-aqueous organic solvent Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910007969 Li-Co-Ni Inorganic materials 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910012573 LiSiO Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910006555 Li—Co—Ni Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- QEXMICRJPVUPSN-UHFFFAOYSA-N lithium manganese(2+) oxygen(2-) Chemical class [O-2].[Mn+2].[Li+] QEXMICRJPVUPSN-UHFFFAOYSA-N 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/20—Two-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a cathode active material for a lithium secondary battery, and more particularly, to a lithium transition metal oxide having a layered crystal structure, the transition metal including a mixed transition metal of Ni, Mn, and Co, and the average of all transition metals except lithium.
- Oxidation number is higher than +3, and the molar ratio of manganese to nickel (m (Ni) / m (Mn)) and the molar ratio of Ni 2+ to Mn 4+ (m (Ni 2+ ) / m (Mn 4+ ))
- It relates to a positive electrode active material that satisfies specific conditions.
- Such a positive electrode active material has a uniform and stable layered crystal structure by controlling the oxidation water state of the transition metal, thereby improving the overall electrochemical properties and exhibit excellent rate characteristics under high rate charge and discharge conditions.
- lithium secondary batteries that exhibit high energy density and operating potential, have a long cycle life, and have a low self discharge rate. It is commercialized and widely used.
- Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery.
- lithium-containing manganese oxides such as LiMnO 2 in a layered crystal structure and LiMn 2 O 4 in a spinel crystal structure, and lithium-containing nickel oxide
- (LiNiO 2 ) is also contemplated.
- LiCoO 2 is most frequently used because of its excellent life characteristics and charging and discharging efficiency.
- LiCoO 2 has a disadvantage in that its price competitiveness is limited because its structural stability is low and it is expensive due to the resource limitation of cobalt used as a raw material. .
- Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantages of excellent thermal safety and low price, but have a problem of small capacity and poor high temperature characteristics.
- LiNiO 2 -based positive electrode active material is relatively inexpensive and exhibits a high discharge capacity of battery characteristics, but the sudden phase transition of the crystal structure is shown by the volume change accompanying the charge and discharge cycle, and the safety is rapidly increased when exposed to air and moisture. There is a problem of deterioration.
- the present invention provides a low-cost, high-performance cathode active material including a lithium transition metal composite oxide each of the constituent elements having a predetermined composition and oxidation number.
- U.S. Patent No. 6,964,828 discloses in the formula Li (M1 (1-x) -Mn x ) O 2 that M1 is a non-Cr metal, and when M1 is Ni, Co, all Ni in the composition is +2.
- Lithium transition metal oxides have been proposed in which the number of oxidation oxidations is that all Co in the composition is + trivalent oxidation and the number of Mn in the composition is +4.
- Korean Patent Application Publication No. 2005-047291 discloses a lithium transition metal oxide having Ni and Mn in the same amount and having an oxidation number of +2 and +4.
- An oxide is disclosed, and the patent specifies that Ni should be +2 and Mn should be +4, and through examples and comparative examples, the oxidation number of Ni and Mn is +2 and +4, respectively. If it does not, the performance is degraded.
- Japanese Patent Application Laid-Open No. 2001-00083610 discloses a chemical formula Li ((Li (Ni 1/2 Mn 1/2 ) (1-x) ) O 2 , Li ((Li x (Ni y Mn y Co P ) ( 1-x) ) O 2 and present a lithium transition metal oxide having the same amount of Ni and Mn. According to the above application, when Ni and Mn are substantially the same amount, Ni 2+ and Mn 4+ are formed. It is based on the structural stability that makes it possible to create layered structures well.
- U.S. Patent No. 6,660,432 suggests that the amount of Co in the total transition metal amount is 10% or more in order to make a well-developed crystal structure, but as the preferred material, the amount of Co in the amount of transition metal should be 16%. It is suggested that Ni and Mn should be the same amount. However, when the amount of Co is large, the manufacturing cost is increased, and there is a disadvantage in that the stability of Co 4+ is very unstable in the amount of the transition metal in the charged state.
- an object of the present invention is to obtain a cathode active material that is structurally and electrochemically superior by solving the problems of the prior art and technical limitations that have been requested from the past.
- the inventors of the present application have increased the average oxidation number of the transition metal to +3 and the nickel content of manganese in the lithium transition metal oxide-based positive electrode active material having a layered crystal structure.
- the content is higher than the content and the content of Ni 2+ is smaller than the content of Mn 4+ , it is confirmed that the perfection of the crystal structure is improved and the high rate charge / discharge characteristics are remarkably improved, thus completing the present invention.
- the cathode active material for a lithium secondary battery according to the present invention is a lithium transition metal oxide having a layered crystal structure, and the transition metal includes a mixed transition metal of Ni, Mn, and Co, and the average oxidation number of all transition metals except lithium is + Trivalent or more, and satisfy
- m (Ni) / m (Mn) is the molar ratio of nickel to manganese
- m (Ni 2+ ) / m (Mn 4+ ) is the molar ratio of Ni 2+ to Mn 4+ .
- Preferred examples of the layered crystal structure include ⁇ -NaFeO 2 layered crystal structure.
- Ni 2+ and Mn 4+ are included in the same amount, and the oxidation number of transition metal ions should be made to be in an average +3 valence state so that the layered structure can be well formed.
- Ni 2+ has a size almost similar to that of Li + , there is a high probability of forming a rock salt structure by moving to the lithium layer, thereby degrading electrochemical performance.
- the inventors of the present application have conducted in-depth studies to prepare a positive electrode active material having a stable layered crystal structure and excellent capacity and rate characteristics.
- the stable layered crystal structure is attributed to Ni 2+ and Mn 4+ . Rather, it was found to be more dependent on the difference between the ion size of lithium and the size of transition metal ions.
- the lithium-containing Li-oxide layer ('lithium layer') and the transition metal-oxide layer ('MO layer') containing the transition metal are included. It can be distinguished, and the larger the difference in the size of the ions occupying each layer, that is, the difference in the size of the lithium ion and the transition metal ion, it was confirmed that the two layers can be properly separated and well developed.
- a method of using a metal element with a small ion radius in the MO layer may be considered to increase the size difference of the ions, but in this case, the layered structure may be well formed but the number of metal ions capable of transferring electrons is small. There was a limit to the reduction in capacity due to the loss.
- the inventors of the present application have tried to achieve an excellent layered crystal structure without deterioration of capacity, and as a result, the size difference of the ions may be represented by a distance or binding force to bond with oxygen ions, and in the case of a metal having a cation characteristic.
- Mn 4+ ions induce the formation of Ni 2+ ions, whereby a large amount of Ni 2+ is added to the lithium layer in the compound containing a large amount of Mn. It is not desirable to be located.
- the inventors of the present application as a method of increasing the oxidation number of the transition metal, it is most effective to reduce the amount of Ni 2+ that can be easily introduced into the lithium layer to make the overall oxidation number, that is, the average oxidation to +3 or more. Judging In addition, as the amount of Ni 3+ having a smaller size than that of Ni 2+ increases, it was determined that the difference in size of ions could be further increased.
- the positive electrode active material according to the present invention comprises a relatively large amount of nickel compared to manganese (see formula (1)), and a relatively small amount of Ni 2+ compared to Mn 4+ (see formula (2)) It is.
- the positive electrode active material according to the present invention is lithium nickel-manganese-cobalt oxide, and (i) the average oxidation number of nickel-manganese-cobalt, which is the total transition metal except lithium, is higher than +3, and (ii) nickel is relatively higher than that of manganese. It contains a large amount, and (iii) it is characterized in that a relatively small amount of Ni 2+ compared to Mn 4+ .
- the lithium nickel-manganese-cobalt oxide has an average oxidation number of the transition metal to be greater than +3, based on the stable crystal structure of the positive electrode active material, the amount of transition metal present in the lithium layer can be significantly reduced. Accordingly, there is an advantage that the mobility and rate characteristics of lithium ions can be improved and the capacity can be improved.
- the positive electrode active material according to the present invention has a larger average oxidation number of +3 transition metals except lithium, so that the overall size of transition metal ions becomes smaller than the average oxidation number +3 value. As a result, the size difference with the lithium ions increases, so that the interlayer separation is performed well, thereby forming a stable layered crystal structure.
- the average oxidation number of the transition metal is preferably more than 3.0 to 3.5 or less, more preferably It is preferably 3.01 to 3.3, particularly preferably 3.1 to 3.3.
- the total average oxidation number of nickel in an amount corresponding to the content of manganese and manganese may be more than 3.0 to 3.5 or less, preferably 3.1 to 3.3.
- the 'average oxidation number of the transition metal excluding lithium' means that the average oxidation number of lithium ions is not taken into consideration, for example, even when a part of lithium ions is included at the site of the transition metal.
- Control of the average oxidation number of the transition metal as described above can be achieved by adjusting the proportion of the transition metal of the transition metal precursor and the reaction amount of the lithium precursor in the process of producing a lithium transition metal oxide.
- the positive electrode active material according to the present invention is composed of a molar ratio of nickel to manganese greater than 1.1 and less than 1.5, as shown in the following formula (1).
- Ni 3+ becomes at least as much as the content of manganese in nickel, and the size of ions becomes relatively small. Therefore, the difference between the size of lithium ions and the average size of transition metal ions is increased, and the insertion of Ni 2+ into the lithium layer can be minimized, thereby increasing the stability of the layered crystal structure.
- the m (Ni) / m (Mn) when m (Ni) / m (Mn) is greater than 1.5, it is not preferable because the relative safety deteriorates due to the decrease in Mn content and the manufacturing cost of the active material is increased.
- the m (Ni) / m (Mn) may be 1.2 to 1.4.
- the positive electrode active material according to the present invention contains an excessive amount of nickel compared to manganese
- the nickel is divided into an excessive amount of nickel (a) relative to manganese content and nickel (b) of an amount corresponding to manganese content. Can be.
- the nickel has an average oxidation number greater than +2.
- the excess amount of nickel (a) relative to the manganese content is preferably Ni 3+ , and the amount of nickel (b) corresponding to the manganese content includes both Ni 2+ and Ni 3+ .
- Ni 2+ And Ni 3+ Ni in the nickel (b) containing 3+ The ratio of is preferably 11 to 60%. In other words, if the ratio is less than 11%, the desired electrochemical properties are difficult to be obtained. If the ratio is larger than 60%, the amount of oxidation water change is too small, the capacity decreases and the lithium dispersion is large, which is not preferable. In this case, the average oxidation number of manganese and nickel is approximately 3.05 to 3.35.
- the positive electrode active material of the present invention is composed of a molar ratio of Ni 2+ to Mn 4+ greater than 0.4 and less than 1, as shown in the following formula (2). That is, Ni 2+ and Mn 4+ are not contained in the same amount, but a relatively small amount of Ni 2+ is contained in comparison with Mn 4+ .
- the content of cobalt (Co) in the transition metal in the cathode active material may be preferably less than 10 mol% of the total transition metal content.
- the cathode active material according to the present invention contains a large amount of nickel than manganese, and the average oxidation number of the transition metal is greater than +3, the size difference between lithium ions and transition metal ions is increased to facilitate the interlayer separation Bar, Ni 2+ can be minimized to be inserted into the lithium layer.
- the amount of nickel inserted into the lithium site in the cathode active material may be less than 5 mol% as a ratio of sites occupied by Ni (Ni 2+ ) in all Li sites.
- the transition metals nickel, manganese and cobalt may be partially substituted with other metal element (s) within a range capable of maintaining a layered crystal structure, and preferably in a small amount of less than 5%. It may be substituted with a metal element, a cationic element and the like. In this case as well, as long as the characteristics according to the present invention are satisfied, it is obvious that it belongs to the scope of the present invention.
- the present invention also provides a positive electrode composed of including the positive electrode active material, and a lithium secondary battery comprising such a positive electrode.
- a positive electrode composed of including the positive electrode active material, and a lithium secondary battery comprising such a positive electrode.
- the positive electrode will be abbreviated as 'anode'.
- the lithium secondary battery is generally composed of a positive electrode, a negative electrode, a separator and a lithium salt-containing nonaqueous electrolyte.
- the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
- the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
- a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
- the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver or the like can be used.
- the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the conductive material is typically added in an amount of 1 to 40 wt% based on the total weight of the mixture including the positive electrode active material.
- a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 40 wt% based on the total weight of the mixture including the positive electrode active material.
- binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
- the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
- the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
- the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and if necessary, the components as described above may be further included.
- the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
- a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
- fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- carbon such as hardly graphitized carbon and graphite type carbon
- the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
- the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
- a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
- a solid electrolyte such as a polymer
- the solid electrolyte may also serve as a separator.
- the lithium salt-containing non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used as the electrolyte solution.
- non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
- organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
- Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
- the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
- pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
- halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
- the lithium secondary battery according to the present invention may be preferably used as a power source of an electric vehicle, a hybrid electric vehicle, and a plug-in hybrid electric vehicle, which require a large capacity.
- the nickel salt and manganese salt were made to have a molar ratio (Ni / Mn) of 1.24 and a molar ratio of cobalt salt in the total transition metal salt to 8 mol%, and the entire transition metal salt was dissolved in distilled water.
- the transition metal complex was obtained by increasing the basicity of the aqueous solution in which the transition metal was dissolved.
- the obtained composite was removed using a reduced pressure filter and dried in an oven at 110 ° C. for 18 hours to remove excess solvent.
- Li salts were mixed so that the Ni 2+ / Mn 4+ mol ratio was 0.76, and then placed in an electric furnace and raised to 950 ° C. at an elevated temperature rate of 300 ° C. per hour, followed by firing at 950 ° C. for 10 hours.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the molar ratio of Ni 2+ / Mn 4+ was set to 0.64.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the molar ratio of Ni 2+ / Mn 4+ was 0.52.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the molar ratio of Ni 2+ / Mn 4+ was 0.41.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the molar ratio of Ni 2+ / Mn 4+ was 0.88.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the ratio of Ni 2+ / Mn 4+ was set to 1.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 1, except that the ratio of Ni 2+ / Mn 4+ was set to 0.29.
- the nickel salt and manganese salt were made to have a molar ratio (Ni / Mn) of 1.24 and a molar ratio of cobalt salt in the total transition metal salt to 8 mol%, and the entire transition metal salt was dissolved in distilled water.
- the transition metal complex was obtained by increasing the basicity of the aqueous solution in which the transition metal was dissolved.
- the obtained composite was removed using a reduced pressure filter and dried in an oven at 110 ° C. for 18 hours to remove excess solvent.
- Li salts were mixed so that the Ni 2+ / Mn 4+ molar ratio was 0.76, and then placed in an electric furnace and raised to 950 ° C. at a heating rate of 300 ° C. per hour, and then calcined at 960 ° C. for 10 hours to form a lithium transition metal composite oxide.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 6 except that the molar ratio of Ni 2+ / Mn 4+ was set to 0.64.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 6 except that the molar ratio of Ni 2+ / Mn 4+ was 0.52.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 6 except that the molar ratio of Ni 2+ / Mn 4+ was 0.41.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 6 except that the molar ratio of Ni 2+ / Mn 4+ was 0.88.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 6 except that the ratio of Ni 2+ / Mn 4+ was set to 1.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 6 except that the ratio of Ni 2+ / Mn 4+ was set to 0.29.
- the nickel salt and manganese salt were made to have a molar ratio (Ni / Mn) of 1.24 and a molar ratio of cobalt salt in the total transition metal salt to 8 mol%, and the entire transition metal salt was dissolved in distilled water.
- the transition metal complex was obtained by increasing the basicity of the aqueous solution in which the transition metal was dissolved.
- the obtained composite was removed using a reduced pressure filter and dried in an oven at 110 ° C. for 18 hours to remove excess solvent.
- Li salts were mixed so that the Ni 2+ / Mn 4+ mol ratio was 0.76, then placed in an electric furnace, heated to 950 ° C. at a heating rate of 300 ° C. per hour, and then calcined at 970 ° C. for 10 hours to form a lithium transition metal composite oxide.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 11 except that the molar ratio of Ni 2+ / Mn 4+ was set to 0.64.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 11 except that the molar ratio of Ni 2+ / Mn 4+ was 0.52.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 11 except that the molar ratio of Ni 2+ / Mn 4+ was 0.41.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 11 except that the molar ratio of Ni 2+ / Mn 4+ was 0.88.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 11 except that the ratio of Ni 2+ / Mn 4+ was set to 1.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 11 except that the ratio of Ni 2+ / Mn 4+ was set to 0.29.
- the nickel salt and manganese salt were made to have a molar ratio (Ni / Mn) of 1.24 and a molar ratio of cobalt salt in the total transition metal salt to 8 mol%, and the entire transition metal salt was dissolved in distilled water.
- the transition metal complex was obtained by increasing the basicity of the aqueous solution in which the transition metal was dissolved.
- the obtained composite was removed using a reduced pressure filter and dried in an oven at 110 ° C. for 18 hours to remove excess solvent.
- Li salts were mixed so that the Ni 2+ / Mn 4+ mol ratio was 0.76, and then placed in an electric furnace and raised to 950 ° C. at an elevated temperature rate of 300 ° C. per hour, and then calcined at 980 ° C. for 10 hours to form a lithium transition metal composite oxide.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 16 except that the molar ratio of Ni 2+ / Mn 4+ was set to 0.64.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 16, except that the molar ratio of Ni 2+ / Mn 4+ was 0.52.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 16, except that the molar ratio of Ni 2+ / Mn 4+ was 0.41.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 16, except that the molar ratio of Ni 2+ / Mn 4+ was 0.88.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 16, except that the ratio of Ni 2+ / Mn 4+ was set to 1.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 16, except that the ratio of Ni 2+ / Mn 4+ was set to 0.29.
- the nickel salt and manganese salt were made to have a molar ratio (Ni / Mn) of 1.24 and a molar ratio of cobalt salt in the total transition metal salt to 8 mol%, and the entire transition metal salt was dissolved in distilled water.
- the transition metal complex was obtained by increasing the basicity of the aqueous solution in which the transition metal was dissolved.
- the obtained composite was removed using a reduced pressure filter and dried in an oven at 110 ° C. for 18 hours to remove excess solvent.
- Li salts were mixed so that the Ni 2+ / Mn 4+ mol ratio was 0.76, and then placed in an electric furnace and raised to 950 ° C. at an elevated temperature rate of 300 ° C. per hour, followed by firing at 990 ° C. for 10 hours.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 21 except that the molar ratio of Ni 2+ / Mn 4+ was set to 0.64.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 21 except that the molar ratio of Ni 2+ / Mn 4+ was 0.52.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 21, except that the molar ratio of Ni 2+ / Mn 4+ was 0.41.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 21 except that the molar ratio of Ni 2+ / Mn 4+ was 0.88.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 21 except that the ratio of Ni 2+ / Mn 4+ was set to 1.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 21 except that the ratio of Ni 2+ / Mn 4+ was set to 0.29.
- the nickel salt and manganese salt were made to have a molar ratio (Ni / Mn) of 1.24 and a molar ratio of cobalt salt in the total transition metal salt to 8 mol%, and the entire transition metal salt was dissolved in distilled water.
- the transition metal complex was obtained by increasing the basicity of the aqueous solution in which the transition metal was dissolved.
- the obtained composite was removed using a reduced pressure filter and dried in an oven at 110 ° C. for 18 hours to remove excess solvent.
- Li salts were mixed so that the Ni 2+ / Mn 4+ mol ratio was 0.76, put in an electric furnace, heated to 1000 ° C. at an elevated temperature rate of 300 ° C. per hour, and then calcined at 950 ° C. for 10 hours to form a lithium transition metal composite oxide.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 26 except that the molar ratio of Ni 2+ / Mn 4+ was set to 0.64.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 26 except that the molar ratio of Ni 2+ / Mn 4+ was 0.52.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 26 except that the molar ratio of Ni 2+ / Mn 4+ was 0.41.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 26, except that the molar ratio of Ni 2+ / Mn 4+ was 0.88.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the nickel salt and the manganese salt were made to have a molar ratio (Ni / Mn) of 1.13.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the nickel salt and the manganese salt were made to have a molar ratio (Ni / Mn) of 1.43.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 26, except that the ratio of Ni 2+ / Mn 4+ was set to 1.
- a lithium transition metal composite oxide was obtained in the same manner as in Example 26, except that the ratio of Ni 2+ / Mn 4+ was set to 0.29.
- the lithium transition metal composite oxide was prepared in the same manner as in Example 1, except that the nickel salt and the manganese salt had a molar ratio (Ni / Mn) of 1 and the firing temperature was set to 1000 ° C. without using Co. Got.
- a lithium transition metal composite oxide was obtained in the same manner as in Comparative Example 13 except that the molar ratio of Ni 2+ / Mn 4+ was set to 1.
- a lithium composite transition metal oxide was obtained in the same manner as in Comparative Example 13 except that the molar ratio of nickel salt to manganese salt was 0.96.
- a lithium composite transition metal oxide was obtained in the same manner as in Comparative Example 13 except that the molar ratio of nickel salt to manganese salt was 0.90.
- a lithium composite transition metal oxide was obtained in the same manner as in Comparative Example 13 except that the nickel salt and the manganese salt were made to have a molar ratio (Ni / Mn) of 0.82.
- the positive electrode active materials prepared in Examples 1 to 30 and Comparative Examples 1 to 17, respectively, were mixed well with NMP such that the ratio (wt%) of the active material: conductive agent: binder was 95: 2.5: 2.5, and then applied to 20 ⁇ m Al foil. After drying at 130 ° C., a positive electrode was obtained. The obtained positive electrode was roll pressed to have a porosity of about 25%, and punched out in a coin shape of 1.487 cm 2 . Li-metal was used as a counter electrode of the punched cathode electrode, and a coin-type battery was obtained by using an electrolyte containing 1 M LiPF 6 in a solvent having EC: DMC: DEC 1: 2: 1.
- the obtained battery obtained the first cycle discharge capacity and efficiency through 0.1C charge 0.1C discharge, the rate capability was measured by calculating the ratio of 1C, 2C discharge capacity to 0.1C as a percentage, the results are shown in Table 1 below. .
- all of the lithium secondary batteries based on the positive electrode active material according to the embodiments of the present invention was at least 82% of the first cycle efficiency while the first cycle discharge capacity exceeds 148 mAh / g.
- all lithium secondary batteries based on the positive electrode active material according to the embodiments of the present invention had a ratio of 2C discharge capacity to at least 72% of 0.1C discharge capacity.
- the percentage (%) of Ni (Ni 2+ ) inserted into the Li site means the ratio of the site occupied by Ni (Ni 2+ ) in the entire Li site, that is, the occupancy rate.
- the reason why the measured value of m (Ni 2+ ) / m (Mn 4+ ) decreased from the calculated value is considered to be due to the evaporation of some Li during the reaction and the measurement error of the measuring device.
- the cathode active material according to the present invention shows a slight decrease in capacity due to the decrease in specific surface area with temperature, but the average oxidation number of the transition metal is 3 regardless of temperature change. It was confirmed that + was increased further, and that a more stable layered crystal structure was formed by increasing the oxidation number of Ni equivalent to manganese. In addition, it was found that electrochemical characteristics such as rate characteristics and one-time charge and discharge efficiency were consistently increased by a certain principle regardless of conditions such as temperature.
- the ratio of Ni 3+ in the nickel (b) of the content corresponding to the manganese content exhibits excellent electrochemical properties compared to the comparative examples in the range of more than 50%.
- the positive electrode active material according to the present invention has a larger average oxidation number of +3 and a relatively large amount of Ni 3+ in Ni corresponding to Mn in comparison with conventional active materials.
- the overall electrochemical characteristics including the battery capacity is excellent, and particularly high rate charge and discharge characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Claims (22)
- 리튬 이차전지용 양극 활물질로서, 층상 결정구조의 리튬 전이금속 산화물이고, 상기 전이금속은 Ni, Mn 및 Co의 혼합 전이금속을 포함하며 리튬을 제외한 전체 전이금속의 평균 산화수가 +3가 보다 크고, 하기 식 1 및 2의 조건을 만족하는 양극 활물질:1.1 < m(Ni)/m(Mn) < 1.5 (1)0.4 < m(Ni2+)/m(Mn4+) < 1 (2)상기 식에서, m(Ni)/m(Mn)는 망간 대비 니켈의 몰비이고, m(Ni2+)/m(Mn4+)는 Mn4+ 대비 Ni2+의 몰비이다.
- 제 1 항에 있어서, 상기 층상 결정구조는 α-NaFeO2 층상 결정구조인 것을 특징으로 하는 양극 활물질.
- 제 1 항에 있어서, 상기 m(Ni)/m(Mn)은 1.2 ≤ m(Ni)/m(Mn) ≤ 1.4인 것을 특징으로 하는 양극 활물질.
- 제 1 항에 있어서, 상기 리튬을 제외한 전체 전이금속의 평균 산화수가 3.0 초과 내지 3.5 이하인 것을 특징으로 하는 양극 활물질.
- 제 4 항에 있어서, 상기 리튬을 제외한 전체 전이금속의 평균 산화수가 3.01 내지 3.3인 것을 특징으로 하는 양극 활물질.
- 제 4 항에 있어서, 상기 리튬을 제외한 전체 전이금속의 평균 산화수가 3.1 내지 3.3인 것을 특징으로 하는 양극 활물질.
- 제 1 항에 있어서, 상기 니켈은 망간 함량 대비 초과량의 니켈(a)과, 망간 함량에 대응하는 함량의 니켈(b)로 이루어져 있는 것을 특징으로 하는 양극 활물질.
- 제 1 항에 있어서, 상기 니켈은 +2가 보다 큰 평균 산화수를 가지는 것을 특징으로 하는 양극 활물질.
- 제 7 항에 있어서, 상기 망간 함량 대비 초과량의 니켈(a)은 Ni3+인 것을 특징으로 하는 양극 활물질.
- 제 7 항에 있어서, 망간 및 상기 망간 함량에 대응하는 함량의 니켈(b)의 전체 평균 산화수가 3.0 초과 내지 3.5 이하인 것을 특징으로 하는 양극 활물질
- 제 10 항에 있어서, 망간 및 상기 망간 함량에 대응하는 함량의 니켈(b)의 전체 평균 산화수가 3.1 내지 3.3 이하인 것을 특징으로 하는 양극 활물질.
- 제 7 항에 있어서, 상기 망간 함량에 대응하는 함량의 니켈(b)은 Ni2+ 및 Ni3+로 이루어진 것을 특징으로 하는 양극 활물질.
- 제 7 항에 있어서, 상기 망간 함량에 대응하는 함량의 니켈(b) 중 Ni3+의 비율이 11 ~ 60%인 것을 특징으로 하는 양극 활물질.
- 제 1 항에 있어서, 상기 Mn4+ 대비 Ni2+의 몰비는 0.4 < m(Ni2+)/m(Mn4+) ≤ 0.9 인 것을 특징으로 하는 양극 활물질.
- 제 1 항에 있어서, 상기 망간 및 니켈의 평균 산화수는 3.05 내지 3.35인 것을 특징으로 하는 양극 활물질.
- 제 1 항에 있어서, 상기 Co의 함량이 전체 전이금속 함량의 10 mol% 미만인 것을 특징으로 하는 양극 활물질
- 제 1 항에 있어서, Li 전체 사이트에서 Ni(Ni2+)이 점유하고 있는 사이트의 비율은 5 mol% 미만인 것을 특징으로 하는 양극 활물질.
- 제 1 항 내지 제 17 항 중 어느 하나에 따른 양극 활물질을 포함하는 것으로 구성된 양극 전극.
- 제 18 항에 따른 양극 전극을 포함하는 것으로 구성된 리튬 이차전지.
- 제 19 항에 있어서, 상기 리튬 이차전지는 첫 번째 사이클 방전용량이 148 mAh/g 이상이면서 첫 번째 사이클 효율이 82% 이상인 것을 특징으로 하는 리튬 이차전지.
- 제 19 항에 있어서, 상기 리튬 이차전지는 0.1C 방전용량 대비 2C 방전용량의 비율이 72% 이상인 것을 특징으로 하는 리튬 이차전지.
- 제 19 항에 있어서, 상기 리튬 이차전지는 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차의 전원으로 사용되는 것을 특징으로 하는 리튬 이차전지.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09813253.3A EP2330664B1 (en) | 2008-09-10 | 2009-09-10 | Positive electrode active substance for lithium secondary battery |
CA2736915A CA2736915C (en) | 2008-09-10 | 2009-09-10 | Cathode active material for lithium secondary battery |
CN200980135503.7A CN102150305B (zh) | 2008-09-10 | 2009-09-10 | 锂二次电池用正极活性材料 |
US12/565,033 US7935444B2 (en) | 2008-09-10 | 2009-09-23 | Cathode active material for lithium secondary battery |
US13/050,739 US8492032B2 (en) | 2008-09-10 | 2011-03-17 | Cathode active material for lithium secondary battery |
US13/050,730 US8497039B2 (en) | 2008-09-10 | 2011-03-17 | Cathode active material for lithium secondary battery |
US13/053,579 US20110195303A1 (en) | 2008-09-10 | 2011-03-22 | Cathode active material for lithium secondary battery |
US13/303,001 US8481213B2 (en) | 2008-09-10 | 2011-11-22 | Cathode active material for lithium secondary battery |
US13/928,886 US9236608B2 (en) | 2008-09-10 | 2013-06-27 | Cathode active material for lithium secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0089335 | 2008-09-10 | ||
KR20080089335 | 2008-09-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/565,033 Continuation US7935444B2 (en) | 2008-09-10 | 2009-09-23 | Cathode active material for lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010030131A2 true WO2010030131A2 (ko) | 2010-03-18 |
WO2010030131A3 WO2010030131A3 (ko) | 2010-06-24 |
Family
ID=42005638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/005149 WO2010030131A2 (ko) | 2008-09-10 | 2009-09-10 | 리튬 이차전지용 양극 활물질 |
Country Status (6)
Country | Link |
---|---|
US (3) | US7935444B2 (ko) |
EP (1) | EP2330664B1 (ko) |
KR (1) | KR101059757B1 (ko) |
CN (1) | CN102150305B (ko) |
CA (1) | CA2736915C (ko) |
WO (1) | WO2010030131A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110315917A1 (en) * | 2009-06-17 | 2011-12-29 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
CN102376949A (zh) * | 2010-08-05 | 2012-03-14 | 夏普株式会社 | 正极活性物质及具备包含该正极活性物质的正极的非水二次电池 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8497039B2 (en) * | 2008-09-10 | 2013-07-30 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
EP2418718A4 (en) * | 2009-04-09 | 2014-01-01 | Lg Chemical Ltd | ACTIVE CATHODIC MATERIAL FOR LITHIUM SECONDARY BATTERY |
EP2511972B1 (en) | 2010-04-30 | 2017-05-31 | LG Chem, Ltd. | Cathode active material and lithium secondary battery using same |
KR101264337B1 (ko) | 2010-08-13 | 2013-05-14 | 삼성에스디아이 주식회사 | 양극 활물질 및 이를 이용한 리튬 전지 |
KR101326088B1 (ko) * | 2010-09-17 | 2013-11-07 | 주식회사 엘지화학 | 양극 활물질 및 이를 이용한 리튬 이차전지 |
US9692039B2 (en) | 2012-07-24 | 2017-06-27 | Quantumscape Corporation | Nanostructured materials for electrochemical conversion reactions |
WO2015130831A1 (en) | 2014-02-25 | 2015-09-03 | Quantumscape Corporation | Hybrid electrodes with both intercalation and conversion materials |
US10326135B2 (en) | 2014-08-15 | 2019-06-18 | Quantumscape Corporation | Doped conversion materials for secondary battery cathodes |
KR102591083B1 (ko) * | 2014-12-23 | 2023-10-18 | 퀀텀스케이프 배터리, 인코포레이티드 | 리튬이 풍부한 니켈 망간 코발트 산화물 |
KR20160105348A (ko) * | 2015-02-27 | 2016-09-06 | 주식회사 엘지화학 | 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 |
US11038361B2 (en) * | 2015-03-16 | 2021-06-15 | Lenovo (Singapore) Pte. Ltd. | Battery with cathode materials for charging at different rates |
US10283985B2 (en) | 2016-05-25 | 2019-05-07 | Lenovo (Singapore) Pte. Ltd. | Systems and methods to determine time at which battery is to be charged |
US11508960B2 (en) * | 2017-11-23 | 2022-11-22 | Ecopro Bm Co., Ltd. | Lithium metal complex oxide and manufacturing method of the same |
EP3878037A1 (en) | 2018-11-06 | 2021-09-15 | QuantumScape Battery, Inc. | Electrochemical cells with catholyte additives and lithium-stuffed garnet separators |
CN110436530A (zh) * | 2019-07-18 | 2019-11-12 | 镇江博润新材料有限公司 | 一种蛋黄壳结构钴酸锰多孔微球及其制备方法 |
KR20240110654A (ko) | 2021-11-30 | 2024-07-15 | 퀀텀스케이프 배터리, 인코포레이티드 | 고체-상태 배터리를 위한 캐소드액 |
CA3241189A1 (en) | 2021-12-17 | 2023-06-22 | Cheng-Chieh Chao | Cathode materials having oxide surface species |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6660432B2 (en) | 2000-09-14 | 2003-12-09 | Ilion Technology Corporation | Lithiated oxide materials and methods of manufacture |
KR20050047291A (ko) | 2003-11-17 | 2005-05-20 | 브이케이 주식회사 | 리튬이차전지용 양극 활물질 및 그 제조방법 |
US6964828B2 (en) | 2001-04-27 | 2005-11-15 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
KR100543720B1 (ko) | 2001-10-25 | 2006-01-20 | 마쯔시다덴기산교 가부시키가이샤 | 양극활성물질 및 이것을 포함하는 비수전해질 2차전지 |
US7135252B2 (en) | 2000-06-22 | 2006-11-14 | Uchicago Argonne Llc | Lithium metal oxide electrodes for lithium cells and batteries |
US7314682B2 (en) | 2003-04-24 | 2008-01-01 | Uchicago Argonne, Llc | Lithium metal oxide electrodes for lithium batteries |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001083610A (ja) | 1999-09-14 | 2001-03-30 | Fuji Photo Optical Co Ltd | ネガキャリア位置決め装置 |
JP4981508B2 (ja) | 2001-10-25 | 2012-07-25 | パナソニック株式会社 | 正極活物質およびこれを含む非水電解質二次電池 |
US7393476B2 (en) * | 2001-11-22 | 2008-07-01 | Gs Yuasa Corporation | Positive electrode active material for lithium secondary cell and lithium secondary cell |
JP2004111076A (ja) * | 2002-09-13 | 2004-04-08 | Sony Corp | 正極活物質及び非水電解質二次電池 |
US7595130B2 (en) * | 2003-11-06 | 2009-09-29 | Ube Industries, Ltd. | Battery separator and lithium secondary battery |
KR100570616B1 (ko) * | 2004-02-06 | 2006-04-12 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지 |
CN101080831B (zh) * | 2004-12-17 | 2011-06-15 | 株式会社杰士汤浅国际 | 碱二次电池用镍电极及其制造方法以及碱二次电池 |
EP1831943B1 (en) * | 2004-12-31 | 2014-12-10 | IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) | Method for preparing double-layer cathode active materials for lithium secondary batteries |
WO2006085467A1 (ja) * | 2005-02-08 | 2006-08-17 | Mitsubishi Chemical Corporation | リチウム二次電池及びその正極材料 |
TWI335687B (en) * | 2006-02-17 | 2011-01-01 | Lg Chemical Ltd | Lithium-metal composite oxides and electrochemical device using the same |
JP2008047306A (ja) * | 2006-08-10 | 2008-02-28 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池 |
US10665892B2 (en) * | 2007-01-10 | 2020-05-26 | Eocell Limited | Lithium batteries with nano-composite positive electrode material |
KR100927244B1 (ko) | 2007-10-13 | 2009-11-16 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질 |
-
2009
- 2009-09-10 WO PCT/KR2009/005149 patent/WO2010030131A2/ko active Application Filing
- 2009-09-10 KR KR1020090085612A patent/KR101059757B1/ko active IP Right Grant
- 2009-09-10 CA CA2736915A patent/CA2736915C/en active Active
- 2009-09-10 CN CN200980135503.7A patent/CN102150305B/zh active Active
- 2009-09-10 EP EP09813253.3A patent/EP2330664B1/en active Active
- 2009-09-23 US US12/565,033 patent/US7935444B2/en active Active
-
2011
- 2011-03-22 US US13/053,579 patent/US20110195303A1/en not_active Abandoned
- 2011-11-22 US US13/303,001 patent/US8481213B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7135252B2 (en) | 2000-06-22 | 2006-11-14 | Uchicago Argonne Llc | Lithium metal oxide electrodes for lithium cells and batteries |
US6660432B2 (en) | 2000-09-14 | 2003-12-09 | Ilion Technology Corporation | Lithiated oxide materials and methods of manufacture |
US6964828B2 (en) | 2001-04-27 | 2005-11-15 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
US7078128B2 (en) | 2001-04-27 | 2006-07-18 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
KR100543720B1 (ko) | 2001-10-25 | 2006-01-20 | 마쯔시다덴기산교 가부시키가이샤 | 양극활성물질 및 이것을 포함하는 비수전해질 2차전지 |
US7314682B2 (en) | 2003-04-24 | 2008-01-01 | Uchicago Argonne, Llc | Lithium metal oxide electrodes for lithium batteries |
KR20050047291A (ko) | 2003-11-17 | 2005-05-20 | 브이케이 주식회사 | 리튬이차전지용 양극 활물질 및 그 제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2330664A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110315917A1 (en) * | 2009-06-17 | 2011-12-29 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
US8440354B2 (en) * | 2009-06-17 | 2013-05-14 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
US8790832B2 (en) | 2009-06-17 | 2014-07-29 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
US8974970B2 (en) | 2009-06-17 | 2015-03-10 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
CN102376949A (zh) * | 2010-08-05 | 2012-03-14 | 夏普株式会社 | 正极活性物质及具备包含该正极活性物质的正极的非水二次电池 |
Also Published As
Publication number | Publication date |
---|---|
CN102150305B (zh) | 2014-01-08 |
KR101059757B1 (ko) | 2011-08-26 |
KR20100030612A (ko) | 2010-03-18 |
US7935444B2 (en) | 2011-05-03 |
EP2330664A2 (en) | 2011-06-08 |
US20110195303A1 (en) | 2011-08-11 |
EP2330664B1 (en) | 2017-12-13 |
WO2010030131A3 (ko) | 2010-06-24 |
EP2330664A4 (en) | 2015-04-29 |
CA2736915C (en) | 2013-09-03 |
US8481213B2 (en) | 2013-07-09 |
US20100148115A1 (en) | 2010-06-17 |
CN102150305A (zh) | 2011-08-10 |
CA2736915A1 (en) | 2010-03-18 |
US20120064395A1 (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010030131A2 (ko) | 리튬 이차전지용 양극 활물질 | |
WO2018101809A1 (ko) | 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지 | |
WO2020040586A1 (ko) | 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지 | |
WO2019216694A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2019078503A1 (ko) | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2018135889A1 (ko) | 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019143047A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2019117531A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2018236168A1 (ko) | 리튬 이차전지 | |
WO2018221827A1 (ko) | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 | |
WO2020111543A1 (ko) | 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 | |
WO2021015511A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질 | |
WO2022182019A1 (ko) | 가스 발생량이 저감된 희생 양극재 및 이의 제조방법 | |
WO2020263023A1 (ko) | 특정한 조성 조건을 가지는 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지 | |
WO2019004699A1 (ko) | 리튬 이차전지 | |
WO2019151725A1 (ko) | 고온 저장 특성이 향상된 리튬 이차전지 | |
WO2019045399A2 (ko) | 리튬 이차전지 | |
WO2019151724A1 (ko) | 고온 저장 특성이 향상된 리튬 이차전지 | |
WO2021045542A1 (ko) | 전극의 전리튬화 방법 및 장치 | |
WO2022039576A1 (ko) | 양극 활물질의 제조방법 | |
WO2021040388A1 (ko) | 비수 전해질 및 이를 포함하는 리튬 이차전지 | |
WO2018135890A1 (ko) | 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2022255665A1 (ko) | 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리 | |
WO2021118144A1 (ko) | 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지 | |
WO2020180160A1 (ko) | 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980135503.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09813253 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1675/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009813253 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2736915 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |