WO2010026343A1 - Procede de preparation d'une couche mince auto-supportee de silicium cristallise - Google Patents

Procede de preparation d'une couche mince auto-supportee de silicium cristallise Download PDF

Info

Publication number
WO2010026343A1
WO2010026343A1 PCT/FR2009/051667 FR2009051667W WO2010026343A1 WO 2010026343 A1 WO2010026343 A1 WO 2010026343A1 FR 2009051667 W FR2009051667 W FR 2009051667W WO 2010026343 A1 WO2010026343 A1 WO 2010026343A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
layer
substrate
zone
self
Prior art date
Application number
PCT/FR2009/051667
Other languages
English (en)
Inventor
Jean-Paul Garandet
Denis Camel
Béatrice Drevet
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to KR1020117007357A priority Critical patent/KR101287525B1/ko
Priority to EP09741364A priority patent/EP2319072A1/fr
Priority to BRPI0919145A priority patent/BRPI0919145A2/pt
Priority to JP2011525598A priority patent/JP5492209B2/ja
Priority to CN2009801349587A priority patent/CN102144283B/zh
Priority to US13/062,462 priority patent/US20110212630A1/en
Publication of WO2010026343A1 publication Critical patent/WO2010026343A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a recrystallization process making it possible to obtain self-supported silicon ribbons having a so-called coarse grain crystallographic structure, these ribbons being particularly advantageous for the production of photovoltaic cells.
  • Photovoltaic cells are essentially made from mono- or poly-crystalline silicon.
  • This silicon is generally obtained by solidifying silicon ingots from a liquid silicon bath. The ingot is then cut into platelets which are used for the manufacture of the cells.
  • ESG Edge-defmed Film-fed Growth
  • RAD Ribbon against Drop
  • RGS Carbon Growth on Substrate
  • the liquid silicon rises in a capillary duct and comes into contact with a seed that is then displaced vertically.
  • This technique makes it possible to produce large octagonal tubes, with faces 125 mm wide (and 300 ⁇ m thick) in which the wafers are then cut.
  • a flexible graphite sheet vertically passes through the liquid silicon bath and silicon-coated spring on both sides.
  • the thickness of the ribbons depends on the speed of pulling.
  • a moving cold substrate contacts a liquid bath and exits by driving a silicon film on one of its faces.
  • the solidification is initiated from the substrate (solid / liquid front parallel to the ribbon plane) and generates a non-optimal small grain structure for photovoltaic application.
  • These methods generally allow access to a thickness of silicon ranging from 100 to 500 microns.
  • this liquid phase technology there is a technology based on a vapor deposition illustrated by the CVD (4) and PVD (5) techniques.
  • the layers thus deposited are generally much thinner (maximum 20 ⁇ m) than those obtained with the liquid phase processes.
  • This so-called vapor phase technology makes it possible to work at high deposition rates and thus to ensure satisfactory productivity.
  • the crystallographic structure thus obtained does not allow high energy conversion efficiencies because of its small size of crystals.
  • a particularly advantageous method for annealing films is that of zone melting, consisting in forming, within the material under consideration, a liquid bridge locally between two solid phases in a high temperature zone, and moving the material thus produced consecutively towards a zone. cold.
  • zone melting consisting in forming, within the material under consideration, a liquid bridge locally between two solid phases in a high temperature zone, and moving the material thus produced consecutively towards a zone. cold.
  • the technique is known since the 1950s for the growth of massive single crystals, especially silicon. It has recently been adapted to the crystallization of silicon thin films for photo voltaic applications (4).
  • zone melting annealing is carried out to recrystallize a layer of a few micrometers thick to serve as an epitaxial substrate for the production of thin layer cells with methods based on vacuum deposit.
  • the solidification processes of the liquid silicon film and the separation of the solid silicon film thus formed are closely related, by the choice of the temperature chosen for the substrate. .
  • the thickness of the SiC layer formed at the Si / substrate interface is determined by the temperature of the substrate. It is known that a low substrate temperature limits, on the one hand, the diffusion of impurities and, on the other hand, the formation of the SiC layer, thus promoting detachment. Unfortunately, this low temperature induces at the same time a microstructure for solidification of fine-grained silicon that is unsuitable for photovoltaic applications. In addition, the advantages and disadvantages are reversed for high substrate temperatures.
  • the technologies currently available do not make it possible to access, in a simple and rapid manner, silicon films which are on the one hand self-supported, that is to say without a support substrate, and on the other hand, with a coarse grain crystallographic structure, that is to say with a size greater than at least 1 mm.
  • the present invention aims precisely to provide a method that satisfies the aforementioned requirements.
  • the present invention aims at providing a simplified and low-cost method useful for accessing thin layers of silicon, in particular self-supported silicon ribbons or wafers.
  • the present invention further aims to provide a method for direct access to thin layers of self-supported silicon and having a coarse grain crystallographic structure.
  • Another object of the present invention is to propose a method for manufacturing thin or self-supported silicon layer (s) enabling the simultaneous large-grain silicon recrystallization and the detachment of said thin silicon layer. thus formed, of its original substrate.
  • the present invention relates to a method for preparing a self-supported thin layer of crystallized silicon, said method comprising at least the steps of:
  • step (3) solidifying by cooling said molten silicon zone in step (2), and (4) recovering the expected thin silicon layer by spontaneous separation of the SiC layer from said substrate layer.
  • the solidification step (3) is advantageously carried out under conditions conducive to the formation of silicon crystals, greater than 1 mm in size.
  • steps (2), (3) and (4) can be carried out continuously.
  • the method further comprises a step (5) comprising the elimination of the SiC layer, contiguous to the expected thin silicon layer.
  • the face of the substrate contiguous with the sacrificial layer may be provided with a relief. The method according to the invention then allows the replication of this relief at the level of the thin silicon layer formed and thus to develop a thin layer of textured silicon.
  • the solidification or crystallization carried out in step (3) can be initiated by germination, that is to say by bringing the molten zone into contact with at least one external silicon crystal.
  • the two expected qualities namely obtaining a silicon layer having a coarse grain crystallographic structure and easy separation of said silicon layer from its original substrate , are not acquired to the detriment of one another.
  • the invention relates to the use of the method as described above for preparing self-supported silicon ribbons whose crystallographic structure has a grain size greater than 1 mm.
  • the subject of the present invention is also the silicon ribbons obtained according to this process, in particular self-supported, whose crystallographic structure has a grain size greater than 1 mm.
  • the term "self-supported” means that the coarse-grained silicon layer formed according to the claimed method is not secured by adherence to a solid substrate.
  • Material plate a) carbon-based layer In order not to pollute the silicon, the carbon is chosen as pure as possible and therefore advantageously has a purity greater than 99%, or even 99.9%.
  • this carbon layer may vary from 10 nm to 2 ⁇ m, preferably from 20 nm to 200 nm. This layer must be sealed to silicon and must therefore be free from open porosity, to prevent the infiltration of liquid silicon.
  • This carbon layer can be made according to conventional techniques within the skill of those skilled in the art.
  • this carbonaceous layer may be formed on the surface of one side of the substrate by pyrolysis of a gaseous or liquid precursor or deposited by a liquid route with evaporation of the solvent.
  • the carbonaceous layer at the interface of the substrate layer and the silicon layer to be recrystallized, is intended to be totally converted by contact with the liquid silicon, into a SiC layer whose present invention aims precisely to profit in several ways. Firstly, this SiC layer, by blocking the diffusion of the metal elements, if any present in the substrate layer, chemically protects the liquid silicon layer.
  • the Si / SiC interface being energetically strong, it thus ensures a good wetting of SiC by the liquid Si and thus the morphological stability of the liquid silicon film.
  • the good wetting of this SiC layer by the silicon is also conducive to the replication of a possible texture of the substrate, which is advantageous for the trapping of light in the cells and makes it possible to avoid the implementation of a additional step of etching on the solidified tape, to create the relief.
  • thermomechanical stresses produced during cooling cause spontaneous detachment by adhesive failure, that is to say without cracking or deformation of the silicon and / or the substrate. .
  • substrate With respect to the material forming the substrate, it can be of various natures.
  • the substrate materials that are more particularly suitable for the invention are of the ceramic type, for example alumina or silicon nitride, and more particularly the poor heat-conducting materials such as alumina.
  • This substrate material is advantageously in the form of a wafer or a ribbon, and in particular a ribbon with a width varying from 5 to 20 cm, and a thickness ranging from 500 ⁇ m to 10 mm, preferably from 1 to mm to 5 mm.
  • the silicon layer it generally has a so-called low grain crystallographic structure that is precisely sought to increase via the method according to the invention.
  • This so-called low grain crystallography generally has a size less than 100 microns, especially less than 10 microns.
  • This silicon layer can be formed by any conventional method. It can in particular be formed by CVD, PVD or powder deposition, or even the RGS technique, on the surface of the carbonaceous layer.
  • Its thickness can vary from 10 ⁇ m to 500 ⁇ m, in particular from 100 ⁇ m to 200 ⁇ m.
  • FIG. 1 represents a schematic cross section of a wafer of material to be treated according to the invention
  • FIG. 2 is a cross-sectional schematic section of a wafer obtained during step (2)
  • FIG. 3 illustrates the step of detaching the thin Si / SiC layer from the substrate layer
  • FIG. 4 is a schematic transverse section of a thin layer of silicon / SiC obtained according to the method of the invention.
  • FIG. 5 represents the thin layer of silicon obtained after removal of the SiC layer
  • FIG. 6 illustrates the longitudinal displacement of a wafer during its treatment according to the invention within a thermal enclosure and the recovery at the end of this enclosure of a thin Si / SiC layer by spontaneous detachment of the SiC layer of the substrate layer.
  • step (2) at least one zone of the surface layer of a wafer of material to be recrystallized, in particular as defined above, is carried locally at a temperature above the melting temperature of silicon, that is to say a temperature greater than 1410 ° C.
  • This temperature is, moreover, advantageously less than 1700 ° C., especially less than 1550 ° C., or even less than 1500 ° C.
  • the size of the melted zone may vary from 5 mm to 5 cm, and in particular from 5 mm to 2 cm.
  • this step (2) makes it possible, on the one hand, to melt the silicon of the zone exposed to local heating, and on the other hand, to transform the carbon, contiguous to this zone, into silicon carbide SiC.
  • the area thus treated is then exposed to conditions conducive to recrystallization at a grain size greater than 1 mm.
  • This cooling of the melted zone can be gradual with a cooling rate of 10 ° C. to 1000 ° C./hour, advantageously of 50 ° C. to 300 ° C./hour.
  • this cooling which is favorable for the recrystallization of the molten silicon is carried out under conditions such that the heat exchanges in the thickness of the melted zone formed by the Si / SiC / substrate materials are significantly reduced.
  • the heating means are advantageously located on either side of the wafer.
  • a temperature gradient is beneficially substantially in the longitudinal direction at the substrate layer rather than in the thickness direction.
  • the substrate can be advantageously exposed for cooling, that is to say during the cooling step (3), or even in step (2), at a temperature having a temperature delta with the crystallization temperature between 0 and 20 ° C.
  • steps (2), (3) and (4) can be carried out continuously.
  • steps (2) and (3) can be carried out in a heating chamber into which said wafer to be treated according to the invention is introduced.
  • This chamber is able precisely to provide, on the one hand, the local heating required for step (2) and, on the other hand, the thermal energy necessary for heating the substrate, preferably with a temperature gradient exerted essentially in the longitudinal direction of the substrate and which is particularly advantageous for accessing the expected recrystallization size of the silicon according to the invention.
  • substrates which are poor conductors of heat for example alumina.
  • the material wafer and said enclosure are advantageously animated with a movement relative to each other so that any melt zone in step (2) is moved consecutively towards the zone of the enclosure, conducive to its recrystallization by cooling.
  • the plate that is moved through the enclosure.
  • step (2) it is advantageously adjusted within the enclosure to apply only to an area of said wafer material to be treated.
  • This local heat treatment can be achieved by any conventional means conducive to localized heating.
  • the modes induction heating are particularly suitable for the invention.
  • heat treatments of the resistive type, infrared, laser, mirror oven ... can also be considered or any combination of these treatments.
  • cooling it may be advantageous to proceed at the beginning of this cooling to bring the molten zone into contact with a silicon crystal seed, in particular by contact of this melted zone with a monocrystalline plate.
  • This recrystallization technique is clearly within the skill of those skilled in the art.
  • the Si / SiC bilayer wafer spontaneously separates from the substrate layer, that is to say without it being necessary to apply a mechanical stress to proceed with its detachment.
  • a recrystallized silicon layer devoid of solid substrate is thus obtained. It is however coated on one of its faces with a silicon carbide layer of generally submicron thickness.
  • This silicon carbide layer can be removed consecutively according to usual techniques and generally by a chemical treatment.
  • the set is positioned on a conveyor belt passing through a high temperature enclosure.
  • the substrate is heated by induction in its lower part, an IR lamp heater also being implemented in the upper part to provide additional heating.
  • a maximum temperature of 1500 ° C. is thus reached on the sample (measurement by pyrometer), which leads to forming a zone of liquid silicon of centimeter dimension.
  • the draw is initiated by setting the treadmill in motion at a speed of the order of 50 ⁇ m / s.
  • the ribbon is detached from the ceramic substrate. After returning to ambient temperature, the sub-micron SiC layer adhering to silicon is removed chemically (nitric acid-hydrofluoric acid mixture).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

La présente invention se rapporte à un procédé de préparation d'une couche mince auto-supportée de silicium cristallisé, possédant une taille de grains supérieure à 1 mm. Elle concerne en outre l'utilisation de ce procédé pour préparer des rubans de silicium auto-supportés, et les rubans ainsi obtenus.

Description

Procédé de préparation d'une couche mince auto-supportée de silicium cristallisé
L'invention porte sur un procédé de recristallisation permettant d'obtenir des rubans auto-supportés de silicium possédant une structure cristallographique dite à gros grains, ces rubans étant particulièrement avantageux pour l'élaboration de cellules photovoltaïques.
Les cellules photovoltaïques sont pour l'essentiel fabriquées à partir de silicium mono- ou poly-cristallin.
Ce silicium est généralement obtenu en procédant à la solidification de lingots de silicium, à partir d'un bain liquide de silicium. Le lingot est ensuite découpé en plaquettes qui sont mises en œuvre pour la fabrication des cellules.
Pour éviter la perte de matière générée lors du sciage de ces lingots en plaquettes, des techniques ont été développées en vue d'élaborer directement des plaquettes ou rubans de silicium. Le premier type de technologie, dit à phase liquide et illustré par le procédé
EFG (Edge-defmed Film-fed Growth) (1), le procédé RAD (Ribbon Against Drop) (2) et le procédé RGS (Ribbon Growth on Substrate) (3) met en œuvre un bain de silicium liquide.
Dans le procédé EFG, le silicium liquide remonte dans un conduit capillaire et entre en contact avec un germe que l'on déplace ensuite verticalement. Cette technique permet de réaliser des tubes octogonaux de grande dimension, avec des faces de 125 mm de largeur (et de 300 μm d'épaisseur) dans lesquelles les plaquettes sont ensuite découpées.
Dans le procédé RAD, une feuille de graphite souple traverse verticalement le bain de silicium liquide et ressort revêtue de silicium sur ses deux faces. L'épaisseur des rubans dépend de la vitesse de tirage.
Dans le procédé RGS, un substrat froid en mouvement contacte un bain liquide et ressort en entraînant un film de silicium sur l'une de ses faces. La solidification s'initie à partir du substrat (front solide/liquide parallèle au plan du ruban) et génère une structure à petits grains non optimale pour l'application photovoltaïque. Ces procédés permettent, d'une manière générale, d'accéder à une épaisseur de silicium variant de 100 à 500 μm. En parallèle à cette technologie en phase liquide, il existe une technologie reposant sur un dépôt en phase vapeur illustrée par les techniques CVD (4) et PVD (5). Les couches ainsi déposées sont généralement beaucoup moins épaisses (maximum 20 μm) que celles obtenues avec les procédés en phase liquide. Cette technologie dite en phase vapeur permet de travailler à des vitesses de dépôt élevées et donc d'assurer une productivité satisfaisante. Toutefois, la structure cristallographique ainsi obtenue ne permet pas des rendements de conversion énergétique élevés en raison de sa faible taille de cristaux.
On peut également envisager de déposer en phase liquide un mélange contenant des poudres de silicium dans un solvant organique, de faire évaporer le solvant et de fritter les poudres au moyen d'une torche plasma à l'argon hydrogéné. Dans ce cas, des productivités très importantes peuvent être atteintes, et la technique a récemment été mise en œuvre pour l'élaboration de silicium pour applications photo voltaïques, mais la couche brute de frittage ne permet pas des rendements de conversion élevés.
En conséquence, il apparaît qu'un certain nombre de techniques à l'image par exemple de celles illustrées par les procédés CVD, PVD ou plasma, ne donne pas entière satisfaction notamment au regard de la faible taille des cristaux de silicium formés. Par ailleurs, ces procédés visent, pour l'essentiel, à proposer des films de silicium supportés sur un substrat et ne sont donc pas concernés par la mise au point de films de silicium auto- supportés, c'est-à-dire non liés à un matériau substrat. Pour ce qui est de l'insuffisance de la taille des grains, constatée pour les couches déposées par CVD, PVD ou plasma, voire la technique RGS, il est déjà proposé de réaliser des recristallisations par recuit de films de silicium supportés à haute température. Un procédé particulièrement intéressant pour le recuit des films est celui de la fusion de zone, consistant à former au sein du matériau considéré un pont liquide localement entre deux phases solides dans une zone haute température, et à déplacer le matériau ainsi élaboré consécutivement vers une zone froide. La technique est connue depuis les années 1950 pour la croissance de monocristaux massifs, notamment en silicium. Elle a été récemment adaptée à la cristallisation de films minces de silicium pour applications photo voltaïques (4). Dans le cas de ce procédé, le recuit par fusion de zone est mis en œuvre pour recristalliser une couche de quelques micromètres d'épaisseur devant servir de substrat d'épitaxie pour la fabrication de cellules en couche mince avec des procédés basés sur des techniques de dépôt sous vide. Cette technologie avantageuse pour accroître la taille des cristaux n'est en revanche considérée dans ce document que pour la formation d'un film de silicium supporté sur un substrat. Ainsi, le problème du décollement de la couche de silicium ainsi formée de son substrat, autre aspect considéré selon l'invention, n'y est pas abordé. Pour des raisons évidentes, l'aptitude du film de silicium à se décoller facilement ou non de son substrat est notamment liée à la mouillabilité manifestée par le substrat à son égard.
On sait que dans les processus de recuits impliquant une phase liquide et mettant en œuvre des substrats non mouillants, une solution pour éviter le démouillage est de déposer une couche de silice sur le silicium à recristalliser (6). Malheureusement, cela implique plusieurs étapes de procédé supplémentaires. Pour s'affranchir de ces étapes complémentaires, l'utilisation de matériaux naturellement mouillants ou aptes à former un substrat mouillant au contact du silicium liquide, est généralement privilégiée. Par exemple, on sait que le carbone au contact du silicium liquide conduit à la formation de carbure de silicium, SiC, doté d'un bon mouillage par le silicium liquide.
Malheureusement, pour les procédés de préparation de films de silicium par phase liquide, les processus de solidification du film de silicium liquide et de décollement du film de silicium solide ainsi formé, sont étroitement liés, de par le choix de la température retenue pour le substrat. Ainsi, l'épaisseur de la couche SiC formée à l'interface Si/substrat, paramètre critique pour la séparabilité, est déterminée par la température du substrat. Il est connu qu'une faible température de substrat limite, d'une part, la diffusion des impuretés et, d'autre part, la formation de la couche de SiC, favorisant ainsi le détachement. Malheureusement, cette faible température induit parallèlement une microstructure de solidification du silicium à grains fins impropre aux applications photovoltaïques. De plus, les avantages et inconvénients s'inversent pour les températures de substrat élevées.
En conséquence, les technologies actuellement disponibles ne permettent pas d'accéder d'une manière simple et rapide à des films de silicium qui soient d'une part auto- supportés, c'est-à-dire dénués d'un substrat support, et d'autre part dotés d'une structure cristallographique à gros grains, c'est-à-dire dont la taille est supérieure à au moins 1 mm. La présente invention vise précisément à proposer un procédé donnant satisfaction aux exigences précitées.
En particulier, la présente invention vise à proposer un procédé, simplifié et de bas coût, utile pour accéder à des couches minces de silicium, notamment des rubans ou plaquettes de silicium auto-supportés.
La présente invention vise en outre à proposer un procédé permettant d'accéder directement à des couches minces auto-supportées de silicium et dotées d'une structure cristallographique à gros grains.
La présente invention a également pour objet de proposer un procédé de fabrication de couche(s) mince(s) auto-supportée(s) de silicium permettant de réaliser simultanément la recristallisation à gros grains du silicium et le décollement de ladite couche mince de silicium ainsi formée, de son substrat d'origine.
Plus précisément, la présente invention concerne un procédé de préparation d'une couche mince auto-supportée de silicium cristallisé, ledit procédé comprenant au moins les étapes consistant à :
(1) disposer d'une plaquette d'un matériau formé d'au moins trois couches distinctes et superposées, à savoir une couche substrat, une couche de surface de silicium et une couche sacrificielle à base de carbone intercalée entre la couche substrat et la couche de surface, (2) chauffer au moins une zone de la couche de surface de ladite plaquette de manière à fondre le silicium présent en surface de ladite zone et à former une couche SiC, adjacente à la couche de silicium fondu, par réaction du silicium fondu avec le carbone formant ladite couche sacrificielle,
(3) solidifier par refroidissement ladite zone de silicium fondue en étape (2), et (4) récupérer la couche mince de silicium attendue par décollement spontané de la couche SiC, de ladite couche substrat.
L'étape de solidification (3) est avantageusement réalisée dans des conditions propices à la formation de cristaux de silicium, de taille supérieure à 1 mm.
Avantageusement, les étapes (2), (3) et (4) peuvent être réalisées en continu. Selon une variante de réalisation, le procédé comprend en outre une étape (5) comprenant l'élimination de la couche SiC, contigϋe à la couche mince de silicium attendue. Selon une autre variante de réalisation, la face du substrat contigϋe à la couche sacrificielle peut être dotée d'un relief. Le procédé selon l'invention permet alors la réplication de ce relief au niveau de la couche mince de silicium formée et donc d'élaborer une couche mince de silicium texturée. Selon encore une autre variante de réalisation, la solidification ou encore cristallisation réalisée en étape (3), peut être initiée par germination, c'est-à-dire par mise en contact de la zone fondue avec au moins un cristal de silicium externe.
La présence d'une couche d'un matériau carboné à l'interface de la couche de silicium à recristalliser et de son substrat et la réalisation du refroidissement du silicium fondu dans les conditions requises selon l'invention permettent de conférer au film de silicium ainsi obtenu une structure cristallographique avantageuse pour une application photovoltaïque et une bonne aptitude à se décoller de son substrat.
Avantageusement, dans le cadre de la présente invention, les deux qualités attendues, à savoir l'obtention d'une couche de silicium dotée d'une structure cristallographique à gros grains et une séparation aisée de ladite couche de silicium de son substrat d'origine, ne sont pas acquises au détriment l'une de l'autre.
Selon un autre de ses aspects, l'invention concerne l'utilisation du procédé tel que décrit précédemment pour préparer des rubans de silicium auto-supportés et dont la structure cristallographique possède une taille de grains supérieure à 1 mm.
Enfin, la présente invention a également pour objet les rubans de silicium obtenus selon ce procédé, notamment auto-supporté, dont la structure cristallographique possède une taille de grains supérieure à 1 mm.
Au sens de l'invention, le terme auto-supporté entend signifier que la couche de silicium à gros grains formée selon le procédé revendiqué est non solidaire par adhérence à un substrat solide.
Plaquette de matériau a) couche à base de carbone Afin de ne pas polluer le silicium, le carbone est choisi le plus pur possible et possède donc avantageusement une pureté supérieure à 99 %, voire 99,9 %.
L'épaisseur de cette couche de carbone peut varier de 10 nm à 2 μm, préférentiellement de 20 nm à 200 nm. Cette couche doit être étanche au silicium et doit donc être dépourvue de porosité ouverte, pour prévenir l'infiltration du silicium liquide.
Cette couche de carbone peut être réalisée selon des techniques classiques relevant des compétences de l'homme de l'art. Par exemple, cette couche carbonée peut être formée en surface d'une face du substrat par pyrolyse d'un précurseur gazeux ou liquide ou déposée par voie liquide avec évaporation du solvant.
Comme il ressort de ce qui précède, la couche carbonée, à l'interface de la couche substrat et de la couche de silicium à recristalliser, est destinée à être totalement transformée par contact avec le silicium liquide, en une couche de SiC dont la présente invention vise précisément à tirer profit à plusieurs titres. Tout d'abord, cette couche SiC, en bloquant la diffusion des éléments métalliques, le cas échéant présents dans la couche substrat, protège chimiquement la couche de silicium liquide.
Par ailleurs, l'interface Si/SiC étant énergétiquement forte, on assure ainsi un bon mouillage du SiC par le Si liquide et donc la stabilité morphologique du film de silicium liquide. Le bon mouillage de cette couche de SiC par le silicium est également propice à la réplication d'une éventuelle texture du substrat, ce qui est avantageux pour le piégeage de la lumière dans les cellules et permet d'éviter la mise en œuvre d'une étape supplémentaire d'attaque chimique sur le ruban solidifié, pour créer le relief.
Enfin, l'interface couche de carbure de silicium/substrat étant mécaniquement faible, les contraintes thermomécaniques produites lors du refroidissement provoquent le détachement spontané par une rupture adhésive, c'est-à-dire sans fissuration ou déformation du silicium et/ou du substrat.
b) Couche substrat En ce qui concerne le matériau formant le substrat, il peut être de natures diverses. Les matériaux substrat convenant plus particulièrement à l'invention sont de type céramique par exemple de l'alumine ou du nitrure de silicium et plus particulièrement les matériaux mauvais conducteurs de la chaleur à l'image de l'alumine.
Ce matériau substrat se présente avantageusement sous la forme d'une plaquette ou encore d'un ruban, et notamment d'un ruban de largeur variant de 5 à 20 cm, et d'épaisseur variant de 500 μm à 10 mm, préférentiellement de 1 mm à 5 mm.
c) couche de silicium
Pour ce qui est de la couche de silicium, elle possède généralement une structure cristallographique dite à faible grain que l'on cherche précisément à augmenter via le procédé selon l'invention.
Cette cristallographie dite faible grain possède généralement une taille inférieure à 100 μm, notamment inférieure à 10 μm.
Cette couche de silicium peut être formée par tout procédé classique. Elle peut notamment être formée par CVD, PVD ou dépôt de poudre, voire la technique RGS, en surface de la couche carbonée.
Son épaisseur peut varier de 10 μm à 500 μm, notamment de 100 μm à 200 μm.
D'autres caractéristiques et avantages de l'invention ressortiront mieux à la lecture de la description qui va suivre, donnée à titre illustratif et non limitatif en référence aux figures annexées dans lesquelles :
- la figure 1 représente une coupe schématique transversale d'une plaquette de matériau devant être traitée selon l'invention, - la figure 2 est une coupe schématique transversale d'une plaquette obtenue au cours de l'étape (2),
- la figure 3 illustre l'étape de décollement de la couche mince Si/SiC de la couche substrat,
- la figure 4 est une coupe schématique transversale d'une couche mince de silicium/SiC obtenue selon le procédé de l'invention,
- la figure 5 représente la couche mince de silicium obtenue après élimination de la couche SiC, et - la figure 6 illustre le déplacement longitudinal d'une plaquette, lors de son traitement selon l'invention au sein d'une enceinte thermique et la récupération à l'extrémité de cette enceinte d'une couche mince Si/SiC par décollement spontané de la couche SiC de la couche substrat. II convient de noter que, pour des raisons de clarté, les différentes couches de matériau des structures visibles sur les figures sont représentées en échelle libre ; les dimensions de certaines parties étant fortement exagérées.
Description détaillée d'un mode de mise en œuyre de l'invention Conformément à l'étape (2), au moins une zone de la couche de surface d'une plaquette de matériau à recristalliser, notamment telle que définie ci-dessus, est portée localement à une température supérieure à la température de fusion du silicium c'est-à-dire une température supérieure à 1410 0C.
Cette température est, par ailleurs, avantageusement inférieure à 1700 0C, notamment inférieure à 1550 0C, voire inférieure à 1500 0C.
Selon la température choisie, la taille de la zone fondue peut varier de 5 mm à 5 cm, et notamment de 5 mm à 2 cm.
Comme précisé précédemment, cette étape (2) permet, d'une part, de fondre le silicium de la zone exposée au chauffage local, et d'autre part, de transformer le carbone, contigu à cette zone, en carbure de silicium SiC.
La zone ainsi traitée est ensuite exposée à des conditions propices à sa recristallisation à une taille de grains supérieure à 1 mm.
Ces conditions requièrent en particulier un refroidissement de la zone fondue en dessous de la température de fusion.
Ce refroidissement de la zone fondue peut être progressif avec une vitesse de refroidissement de 10 0C à 1000 °C/heure, avantageusement de 50 0C à 300 °C/heure.
Avantageusement, ce refroidissement propice à la recristallisation du silicium fondu est réalisé dans des conditions telles que les échanges thermiques dans l'épaisseur de la zone fondue formée par les matériaux Si/SiC/substrat soient significativement réduits.
Ceci est obtenu en contrôlant la température, de part et d'autre, de l'épaisseur de la couche (par exemple, chauffage sur chacune des faces de la couche). A cet effet, les moyens de chauffage sont avantageusement localisés de part et d'autre de la plaquette.
En d'autres termes, un gradient de température est, de manière bénéfique, assuré pour l'essentiel dans le sens longitudinal au niveau de la couche du substrat plutôt que dans le sens de son épaisseur.
Pour ce faire, le substrat peut être avantageusement exposé pour son refroidissement, c'est-à-dire lors de l'étape de refroidissement (3), voire dès l'étape (2), à une température possédant un delta de température avec la température de cristallisation compris entre 0 et 20 0C. Comme précisé précédemment, les étapes (2), (3) et (4) peuvent être réalisées en continu.
Ainsi, les étapes (2) et (3) peuvent être réalisées dans une enceinte chauffante dans laquelle est introduite ladite plaquette devant être traitée selon l'invention.
Cette enceinte est apte précisément à procurer, d'une part, le chauffage local requis pour l'étape (2) et, d'autre part, l'énergie thermique nécessaire au chauffage du substrat avec de préférence un gradient de température s'exerçant pour l'essentiel dans le sens longitudinal du substrat et qui s'avère tout particulièrement avantageux pour accéder à la taille de recristallisation du silicium attendue selon l'invention.
Pour privilégier ce mode de transmission de la chaleur, on peut en outre utiliser préférentiellement des substrats mauvais conducteurs de la chaleur, par exemple de l'alumine.
De plus, la plaquette de matériau et ladite enceinte sont avantageusement animées d'un mouvement l'une par rapport à l'autre de manière à ce que toute zone fondue en étape (2) soit déplacée consécutivement vers la zone de l'enceinte, propice à sa recristallisation par refroidissement.
Plus particulièrement, c'est la plaquette qui est déplacée au travers de l'enceinte.
Concernant le dispositif de chauffage local, nécessaire à la réalisation de l'étape (2), il est avantageusement ajusté au sein de l'enceinte pour ne s'appliquer qu'à une zone de ladite plaquette de matériau à traiter.
Ce traitement thermique local peut être réalisé par tout moyen conventionnel propice à un chauffage localisé. Conviennent tout particulièrement à l'invention, les modes de chauffage par induction. Toutefois, les traitements thermiques de type résistif, infrarouge, laser, four à miroir... peuvent également être considérés ou toute combinaison de ces traitements.
Pour ce qui est du refroidissement, il peut être avantageux de procéder au début de ce refroidissement à une mise en contact de la zone fondue avec un germe de cristal de silicium, notamment par contact de cette zone fondue avec une plaque monocristalline. Cette technique de recristallisation relève clairement des compétences de l'homme de l'art.
Au cours du refroidissement, la plaquette bicouche Si/SiC se décolle spontanément de la couche substrat, c'est-à-dire sans qu'il soit nécessaire d'appliquer une contrainte mécanique pour procéder à son décollement.
A l'issue de l'étape (4) du procédé, on obtient donc une couche de silicium recristallisée dénuée de substrat solide. Elle est en revanche revêtue sur une de ses faces d'une couche de carbure de silicium d'épaisseur généralement submicronique.
Cette couche de carbure de silicium peut être éliminée consécutivement selon des techniques usuelles et généralement par un traitement chimique.
L'invention va maintenant être décrite au moyen de l'exemple suivant donné bien entendu à titre illustratif et non limitatif de l'invention.
Exemple Une plaque d'alumine (longueur 50 cm, largeur 10 cm, épaisseur 5 mm) sur laquelle a été préalablement déposée une couche de l'ordre de 100 nm de pyrocarbone est revêtue d'une couche de poudres frittées. L'ensemble est positionné sur un tapis roulant passant à travers une enceinte haute température. Le substrat est chauffé par induction dans sa partie inférieure, un dispositif de chauffage par lampes IR étant également mis en œuvre en partie supérieure pour assurer un complément de chauffage. On atteint ainsi une température maximum de 1500 0C sur l'échantillon (mesure par pyromètre), ce qui conduit à former une zone de silicium liquide de dimension centimétrique. Le tirage est initié par mise en mouvement du tapis roulant à une vitesse de l'ordre de 50 μm/s. Au cours du refroidissement, le ruban se détache du substrat céramique. Après retour à la température ambiante, la couche sub-micronique de SiC adhérente au silicium est éliminée par voie chimique (mélange acide nitrique - acide fluorhydrique). Documents cités
(1) B. Mackintosch et al, J. Crystal Growth, 287 (2006) 428-432,
(2) C. Belouet, "Growth of silicon ribbons by the RAD process", J. Crystal Growth, 82 (1987) 110-116,
(3) EP 165 449 A,
(4) S. Reber, A. Hurrle, A. Eyer, G. Wilke, "Crystalline silicon thin film solar cells - récent results at Fraunhofer ISE", Solar Energy, 77 (2004) 865-875
(5) M. Aoucher, G. Farhi, T. Mohammed-Brahim, J. Non-Crystalline Solids, 227-230 (1998) 958,
(6) T. Kieliba et al., "Crystalline silicon thin film solar cells on ZrSiO4 ceramic substrates", Solar Energy Materials & Solar Cells, 74 (2002) 261.

Claims

REVENDICATIONS
1. Procédé de préparation d'une couche mince auto-supportée de silicium cristallisé, ledit procédé comprenant au moins les étapes consistant à :
(1) disposer d'une plaquette de matériau formé d'au moins trois couches distinctes et superposées, à savoir une couche substrat, une couche de surface de silicium et une couche sacrificielle à base de carbone intercalée entre la couche substrat et la couche de surface, (2) chauffer au moins une zone de ladite plaquette de manière à fondre le silicium présent en surface de ladite zone et à former une couche SiC adjacente à la couche de silicium fondu, par réaction dudit silicium fondu avec le carbone formant ladite couche sacrificielle,
(3) solidifier par refroidissement ladite zone de silicium fondue en étape (2), et (4) récupérer la couche mince de silicium attendue par décollement spontané de la couche SiC, de ladite couche substrat.
2. Procédé selon la revendication précédente dans laquelle la couche mince de silicium ainsi formée possède une taille de grains supérieure à 1 mm.
3. Procédé selon la revendication 1 ou 2 comprenant en outre une étape (5) d'élimination de la couche SiC.
4. Procédé selon les revendications 1, 2 ou 3 dans lequel les étapes (2), (3) et (4) sont réalisées en continu.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la cristallisation réalisée en étape (3) est initiée par mise en contact de la zone fondue avec au moins un cristal de silicium.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel la face du substrat contigϋe à la couche sacrificielle est dotée d'un relief.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'épaisseur de la couche de carbone est inférieure à 2 μm.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel la couche substrat est formée d'un matériau de type céramique, de préférence mauvais conducteur de la chaleur.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la zone chauffée en étape (2) est à une température variant de 1410 0C à 1700 0C, plus particulièrement inférieure à 1550 0C, voire inférieure à 1500 0C.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de chauffage sont situés de part et d'autre de l'épaisseur de la plaquette.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le substrat est exposé pour son refroidissement à une température présentant un delta de température avec la température de cristallisation compris entre 0 et 20 0C.
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel les étapes (2) et (3) sont réalisées dans une enceinte thermique munie d'un dispositif de chauffage local.
13. Procédé selon l'une quelconque des revendications précédentes, dans lequel la plaquette de matériau et ladite enceinte sont animées d'un mouvement l'une par rapport à l'autre de manière à déplacer la zone fondue en étape (2) vers une zone de ladite enceinte, propice à son refroidissement.
14. Utilisation d'un procédé selon l'une quelconque des revendications précédentes pour préparer des rubans de silicium auto-supportés et dont la structure cristallographique possède une taille de grains supérieure à 1 mm.
15. Ruban de silicium auto-supporté, dont la structure cristallographique possède une taille de grains supérieure à 1 mm, obtenu selon l'une quelconque des revendications précédentes.
PCT/FR2009/051667 2008-09-05 2009-09-03 Procede de preparation d'une couche mince auto-supportee de silicium cristallise WO2010026343A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117007357A KR101287525B1 (ko) 2008-09-05 2009-09-03 자가-지지형 결정화 실리콘 박막의 제조 방법
EP09741364A EP2319072A1 (fr) 2008-09-05 2009-09-03 Procede de preparation d'une couche mince auto-supportee de silicium cristallise
BRPI0919145A BRPI0919145A2 (pt) 2008-09-05 2009-09-03 processo de preparação de uma camada fina auto-suportada de silício cristalizado, utilização do processo e fita de silício auto-suportada
JP2011525598A JP5492209B2 (ja) 2008-09-05 2009-09-03 自立式結晶化シリコン薄膜の製造方法
CN2009801349587A CN102144283B (zh) 2008-09-05 2009-09-03 制备自支撑式晶化硅薄膜的方法及其所获得的产品
US13/062,462 US20110212630A1 (en) 2008-09-05 2009-09-03 Method for preparing a self-supporting crystallized silicon thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855969A FR2935838B1 (fr) 2008-09-05 2008-09-05 Procede de preparation d'une couche mince auto-supportee de silicium cristallise
FR0855969 2008-09-05

Publications (1)

Publication Number Publication Date
WO2010026343A1 true WO2010026343A1 (fr) 2010-03-11

Family

ID=40473397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051667 WO2010026343A1 (fr) 2008-09-05 2009-09-03 Procede de preparation d'une couche mince auto-supportee de silicium cristallise

Country Status (9)

Country Link
US (1) US20110212630A1 (fr)
EP (1) EP2319072A1 (fr)
JP (1) JP5492209B2 (fr)
KR (1) KR101287525B1 (fr)
CN (1) CN102144283B (fr)
BR (1) BRPI0919145A2 (fr)
FR (1) FR2935838B1 (fr)
RU (1) RU2460167C1 (fr)
WO (1) WO2010026343A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190322B2 (en) * 2014-01-24 2015-11-17 Infineon Technologies Ag Method for producing a copper layer on a semiconductor body using a printing process
CN104555902B (zh) * 2015-01-05 2016-07-06 中国科学院物理研究所 自支撑介质薄膜及其制备方法
RU2767034C2 (ru) * 2020-07-29 2022-03-16 Акционерное общество "Омский научно-исследовательский институт приборостроения" (АО "ОНИИП") Способ получения самоподдерживающихся тонких пленок

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455362A1 (fr) * 1979-04-23 1980-11-21 Labo Electronique Physique Procede de realisation de cellules solaires, a base de silicium polycristallin depose sur du carbone, et cellules solaires ainsi obtenues
US4370288A (en) * 1980-11-18 1983-01-25 Motorola, Inc. Process for forming self-supporting semiconductor film
US4705659A (en) * 1985-04-01 1987-11-10 Motorola, Inc. Carbon film oxidation for free-standing film formation
EP0381051A1 (fr) * 1989-01-27 1990-08-08 HELIOTRONIC Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH Croissance de films, en particulier semi-conducteurs, à partir de la phase fondue à l'aide d'un substrat à surface profilée
US5186785A (en) * 1991-04-05 1993-02-16 The United States Of America As Represented By The Secretary Of The Air Force Zone melted recrystallized silicon on diamond
EP0901158A1 (fr) * 1997-08-25 1999-03-10 Gec Alsthom Transport Sa Circuit intégré de puissance, procédé de fabrication d'un tel circuit et convertisseur incluant un tel circuit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2638270C2 (de) * 1976-08-25 1983-01-27 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zur Herstellung großflächiger, freitragender Platten aus Silicium
DE2638269C2 (de) * 1976-08-25 1983-05-26 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zur Herstellung von substratgebundenem, großflächigem Silicium
US4137355A (en) * 1976-12-09 1979-01-30 Honeywell Inc. Ceramic coated with molten silicon
US4248645A (en) * 1978-09-05 1981-02-03 Mobil Tyco Solar Energy Corporation Method for reducing residual stresses in crystals
US4419178A (en) * 1981-06-19 1983-12-06 Rode Daniel L Continuous ribbon epitaxy
RU2040589C1 (ru) * 1990-03-27 1995-07-25 Институт ядерных исследований АН Украины Способ получения тонких самоподдерживающихся пленок
JPH06208961A (ja) * 1992-10-27 1994-07-26 Tonen Corp シリコン積層体の製造方法
JPH07187642A (ja) * 1993-12-27 1995-07-25 Tonen Corp シリコン積層体の製造方法
JP2002263981A (ja) * 2001-03-14 2002-09-17 Murata Mach Ltd 板材吸着持ち上げ装置の吸着制御装置
JP4807914B2 (ja) * 2001-09-26 2011-11-02 シャープ株式会社 シリコンシートとそれを含む太陽電池
JP2004296598A (ja) * 2003-03-26 2004-10-21 Canon Inc 太陽電池
US7064037B2 (en) * 2004-01-12 2006-06-20 Chartered Semiconductor Manufacturing Ltd. Silicon-germanium virtual substrate and method of fabricating the same
FR2868598B1 (fr) * 2004-04-05 2006-06-09 Solarforce Soc Par Actions Sim Procede de fabrication de plaques de silicium polycristallin
FR2879821B1 (fr) * 2004-12-21 2007-06-08 Solaforce Soc Par Actions Simp Procede de fabrication de cellules photovoltaiques

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455362A1 (fr) * 1979-04-23 1980-11-21 Labo Electronique Physique Procede de realisation de cellules solaires, a base de silicium polycristallin depose sur du carbone, et cellules solaires ainsi obtenues
US4370288A (en) * 1980-11-18 1983-01-25 Motorola, Inc. Process for forming self-supporting semiconductor film
US4705659A (en) * 1985-04-01 1987-11-10 Motorola, Inc. Carbon film oxidation for free-standing film formation
EP0381051A1 (fr) * 1989-01-27 1990-08-08 HELIOTRONIC Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH Croissance de films, en particulier semi-conducteurs, à partir de la phase fondue à l'aide d'un substrat à surface profilée
US5186785A (en) * 1991-04-05 1993-02-16 The United States Of America As Represented By The Secretary Of The Air Force Zone melted recrystallized silicon on diamond
EP0901158A1 (fr) * 1997-08-25 1999-03-10 Gec Alsthom Transport Sa Circuit intégré de puissance, procédé de fabrication d'un tel circuit et convertisseur incluant un tel circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAUTTMANN S ET AL: "SiC formation and influence on the morphology of polycrystalline silicon thin films on graphite substrates produced by zone melting recrystallization", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 326, no. 1-2, 4 August 1998 (1998-08-04), pages 175 - 179, XP004141480, ISSN: 0040-6090 *
REBER, KIEBILA, BAU: "Crystalline Silicon Thin Film Solar Cells on Foreign Substrates by High Temperature Deposition and Recrystallization", THIN FILM SOLAR CELLS: FABRICATION, CHARACTERIZATION AND APPLICATIONS, JOHN WILEY & SONS, LTD, 2006, pages 39 - 95, XP009114689, ISBN: 978-0-470-09126-5, [retrieved on 20060915] *

Also Published As

Publication number Publication date
CN102144283A (zh) 2011-08-03
US20110212630A1 (en) 2011-09-01
FR2935838A1 (fr) 2010-03-12
FR2935838B1 (fr) 2012-11-23
JP5492209B2 (ja) 2014-05-14
BRPI0919145A2 (pt) 2015-12-08
KR101287525B1 (ko) 2013-07-19
RU2460167C1 (ru) 2012-08-27
JP2012502457A (ja) 2012-01-26
EP2319072A1 (fr) 2011-05-11
KR20110053378A (ko) 2011-05-20
CN102144283B (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
RU2697556C1 (ru) Способ изготовления множества монокристаллических cvd синтетических алмазов
WO2010026344A2 (fr) Materiau a architecture multicouche, dedie a une mise en contact avec du silicium liquide
FR2747401A1 (fr) Dispositif et procede pour la formation de carbure de silicium (sic) monocristallin sur un germe
FR2918080A1 (fr) Dispositif et procede d'elaboration de plaquettes en materiau semi-conducteur par moulage et cristallisation dirigee
FR3108774A1 (fr) Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
WO2010026343A1 (fr) Procede de preparation d'une couche mince auto-supportee de silicium cristallise
EP2326606A2 (fr) Procede d'assemblage de pieces carbonees par brasage refractaire
Kollmuss et al. Large area growth of cubic silicon carbide using close space PVT by application of homoepitaxial seeding
WO2007003638A1 (fr) Couche de silicium tres sensible a l'oxygene et procede d'obtention de cette couche
EP2898123A1 (fr) Procede de formation d'une couche de silicium epitaxiee
FR3071662B1 (fr) Procede de preparation d'une structure ayant une couche en materiau semi-conducteur monocristallin transferable et structure obtenue selon un tel procede
WO2018142061A1 (fr) Procede de fabrication d'un film bidimensionnel de structure cristalline hexagonale
RU2135648C1 (ru) Способ получения кристаллических фуллеренов
EP2855743B1 (fr) Procede de formation d'une couche de silicium epitaxiee
EP1944393B1 (fr) Dispositif pour réaliser la croissance d'un matériau semi-conducteur
EP2363515A1 (fr) Procédé pour la réalisation d'un matériau semi-conducteur cristallisé
EP2478134B1 (fr) Procédé de cristallisation d'une couche
RU2390589C1 (ru) Способ и устройство выращивания кристаллов кремния на подложке
FR2981194A1 (fr) Procede de formation d'une couche de silicium cristalise en surface de plusieurs substrats
JPH08183694A (ja) 細線状シリコン製造用坩堝および細線状シリコン
FR2956124A1 (fr) Procede de fabrication de graphite monocristallin
FR2989389A1 (fr) Procede de preparation d'une couche de silicium cristallise a gros grains.
FR2880900A1 (fr) Support allonge sensiblement plan destine a la fabrication d'une bande a base de silicium polycristallin
JPH07330323A (ja) 結晶シリコン薄膜とこれを用いた太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134958.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09741364

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009741364

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011525598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117007357

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011107879

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13062462

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0919145

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110304