WO2010026956A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2010026956A1
WO2010026956A1 PCT/JP2009/065241 JP2009065241W WO2010026956A1 WO 2010026956 A1 WO2010026956 A1 WO 2010026956A1 JP 2009065241 W JP2009065241 W JP 2009065241W WO 2010026956 A1 WO2010026956 A1 WO 2010026956A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
superconnect
pad
semiconductor device
ground
Prior art date
Application number
PCT/JP2009/065241
Other languages
English (en)
French (fr)
Inventor
山道 新太郎
淳 堺
菊池 克
古宇田 光
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010527783A priority Critical patent/JPWO2010026956A1/ja
Publication of WO2010026956A1 publication Critical patent/WO2010026956A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device including both a multilayer wiring for a fine semiconductor element and a superconnect wiring and a manufacturing method thereof.
  • Japanese Laid-Open Patent Publication No. 2002-170928 is a semiconductor device using super connect wiring.
  • Japanese Unexamined Patent Application Publication No. 2002-170928 discloses a semiconductor device having a wiring layer for a fine semiconductor element, a giant wiring layer (superconnect wiring layer), and a switching circuit thereof. Since the wiring interval of the superconnect wiring layer is larger than the wiring interval of the wiring layer for semiconductor elements, it is disclosed that the parasitic capacitance of the wiring is small and the electric resistance is small.
  • Japanese Patent Application Laid-Open No. 2002-93946 discloses a low-elasticity and thick stress relaxation layer provided between a pad on a semiconductor element and a land for an external terminal. It has been shown that the capacitance between the lead wires can be reduced.
  • JP-A-2004-95614 discloses a multilayer substrate and a semiconductor device.
  • This multilayer substrate is provided with an insulating material, a ground layer, a power supply layer, a signal layer, a power supply land, a signal land, and a lowermost ground layer.
  • the ground layer is formed in the insulating material and is connected between the layers by a ground via.
  • the power supply layer is formed in the insulating material and connected to the interlayer by a power supply via.
  • the signal layer is formed in the insulating material and is connected between the layers by signal vias.
  • the power land is formed in the lowermost layer of the insulating material, and is connected to the power layer and externally connected.
  • the signal land is formed in the lowermost layer of the insulating material, and is connected to the signal layer and externally connected.
  • the lowermost ground layer is formed in the lowermost layer of the insulating material, is formed except for the formation positions of the power supply land and the signal land, and is connected to the ground layer.
  • Japanese Laid-Open Patent Publication No. 9-306917 discloses a semiconductor integrated circuit device and a manufacturing method thereof.
  • pads provided on a semiconductor chip and metal electrodes provided on a package are connected by solder bumps.
  • the area of the high-frequency input / output pad used for input / output of the high-frequency signal among the pads is smaller than the area of other pads not used for input / output of the high-frequency signal.
  • a semiconductor device is disclosed in Japanese Patent Application Laid-Open No. 2006-287048.
  • This semiconductor device is provided with a semiconductor chip, a sealing resin layer covering the surface of the semiconductor chip, and an external electrode provided on the surface side of the sealing resin layer provided through the sealing resin layer.
  • post A plurality of the posts are provided for one external electrode.
  • the overall structure of the semiconductor element and the superconnect wiring is optimized even though it is possible to reduce the parasitic capacitance between the superconnect wirings and above and below the stress relaxation layer. Therefore, there is a problem that the signal quality is deteriorated particularly when a high-speed signal exceeding 10 Gbps is handled.
  • FIG. 1 is a cross-sectional view showing a configuration of a typical semiconductor device.
  • This semiconductor device has a semiconductor element wiring 102 provided in a plurality of insulating layers 150 and connected by semiconductor element wiring vias 103 on a semiconductor substrate 101 including a transistor circuit (not shown).
  • the semiconductor device further has a semiconductor element uppermost layer wiring 104 formed thereon using a process apparatus substantially equivalent to the semiconductor element wiring 102.
  • the semiconductor element uppermost layer wiring 104 includes a power supply pad 104v, a ground pad 104g, a signal pad 104s, and other routing wirings 104m.
  • the power supply pad 104v, the ground pad 104g, and the signal pad 104s are approximately equal in size.
  • An under bump metallization (UBM) 106 is formed on the uppermost layer wiring 104 of the semiconductor element through a cover film 105, and a bump for which a power pad 104v, a ground pad 104g, and a signal pad 104s are external connection terminals, respectively. 107 is connected.
  • UBM under bump metallization
  • the reason why the power pad 104v, the ground pad 104g, and the signal pad 104s are substantially equal in size is as follows.
  • the bump 107 is made of, for example, an alloy of Sn and Ag, and a metal layer is formed in a desired region by plating and then shaped into the shape shown in the bump 107 in FIG. 1 by reflow, the above three types of pads are used. If the sizes are not equal, the size of the ball-shaped bump 107 including the UBM 106 will be different, and good connection with the outside cannot be secured. Even when the bump material is formed by printing or a spherical ball is thrown in, the power supply pad 104v, the ground pad 104g, and the signal pad 104s are approximately equal in size for the same reason.
  • FIG. 2 is a cross-sectional view showing a configuration in which super connect technology is applied to a typical semiconductor device.
  • a thick superconnect insulating film 109 and a thick superconnect wiring 110 are simply formed on the semiconductor element uppermost layer wiring 104.
  • An object of the present invention is to provide a semiconductor device and a semiconductor device manufacturing method capable of suppressing the deterioration of the quality of a high-speed signal and inputting / outputting the signal.
  • the semiconductor device of the present invention includes element wiring, element uppermost layer wiring, wiring layers, and bumps.
  • the element wiring is provided on a semiconductor substrate having a semiconductor element via a plurality of insulating layers.
  • the element uppermost layer wiring is provided on the element wiring.
  • the wiring layer includes a superconnect insulating layer, a superconnect via, and a superconnect wiring provided on the element uppermost layer wiring.
  • the bump is provided on the superconnect wiring.
  • the element uppermost layer wiring includes a signal pad, a power supply pad, and a ground pad. The area of the signal pad is smaller than the areas of the power supply pad and the ground pad.
  • a plurality of super-connect vias are provided in at least one of the power supply pad and the ground pad.
  • the method for manufacturing a semiconductor device of the present invention includes (a) a step of forming a semiconductor element on a semiconductor substrate, and (b) a step of forming an element wiring provided on the semiconductor substrate via a plurality of insulating layers. (C) forming an element uppermost layer wiring including a signal pad, a power supply pad, and a ground pad on the element wiring; and (d) at least five times the insulating layer on the element uppermost layer wiring. Forming a superconnect insulating layer having a thickness and a superconnect via embedded in the superconnect insulating layer; and (e) a wiring thickness of the element wiring and the element uppermost layer wiring on the superconnect via.
  • the step (c) includes a step (c1) of making the area of the signal pad smaller than the power supply pad and the ground pad.
  • the step (d) includes a step (d1) of forming a plurality of super-connect vias in at least one of the power supply pad and the ground pad.
  • the present invention it becomes possible to input / output the signal while suppressing the deterioration of the quality of the high-speed signal.
  • FIG. 1 is a cross-sectional view showing a configuration of a typical semiconductor device.
  • FIG. 2 is a cross-sectional view showing a configuration in which the super connect technology is applied to a typical semiconductor device.
  • FIG. 3 is a cross-sectional view showing the configuration of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4A is a cross-sectional view showing the steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4B is a cross-sectional view showing the steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4C is a cross-sectional view showing a step in the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 5A is a cross-sectional view showing the steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 5B is a cross-sectional view showing a step in the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the configuration of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 7 is a sectional view showing a configuration of a semiconductor device according to the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a configuration of a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 9A is a top view showing the ground plane and the power plane in FIG.
  • FIG. 9B is a top view showing the ground plane and the power plane in FIG.
  • FIG. 10 is a sectional view showing a configuration of a semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 11A is a top view showing a state of the ground plane and the power plane in FIG.
  • FIG. 11B is a top view showing the ground plane and the power plane in FIG.
  • FIG. 12A is a graph showing signal characteristics in a conventional semiconductor device.
  • FIG. 12B is a graph showing signal characteristics in the semiconductor device of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of the semiconductor device according to the first embodiment of the present invention.
  • the semiconductor device includes a semiconductor substrate 1, a semiconductor element wiring 2, a semiconductor element wiring via 3, a semiconductor element uppermost layer wiring 4, a superconnect insulating layer 9, a superconnect via 8, a superconnect wiring 10, and a bump 7.
  • the semiconductor substrate 1 is a semiconductor substrate including a transistor circuit (not shown).
  • the semiconductor element wiring 2 is a wiring that is provided in each wiring layer in the plurality of insulating layers 50 and connected by a semiconductor element wiring via 3.
  • the semiconductor element uppermost layer wiring 4 is a wiring provided in a wiring layer above the semiconductor element wiring 2 and formed using a process apparatus substantially equivalent to the semiconductor element wiring 2.
  • the semiconductor element uppermost layer wiring 4 includes a power supply pad 4v, a ground pad 4g, a signal pad 4s, and other routing wirings 4m.
  • the super-connect insulating layer 9 is provided so as to cover the semiconductor element uppermost layer wiring 4.
  • the super connect via 8 is connected to the upper part of the semiconductor element uppermost layer wiring 4 and is provided so as to penetrate the super connect insulating layer 9.
  • the super connect via 8 includes a power supply super connect via 8v, a ground super connect via 8g, and a signal super connect via 8s.
  • the super-connect wiring 10 is provided on the super-connect insulating layer 9, and is connected to the power super-connect via 8v, the ground super-connect via 8g, and the signal super-connect via 8s.
  • the bumps 7 are formed on the super connect wiring 10 as external connection terminals.
  • the superconnect insulating layer 9, the power supply superconnect via 8v, the ground superconnect via 8g, the signal superconnect via 8s, and the superconnect wiring 10 are connected to the semiconductor element wiring 102 and the semiconductor element uppermost layer wiring 4.
  • the thickness of the superconnect wiring 10 is preferably at least three times the thickness of the semiconductor element wiring 2 and the semiconductor element uppermost layer wiring 4.
  • the thickness of the superconnect insulating layer 9 is preferably at least five times the thickness of the insulating layer 50 (one layer) interposed between the semiconductor element wiring 2 and the semiconductor element uppermost layer wiring 4.
  • the area of the signal pad 4s is the area of the other power supply pads 4v and the ground pads 4g.
  • One of the features of this embodiment is that it is smaller than the above. Furthermore, it is more preferable that the area of the signal pad 4s is as small as possible within the range allowed by the formation margin of the signal super-connect via 8s.
  • the power supply pads 4v are connected to the superconnect wiring 10 by a plurality (two in this case) of power supply superconnect vias 8v per power supply pad 4v. preferable.
  • the ground pads 4g are connected to the superconnect wiring 10 by a plurality (two in this case) of ground superconnect vias 8g per one of the ground pads 4g. It is a feature. Here, it is preferable that the number of vias is larger within the range allowed by the size of the power supply pad 4v and the ground pad 4g.
  • the area between the signal pad 4 s and the lower-layer semiconductor element wiring 2 is reduced by relatively reducing the area of the signal pad 4 s, more preferably as much as possible.
  • the ring capacity is reduced.
  • the parasitic capacitance of the signal pad 4s is reduced, and the signal can be input / output without degrading the quality of the high-speed signal. That is, by combining the super-connect technology and the reduction in the area of the signal pad 4s, the parasitic capacitance component in high-speed signal transmission of 10 Gbps or more is greatly reduced. Thereby, deterioration of signal quality is suppressed, and signal exchange with a sufficient margin becomes possible.
  • the resistance and inductance of the power supply and ground can be reduced. This makes it possible to reduce voltage drop and simultaneous switching noise, particularly during high-speed operation.
  • the number of super-connect vias provided in the power supply pad 4v and the ground pad 4g is not limited to two, but is preferably as large as the design allows.
  • the diameter of the super connect via may be changed. However, in general, it is preferable from the viewpoint of manufacturing yield that the via diameters in the same layer be as uniform as possible.
  • FIG. 12A and 12B are graphs showing signal characteristics in each of the conventional semiconductor device and the semiconductor device according to the present invention.
  • FIG. 12A shows a conventional semiconductor device
  • FIG. 12B shows a semiconductor device of the present invention.
  • the vertical axis represents amplitude (V)
  • the horizontal axis represents time (sec.).
  • This graph shows an eye pattern for 10 Gbps as signal characteristics.
  • FIG. 12A the eye is hardly opened and the signal quality is deteriorated
  • FIG. 12B the eye opening is seen, and the signal quality is not deteriorated and ultra-high speed transmission is possible. It turns out that it is.
  • 4A, 4B, 4C, 5A, and 5B are cross-sectional views illustrating the steps of the method of manufacturing the semiconductor device according to the first embodiment of the present invention.
  • a transistor circuit (not shown) is formed on a semiconductor substrate 1 such as silicon.
  • the semiconductor element wiring 2 provided in the plurality of insulating layers 50 and connected by the semiconductor element wiring vias 3 is formed using a process such as lithography and plating.
  • the semiconductor element uppermost layer wiring 4 is formed using a process apparatus substantially equivalent to the semiconductor element wiring 2.
  • a laser or the like makes a cut (part A) in a part of the metal wiring forming the signal pad 4s, and isolates only the central part of the signal pad 4s to reduce the area. Make it smaller.
  • the power supply superconnect via 8v, the signal superconnect via 8s, and the ground are provided on the power supply pad 4v, the signal pad 4s (center portion), and the ground pad 4g, respectively.
  • a super connect via 8g is formed.
  • the number of power supply superconnect vias 8v provided in one power supply pad 4v and the number of ground superconnect vias 8g provided in one ground pad 4g are both two or more.
  • a superconnect insulating film 9 is formed by spin coating, pressing, or laminating so as to cover the insulating layer 50 and the superconnect via 8 in which the semiconductor element uppermost layer wiring 4 is embedded.
  • the surface of the superconnect insulating film 9 is planarized using a polishing method such as CMP.
  • a superconnect wiring 10 connected to the superconnect via 8 is formed in a predetermined shape using a process device substantially different from the semiconductor element wiring 2 and the semiconductor element uppermost layer wiring 4.
  • bumps 7 as external connection terminals are formed on the superconnect wiring 10 to complete the semiconductor device.
  • the thickness of the superconnect wiring 10 is set to three times or more (for example, four times) the thickness of the semiconductor element wiring 2 and the semiconductor element uppermost layer wiring 4.
  • the thickness of the super-connect insulating layer 9 is 5 times or more (eg, 6 times) the thickness of the insulating layer 50 (for one layer) interposed between the semiconductor element wiring 2 and the semiconductor element uppermost layer wiring 4. .
  • the semiconductor device according to the present embodiment can be manufactured.
  • the design of the conventional semiconductor element is not changed, and the power supply pad 4v, the signal pad 4s, and the ground pad 4g are formed in substantially the same size, and then in FIG. 4C.
  • the area of the signal pad 4s is reduced by a laser or the like.
  • the present invention is not limited to this example. That is, in FIG. 4B, it is possible to change the design of the conventional semiconductor element so that the area of the signal pad 4s is smaller than the power pad 4v and the ground pad 4g. In that case, the process of reducing the signal pad 4s by a laser or the like (FIG. 4C) can be eliminated.
  • the parasitic capacitance component of the signal line can be reduced, the deterioration of the signal quality of the high-speed signal can be suppressed, and the signal can be input and output.
  • Possible semiconductor devices can be manufactured.
  • FIG. 6 is a sectional view showing the configuration of the semiconductor device according to the second embodiment of the present invention.
  • the semiconductor device includes a semiconductor substrate 1, a semiconductor element wiring 2, a semiconductor element wiring via 3, a semiconductor element uppermost layer wiring 4, a superconnect insulating layer 9, a superconnect via 8, a superconnect wiring 10, and a bump 7.
  • the semiconductor substrate 1, the semiconductor element wiring 2, the semiconductor element wiring via 3, and the semiconductor element uppermost layer wiring 4 are the same as in the first embodiment.
  • the super connect insulating layer 9 is provided so as to cover the semiconductor element uppermost layer wiring 4 (power supply pad 4v, signal pad 4s, ground pad 4g).
  • super connect insulating layers 9a, 9b and 9c are laminated in this order.
  • super connect via 8a, 8b, and 8c are electrically connected to the upper part of the semiconductor element uppermost layer wiring 4, and are provided so as to penetrate the super connect insulating layers 9a, 9b, and 9c, respectively.
  • the super connect via 8a includes a power super connect via 8va provided on the power pad 4v, a signal super connect via 8sa provided on the signal pad 4s, and a ground super provided on the ground pad 4g.
  • the super connect via 8b includes a power super connect via 8vb, a signal super connect via 8sb, and a ground super connect via 8gb.
  • the super connect via 8c includes a power super connect via 8vc, a signal super connect via 8sc, and a ground super connect via 8gc.
  • the super connect wiring 10 is provided on the super connect insulating layer 9 and connected to the upper part of the super connect via 8.
  • the superconnect wiring 10 is provided on the superconnect insulating layer 9a and connected to the upper part of the superconnect via 8a.
  • the superconnect wiring 10a is provided on the superconnect insulating layer 9b and connected to the upper part of the superconnect via 8b. 10b, and a super connect wiring 10c provided on the super connect insulating layer 9c and connected to the upper part of the super connect via 8c.
  • the bump 7 is formed as an external connection terminal on the superconnect wiring 10c.
  • super connect insulating layers 9a, 9b, 9c, power supply super connect vias 8va, 8vb, 8vc, ground super connect vias 8ga, 8gb, 8gc, signal super connect vias 8sa, 8sb, 8sc, and super connect wiring 10a, 10b, and 10c are formed by using a process device that is substantially different from the semiconductor element wiring 2 and the semiconductor element uppermost layer wiring 4.
  • the thickness of the superconnect wirings 10a, 10b, and 10c is preferably at least three times the thickness of the semiconductor element wiring 2 and the semiconductor element uppermost layer wiring 4.
  • the thickness of the superconnect insulating layers 9a, 9b, 9c is preferably at least five times the thickness of the insulating layer interposed between the semiconductor element wiring 2 and the semiconductor element uppermost layer wiring 4.
  • the power supply superconnect vias 8va, 8vb, and 8vc, the ground superconnect vias 8ga, 8gb, and 8gc, and the signal superconnect vias 8sa, 8sb, and 8sc are connected.
  • the size of the signal pad 4s is smaller than the areas of the other power supply pads 4v and the ground pads 4g.
  • the superconnect insulating films 9a, 9b, and 9c and the superconnect wirings 10a, 10b, and 10c have a multilayer structure (three layers in this embodiment).
  • the power supply pad 4v and the ground pad 4g extend to a region larger than the area where the bumps 7 to which they are connected are projected onto the power supply pad 4v and the ground pad 4g (power supply pad 4v). And the area of the ground pad 4g is wider than the cross-sectional area of the bump 7).
  • the area of the signal pad 4s is preferably as small as possible within the range allowed by the formation margin of the signal super-connect via 8sa.
  • the area of the power supply pad 4v and the ground pad 4g is preferably larger within the range allowed by the exclusive area of the signal pad 4s and the routing wiring 4m, the design between the wirings, and the manufacturing margin.
  • the power supply pad 4v is connected to the power supply pad superconnect wirings 10a, 10b, and 10c by a plurality (two in this case) of power supply superconnect vias 8va, 8vb, and 8vc for each power supply pad 4v.
  • the ground pad 4g includes a plurality of (two in this case) ground superconnect vias 8ga, 8gb, and 8gc per ground pad 4g, and superconnect wirings 10a, 10b, and 10c for ground pads. It is connected. This is also a feature of the present embodiment.
  • the semiconductor device manufacturing method according to the present embodiment is the same as that of the first embodiment (FIGS. 4A and 4B) except that the superconnect via 8, the superconnect insulating film 9, and the superconnect wiring 10 are stacked in three layers. 4C and FIGS. 5A and 5B), the description thereof is omitted.
  • the structure of the present embodiment increases the parasitic capacitance of the power supply / ground near the semiconductor element wiring as compared with the first embodiment. Since the capacitance acts as a decoupling capacitor, switching noise can be reduced and the operation of the semiconductor device can be further stabilized. At the same time, it is possible to further reduce the parasitic capacitance on the signal line by multilayering the super-connect wiring. As a result, it is possible to further stably transmit a high-speed signal.
  • FIG. 7 is a cross-sectional view showing a configuration of a semiconductor device according to the third embodiment of the present invention.
  • the semiconductor device includes a semiconductor substrate 1, a semiconductor element wiring 2, a semiconductor element wiring via 3, a semiconductor element uppermost layer wiring 4, a superconnect insulating layer 9, a superconnect via 8, a superconnect wiring 10, and a bump 7.
  • each configuration is basically the same as that of the second embodiment.
  • the second embodiment differs from the second embodiment in the following points.
  • the part is different from the second embodiment. That is, the area of the superconnect wiring at the connection portion between the signal superconnect vias 8sa, 8sb, 8sc and the superconnect wires 10sa, 10sb is equal to the power supply superconnect vias 8va, 8vb, 8vc and the superconnect wires 10va, 10vb.
  • the present embodiment is that the area of the superconnect wiring at the connection portion between the connection portion or ground superconnect vias 8ga, 8gb, 8gc and the superconnect wirings 10ga, 10gb is smaller. This is one feature of the form.
  • the manufacturing method of the semiconductor device according to the present embodiment is the same as that of the second embodiment, and thus the description thereof is omitted.
  • the structure of the present embodiment can further reduce the parasitic capacitance on the signal line as compared with the first and second embodiments of the present invention. As a result, it is possible to further stably transmit a high-speed signal.
  • FIG. 8 is a sectional view showing a configuration of a semiconductor device according to the fourth embodiment of the present invention.
  • the semiconductor device includes a semiconductor substrate 1, a semiconductor element wiring 2, a semiconductor element wiring via 3, a semiconductor element uppermost layer wiring 4, a superconnect insulating layer 9, a superconnect via 8, a superconnect wiring 10, and a bump 7.
  • each configuration is basically the same as that of the third embodiment. However, the following points are different from the third embodiment.
  • the configuration of the superconnect wirings 10a, 10b, and 10c is different from that of the third embodiment. That is, among the super-connect wirings 10a, 10b, and 10c existing in three layers, a ground plane is formed by the first layer wiring 10a (A portion in FIG. 8), and a power plane is formed by the second layer wiring 10b ( FIG. 8B) is one of the features of this embodiment in addition to the features of the second embodiment.
  • FIG. 9A and 9B are top views showing the ground plane and the power plane in FIG.
  • the ground superconnect wiring 10ga is a ground plane, and is connected to the upper and lower vias without contacting the power supply superconnect wiring 10va and the signal superconnect wiring 10sa.
  • the power supply superconnect wiring 10vb is a power plane, and the ground superconnect wiring 10gb and signal superconnect wiring 10sb are not connected to the upper and lower vias. ing.
  • the manufacturing method of the semiconductor device according to the present embodiment is the same as that of the third embodiment, and thus the description thereof is omitted.
  • This embodiment can provide the same effects as those of the first, second, and third embodiments.
  • the structure of this embodiment can reduce the resistance and inductance of the power supply and ground as compared with the first, second, and third embodiments of the present invention. And simultaneous switching noise can be reduced.
  • FIG. 10 is a cross-sectional view showing a configuration of a semiconductor device according to the fifth embodiment of the present invention.
  • the semiconductor device includes a semiconductor substrate 1, a semiconductor element wiring 2, a semiconductor element wiring via 3, a semiconductor element uppermost layer wiring 4, a superconnect insulating layer 9, a superconnect via 8, a superconnect wiring 10, and a bump 7.
  • each configuration is basically the same as that of the fourth embodiment.
  • the configuration of the superconnect wirings 10a, 10b, and 10c is different from that of the fourth embodiment, as in the fourth embodiment. That is, among the super-connect wirings 10a, 10b, and 10c existing in three layers, a ground plane is formed by the first layer wiring 10a (A portion in FIG. 10), and a power plane is formed by the second layer wiring 10b ( B section in FIG. 10). That is, it has the characteristics of the fourth embodiment. However, in this example, the power supply pad 4v is provided with four ground super-connect vias 8ga.
  • FIG. 11A and 11B are top views showing the ground plane and the power plane in FIG.
  • the ground superconnect wiring 10ga is a ground plane, and is connected to the upper and lower vias without contacting the power supply superconnect wiring 10va and the signal superconnect wiring 10sa.
  • the power supply superconnect wiring 10vb is a power supply plane, and the ground superconnect wiring 10gb and signal superconnect wiring 10sb are connected to the upper and lower vias without contact. ing.
  • the signal superconnect wiring 10sb is routed using the superconnect wiring 10sb provided in the layer adjacent to the power plane. This is one feature of the present embodiment.
  • the manufacturing method of the semiconductor device according to the present embodiment is the same as that of the fourth embodiment, and thus the description thereof is omitted.
  • This embodiment can provide the same effects as those of the first, second, third, and fourth embodiments.
  • the following effects can be obtained as compared with the first, second, third, and fourth embodiments of the present invention.
  • routing signals through LSI internal wiring caused large wiring resistance, resulting in signal attenuation and delay.
  • routing signals through superconnect wiring reduces the resistance due to the large wiring film thickness and improves signal quality. . That is, in the conventional LSI, the signal is routed by the RC line. However, by routing the signal by the superconnect wiring adjacent to the power plane, the wiring can be handled as the transmission line, and the signal quality is improved. At the same time, the degree of freedom of circuit layout within the LSI increases.
  • the number of superconnect layers is three. However, it is preferable that the number of superconnect layers is larger as long as the materials and processes allow. However, when the thickness of one layer is more than 5 times larger than that of the semiconductor element wiring, the warpage of the wafer due to the stress at the time of film formation affects the transistor characteristics or exceeds the allowable warpage that can be introduced into the process apparatus. There are cases where two to six layers are the most preferred number of layers.
  • each embodiment there is shown a structure in which a superconnect insulating film 9 exists on the side surface of the superconnect via 8 and a superconnect wiring 10 exists on the superconnect via 8 and the superconnect insulating film 9. .
  • the post is covered with an organic resin such as polyimide as the super connect insulating film 9 and is flattened by a polishing technique to expose the upper surface of the post. It describes the structure.
  • the effect of the present invention is not limited to this structure.
  • the super connect insulating film 9 is a photosensitive resin
  • a structure may be employed in which vias are first formed in the super connect insulating film 9 using an exposure technique, and then the super connect via 8 and the super connect wiring 10 are integrally formed. Absent. Even if the super-connect insulating film 9 is a non-photosensitive resin, a similar structure can be realized by forming a via by laser or dry etching.
  • a passive element such as a capacitor, an inductor, or a resistor that functions as a noise filter of a circuit can be provided at a desired position in the superconnect wiring layer.
  • the signal quality for a high-speed signal of 10 Gbps has been described.
  • the effect of the present invention is not necessarily limited to only a signal of 10 Gbps or more, and the effect is also obtained for a lower-speed signal. Is recognized.
  • the parasitic capacitance component between the signal pad and the semiconductor element wiring can be reduced while the bump shape and the pitch thereof are kept substantially the same as those of the conventional semiconductor device. . Therefore, particularly in high-speed signal transmission of 10 Gbps or more, it is possible to suppress signal quality deterioration and to exchange signals with a sufficient margin.
  • the resistance and inductance of the power supply and ground can be reduced, voltage drop and simultaneous switching noise can be reduced particularly during high-speed operation.
  • by keeping the signal line thin while strengthening the power supply and ground changes in characteristic impedance can be minimized and high-speed signal characteristics can be kept good.
  • the resistance and inductance of the power supply and the ground can be reduced. Therefore, voltage drop and simultaneous switching noise during high-speed operation can be reduced.
  • the wiring resistance is increased, resulting in signal attenuation / delay.
  • the signal quality is improved because the wiring resistance is small. That is, in the past, signals were routed on the RC line in the LSI, but the signal quality is improved because the superconnect layer can be designed and routed as the same transmission line as the PKG. As a result, the degree of freedom of circuit layout within the LSI increases.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 半導体装置は、素子配線(2)と素子最上層配線(4)と配線層(8-10)とバンプ(7)とを具備する。素子配線(2)は、半導体素子を有する半導体基板(1)上に絶縁層(50)を介して設けられる。素子最上層配線(4)は、素子配線(2)上に設けられる。配線層(8-10)は、素子最上層配線(4)上に設けられたスーパーコネクト絶縁層(9)とスーパーコネクトビア(8)とスーパーコネクト配線(10)を備える。バンプ(7)は、スーパーコネクト配線(10)上に設けられる。素子最上層配線(4)は、信号用パッド(4s)と電源用パッド(4v)とグランド用パッド(4g)を備える。信号用パッド(4s)の面積は、電源用パッド(4v)及びグランド用パッド(4g)の面積よりも小さい。電源用パッド(4v)及びグランド用パッド(4g)の少なくとも一つに複数のスーパーコネクトビア(8)が設けられる。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特に、微細な半導体素子用の多層配線及びスーパーコネクト配線の両方を具備する半導体装置及びその製造方法に関する。
 スーパーコネクト配線を用いた半導体装置としては特開2002-170928号公報がある。その特開2002-170928号公報には、微細な半導体素子用の配線層と巨大配線層(スーパーコネクト配線層)とその切り替え回路とを有する半導体装置が開示されている。スーパーコネクト配線層の配線間隔は半導体素子用の配線層の配線間隔と比較して大きいため、配線の寄生容量が小さいこと、及び電気抵抗が小さいことが開示されている。また、特開2002-93946号公報には、低弾性で厚い応力緩和層が半導体素子上のパッドと外部端子用のランドの間に設けられていて、厚い応力緩和層によって半導体内部配線とランドへの引き出し配線間の静電容量を低減できることが示されている。
 関連する技術として、特開2004-95614号公報に多層基板及び半導体装置が開示されている。この多層基板は、絶縁材と、グランド層と、電源層と、信号層と、電源ランドと、信号ランドと、最下層グランド層とを設けてなる。グランド層は、該絶縁材内に形成されると共にグランドビアにより層間接続される。電源層は、前記絶縁材内に形成されると共に電源ビアにより層間接続される。信号層は、前記絶縁材内に形成されると共に信号ビアにより層間接続される。電源ランドは、前記絶縁材の最下層に形成され、前記電源層と接続されると共に外部接続される。信号ランドは、前記絶縁材の最下層に形成され、前記信号層と接続されると共に外部接続される。最下層グランド層は、前記絶縁材の最下層に形成され、前記電源ランド及び前記信号ランドの形成位置を除き形成されると共に前記グランド層と接続される。
 また、特開平9-306917号公報に半導体集積回路装置およびその製造方法が開示されている。この半導体集積回路装置は、半導体チップ上に設けられたパッドと、パッケージ上に設けた金属電極とが、はんだバンプにより接続される。この半導体集積回路装置では、前記パッドのうち、高周波信号の入出力に用いられる高周波入出力パッドの面積が、高周波信号の入出力に用いられないその他のパッドの面積と比較して小さい。
 また、特開2006-287048号公報に半導体装置が開示されている。この半導体装置は、半導体チップと、上記半導体チップの表面を覆う封止樹脂層と、上記封止樹脂層を貫通して設けられ、封止樹脂層の表面側に設けられる外部電極を支えるためのポストとを有する。上記ポストは、1つの外部電極に対し複数本が設けられている。
特開2002-170928号公報 特開2002-93946号公報 特開2004-95614号公報 特開平9-306917号公報 特開2006-287048号公報
 ところが、上記文献記載に記載の技術では、スーパーコネクト配線間や応力緩和層の上下における寄生容量を低減することは可能となっても、半導体素子とスーパーコネクト配線との全体構造が最適化されていないため、特に10Gbpsを越える高速信号を扱う場合、信号品質が劣化するという課題があった。
 図1は、典型的な半導体装置の構成を示す断面図である。この半導体装置は、トランジスタ回路(図示されず)を含む半導体基板101上に、複数の絶縁層150内に設けられ、半導体素子配線用ビア103で接続された半導体素子配線102を有する。その半導体装置は、さらにその上に、この半導体素子配線102と実質上同等のプロセス装置を用いて形成される半導体素子最上層配線104が存在する。この半導体素子最上層配線104は、電源用パッド104v、グランド用パッド104g、信号用パッド104s、及びそれ以外の引き回し配線104mを備えている。電源用パッド104v、グランド用パッド104g、及び信号用パッド104sはほぼ等しい大きさである。この半導体素子最上層配線104上にはカバー膜105を介してアンダーバンプメタライゼーション(UBM)106が形成され、電源用パッド104v、グランド用パッド104g、信号用パッド104sがそれぞれ外部接続端子であるバンプ107と接続されている。
 ここで、電源用パッド104v、グランド用パッド104g、及び信号用パッド104sがほぼ等しい大きさとなっている理由は、以下のとおりである。バンプ107が例えばSnとAgの合金からなり、めっきで所望の領域に金属層を形成した後、リフローによって図1のバンプ107に示すような形状に整形するような場合、上記3種類のパッドの大きさを等しくしないと、UBM106を含むボール状のバンプ107のサイズが異なってしまい、外部との良好な接続を確保できないためである。バンプ材料を印刷で形成したり、球状のボールを振り込んだりするような場合でも、同様の理由により、電源用パッド104v、グランド用パッド104g、及び信号用パッド104sがほぼ等しい大きさとなっている。
 しかし、図1に示すような構造では、半導体装置が特に10Gbpsを越える超高速で動作する場合、特に信号線の入出力が不安定になり、半導体装置とその外部との信号のやりとりができないという課題が発明者の鋭意研究の結果、明らかとなった。同時に、発明者の研究の結果、その原因は、半導体素子最上層配線104における信号用パッド104sと下層の半導体素子配線102とのカップリング容量が大きく、信号品質を劣化させていたためであることが明らかとなった。
 その解決策として、配線の厚さや絶縁膜の厚さが半導体素子配線や半導体素子絶縁膜の数倍(例示:3~10倍)の寸法を有するスーパーコネクト技術を用いて、寄生容量を低減する方法が考えられる。図2は、典型的な半導体装置にスーパーコネクト技術を適用した構成を示す断面図である。この場合、半導体素子最上層配線104上に厚いスーパーコネクト絶縁膜109と厚いスーパーコネクト配線110(スーパーコネクトビア108で半導体素子最上層配線104と接続)が単に形成されただけの構成となる。そのため、スーパーコネクト絶縁膜109を介したスーパーコネクト配線110と他の部分の寄生容量は低減できるものの、本質的な課題である信号用パッド104sと下層の半導体素子配線102との間には、依然として大きな寄生容量が存在してしまい、伝送特性が劣化した。寄生容量のような伝送特性を劣化させる諸要因を抑制し、高速信号伝送における信号品質の劣化を抑制することが可能な技術が望まれる。
 本発明の目的は、高速信号の品質の劣化を抑制して、その信号を入出力することが可能な半導体装置及び半導体装置の製造方法を提供することにある。
 本発明の半導体装置は、素子配線と、素子最上層配線と、配線層と、バンプとを具備している。素子配線は、半導体素子を有する半導体基板上に複数の絶縁層を介して設けられている。素子最上層配線は、素子配線上に設けられている。配線層は、素子最上層配線上に設けられたスーパーコネクト絶縁層とスーパーコネクトビアとスーパーコネクト配線を備える。バンプは、スーパーコネクト配線上に設けられている。素子最上層配線は、信号用パッドと電源用パッドとグランド用パッドを備えている。信号用パッドの面積は、電源用パッド及びグランド用パッドの面積よりも小さい。電源用パッド及びグランド用パッドの少なくとも一つに複数のスーパーコネクトビアが設けられている。
 また、本発明の半導体装置の製造方法は、(a)半導体基板上に半導体素子を形成する工程と、(b)半導体基板上に複数の絶縁層を介して設けられた素子配線を形成する工程と、(c)素子配線上に、信号用パッドと電源用パッドとグランド用パッドを備える素子最上層配線を形成する工程と、(d)素子最上層配線上に、絶縁層の5倍以上の厚さを有するスーパーコネクト絶縁層と、スーパーコネクト絶縁層内に埋め込まれたスーパーコネクトビアとを形成する工程と、(e)スーパーコネクトビア上に、配線厚さが素子配線及び素子最上層配線の3倍以上の厚さを有するスーパーコネクト配線を形成する工程と、(f)スーパーコネクト配線上に形成されるバンプを形成する工程とを具備している。(c)工程は、(c1)信号用パッドの面積を、電源用パッド及びグランド用パッドよりも小さくする工程を備えている。(d)工程は、(d1)電源用パッドとグランド用パッドの少なくとも一つに複数のスーパーコネクトビアを形成する工程を備えている。
 本発明により、高速信号の品質の劣化を抑制して、その信号を入出力することが可能となる。
図1は典型的な半導体装置の構成を示す断面図である。 図2は典型的な半導体装置にスーパーコネクト技術を適用した構成を示す断面図である。 図3は本発明の第1の実施の形態に係る半導体装置の構成を示す断面図である。 図4Aは本発明の第1の実施の形態に係る半導体装置の製造方法の工程を示す断面図である。 図4Bは本発明の第1の実施の形態に係る半導体装置の製造方法の工程を示す断面図である。 図4Cは本発明の第1の実施の形態に係る半導体装置の製造方法の工程を示す断面図である。 図5Aは本発明の第1の実施の形態に係る半導体装置の製造方法の工程を示す断面図である。 図5Bは本発明の第1の実施の形態に係る半導体装置の製造方法の工程を示す断面図である。 図6は本発明の第2の実施の形態に係る半導体装置の構成を示す断面図である。 図7は本発明の第3の実施の形態に係る半導体装置の構成を示す断面図である。 図8は本発明の第4の実施の形態に係る半導体装置の構成を示す断面図である。 図9Aは図8におけるグランドプレーンと電源プレーンの様子を示す上面図である。 図9Bは図8におけるグランドプレーンと電源プレーンの様子を示す上面図である。 図10は本発明の第5の実施の形態に係る半導体装置の構成を示す断面図である。 図11Aは図10におけるグランドプレーンと電源プレーンの様子を示す上面図である。 図11Bは図10におけるグランドプレーンと電源プレーンの様子を示す上面図である。 図12Aは従来技術の半導体装置における信号特性を示すグラフである。 図12Bは本発明の半導体装置における信号特性を示すグラフである。
 以下、本発明の半導体装置及びその製造方法の実施の形態に関して、添付図面を参照して説明する。
 (第1の実施の形態)
 本発明の第1の実施の形態に係る半導体装置の構成について説明する。図3は、本発明の第1の実施の形態に係る半導体装置の構成を示す断面図である。半導体装置は、半導体基板1、半導体素子配線2、半導体素子配線用ビア3、半導体素子最上層配線4、スーパーコネクト絶縁層9、スーパーコネクトビア8、スーパーコネクト配線10、及びバンプ7を具備する。
 半導体基板1は、トランジスタ回路(図示されず)を含む半導体製の基板である。半導体素子配線2は、複数の絶縁層50内の各配線層に設けられ、半導体素子配線用ビア3で接続された配線である。半導体素子最上層配線4は、半導体素子配線2の上部の配線層に設けられ、半導体素子配線2と実質上同等のプロセス装置を用いて形成された配線である。この半導体素子最上層配線4は、電源用パッド4v、グランド用パッド4g、信号用パッド4s、及びそれ以外の引き回し配線4mを備える。スーパーコネクト絶縁層9は、半導体素子最上層配線4を覆うように設けられている。スーパーコネクトビア8は、半導体素子最上層配線4上部に接続され、スーパーコネクト絶縁層9を貫通するように設けられている。このスーパーコネクトビア8は、電源用スーパーコネクトビア8v、グランド用スーパーコネクトビア8g、及び信号用スーパーコネクトビア8sを備える。スーパーコネクト配線10は、スーパーコネクト絶縁層9上に設けられ、電源用スーパーコネクトビア8v、グランド用スーパーコネクトビア8g、及び信号用スーパーコネクトビア8s上部に接続されている。バンプ7は、スーパーコネクト配線10上に外部接続端子として形成されている。
 本発明では、スーパーコネクト絶縁層9、電源用スーパーコネクトビア8v、グランド用スーパーコネクトビア8g、信号用スーパーコネクトビア8s、及びスーパーコネクト配線10は、半導体素子配線102や半導体素子最上層配線4とは実質上異なるプロセス装置を用いて形成されている。スーパーコネクト配線10の厚さは、半導体素子配線2や半導体素子最上層配線4の厚さの3倍以上あることが好ましい。また、スーパーコネクト絶縁層9の厚さは、半導体素子配線2や半導体素子最上層配線4の間に介在する絶縁層50(一層分)の厚さの5倍以上あることが好ましい。
 また、図3に示されるように、信号用スーパーコネクトビア8sと接続される半導体素子最上層配線4のパッドにおいて、信号用パッド4sの面積が他の電源用パッド4vやグランド用パッド4gの面積と比較して小さいことが本実施の形態の一つの特徴である。更に、信号用パッド4sの面積が信号用スーパーコネクトビア8sの形成マージンの許す範囲内で限りなく小さいほうがより好ましい。
 さらに、図3に示されるように、電源用パッド4vは、電源用パッド4v一つあたり複数(この場合は二つ)の電源用スーパーコネクトビア8vでスーパーコネクト配線10に接続されていることが好ましい。同様に、グランド用パッド4gは、グランド用パッド4g一つあたり複数(この場合は二つ)のグランド用スーパーコネクトビア8gでスーパーコネクト配線10に接続されていることも本実施の形態の一つの特徴である。ここで、各ビアの数は電源用パッド4vやグランド用パッド4gの大きさの許す範囲内で多い方が好ましい。
 図3に示される本実施の形態では、信号用パッド4sの面積を相対的に小さくし、より好ましくは限りなく小さくすることにより、信号用パッド4sと下層の半導体素子配線2との間のカップリング容量を減少させている。これにより、信号用パッド4sの寄生容量が減少し、高速信号の品質を劣化させることなく、その信号を入出力することが可能となる。すなわち、スーパーコネクト技術と信号用パッド4sの面積低減を組み合わせることにより、特に10Gbps以上の高速信号伝送における寄生容量成分が大きく低減される。それにより、信号品質の劣化が抑制され、十分なマージンでの信号のやりとりが可能となる。
 更に、電源用パッド4v及びグランド用パッド4gの少なくとも一つ以上に二つのスーパーコネクトビアが設けられているため、電源及びグランドの抵抗やインダクタンスを低減することができる。それにより、特に高速動作時の電圧低下や同時スイッチングノイズを低減することが可能となる。ここで、電源用パッド4vとグランド用パッド4gに設けるスーパーコネクトビアの数は二つに限定されることなく、設計の許す限り多い方が好ましい。また、スーパーコネクトビアの直径を変化させても良い。ただし、一般的には同一層内でのビア径はなるべく揃っている方が、製造歩留まり上好ましい。
 図12A及び図12Bは、従来技術の半導体装置及び本発明による半導体装置の各々における信号特性を示すグラフである。図12Aは従来技術の半導体装置であり、図12Bは本発明の半導体装置である。縦軸は振幅(V)を示し、横軸は時間(sec.)を示す。このグラフは、信号特性として、10Gbpsに対するアイパターンを示している。従来技術(図12A)ではアイがほとんど開口せず、信号品質が劣化しているのに対し、本発明(図12B)ではアイの開口が見られ、信号品質が劣化が無く超高速伝送が可能となっていることがわかる。
 次に、本発明の第1の実施の形態に係る半導体装置の製造方法について説明する。図4A、図4B、図4C及び図5A、図5Bは、本発明の第1の実施の形態に係る半導体装置の製造方法の工程を示す断面図である。
 まず、図4Aに示されるように、シリコンなどの半導体基板1の上にトランジスタ回路(図示されず)を形成する。続いて、図4Bに示されるように、リソグラフィーとめっき法等のプロセスを用いて複数の絶縁層50内に設けられ、半導体素子配線用ビア3で接続された半導体素子配線2を形成する。続いて、半導体素子配線2の場合と実質上同等のプロセス装置を用いて半導体素子最上層配線4を形成する。このとき、従来の半導体素子の設計を変更する必要は無く、半導体素子最上層配線4の中で、電源用パッド4vと信号用パッド4sとグランド用パッド4gの大きさはほぼ同一であっても構わない。次に、図4Cに示されるように、レーザ等により、信号用パッド4sを形成する金属配線の一部に切れ込み(A部)を入れ、信号用パッド4sの中心部分のみを孤立させて面積を小さくする。
 続いて、図5Aに示されるように、電源用パッド4v、信号用パッド4s(中心部)、及びグランド用パッド4g上に、それぞれ電源用スーパーコネクトビア8v、信号用スーパーコネクトビア8s、及びグランド用スーパーコネクトビア8gを形成する。ただし、一つの電源用パッド4vに設ける電源用スーパーコネクトビア8vの数、及び一つのグランド用パッド4gに設けるグランド用スーパーコネクトビア8gの数は、いずれも二つ以上とする。次に、半導体素子最上層配線4を埋め込まれた絶縁層50やスーパーコネクトビア8を覆うようにスーパーコネクト絶縁膜9をスピンコートやプレス、またはラミネートにより形成する。そして、CMPなどの研磨手法を用いてスーパーコネクト絶縁膜9の表面を平坦化する。そのとき、スーパーコネクトビア8の上部は表面に剥き出しになっている。さらにその上に、スーパーコネクトビア8と接続されるスーパーコネクト配線10を、半導体素子配線2や半導体素子最上層配線4とは実質上異なるプロセス装置を用いて所定の形状で形成する。最後に、図5Bに示されるように、スーパーコネクト配線10上に外部接続端子であるバンプ7を形成し、半導体装置が完成する。このとき、スーパーコネクト配線10の厚さは、半導体素子配線2や半導体素子最上層配線4の厚さの3倍以上(例示:4倍)とする。また、スーパーコネクト絶縁層9の厚さは、半導体素子配線2や半導体素子最上層配線4の間に介在する絶縁層50(一層分)の厚さの5倍以上(例示:6倍)とする。
 以上のようにして、本実施の形態に係る半導体装置を製造することができる。
 なお、上記例では、図4Bにおいて、従来の半導体素子の設計を変更せず、電源用パッド4vと信号用パッド4sとグランド用パッド4gをほぼ同一の大きさで形成し、その後に図4Cにおいて、レーザ等により、信号用パッド4sの面積を小さくしている。しかし、本発明はこの例に限定されるものではない。すなわち、図4Bにおいて、従来の半導体素子の設計を変更し、電源用パッド4v及びグランド用パッド4gよりも、信号用パッド4sの面積を小さく形成することも可能である。その場合、レーザ等による信号パッド4sの縮小化工程(図4C)を不要とすることができる。
 本実施の形態により、高価な半導体素子用の設計マスクを変更することなく、信号線の寄生容量成分を低減させ、高速信号の信号品質の劣化を抑制して、その信号を入出力することが可能な半導体装置を製造することができる。
 (第2の実施の形態)
 本発明の第2の実施の形態に係る半導体装置の構成について説明する。図6は、本発明の第2の実施の形態に係る半導体装置の構成を示す断面図である。半導体装置は、半導体基板1、半導体素子配線2、半導体素子配線用ビア3、半導体素子最上層配線4、スーパーコネクト絶縁層9、スーパーコネクトビア8、スーパーコネクト配線10、及びバンプ7を具備する。ここで、半導体基板1、半導体素子配線2、半導体素子配線用ビア3、及び半導体素子最上層配線4については、第1の実施の形態と同様である。
 スーパーコネクト絶縁層9は、半導体素子最上層配線4(電源用パッド4v、信号用パッド4s、グランド用パッド4g)を覆うように設けられている。スーパーコネクト絶縁層9として、スーパーコネクト絶縁層9a、9b、9cがこの順に積層されている。スーパーコネクトビア8として、スーパーコネクトビア8a、8b、8cが半導体素子最上層配線4上部に電気的に接続され、それぞれスーパーコネクト絶縁層9a、9b、9cを貫通するように設けられている。スーパーコネクトビア8aは、電源用パッド4v上に設けられた電源用スーパーコネクトビア8va、信号用パッド4s上に設けられた信号用スーパーコネクトビア8sa、グランド用パッド4g上に設けられたグランド用スーパーコネクトビア8gaを有する。スーパーコネクトビア8bは、電源用スーパーコネクトビア8vb、信号用スーパーコネクトビア8sb、グランド用スーパーコネクトビア8gbを有する。スーパーコネクトビア8cは、電源用スーパーコネクトビア8vc、信号用スーパーコネクトビア8sc、グランド用スーパーコネクトビア8gcを有する。スーパーコネクト配線10は、スーパーコネクト絶縁層9上に設けられ、スーパーコネクトビア8上部に接続されている。スーパーコネクト配線10は、スーパーコネクト絶縁層9a上に設けられスーパーコネクトビア8a上部に接続されたスーパーコネクト配線10a、スーパーコネクト絶縁層9b上に設けられスーパーコネクトビア8b上部に接続されたスーパーコネクト配線10b、スーパーコネクト絶縁層9c上に設けられスーパーコネクトビア8c上部に接続されたスーパーコネクト配線10cを備える。バンプ7は、スーパーコネクト配線10c上に外部接続端子として形成されている。
 ここで、スーパーコネクト絶縁層9a、9b、9c、電源用スーパーコネクトビア8va、8vb、8vc、グランド用スーパーコネクトビア8ga、8gb、8gc、信号用スーパーコネクトビア8sa、8sb、8sc、及びスーパーコネクト配線10a、10b、10cは、半導体素子配線2や半導体素子最上層配線4とは実質上異なるプロセス装置を用いて形成されている。また、スーパーコネクト配線10a、10b、10cの厚さは、半導体素子配線2や半導体素子最上層配線4の厚さの3倍以上あることが好ましい。また、スーパーコネクト絶縁層9a、9b、9cの厚さは、半導体素子配線2や半導体素子最上層配線4の間に介在する絶縁層の厚さの5倍以上あることが好ましい。
 図6に示されるように、本実施の形態では、電源用スーパーコネクトビア8va、8vb、8vc、グランド用スーパーコネクトビア8ga、8gb、8gc、信号用スーパーコネクトビア8sa、8sb、8scと接続される半導体素子最上層配線4のパッドにおいて、信号用パッド4sの大きさが他の電源用パッド4vやグランド用パッド4gの面積よりも小さい。加えて、スーパーコネクト絶縁膜9a、9b、9c及びスーパーコネクト配線10a、10b、10cが多層構造(本実施の形態では三層)となっている。更に、電源用パッド4vやグランド用パッド4gが、それらの接続先であるバンプ7を電源用パッド4vやグランド用パッド4gに投影した面積よりも大きな領域まで延在している(電源用パッド4vやグランド用パッド4gの面積が、バンプ7の横断面積よりも広い)ことが本実施の形態の一つの特徴である。
 ここで、第1の実施の形態で説明したように、信号用パッド4sの面積は、信号用スーパーコネクトビア8saの形成マージンの許す範囲内で、限りなく小さい方が好ましい。電源用パッド4vやグランド用パッド4gの面積は、信号用パッド4sや引き回し配線4mの専有面積と配線間の設計および製造マージンの許す範囲内で大きい方が好ましい。
 更に、電源用パッド4vは、電源用パッド4v一つあたり複数(この場合は二つ)の電源用スーパーコネクトビア8va、8vb、8vcで電源用パッド用のスーパーコネクト配線10a、10b、10cと接続されている。同様に、グランド用パッド4gは、グランド用パッド4g一つあたり複数(この場合は二つ)のグランド用スーパーコネクトビア8ga、8gb、8gcでグランド用パッド用のスーパーコネクト配線10a、10b、10cと接続されている。このことも本実施の形態の一つの特徴である。
 なお、本実施の形態に係る半導体装置の製造方法については、スーパーコネクトビア8、スーパーコネクト絶縁膜9及びスーパーコネクト配線10を三層重ねる他は、第1の実施の形態(図4A、図4B、図4C及び図5A、図5B)と同様であるのでその説明を省略する。
 本実施の形態により第1の実施の形態と同様の効果を得ることが出来る。加えて、本実施の形態の構造により、第1の実施の形態と比較して、半導体素子配線付近の電源・グランドの寄生容量が大きくなる。その容量がデカップリングキャパシタとして作用することで、スイッチングノイズを低減することができ、半導体装置の動作をさらに安定化させることができる。同時に、スーパーコネクト配線を多層化することにより、信号線に乗る寄生容量をさらに低減させることができる。その結果、さらなる高速信号の安定伝送を可能とすることができる。
 (第3の実施の形態)
 本発明の第3の実施の形態に係る半導体装置の構成について説明する。図7は、本発明の第3の実施の形態に係る半導体装置の構成を示す断面図である。半導体装置は、半導体基板1、半導体素子配線2、半導体素子配線用ビア3、半導体素子最上層配線4、スーパーコネクト絶縁層9、スーパーコネクトビア8、スーパーコネクト配線10、及びバンプ7を具備する。ここで、各構成は、基本的に第2の実施の形態と同様である。ただし、以下の点につき第2の実施の形態と異なる。
 本実施の形態では、電源用スーパーコネクトビア8va、8vb、8vc、グランド用スーパーコネクトビア8ga、8gb、8gc、及び信号用スーパーコネクトビア8sa、8sb、8scと、スーパーコネクト配線10a、10bとの接続部が第2の実施の形態と異なる。すなわち、信号用スーパーコネクトビア8sa、8sb、8scとスーパーコネクト配線10sa、10sbとの接続部のスーパーコネクト配線の面積が、電源用スーパーコネクトビア8va、8vb、8vcとスーパーコネクト配線10va、10vbとの接続部又はグランド用スーパーコネクトビア8ga、8gb、8gcとスーパーコネクト配線10ga、10gbとの接続部のスーパーコネクト配線の面積よりも小さいことが、第2の実施の形態の特徴に加えて、本実施の形態が有する一つの特徴である。
 なお、本実施の形態に係る半導体装置の製造方法については、第2の実施の形態と同様であるのでその説明を省略する。
 本実施の形態により第1、第2の実施の形態と同様の効果を得ることが出来る。加えて、本実施の形態の構造により、本発明の第1、第2の実施の形態と比較して、信号線に乗る寄生容量を更に一層低減することができる。その結果、更なる高速信号の安定伝送を可能とすることができる。
 (第4の実施の形態)
 本発明の第4の実施の形態に係る半導体装置の構成について説明する。図8は、本発明の第4の実施の形態に係る半導体装置の構成を示す断面図である。半導体装置は、半導体基板1、半導体素子配線2、半導体素子配線用ビア3、半導体素子最上層配線4、スーパーコネクト絶縁層9、スーパーコネクトビア8、スーパーコネクト配線10、及びバンプ7を具備する。ここで、各構成は、基本的に第3の実施の形態と同様である。ただし、以下の点につき第3の実施の形態と異なる。
 本実施の形態では、スーパーコネクト配線10a、10b、10cの構成が第3の実施の形態と異なる。すなわち、三層存在するスーパーコネクト配線10a、10b、10cのうち、第1層配線10aによってグランドプレーンを形成し(図8のA部)、第2層配線10bによって電源プレーンを形成している(図8のB部)ことが、第2の実施の形態の特徴に加えて、本実施の形態が有する一つの特徴である。
 図9A及び図9Bは、図8におけるグランドプレーンと電源プレーンの様子を示す上面図である。図9Aで示されるA面では、グランド用のスーパーコネクト配線10gaがグランドプレーンとなり、それと電源用のスーパーコネクト配線10va及び信号用のスーパーコネクト配線10saとは接することなく上下のビアに接続されている。一方、図9Bで示されるB面では、電源用のスーパーコネクト配線10vbが電源プレーンとなり、それとグランド用のスーパーコネクト配線10gb及び信号用のスーパーコネクト配線10sbとは接することなく上下のビアに接続されている。
 なお、本実施の形態に係る半導体装置の製造方法については、第3の実施の形態と同様であるのでその説明を省略する。
 本実施の形態により第1、第2、第3の実施の形態と同様の効果を得ることが出来る。加えて、本実施の形態の構造により、本発明の第1、第2、第3の実施の形態と比較して、電源やグランドの抵抗やインダクタンスを低減できるので、さらに高速動作時の電圧低下や同時スイッチングノイズを低減できる。
 (第5の実施の形態)
 本発明の第5の実施の形態に係る半導体装置の構成について説明する。図10は、本発明の第5の実施の形態に係る半導体装置の構成を示す断面図である。半導体装置は、半導体基板1、半導体素子配線2、半導体素子配線用ビア3、半導体素子最上層配線4、スーパーコネクト絶縁層9、スーパーコネクトビア8、スーパーコネクト配線10、及びバンプ7を具備する。ここで、各構成は、基本的に第4の実施の形態と同様である。
 すなわち、本実施の形態では、第4の実施の形態と同様に、スーパーコネクト配線10a、10b、10cの構成が第4の実施の形態と異なる。すなわち、三層存在するスーパーコネクト配線10a、10b、10cのうち、第1層配線10aによってグランドプレーンを形成し(図10のA部)、第2層配線10bによって電源プレーンを形成している(図10のB部)。すなわち、第4の実施の形態の特徴を有している。ただし、この例では、電源用パッド4vには、四つのグランド用スーパーコネクトビア8gaが設けられている。
 図11A及び図11Bは、図10におけるグランドプレーンと電源プレーンの様子を示す上面図である。図11Aで示されるA面では、グランド用のスーパーコネクト配線10gaがグランドプレーンとなり、それと電源用のスーパーコネクト配線10va及び信号用のスーパーコネクト配線10saとは接することなく上下のビアに接続されている。一方、図11Bで示されるB面では、電源用のスーパーコネクト配線10vbが電源プレーンとなり、それとグランド用のスーパーコネクト配線10gb及び信号用のスーパーコネクト配線10sbとは接することなく上下のビアに接続されている。
 ただし、以下の点につき第4の実施の形態と異なる。更に、本実施の形態では、図11Bに示されるB面において、信号用のスーパーコネクト配線10sbが電源プレーンと隣接する層の内部に設けられたスーパーコネクト配線10sbを用いて引き回されていることが、本実施の形態が有する一つの特徴である。
 なお、本実施の形態に係る半導体装置の製造方法については、第4の実施の形態と同様であるのでその説明を省略する。
 本実施の形態により第1、第2、第3、第4の実施の形態と同様の効果を得ることが出来る。加えて、本実施の形態の構造により、本発明の第1、第2、第3、第4の実施の形態と比較して以下の効果を得ることが出来る。従来は信号をLSI内配線で引き回すと配線抵抗が大きく信号減衰・遅延が生じていたが、スーパーコネクト配線で信号を引き回せば、配線膜厚が大きいため抵抗が少なく、信号品質が改善される。すなわち、従来LSI内ではRC線路によって信号を引き回していたが、電源プレーンと隣接するスーパーコネクト配線で引き回すことにより、配線を伝送線路として扱うことができるようになり、信号品質が改善される。また、同時に、LSI内での回路のレイアウトの自由度が増す。
 なお、各実施の形態では、スーパーコネクトの層数は三層であったが、スーパーコネクトの層数は材料やプロセスの許す範囲内でより多い方が好ましい。しかし、半導体素子配線に比べて一層分の厚さが5倍以上大きい場合、膜形成時の応力によるウエハの反りがトランジスタ特性に影響を与えたり、プロセス装置に導入できる反り許容量を超えたりする場合があり、二層から六層が最も好ましい層数である。
 また、各実施の形態では、スーパーコネクトビア8の側面にスーパーコネクト絶縁膜9が存在し、それらスーパーコネクトビア8とスーパーコネクト絶縁膜9上にスーパーコネクト配線10が存在する構造が示されている。これはスーパーコネクトビア8を銅などの金属でポスト状に形成した後、スーパーコネクト絶縁膜9としてポリイミドなどの有機樹脂を用いてポスト全体を覆い、研磨技術により平坦化してポスト上面を露出させた構造について述べたものである。しかし、本発明の効果はこの構造に限定されるものではない。例えばスーパーコネクト絶縁膜9が感光性樹脂の場合、まず露光技術を用いてスーパーコネクト絶縁膜9にビアを形成し、その後スーパーコネクトビア8とスーパーコネクト配線10を一体形成した構造であっても構わない。またスーパーコネクト絶縁膜9が非感光性樹脂であっても、レーザやドライエッチングによりビアを形成することで、類似の構造を実現することも可能である。
 なお、各実施の形態では、スーパーコネクト配線層の所望の位置に、回路のノイズフィルターの役割を果たすキャパシタやインダクタ、抵抗などの受動素子を設けることもできる。また、本実施の形態では、10Gbpsの高速信号に対する信号品質について述べたが、本発明の効果は必ずしも10Gbps以上の信号のみに限定されることはなく、より低速の信号に対してもその効果は認められる。
 以上述べたように、本発明の半導体装置では、バンプの形状及びそのピッチを従来の半導体装置とほぼ同一に保持しながら、信号用パッドと半導体素子配線間の寄生容量成分を低下させることができる。そのため、特に10Gbps以上の高速信号伝送において、信号品質の劣化を抑制し、十分なマージンでの信号のやりとりを可能にすることができる。また、電源やグランドの抵抗やインダクタンスを小さくできるので、特に高速動作時の電圧低下や同時スイッチングノイズを低減できる。さらに、電源やグランドを強化しつつ、信号線路は細い配線のまま保つことにより、特性インピーダンスの変化を最小限に抑え、高速信号特性を良好に保つことができる。また、電源プレーンとグランドプレーンを設けることによって、電源やグランドの抵抗やインダクタンスを低減できる。従って、特に高速動作時の電圧低下や同時スイッチングノイズを低減できる。さらに、従来は信号をLSI内配線で引き回すと配線抵抗が大きくて信号減衰・遅延が生じていた。しかし、スーパーコネクト層で信号を引き回せば、配線抵抗が少ないので信号品質がよくなる。すなわち、従来はLSI内ではRC線路で信号を引き回していたが、スーパーコネクト層ではPKGと同じ伝送線路として設計して引き回せるので、信号品質がよくなる。その結果、LSI内での回路のレイアウトの自由度が増す。
 以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施の形態は互いに技術的に矛盾が発生しない限り、相互に適用することができる。
 この出願は、2008年9月2日に出願された特許出願番号2008-225270号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。

Claims (14)

  1.  半導体素子を有する半導体基板上に複数の絶縁層を介して設けられた素子配線と、
     前記素子配線上に設けられた素子最上層配線と、
     前記素子最上層配線上に設けられたスーパーコネクト絶縁層とスーパーコネクトビアとスーパーコネクト配線を備える配線層と、
     前記スーパーコネクト配線上に設けられたバンプとを具備し、
     前記素子最上層配線は、信号用パッドと電源用パッドとグランド用パッドを備え、
     前記信号用パッドの面積は、前記電源用パッド及び前記グランド用パッドの面積よりも小さく、
     前記電源用パッド及びグランド用パッドの少なくとも一つに複数の前記スーパーコネクトビアが設けられている
     半導体装置。
  2.  信号用の前記スーパーコネクトビアと信号用の前記スーパーコネクト配線との接続部は、電源用の前記スーパーコネクトビアと電源用の前記スーパーコネクト配線との接続部、及び、グランド用の前記スーパーコネクトビアとグランド用の前記スーパーコネクト配線との接続部の少なくとも一方よりも面積が小さい
     請求の範囲1に記載の半導体装置。
  3.  前記スーパーコネクト絶縁層は、前記絶縁層より厚い
     請求の範囲1又は2に記載の半導体装置。
  4.  前記スーパーコネクト絶縁層が、前記絶縁層の5倍以上の厚さを有する
     請求の範囲3に記載の半導体装置。
  5.  前記スーパーコネクト配線が、前記素子配線及び前記素子最上層配線より厚い
     請求の範囲1又は2に記載の半導体装置。
  6.  前記スーパーコネクト配線が、前記素子配線及び前記素子最上層配線の3倍以上の厚さを有する
     請求の範囲5に記載の半導体装置。
  7.  前記スーパーコネクト絶縁層が、前記絶縁層より厚く、前記スーパーコネクト配線が、前記素子配線及び前記素子最上層配線より厚い
     請求の範囲1又は2に記載の半導体装置。
  8.  前記スーパーコネクト絶縁層が、前記絶縁層の5倍以上の厚さを有し、前記スーパーコネクト配線が、前記素子配線及び前記素子最上層配線の3倍以上の厚さを有する
     請求の範囲7に記載の半導体装置。
  9.  前記電源用パッド及び前記グランド用パッドの少なくとも一方のパッドは、当該パッドと前記スーパーコネクト配線で接続される前記バンプを前記素子最上層配線へ投影したとき、前記投影像よりも外部へ延在している
     請求の範囲1乃至8のいずれか一項に記載の半導体装置。
  10.  前記配線層が、二層以上の多層構造を有する
     請求の範囲1乃至9のいずれか一項に記載の半導体装置。
  11.  前記多層構造において、一層の前記スーパーコネクト配線が電源プレーンであり、他の一層の前記スーパーコネクト配線がグランドプレーンである
     請求の範囲10に記載の半導体装置。
  12.  前記グランドプレーンを有する前記配線層において、前記グランドプレーンと隣接して、信号用の前記スーパーコネクト配線が引き回されている
     請求の範囲11に記載の半導体装置。
  13.  (a)半導体基板上に半導体素子を形成する工程と、
     (b)前記半導体基板上に複数の絶縁層を介して設けられた素子配線を形成する工程と、
     (c)前記素子配線上に、信号用パッドと電源用パッドとグランド用パッドを備える素子最上層配線を形成する工程と、
     (d)前記素子最上層配線上に、前記絶縁層の5倍以上の厚さを有するスーパーコネクト絶縁層と、前記スーパーコネクト絶縁層内に埋め込まれたスーパーコネクトビアとを形成する工程と、
     (e)前記スーパーコネクトビア上に、配線厚さが前記素子配線及び前記素子最上層配線の3倍以上の厚さを有するスーパーコネクト配線を形成する工程と、
     (f)前記スーパーコネクト配線上に形成されるバンプを形成する工程とを具備し、
     前記(c)工程は、
     (c1)前記信号用パッドの面積を、前記電源用パッド及び前記グランド用パッドよりも小さくする工程を備え、
     前記(d)工程は、
     (d1)前記電源用パッドと前記グランド用パッドの少なくとも一つに複数の前記スーパーコネクトビアを形成する工程を備える
     半導体装置の製造方法。
  14.  前記(c1)工程は、レーザによるトリミングである
     請求の範囲13に記載の半導体装置の製造方法。
PCT/JP2009/065241 2008-09-02 2009-09-01 半導体装置及びその製造方法 WO2010026956A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527783A JPWO2010026956A1 (ja) 2008-09-02 2009-09-01 半導体装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008225270 2008-09-02
JP2008-225270 2008-09-02

Publications (1)

Publication Number Publication Date
WO2010026956A1 true WO2010026956A1 (ja) 2010-03-11

Family

ID=41797124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065241 WO2010026956A1 (ja) 2008-09-02 2009-09-01 半導体装置及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2010026956A1 (ja)
WO (1) WO2010026956A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019175656A1 (en) * 2018-03-13 2019-09-19 Toshiba Memory Corporation Power island segmentation for selective bond-out

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100814A (ja) * 1998-09-18 2000-04-07 Hitachi Ltd 半導体装置
JP2001284537A (ja) * 2000-04-03 2001-10-12 Nec Corp 半導体装置およびその製造方法
JP2003338541A (ja) * 2002-05-20 2003-11-28 Fujitsu Ltd 半導体装置
JP2006032600A (ja) * 2004-07-15 2006-02-02 Nec Corp 半導体装置
JP2008108825A (ja) * 2006-10-24 2008-05-08 Denso Corp 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583862B2 (ja) * 1996-05-13 2004-11-04 株式会社ルネサステクノロジ 半導体集積回路装置およびその製造方法
JP3627428B2 (ja) * 1997-02-25 2005-03-09 カシオ計算機株式会社 半導体装置
JP3542517B2 (ja) * 1999-04-27 2004-07-14 Necエレクトロニクス株式会社 半導体装置
JP2002359321A (ja) * 2001-05-31 2002-12-13 Tdk Corp 電力増幅モジュール、回路要素集合基板及び回路要素特性調整方法
WO2007040229A1 (ja) * 2005-10-03 2007-04-12 Rohm Co., Ltd. 半導体装置
JP4415984B2 (ja) * 2006-12-06 2010-02-17 ソニー株式会社 半導体装置の製造方法
WO2008126468A1 (ja) * 2007-03-30 2008-10-23 Nec Corporation 半導体装置及び半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100814A (ja) * 1998-09-18 2000-04-07 Hitachi Ltd 半導体装置
JP2001284537A (ja) * 2000-04-03 2001-10-12 Nec Corp 半導体装置およびその製造方法
JP2003338541A (ja) * 2002-05-20 2003-11-28 Fujitsu Ltd 半導体装置
JP2006032600A (ja) * 2004-07-15 2006-02-02 Nec Corp 半導体装置
JP2008108825A (ja) * 2006-10-24 2008-05-08 Denso Corp 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019175656A1 (en) * 2018-03-13 2019-09-19 Toshiba Memory Corporation Power island segmentation for selective bond-out
US10629533B2 (en) 2018-03-13 2020-04-21 Toshiba Memory Corporation Power island segmentation for selective bond-out
US11211329B2 (en) 2018-03-13 2021-12-28 Kioxia Corporation Power island segmentation for selective bond-out

Also Published As

Publication number Publication date
JPWO2010026956A1 (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
US10559546B2 (en) Package on package structure and method for forming the same
US11004817B2 (en) Semiconductor device and method for manufacturing the same
US10276496B2 (en) Plurality of different size metal layers for a pad structure
US8004085B2 (en) Semiconductor device and method of manufacturing semiconductor device
KR101677507B1 (ko) 반도체 장치의 제조 방법
JP4897451B2 (ja) 半導体装置
JP5387407B2 (ja) 半導体装置
US6596560B1 (en) Method of making wafer level packaging and chip structure
JP2004179538A (ja) 半導体装置及びその製造方法
JP5589601B2 (ja) 集積回路素子内蔵基板及び該集積回路素子内蔵基板に内蔵される集積回路素子
TWI546872B (zh) 電子元件與半導體元件
JP2010535411A (ja) 応力緩衝半導体コンポーネント
KR20120061309A (ko) 반도체 장치의 제조 방법
JP2007250760A (ja) 半導体装置
US10930610B2 (en) Semiconductor chip including a bump structure and semiconductor package including the same
TWI736100B (zh) 具高密度線路的基板結構及其製法
JP2002299496A (ja) 半導体装置及びその製造方法
KR101932727B1 (ko) 범프 구조물, 이를 갖는 반도체 패키지 및 이의 제조 방법
WO2010026956A1 (ja) 半導体装置及びその製造方法
US11264342B2 (en) Package on package structure and method for forming the same
JP4599834B2 (ja) 半導体装置およびその製造方法
US10818584B2 (en) Package substrate and package structure
US11309252B2 (en) Package substrate and package structure
JP2018098461A (ja) 半導体装置及びその製造方法、並びに積層半導体装置
US20220181244A1 (en) Package substrate and package structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527783

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811482

Country of ref document: EP

Kind code of ref document: A1