WO2010029706A1 - 高度不飽和脂肪酸誘導体の取得方法 - Google Patents

高度不飽和脂肪酸誘導体の取得方法 Download PDF

Info

Publication number
WO2010029706A1
WO2010029706A1 PCT/JP2009/004311 JP2009004311W WO2010029706A1 WO 2010029706 A1 WO2010029706 A1 WO 2010029706A1 JP 2009004311 W JP2009004311 W JP 2009004311W WO 2010029706 A1 WO2010029706 A1 WO 2010029706A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
highly unsaturated
unsaturated fatty
mixture
silver
Prior art date
Application number
PCT/JP2009/004311
Other languages
English (en)
French (fr)
Inventor
坂口裕之
小林英明
三澤嘉久
瓜生圭介
清水芳雄
Original Assignee
キユーピー株式会社
備前化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キユーピー株式会社, 備前化成株式会社 filed Critical キユーピー株式会社
Priority to DK09812855.6T priority Critical patent/DK2330177T3/en
Priority to KR1020117008179A priority patent/KR101692565B1/ko
Priority to EP09812855.6A priority patent/EP2330177B1/en
Priority to CA2736363A priority patent/CA2736363C/en
Priority to AU2009290334A priority patent/AU2009290334B2/en
Priority to ES09812855.6T priority patent/ES2621318T3/es
Priority to US13/062,969 priority patent/US8680305B2/en
Publication of WO2010029706A1 publication Critical patent/WO2010029706A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
    • C11B7/0083Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils with addition of auxiliary substances, e.g. cristallisation promotors, filter aids, melting point depressors
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/005Splitting up mixtures of fatty acids into their constituents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/58Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/60Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining

Definitions

  • the present invention relates to a method for obtaining a product of particularly good quality at a low cost when using a highly unsaturated fatty acid derivative in pharmaceuticals, cosmetics, foods and the like.
  • Highly unsaturated fatty acids and their derivatives have many physiological activities such as reduction of blood fat and have been used as raw materials for pharmaceuticals, cosmetics, foods and the like for a long time. Therefore, methods for purifying highly unsaturated fatty acids and their derivatives with high purity and good quality have been studied.
  • Patent Documents 1-4 describe that the silver salt used for the purification of highly unsaturated fatty acid and its derivatives can be reused, but the silver salt is very easily deteriorated. Has nature. When highly unsaturated fatty acid and its derivatives are purified using a deteriorated silver salt, impurities are mixed in and the flavor is deteriorated, and a good refined product cannot be obtained. Therefore, it is very difficult to reuse the silver salt in practice.
  • the present invention realizes inexpensive provision of highly unsaturated fatty acid derivatives by increasing the efficiency of reusing a silver salt aqueous solution in a method for purifying highly unsaturated fatty acid derivatives by a silver complex method.
  • the present inventors have surprisingly realized that the free fatty acid content in the silver salt aqueous solution to be reused is below a certain value.
  • the present inventors have found that highly unsaturated fatty acid derivatives of good quality can be obtained even by repeatedly using an aqueous silver salt solution, and have completed the present invention.
  • the present inventors have found that a highly unsaturated highly unsaturated fatty acid derivative can be obtained by making the acid value of the mixture of the fatty acid derivative before contacting with the aqueous silver salt solution not more than a certain value. It was.
  • the present invention (1) In a method of obtaining a highly unsaturated fatty acid derivative by contacting a mixture of fatty acid derivatives containing a highly unsaturated fatty acid derivative with an aqueous solution of silver salt to obtain the highly unsaturated fatty acid derivative, the silver salt A method for obtaining a highly unsaturated fatty acid derivative, wherein the free fatty acid content in the aqueous solution is 0.2 meq or less per gram of silver, (2) The method for obtaining a highly unsaturated fatty acid derivative according to the above (1), wherein the free fatty acid content is 0.2 meq or less per 1 g of silver by bringing the silver salt aqueous solution into contact with an adsorbent, (3) The method for obtaining a highly unsaturated fatty acid derivative according to (1) or (2), wherein the acid value of the mixture of the fatty acid derivatives before contacting with the aqueous silver salt solution is 5 or less, (4) The high acid content according to any one of (1) to (3), wherein the mixture of (1) to
  • the method for obtaining a highly unsaturated fatty acid derivative of the present invention it is possible to industrially reuse a silver salt aqueous solution in a silver complex method, and to obtain a highly unsaturated fatty acid derivative of good quality at low cost. be able to.
  • % means “mass%”.
  • a mixture of fatty acid derivatives is brought into contact with an aqueous solution of a silver salt to obtain the highly unsaturated fatty acid derivative.
  • the free fatty acid content in the salt aqueous solution is 0.2 meq or less per 1 g of silver.
  • a mixture of fatty acid derivatives having different carbon number and / or degree of unsaturation is contacted with an aqueous solution of a silver salt to form a water-soluble complex of a highly unsaturated fatty acid derivative, and a highly unsaturated that has not formed a complex.
  • complex dissociation means are used to obtain a highly unsaturated fatty acid derivative.
  • the free fatty acid content is 0.2 meq or less per gram of silver. It is characterized by doing.
  • a highly unsaturated fatty acid means an unsaturated fatty acid having 16 or more carbon atoms and having two or more double bonds in the molecule.
  • docosahexaenoic acid C22: 6, DHA
  • Eicosapentaenoic acid C20: 5, EPA
  • arachidonic acid C20: 4, AA
  • docosapentaenoic acid C22: 5, DPA
  • stearidonic acid C18: 4
  • linolenic acid C18: 3
  • linoleic acid C18: 2.
  • the highly unsaturated fatty acid derivative obtained by the acquisition method of the present invention means a fatty acid that is not free, for example, an ester type derivative such as a methyl ester or ethyl ester of a highly unsaturated fatty acid, an amide such as an amide or methyl amide.
  • an ester type derivative such as a methyl ester or ethyl ester of a highly unsaturated fatty acid
  • an amide such as an amide or methyl amide.
  • any silver salt that can form a complex with an unsaturated bond in an unsaturated fatty acid can be used.
  • silver nitrate, silver perchlorate, silver acetate , Silver trichloroacetate, silver trifluoroacetate and the like are preferably dissolved in water to a concentration of 15% or more, more preferably 20% or more, and even more preferably 40% or more to obtain a silver salt aqueous solution, which is used for obtaining highly unsaturated fatty acid derivatives.
  • the silver salt concentration in the silver salt aqueous solution may be the saturation concentration as the upper limit.
  • the free fatty acid content in the silver salt aqueous solution can be calculated by the principle of the Duncombe method modification (Duncombe W. G.: Clin. Chem. Acta., 9, 122-125, 1964). Specifically, a copper test solution is added to the sample to form a salt of free fatty acid and copper in the sample, and this salt is separated by an extractant. By adding a color developing solution containing bathocuproine there, a chelate compound of copper and bathocuproine is generated, and the color is yellowish orange. By measuring the yellow-orange absorbance, the free fatty acid concentration in the sample can be determined.
  • the free fatty acid content can be made 0.2 meq or less per 1 g of silver by contacting with an adsorbent.
  • the adsorbent include activated carbon, activated alumina, activated clay, acidic clay, silica gel, diatomaceous earth, aluminum oxide, and magnesium oxide, and one or more of these can be used.
  • the contact method between the silver salt aqueous solution and the adsorbent is not particularly limited.
  • the adsorbent is charged into the silver salt aqueous solution and stirred, or the adsorbent is filled.
  • a method of passing the aqueous silver salt solution through the prepared column may be used.
  • the free fatty acid content can be reduced to 0.2 meq or less per gram of silver by adjusting the dilution / concentration or by extracting with an organic solvent.
  • the concentration of the recovered silver salt aqueous solution can be adjusted by evaporating water by reducing pressure or heating, or by adding silver salt or water appropriately while measuring the specific gravity.
  • the free fatty acid content in the silver salt aqueous solution to be reused may be 0.2 meq or less per gram of silver, preferably 0.18 meq or less per gram of silver, and 0.12 meq or less per gram of silver.
  • the flavor and acid value of the polyunsaturated fatty acid derivative obtained are more preferable.
  • the acid value of the mixture of fatty acid derivatives before being brought into contact with the silver salt aqueous solution is 5 or less.
  • the free fatty acid content in the silver salt aqueous solution after the treatment is hardly increased, and the free fatty acid content in the silver salt aqueous solution is easily managed to be 0.2 meq or less per 1 g of silver. Therefore, the silver salt aqueous solution can be efficiently recycled.
  • the adsorbent can be brought into contact with the adsorbent as a means for reducing the acid value to 5 or less before bringing the mixture of fatty acid derivatives into contact with the aqueous silver salt solution.
  • the adsorbent include activated carbon, activated alumina, activated clay, acidic clay, silica gel, diatomaceous earth, aluminum oxide, and magnesium oxide, and one or more of these can be used.
  • the method of contacting the mixture of fatty acid derivatives with the adsorbent is not particularly limited.
  • the adsorbent is charged into the mixture and stirred, or the adsorbent is filled.
  • a method of passing the mixture through the column As a means for reducing the acid value of the mixture of fatty acid derivatives before contact with the aqueous silver salt solution to 5 or less, a distillation method may be used.
  • the method of selectively separating a highly unsaturated fatty acid derivative from a mixture of fatty acid derivatives is a method of combining an unsaturated bond and a complex with the above-mentioned mixture of fatty acid derivatives containing a highly unsaturated fatty acid derivative.
  • An aqueous solution of a silver salt that can be formed is added, and the mixture is preferably stirred for 5 minutes to 4 hours, more preferably 10 minutes to 2 hours to form a water-soluble silver salt-highly unsaturated fatty acid derivative complex. It is carried out by selectively dissolving only the derivative in an aqueous silver salt solution.
  • the reaction temperature between the above highly unsaturated fatty acid derivative and the aqueous silver salt solution may be a lower limit as long as the aqueous silver salt solution is liquid and the upper limit is up to 100 ° C. From the viewpoint of stability, solubility of silver salt in water, complex formation rate, etc., 10 to 30 ° C. is preferable.
  • the light is shielded from light under an inert gas, for example, a nitrogen atmosphere. Is preferred.
  • the method for dissociating the highly unsaturated fatty acid derivative from the complex of the highly unsaturated fatty acid derivative and the silver salt is not particularly limited. For example, extraction with an organic solvent or addition of water makes the highly unsaturated fatty acid derivative insoluble. And a method of separating them.
  • the amount of free fatty acid per gram of silver can be calculated by the following formulas (2) and (3).
  • Example 1 Highly unsaturated fatty acid ethyl ester was obtained from a mixture of fatty acid ethyl esters by the following method. First, 350 kg of distilled water was added to 350 kg of silver nitrate, and the mixture was stirred and dissolved. To 700 kg of this silver nitrate aqueous solution, 154 kg of a mixture of fatty acid ethyl esters (acid number 0.08, POV 3.3, EPA ethyl ester concentration 45.6%, DHA ethyl ester concentration 3.8%) was added, and 20 ° C. at 20 ° C. Stir for minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated.
  • the upper layer was discarded, only the lower layer was separated, 1000 kg of water was added, and the mixture was stirred at 60 ° C. for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated. The upper layer was separated to obtain a highly unsaturated fatty acid ethyl ester concentrate. Separately, a lower layer containing silver nitrate was taken and the free fatty acid content was measured. The lower layer containing silver nitrate was concentrated, adjusted for concentration, and used again for purification of highly unsaturated fatty acid ethyl ester. This operation was repeated to process 14 batches of the above mixture. The results are shown in Table 1.
  • the free fatty acid content of the aqueous silver nitrate solution during recycling was always 0.2 meq or less per gram of silver.
  • the obtained product (EPA ethyl ester concentration 81-84%) had good quality such as POV, acid value, and flavor.
  • Example 2 Highly unsaturated fatty acid ethyl ester was obtained from a mixture of fatty acid ethyl esters by the following method. First, 350 kg of distilled water was added to 350 kg of silver nitrate, and the mixture was stirred and dissolved. To 700 kg of this silver nitrate aqueous solution, 150 kg of a mixture of fatty acid ethyl esters (acid value 5.98, POV2.1, EPA ethyl ester concentration 44.3%, DPA ethyl ester concentration 5.1%) was mixed at 10 ° C. Stir for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated.
  • the upper layer was discarded, only the lower layer was separated, 1000 L of water was added, and the mixture was stirred at 60 ° C. for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated. The upper layer was separated to obtain a highly unsaturated fatty acid ethyl ester concentrate. Separately, a lower layer containing silver nitrate was taken, and 10% of aluminum oxide was added to the lower layer. After stirring at 60 ° C. for 20 minutes, the aluminum oxide was removed by filtration. The free fatty acid content of the lower layer after this aluminum oxide treatment was measured. The lower layer after the aluminum oxide treatment was then concentrated and adjusted in concentration, and again used for obtaining highly unsaturated fatty acid ethyl ester. Table 2 shows the results of repeating this operation and processing 10 batches. The obtained materials (EPA ethyl ester concentration of 80 to 84%) all had good quality such as POV, acid value, and flavor.
  • Example 3 Highly unsaturated fatty acid methyl esters were obtained from a mixture of fatty acid methyl esters by the following method. First, 350 kg of distilled water was added to 350 kg of silver nitrate, and the mixture was stirred and dissolved. To 700 kg of this silver nitrate aqueous solution, 150 kg of a mixture of fatty acid methyl esters (acid value 6.74, POV 2.3, EPA methyl ester concentration 46.2%, DPA methyl ester concentration 3.6%) was mixed at 10 ° C. Stir for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated.
  • the upper layer was discarded, only the lower layer was separated, 900 L of cyclohexane was added, and the mixture was stirred at 50 ° C. for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated. The upper layer was separated to obtain a highly unsaturated fatty acid methyl ester concentrate. Separately, a lower layer containing silver nitrate was taken, and 10% of aluminum oxide was added to the lower layer. After stirring at 60 ° C. for 20 minutes, the aluminum oxide was removed by filtration. The free fatty acid content of the lower layer after this aluminum oxide treatment was measured. The lower layer after the aluminum oxide treatment was subjected to concentration adjustment and used again for obtaining highly unsaturated fatty acid methyl ester. Table 3 shows the results of repeating this operation and processing 10 batches. The obtained materials (EPA methyl ester concentration of 84 to 89%) all had good quality such as POV, acid value and flavor.
  • Example 4 According to the following method, 40 batches of a mixture of fatty acid ethyl esters were processed to obtain highly unsaturated fatty acid ethyl esters.
  • 350 kg of distilled water was added to 350 kg of silver nitrate, and the mixture was stirred and dissolved.
  • a mixture of fatty acid ethyl esters (40 batches: acid value 0.05 to 4.11, POV 2.2 to 3.5, EPA ethyl ester concentration 41.1 to 58.1%, DHA ethyl ester Of 3.9 to 8.7%) was mixed and stirred at 10 ° C. for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated.
  • the upper layer was discarded, only the lower layer was separated, 1000 kg of water was added, and the mixture was stirred at 60 ° C. for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated.
  • the upper layer was separated to obtain a highly unsaturated fatty acid ethyl ester concentrate.
  • a lower layer containing silver nitrate was taken and the free fatty acid content was measured. This lower layer containing silver nitrate is concentrated and adjusted, and when the free fatty acid content of the silver nitrate aqueous solution approaches 0.2 meq per gram of silver, it is appropriately treated with activated carbon to obtain highly unsaturated fatty acid ethyl ester again. Used for.
  • the activated carbon treatment was performed by adding 10% activated carbon to the amount of the silver nitrate aqueous solution, stirring at 60 ° C. for 20 minutes under heating, and performing filtration.
  • the aqueous silver nitrate solution after the activated carbon treatment was used again for obtaining highly unsaturated fatty acid ethyl ester.
  • Table 4 shows the result of repeating this operation. Acquired products obtained by using an aqueous solution of silver nitrate with appropriate free activated fatty acid treatment and reduced free fatty acid content (75-84% EPA ethyl ester concentration) all have good quality such as POV, acid value, and flavor. was.
  • Example 5 Highly unsaturated fatty acid ethyl ester was obtained from a mixture of fatty acid ethyl esters by the following method. First, 300 kg of aluminum oxide was added to 2000 kg of a mixture of fatty acid ethyl esters (acid number 7.32, POV 2.3, EPA ethyl ester concentration 42.3%, DHA ethyl ester concentration 1.6%) and stirred for 1 hour. did. Thereafter, aluminum oxide was removed by filtration, and the acid value was measured and found to be 0.06.
  • a lower layer containing silver nitrate was taken and the free fatty acid content was measured.
  • This lower layer containing silver nitrate was subjected to concentration and concentration adjustment, and again used for obtaining highly unsaturated fatty acid ethyl ester.
  • the free fatty acid content of the aqueous silver nitrate solution was always 0.2 meq or less per gram of silver (Table 5).
  • the obtained product (EPA ethyl ester concentration 81-85%) had good quality such as POV, acid value and flavor.
  • Example 6 Highly unsaturated fatty acid ethyl ester was obtained from a mixture of fatty acid ethyl esters by the following method. First, 350 kg of distilled water was added to 400 kg of silver perchlorate, and stirred and dissolved. 160 kg of a mixture of fatty acid ethyl esters (acid number 0.06, POV 2.7, EPA ethyl ester concentration 47.9%, DHA ethyl ester concentration 3.2%) was added to 750 kg of this silver perchlorate aqueous solution. Stir at 20 ° C. for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated.
  • the upper layer was discarded, only the lower layer was separated, 1000 kg of water was added, and the mixture was stirred at 60 ° C. for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated. The upper layer was separated to obtain a highly unsaturated fatty acid ethyl ester concentrate. Separately, a lower layer containing silver perchlorate was taken and the free fatty acid content was measured. The lower layer containing silver perchlorate was concentrated, adjusted in concentration, and used again to obtain highly unsaturated fatty acid ethyl ester. This operation was repeated to process 10 batches of the above mixture. The results are shown in Table 6.
  • the free fatty acid content of the silver perchlorate aqueous solution was always 0.2 meq or less per gram of silver.
  • the obtained product (EPA ethyl ester concentration of 82 to 85%) had good quality such as POV, acid value and flavor.
  • the upper layer was discarded, only the lower layer was separated, 1000 kg of water was added, and the mixture was stirred at 60 ° C. for 20 minutes. Thereafter, the mixture was left for 1 hour until the two layers were separated. The upper layer was separated to obtain a highly unsaturated fatty acid ethyl ester concentrate. Separately, a lower layer containing silver nitrate was taken and the free fatty acid content was measured. This lower layer containing silver nitrate was subjected to concentration and concentration adjustment, and again used for obtaining highly unsaturated fatty acid ethyl ester. This operation was repeated to purify 3 batches of the above mixture. The results are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】経済的に、純度が高く品位の良好な高度不飽和脂肪酸誘導体を得る。 【解決手段】脂肪酸の誘導体の混合物を銀塩の水溶液と接触せしめ、高度不飽和脂肪酸誘導体を取得する方法において、上記銀塩水溶液を繰り返し使用して上記方法を行うにあたり、上記銀塩水溶液中の遊離脂肪酸含量を、銀1g当り0.2meq以下とする。

Description

高度不飽和脂肪酸誘導体の取得方法
 本発明は、高度不飽和脂肪酸誘導体を医薬品、化粧品、食品等に使用するにあたり、特に良好な品質のものを安価に取得するための方法に関する。
 高度不飽和脂肪酸およびその誘導体は、血中脂肪の低減等の多くの生理活性をもち、古くから医薬品、化粧品、食品等の原料として使用されてきた。そこで、高純度かつ良好な品位の高度不飽和脂肪酸およびその誘導体の精製方法が検討されている。
 その精製方法のひとつとして、高度不飽和脂肪酸およびその誘導体が銀イオンと錯体を形成して水溶性となるという特性を利用した、銀錯体法が知られている(特許文献1-4)。ここで、特許文献1-4には、高度不飽和脂肪酸およびその誘導体の精製に使用した銀塩を再利用することが可能であると記載されてはいるが、銀塩は非常に劣化しやすい性質をもっている。劣化した銀塩を使用して高度不飽和脂肪酸およびその誘導体を精製すると、不純物の混入や風味の劣化などが生じ、良好な精製品を得ることができない。したがって、銀塩を再利用することは現実的には非常に困難であり、工業的に高度不飽和脂肪酸およびその誘導体を精製する場合、その都度新たな銀塩水溶液を調製する必要があり、精製コストが非常に高価になるという問題があった。そのため、良好な品位の高度不飽和脂肪酸およびその誘導体を安価に提供するために、銀塩水溶液を長期間繰り返して再利用することを可能にする技術が望まれていた。
特許第2786748号 特許第2895258号 特許第2935555号 特許第3001954号
 本発明は、銀錯体法による高度不飽和脂肪酸誘導体の精製方法において、銀塩水溶液の再利用の効率を上げることにより、高度不飽和脂肪酸誘導体の安価な提供を実現するものである。
 本発明者らは、銀塩水溶液を使用した高度不飽和脂肪酸誘導体の取得方法について鋭意研究を重ねた結果、再利用する銀塩水溶液中の遊離脂肪酸含量を一定値以下とすることにより、意外にも、銀塩水溶液を繰り返し使用しても良好な品位の高度不飽和脂肪酸誘導体が取得できることを見出し、本発明を完成するに至った。また、本発明者らは、上記銀塩水溶液と接触せしめる前の脂肪酸の誘導体の混合物の酸価を一定値以下とすることにより、さらに、良好な品位の高度不飽和脂肪酸誘導体が取得できることを見出した。
 すなわち、本発明は、
(1)高度不飽和脂肪酸の誘導体を含有する脂肪酸の誘導体の混合物を銀塩の水溶液と接触せしめ、高度不飽和脂肪酸誘導体を取得する方法において、上記銀塩水溶液を繰り返し使用するにあたり、上記銀塩水溶液中の遊離脂肪酸含量を、銀1g当り0.2meq以下とすることを特徴とする、高度不飽和脂肪酸誘導体の取得方法、
(2)銀塩水溶液を、吸着剤に接触せしめることにより遊離脂肪酸含量を銀1g当り0.2meq以下とする、前記(1)の高度不飽和脂肪酸誘導体の取得方法、
(3)上記銀塩水溶液に接触せしめる前の上記脂肪酸の誘導体の混合物の酸価が5以下である、前記(1)又は(2)の高度不飽和脂肪酸誘導体の取得方法、
(4)銀塩水溶液に接触せしめる前の上記脂肪酸の誘導体の混合物を、吸着剤に接触せしめることにより酸価を5以下とする、前記(1)乃至(3)のいずれかに記載の高度不飽和脂肪酸誘導体の取得方法、
である。
 本発明の高度不飽和脂肪酸誘導体の取得方法によれば、工業的に銀錯体法における銀塩水溶液の再利用を行うことが可能となり、安価に、かつ良好な品位の高度不飽和脂肪酸誘導体を得ることができる。
 以下、本発明に係る高度不飽和脂肪酸誘導体の取得方法を詳細に説明する。なお、本発明において「%」は「質量%」を意味する。
 本発明の高度不飽和脂肪酸誘導体の取得方法は、脂肪酸の誘導体の混合物を銀塩の水溶液と接触せしめ、高度不飽和脂肪酸誘導体を取得する方法において、上記銀塩水溶液を繰り返し使用するにあたり、上記銀塩水溶液中の遊離脂肪酸含量を、銀1g当り0.2meq以下とすることを特徴とする。それにより、上記取得方法(銀錯体法)で使用する銀塩水溶液の再利用が可能となり、銀塩水溶液を再利用しても品位の良好な高度不飽和脂肪酸誘導体を取得することができる。
 より詳細には、炭素数及び/又は不飽和度の異なる脂肪酸誘導体の混合物を銀塩の水溶液と接触せしめ、高度不飽和脂肪酸誘導体の水溶性錯体を形成させ、錯体を形成していない高度不飽和脂肪酸誘導体以外の脂肪酸誘導体を除去した後、錯体解離の手段を施し、高度不飽和脂肪酸誘導体を取得する方法において、銀塩水溶液を繰り返し使用するにあたり、遊離脂肪酸含量を銀1g当り0.2meq以下とすることを特徴とする。
 本発明において、高度不飽和脂肪酸とは、炭素数が16以上、かつ分子内に二重結合を2個以上有した不飽和脂肪酸を意味し、例えば、ドコサヘキサエン酸(C22:6、DHA)、エイコサペンタエン酸(C20:5、EPA)、アラキドン酸(C20:4、AA)、ドコサペンタエン酸(C22:5、DPA)、ステアリドン酸(C18:4)、リノレン酸(C18:3)、リノール酸(C18:2)等が挙げられる。本発明の取得方法で得られる高度不飽和脂肪酸の誘導体とは、脂肪酸が遊離型でないものをいい、例えば、高度不飽和脂肪酸のメチルエステル、エチルエステル等のエステル型誘導体、アミド、メチルアミド等のアミド型誘導体、脂肪アルコール型誘導体、トリグリセライド、ジグリセライド、モノグリセライド等が挙げられる。
 本発明の取得方法で使用する銀塩は、不飽和脂肪酸中の不飽和結合と錯体を形成しうる銀塩であればいずれも使用することができ、例えば、硝酸銀、過塩素酸銀、酢酸銀、トリクロロ酢酸銀、トリフルオロ酢酸銀等が挙げられる。これらの銀塩を、好ましくは15%以上、より好ましくは20%以上、さらに好ましくは40%以上の濃度となるように水に溶解して銀塩水溶液とし、高度不飽和脂肪酸誘導体の取得に使用する。また、銀塩水溶液中の銀塩濃度は、飽和濃度を上限とすればよい。
 上記銀塩水溶液中の遊離脂肪酸含量は、Duncombe法変法(Duncombe W. G. :Clin. Chem. Acta., 9, 122-125, 1964)の原理により算出できる。具体的には、試料に銅試液を加えて試料中の遊離脂肪酸と銅との塩を作成し、この塩を抽出剤により分離する。そこへバソクプロインを含む発色試液を加えることにより、銅とバソクプロインとのキレート化合物を生成し、黄橙色に発色する。この黄橙色の吸光度を測定することにより、試料中の遊離脂肪酸濃度を求めることができる。
 本発明の取得方法において、銀塩水溶液を回収し、再利用する前に、吸着剤と接触せしめて、遊離脂肪酸含量を銀1g当り0.2meq以下とすることができる。上記吸着剤としては、例えば、活性炭、活性アルミナ、活性白土、酸性白土、シリカゲル、ケイソウ土、酸化アルミニウム、酸化マグネシウム等が挙げられ、これらのうちの一種または二種以上を使用することができる。
 上記の銀塩水溶液と、上記吸着剤との接触方法は、特に限定されるものではないが、例えば、上記銀塩水溶液中に上記吸着剤を投入し、撹拌する方法や、上記吸着剤を充填したカラムに上記銀塩水溶液を通液する方法等が挙げられる。
 また、銀塩水溶液を回収し、再利用する前に、希釈・濃度調整することによって、あるいは、有機溶媒で抽出することによって遊離脂肪酸含量を銀1g当り0.2meq以下とすることもできる。回収した銀塩水溶液の濃度調整は、減圧・加熱による水の蒸発により、あるいは比重を測定しながら適宜銀塩や水を加えることにより行なうことができる。
 再利用する銀塩水溶液中の遊離脂肪酸含量は、銀1g当り0.2meq以下であれば良いが、好ましくは、銀1g当り0.18meq以下、さらに銀1g当り0.12meq以下であれば、得られる高度不飽和脂肪酸誘導体の風味、酸価がより好ましくなる。
 本発明の取得方法において、銀塩水溶液に接触せしめる前の脂肪酸の誘導体の混合物の酸価を5以下にすることが好ましい。それによって、上記処理後の銀塩水溶液中の遊離脂肪酸含量が上昇しにくくなり、上記銀塩水溶液中の遊離脂肪酸含量が銀1g当り0.2meq以下となるよう管理しやすくなる。したがって、上記銀塩水溶液を効率よくリサイクルすることが可能となる。
 さらに、本発明の取得方法において、脂肪酸の誘導体の混合物を銀塩水溶液に接触せしめる前に酸価を5以下にする手段として、上記混合物と吸着剤とを接触せしめることができる。上記吸着剤としては、例えば、活性炭、活性アルミナ、活性白土、酸性白土、シリカゲル、ケイソウ土、酸化アルミニウム、酸化マグネシウム等が挙げられ、これらのうちの一種または二種以上を使用することができる。
 上記の脂肪酸の誘導体の混合物と、上記吸着剤との接触方法は、特に限定されるものではないが、例えば、該混合物中に上記吸着剤を投入し、撹拌する方法や、上記吸着剤を充填したカラムに上記混合物を通液する方法等が挙げられる。
 銀塩水溶液に接触せしめる前の脂肪酸の誘導体の混合物の酸価を5以下にする手段としては、蒸留法でもよい。
 本発明の取得方法において、脂肪酸の誘導体の混合物から、高度不飽和脂肪酸誘導体を選択的に分離する方法は、高度不飽和脂肪酸誘導体を含有する上記脂肪酸の誘導体の混合物に、不飽和結合と錯体を形成しうる銀塩の水溶液を加え、好ましくは5分~4時間、より好ましくは10分~2時間撹拌し、水溶性の銀塩-高度不飽和脂肪酸誘導体の錯体を形成させ、高度不飽和脂肪酸誘導体のみを選択的に銀塩水溶液に溶かすことにより行われる。
 また、上記高度不飽和脂肪酸誘導体と、銀塩水溶液との反応温度は、下限は銀塩水溶液が液体でありさえすればよく、上限は100℃までで行われるが、高度不飽和脂肪酸誘導体の酸化安定性、銀塩の水への溶解性、錯体の生成速度などへの配慮から、10~30℃が好ましい。
 上記高度不飽和脂肪酸誘導体と、銀塩水溶液との接触時には、高度不飽和脂肪酸誘導体の酸化安定性、銀塩の安定性を考慮し、不活性ガス、例えば窒素雰囲気下で、遮光して行うのが好ましい。
 上記高度不飽和脂肪酸誘導体と、銀塩との錯体から、高度不飽和脂肪酸誘導体を解離する方法は特に限定されないが、例えば、有機溶媒による抽出や、水を加えることにより高度不飽和脂肪酸誘導体を不溶化し、分離する方法等が挙げられる。
 以下、本発明の高度不飽和脂肪酸誘導体の取得方法について、実施例等に基づき具体的に説明する。なお、本発明は、これらに限定するものではない。
〔遊離脂肪酸の測定方法〕
1.標準溶液の調製
(1)ミリスチン酸0.114gを100mLメスフラスコに精密に量り取り、ジメチルスルホキシドでメスアップする。
(2)別に100mLメスフラスコにトリエタノールアミン1.5gを取り、純水でメスアップする。
(3)別に100mLメスフラスコにエチレンジアミン四酢酸四ナトリウム四水和物0.10gを取り、純水でメスアップする。
(4)(1)の溶液20mL、(2)の溶液10mL、(3)の溶液10mLを100mLメスフラスコに正確に取り、純水でメスアップし標準溶液とする。
2.銅試液の調製
(1)硫酸銅(II)五水和物6.49g及び塩化ナトリウム20.0gをビーカーに取り、純水で溶かし、100mLメスフラスコに移し、ビーカーの洗液をあわせた後、純水でメスアップする。
(2)別に100mLメスフラスコにトリエタノールアミン14.9gを取り、純水でメスアップする。
(3)(1)の溶液と(2)の溶液を同量(容量比)で混合し、銅試液とする。
3.発色試液の調製
 バソクプロイン0.189gを250mLメスフラスコに取り、2-ブタノールでメスアップする。
4.操作手順
(1)銀塩水溶液5μL、標準溶液500μLをそれぞれキャップ付き試験管に取り、銅試液1mLを加える。
(2)クロロホルム/ヘプタン混液(1/1、容量比)3mLをそれぞれに加え、キャップを締めて3分間激しく手で振とうする。
(3)振とう後キャップを外して遠心分離(3,000rpm)を行う。
(4)上澄み液2mLを採取し、別の試験管にいれ、発色試液2mLを加えて軽く振り混ぜる。
(5)2~3分後、純水を対照として475nmの吸光度を測定する。
5.計算式
 下記の式(1)により、銀塩水溶液中の遊離脂肪酸濃度が算出できる。
Figure JPOXMLDOC01-appb-M000001
 また、下記の式(2)および(3)により、銀1gあたりの遊離脂肪酸量が算出できる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
〔実施例1〕
 以下の方法により、脂肪酸エチルエステルの混合物から、高度不飽和脂肪酸エチルエステルを取得した。
 まず、硝酸銀350kgに蒸留水350kgを加え、攪拌・溶解した。この硝酸銀水溶液700kgに、脂肪酸エチルエステルの混合物(酸価0.08、POV3.3、EPAエチルエステルの濃度45.6%、DHAエチルエステルの濃度3.8%)154kgを加え、10℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を捨て、下層のみを分取し、水を1000kg添加して、60℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を分取し、高度不飽和脂肪酸エチルエステルの濃縮物を得た。また、別途硝酸銀を含有する下層を取り、遊離脂肪酸含量を測定した。この硝酸銀を含有する下層は、濃縮後、濃度調整を行い、再度高度不飽和脂肪酸エチルエステルの精製に使用した。この操作を繰り返し、上記混合物14バッチを処理した。
 この結果を表1に示す。リサイクル中の硝酸銀水溶液の遊離脂肪酸含量は常に銀1g当り0.2meq以下であった。また、得られた取得物(EPAエチルエステルの濃度81~84%)は、POV、酸価、風味等の品位が良好だった。
Figure JPOXMLDOC01-appb-T000001
〔実施例2〕
 以下の方法により、脂肪酸エチルエステルの混合物から、高度不飽和脂肪酸エチルエステルを取得した。
 まず、硝酸銀350kgに蒸留水350kgを加え、攪拌・溶解した。この硝酸銀水溶液700kgに、脂肪酸エチルエステルの混合物(酸価5.98、POV2.1、EPAエチルエステルの濃度44.3%、DPAエチルエステルの濃度5.1%)150kgを混合し、10℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を捨て、下層のみを分取し、水1000Lを添加して、60℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を分取し、高度不飽和脂肪酸エチルエステルの濃縮物を得た。また、別途硝酸銀を含有する下層を取り、下層に対して10%量の酸化アルミニウムを添加し、60℃にて20分間攪拌後、ろ過により酸化アルミニウムを除去した。この酸化アルミニウム処理後の下層の遊離脂肪酸含量を測定した。この酸化アルミニウム処理後の下層は、その後濃縮・濃度調整を行い、再度高度不飽和脂肪酸エチルエステルの取得に使用した。この操作を繰り返し、10バッチを処理した結果を表2に示す。得られた取得物(EPAエチルエステルの濃度80~84%)は、いずれも、POV、酸価、風味等の品位が良好だった。
Figure JPOXMLDOC01-appb-T000002
〔実施例3〕
 以下の方法により、脂肪酸メチルエステルの混合物から、高度不飽和脂肪酸メチルエステルを取得した。
 まず、硝酸銀350kgに蒸留水350kgを加え、攪拌・溶解した。この硝酸銀水溶液700kgに、脂肪酸メチルエステルの混合物(酸価6.74、POV2.3、EPAメチルエステルの濃度46.2%、DPAメチルエステルの濃度3.6%)150kgを混合し、10℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を捨て、下層のみを分取し、シクロヘキサン900Lを添加して、50℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を分取し、高度不飽和脂肪酸メチルエステルの濃縮物を得た。また、別途硝酸銀を含有する下層を取り、下層に対して10%量の酸化アルミニウムを添加し、60℃にて20分間攪拌後、ろ過により酸化アルミニウムを除去した。この酸化アルミニウム処理後の下層の遊離脂肪酸含量を測定した。この酸化アルミニウム処理後の下層は、その後濃度調整を行い、再度高度不飽和脂肪酸メチルエステルの取得に使用した。この操作を繰り返し、10バッチを処理した結果を表3に示す。得られた取得物(EPAメチルエステルの濃度84~89%)は、いずれも、POV、酸価、風味等の品位が良好だった。
Figure JPOXMLDOC01-appb-T000003
〔実施例4〕
 以下の方法により、脂肪酸エチルエステルの混合物を40バッチ処理し、高度不飽和脂肪酸エチルエステルを取得した。
 まず、硝酸銀350kgに蒸留水350kgを加え、攪拌・溶解した。この硝酸銀水溶液700kgに、脂肪酸エチルエステルの混合物(40バッチ:酸価0.05~4.11、POV2.2~3.5、EPAエチルエステルの濃度41.1~58.1%、DHAエチルエステルの濃度3.9~8.7%)150kgを混合し、10℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を捨て、下層のみを分取し、水を1000kg添加して、60℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を分取し、高度不飽和脂肪酸エチルエステルの濃縮物を得た。また、別途硝酸銀を含有する下層を取り、遊離脂肪酸含量を測定した。この硝酸銀を含有する下層は、濃縮・濃度調整を行い、硝酸銀水溶液の遊離脂肪酸含量が、銀1g当り0.2meqに近づいた場合には適宜活性炭処理を行い、再度高度不飽和脂肪酸エチルエステルの取得に使用した。活性炭処理は、硝酸銀水溶液の量に対して10%の活性炭を添加し、60℃に加温下で20分間攪拌して、ろ過を行うことにより実施した。この活性炭処理後の硝酸銀水溶液は、再度高度不飽和脂肪酸エチルエステルの取得に使用した。この操作を繰り返した結果を表4に示す。適宜活性炭処理を行い、遊離脂肪酸含量を低減した硝酸銀水溶液を使用して得られた取得物(EPAエチルエステルの濃度75~84%)は、いずれも、POV、酸価、風味等の品位が良好だった。
 なお、1~14バッチ(脂肪酸エチルエステルの混合物の酸価:0.05~1.22)の処理に対して、15、16バッチ(脂肪酸エチルエステルの混合物の酸価:4.11)の処理において、銀1g中の遊離脂肪酸含量が高くなっていることがわかる。これより、銀塩水溶液に接触せしめる脂肪酸誘導体の酸価を低くすることによって、高度不飽和脂肪酸エチルエステル取得後の銀塩中の遊離脂肪酸含量を小さく保つことができ、その結果、銀塩水溶液の再利用がしやすくなるといえる。
Figure JPOXMLDOC01-appb-T000004
〔実施例5〕
 以下の方法により、脂肪酸エチルエステルの混合物から、高度不飽和脂肪酸エチルエステルを取得した。
 まず、脂肪酸エチルエステルの混合物(酸価7.32、POV2.3、EPAエチルエステルの濃度42.3%、DHAエチルエステルの濃度1.6%)2000kgに、酸化アルミニウムを300kg加え、1時間攪拌した。その後、酸化アルミニウムをろ過にて除去し、酸価を測定したところ、0.06であった。この脂肪酸エチルエステルの混合物(酸価0.06)198kgを取り、硝酸銀360kgと蒸留水540kgとを攪拌・溶解した硝酸銀水溶液(濃度40%)900kgとを混合し、10℃で20分間攪拌した。
 その後二層分離するまで1時間放置した。この上層を捨て、下層のみを分取し、水を1000kg添加して、60℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を分取し、高度不飽和脂肪酸エチルエステルの濃縮物を得た。また、別途硝酸銀を含有する下層を取り、遊離脂肪酸含量を測定した。この硝酸銀を含有する下層は、濃縮・濃度調整を行い、再度高度不飽和脂肪酸エチルエステルの取得に使用した。この操作を繰り返し、上記高度不飽和脂肪酸エチルエステルの混合物(酸価0.06)10バッチを処理した結果、硝酸銀水溶液の遊離脂肪酸含量は常に銀1g当り0.2meq以下であった(表5)。また、得られた取得物(EPAエチルエステルの濃度81~85%)は、POV、酸価、風味等の品位が良好だった。
Figure JPOXMLDOC01-appb-T000005
〔実施例6〕
 以下の方法により、脂肪酸エチルエステルの混合物から、高度不飽和脂肪酸エチルエステルを取得した。
 まず、過塩素酸銀400kgに蒸留水350kgを加え、攪拌・溶解した。この過塩素酸銀水溶液750kgに、脂肪酸エチルエステルの混合物(酸価0.06、POV2.7、EPAエチルエステルの濃度47.9%、DHAエチルエステルの濃度3.2%)160kgを加え、10℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を捨て、下層のみを分取し、水を1000kg添加して、60℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を分取し、高度不飽和脂肪酸エチルエステルの濃縮物を得た。また、別途過塩素酸銀を含有する下層を取り、遊離脂肪酸含量を測定した。この過塩素酸銀を含有する下層は、濃縮後、濃度調整を行い、再度高度不飽和脂肪酸エチルエステルの取得に使用した。この操作を繰り返し、上記混合物10バッチを処理した。この結果を表6に示す。過塩素酸銀水溶液の遊離脂肪酸含量は常に銀1g当り0.2meq以下であった。また、得られた取得物(EPAエチルエステルの濃度82~85%)は、POV、酸価、風味等の品位が良好だった。
Figure JPOXMLDOC01-appb-T000006
〔参考例1〕
 以下の方法により、脂肪酸エチルエステルの混合物から、高度不飽和脂肪酸エチルエステルを取得した。
 硝酸銀350kgに蒸留水350kgを加え、攪拌・溶解した。この硝酸銀水溶液700kgに、脂肪酸エチルエステルの混合物(酸価10.20、POV3.7、EPAエチルエステルの濃度49.0%、DHAエチルエステルの濃度8.6%)150kgを加え、10℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を捨て、下層のみを分取し、水を1000kg添加して、60℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を分取し、高度不飽和脂肪酸エチルエステルの濃縮物を得た。また、別途硝酸銀を含有する下層を取り、遊離脂肪酸含量を測定した。この硝酸銀を含有する下層は、濃縮・濃度調整を行い、再度高度不飽和脂肪酸エチルエステルの取得に使用した。この操作を繰り返し、上記混合物3バッチを精製した。この結果を表7に示す。表7より、硝酸銀水溶液接触前の、脂肪酸エチルエステルの混合物の酸価が5を超えると、取得に使用する硝酸銀水溶液を繰り返し使用した場合に、硝酸銀水溶液に含まれる遊離脂肪酸が増加し、その結果、取得物である高度不飽和脂肪酸誘導体のPOVおよび酸価が高くなり、風味も良好でないことがわかる。
Figure JPOXMLDOC01-appb-T000007
〔比較例1〕
以下の方法により、脂肪酸エチルエステルの混合物から、高度不飽和脂肪酸エチルエステルを取得した。
参考例1で、3バッチの原料を処理した硝酸銀水溶液(遊離脂肪酸含量:銀1g当り0.319meq)に、脂肪酸エチルエステルの混合物(酸価0.08、POV3.3、EPAエチルエステルの濃度45.6%、DHAエチルエステルの濃度3.8%)154kgを加え、10℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を捨て、下層のみを分取し、水を1000kg添加して、60℃で20分間攪拌した。その後二層分離するまで1時間放置した。この上層を分取し、高度不飽和脂肪酸エチルエステルの濃縮物を得た。また、別途硝酸銀を含有する下層を取り、遊離脂肪酸含量を測定した。その結果を表8にまとめた。表8から、高度不飽和脂肪酸誘導体の銀錯体法による取得方法において、銀塩水溶液に接触せしめる前の、脂肪酸の誘導体の混合物の酸価が低く、良好な品位のものであったとしても、上記銀塩水溶液中の遊離脂肪酸量が、銀1g当り0.2meqを超えていると、得られる高度不飽和脂肪酸誘導体の品位が良好でないことがわかる。
Figure JPOXMLDOC01-appb-T000008

Claims (4)

  1.  高度不飽和脂肪酸の誘導体を含有する脂肪酸の誘導体の混合物を銀塩の水溶液と接触せしめ、高度不飽和脂肪酸の誘導体を取得する方法において、上記銀塩水溶液を繰り返し使用するにあたり、上記銀塩水溶液中の遊離脂肪酸含量を、銀1g当り0.2meq以下とすることを特徴とする、高度不飽和脂肪酸誘導体の取得方法。
  2.  銀塩水溶液を、吸着剤に接触せしめることにより遊離脂肪酸含量を銀1g当り0.2meq以下とする、請求項1に記載の高度不飽和脂肪酸の取得方法。
  3.  上記銀塩水溶液に接触せしめる前の上記脂肪酸の誘導体の混合物の酸価が5以下である、請求項1又は2記載の高度不飽和脂肪酸誘導体の取得方法。
  4.  銀塩水溶液に接触せしめる前の上記脂肪酸の誘導体の混合物を、吸着剤に接触せしめることにより酸価を5以下とする、請求項1乃至3のいずれかに記載の高度不飽和脂肪酸誘導体の取得方法。
     
     
PCT/JP2009/004311 2008-09-10 2009-09-02 高度不飽和脂肪酸誘導体の取得方法 WO2010029706A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK09812855.6T DK2330177T3 (en) 2008-09-10 2009-09-02 PROCEDURE FOR GETTING HIGHLY UNSaturated Fatty Acid Derivatives
KR1020117008179A KR101692565B1 (ko) 2008-09-10 2009-09-02 고도 불포화 지방산 유도체의 취득 방법
EP09812855.6A EP2330177B1 (en) 2008-09-10 2009-09-02 Method for acquiring highly unsaturated fatty acid derivatives
CA2736363A CA2736363C (en) 2008-09-10 2009-09-02 Method for obtaining polyunsaturated fatty acid derivatives
AU2009290334A AU2009290334B2 (en) 2008-09-10 2009-09-02 Method for acquiring highly unsaturated fatty acid derivatives
ES09812855.6T ES2621318T3 (es) 2008-09-10 2009-09-02 Método de adquisición de derivados de ácido graso altamente insaturados
US13/062,969 US8680305B2 (en) 2008-09-10 2009-09-02 Method for obtaining polyunsaturated fatty acid derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008231773A JP5503856B2 (ja) 2008-09-10 2008-09-10 高度不飽和脂肪酸誘導体の取得方法
JP2008-231773 2008-09-10

Publications (1)

Publication Number Publication Date
WO2010029706A1 true WO2010029706A1 (ja) 2010-03-18

Family

ID=42004972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004311 WO2010029706A1 (ja) 2008-09-10 2009-09-02 高度不飽和脂肪酸誘導体の取得方法

Country Status (9)

Country Link
US (1) US8680305B2 (ja)
EP (1) EP2330177B1 (ja)
JP (1) JP5503856B2 (ja)
KR (1) KR101692565B1 (ja)
AU (1) AU2009290334B2 (ja)
CA (1) CA2736363C (ja)
DK (1) DK2330177T3 (ja)
ES (1) ES2621318T3 (ja)
WO (1) WO2010029706A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038833A1 (en) * 2010-09-24 2012-03-29 Pronova Biopharma Norge As Process for concentrating omega-3 fatty acids
US20140335580A1 (en) * 2011-09-21 2014-11-13 Board Of Supervisors Of Lousiana State University And Agricultural And Mechanical College Method for Enrichment of Eicosapentaenoic Acid and Docosahexaenoic Acid in Source Oils
WO2017191821A1 (ja) * 2016-05-02 2017-11-09 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302310B2 (ja) 2013-08-30 2018-03-28 備前化成株式会社 高純度オメガ3系脂肪酸エチルエステルの生産方法
JP6234908B2 (ja) * 2013-09-30 2017-11-22 日清ファルマ株式会社 エイコサペンタエン酸及び/又はドコサヘキサエン酸含有組成物の製造方法
US20160361285A1 (en) * 2014-02-28 2016-12-15 Bizen Chemical Co., Ltd. Method for purifying stearidonic acid
CA2987370A1 (en) * 2015-06-01 2016-12-08 Bizen Chemical Co., Ltd. Novel production method of highly unsaturated fatty acid ethyl ester
DK3305754T3 (da) * 2015-06-01 2022-02-07 Bizen Chemical Co Ltd Fremgangsmåder til fremstilling af højumættet fedtsyre med høj renhed med højt udbytte
EP3609393A4 (en) 2017-04-13 2021-04-21 Atcor Medical Pty Ltd NON-INVASIVE BLOOD PRESSURE MEASUREMENT
US10899994B2 (en) * 2017-06-14 2021-01-26 Nisshin Pharma Inc. Method for producing polyunsaturated fatty acid-containing composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031954B2 (ja) 1985-03-18 1991-01-11 Shiraha Akira
JPH04126798A (ja) * 1990-09-17 1992-04-27 Shokuhin Sangyo High Separeeshiyon Syst Gijutsu Kenkyu Kumiai 遊離脂肪酸を含むグリセリドからの遊離脂肪酸の分離方法
JP2786748B2 (ja) 1991-01-28 1998-08-13 ハリマ化成株式会社 高度不飽和脂肪酸類の精製方法
JP2895258B2 (ja) 1990-04-24 1999-05-24 ハリマ化成株式会社 高度不飽和脂肪酸類の選択的取得方法
JP2935555B2 (ja) 1990-10-19 1999-08-16 ハリマ化成株式会社 高度不飽和脂肪酸の分離精製法
JP2001240893A (ja) * 1999-12-20 2001-09-04 Q P Corp エイコサペンタエン酸又はその誘導体の精製方法
JP2001335794A (ja) * 2000-05-29 2001-12-04 Q P Corp ドコサヘキサエン酸又はその誘導体の精製方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277412A (en) * 1980-01-02 1981-07-07 The Proctor & Gamble Company Fractionation of triglyceride mixtures
JPH031954A (ja) 1989-05-30 1991-01-08 Matsushita Electric Ind Co Ltd インパクトプリンタ
CA2040925C (en) * 1990-04-24 2000-01-25 Yoshihisa Misawa Method of purifying polyunsaturated aliphatic compounds
JP3001954B2 (ja) * 1990-10-24 2000-01-24 財団法人相模中央化学研究所 高度不飽和脂肪酸の取得方法
GB9212788D0 (en) 1992-06-16 1992-07-29 Efamol Holdings Separation of unsaturates
EP0760393B1 (de) * 1995-08-17 2003-06-04 F. Hoffmann-La Roche Ag Chromatographie-Verfahren
JP2000044983A (ja) 1998-07-31 2000-02-15 Maruha Corp 二重結合を有する脂肪酸またはその誘導体の精製法
CA2311974A1 (en) 1999-06-28 2000-12-28 Nisshin Flour Milling Co., Ltd. Processes of selectively separating and purifying eicosapentaenoic and docosahexaenoic acids or their esters
JP2006241245A (ja) * 2005-03-01 2006-09-14 Daiki Axis:Kk 使用済食用油脂の再生処理方法及びその処理剤
JP4078383B1 (ja) * 2007-03-30 2008-04-23 バイオエナジーズジャパン株式会社 バイオディーゼル燃料の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031954B2 (ja) 1985-03-18 1991-01-11 Shiraha Akira
JP2895258B2 (ja) 1990-04-24 1999-05-24 ハリマ化成株式会社 高度不飽和脂肪酸類の選択的取得方法
JPH04126798A (ja) * 1990-09-17 1992-04-27 Shokuhin Sangyo High Separeeshiyon Syst Gijutsu Kenkyu Kumiai 遊離脂肪酸を含むグリセリドからの遊離脂肪酸の分離方法
JP2935555B2 (ja) 1990-10-19 1999-08-16 ハリマ化成株式会社 高度不飽和脂肪酸の分離精製法
JP2786748B2 (ja) 1991-01-28 1998-08-13 ハリマ化成株式会社 高度不飽和脂肪酸類の精製方法
JP2001240893A (ja) * 1999-12-20 2001-09-04 Q P Corp エイコサペンタエン酸又はその誘導体の精製方法
JP2001335794A (ja) * 2000-05-29 2001-12-04 Q P Corp ドコサヘキサエン酸又はその誘導体の精製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUNCOMBE W. G., CLIN. CHEM. ACTA., vol. 9, 1964, pages 122 - 125
See also references of EP2330177A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101904392B1 (ko) * 2010-09-24 2018-10-05 프로노바 바이오파마 너지 에이에스 오메가-3 지방산을 농축하기 위한 공정
US20130317241A1 (en) * 2010-09-24 2013-11-28 Harald Breivik Process for concentrating omega-3 fatty acids
JP2013542927A (ja) * 2010-09-24 2013-11-28 プロノヴァ・バイオファーマ・ノルゲ・アーエス ω3脂肪酸を濃縮する方法
WO2012038833A1 (en) * 2010-09-24 2012-03-29 Pronova Biopharma Norge As Process for concentrating omega-3 fatty acids
EP2619298A4 (en) * 2010-09-24 2015-08-19 Pronova Biopharma Norge As METHOD FOR CONCENTRATING OMEGA 3 FATTY ACIDS
US9145533B2 (en) * 2010-09-24 2015-09-29 Pronova Blopharm Norge AS Process for concentrating omega-3 fatty acids
AU2011306471B2 (en) * 2010-09-24 2016-06-02 Pronova Biopharma Norge As Process for concentrating omega-3 fatty acids
US20140335580A1 (en) * 2011-09-21 2014-11-13 Board Of Supervisors Of Lousiana State University And Agricultural And Mechanical College Method for Enrichment of Eicosapentaenoic Acid and Docosahexaenoic Acid in Source Oils
WO2017191821A1 (ja) * 2016-05-02 2017-11-09 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
CN109072126A (zh) * 2016-05-02 2018-12-21 日清药业股份有限公司 含有高度不饱和脂肪酸的组合物的制造方法
JPWO2017191821A1 (ja) * 2016-05-02 2019-03-07 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
US10597607B2 (en) 2016-05-02 2020-03-24 Nisshin Pharma Inc. Method for producing polyunsaturated fatty acid-containing composition
JP6990174B2 (ja) 2016-05-02 2022-02-03 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
CN109072126B (zh) * 2016-05-02 2022-03-22 日清药业股份有限公司 含有高度不饱和脂肪酸的组合物的制造方法

Also Published As

Publication number Publication date
ES2621318T3 (es) 2017-07-03
CA2736363C (en) 2016-08-16
JP2010064974A (ja) 2010-03-25
AU2009290334A8 (en) 2011-04-07
CA2736363A1 (en) 2010-03-18
US8680305B2 (en) 2014-03-25
EP2330177B1 (en) 2017-03-01
EP2330177A4 (en) 2013-10-16
KR20110091647A (ko) 2011-08-12
JP5503856B2 (ja) 2014-05-28
KR101692565B1 (ko) 2017-01-03
AU2009290334B2 (en) 2015-03-26
EP2330177A1 (en) 2011-06-08
DK2330177T3 (en) 2017-06-12
US20110224452A1 (en) 2011-09-15
AU2009290334A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5503856B2 (ja) 高度不飽和脂肪酸誘導体の取得方法
RU2360952C2 (ru) Способ получения композиции, содержащей ненасыщенные соединения
US20020026063A1 (en) Process for making an enriched mixture of polyunsaturated fatty acid esters
WO2014054435A1 (ja) 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法
JP6751086B2 (ja) 高度不飽和脂肪酸エチルエステルの新規製造方法
JP2008255231A (ja) フコキサンチンとフコイダンの同時製造方法
CN107922307B (zh) 高纯度、高收率的高度不饱和脂肪酸的生产方法
JP6234908B2 (ja) エイコサペンタエン酸及び/又はドコサヘキサエン酸含有組成物の製造方法
JP2895258B2 (ja) 高度不飽和脂肪酸類の選択的取得方法
CN112430500A (zh) 一种降低多不饱和脂肪酸油中茴香胺值的方法
WO2016058282A1 (zh) 一种脲包工艺中尿素的回收方法
JPH04159398A (ja) 高度不飽和脂肪酸の取得方法
JPH04243849A (ja) 高度不飽和脂肪酸類の精製方法
WO2011039776A1 (en) High purity concentrates of polyunsaturated fatty acid and ester by copper complexation.
CN106748780B (zh) 一种注射用合成油脂金属残留的脱除方法
WO2020196749A1 (ja) エイコサペンタエン酸アルキルエステル含有組成物の製造方法
CN107848945B (en) Process for producing highly unsaturated fatty acid ethyl ester
KR20140003437A (ko) 다중불포화 지방산을 금속 수소화물로 안정화시키는 방법
JP2009191102A (ja) 銅錯体形成を利用する高度不飽和脂肪酸トリグリセリドの濃縮方法
JPH06248288A (ja) 高度不飽和脂肪酸類を分別回収する方法
JPH06248289A (ja) 高度不飽和脂肪酸類を選択的に分離回収する方法
JPH07278585A (ja) エイコサペンタエン酸又はそのエステルの精製方法
JPH09143488A (ja) 高度不飽和脂肪酸エステルの精製方法
JPS5925691A (ja) 乳酸の精製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812855

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009812855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009812855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009290334

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2736363

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009290334

Country of ref document: AU

Date of ref document: 20090902

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117008179

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13062969

Country of ref document: US