WO2010024037A1 - アモルファスカーボンナイトライド膜の形成方法、アモルファスカーボンナイトライド膜、多層レジスト膜、半導体装置の製造方法および制御プログラムが記憶された記憶媒体 - Google Patents
アモルファスカーボンナイトライド膜の形成方法、アモルファスカーボンナイトライド膜、多層レジスト膜、半導体装置の製造方法および制御プログラムが記憶された記憶媒体 Download PDFInfo
- Publication number
- WO2010024037A1 WO2010024037A1 PCT/JP2009/061907 JP2009061907W WO2010024037A1 WO 2010024037 A1 WO2010024037 A1 WO 2010024037A1 JP 2009061907 W JP2009061907 W JP 2009061907W WO 2010024037 A1 WO2010024037 A1 WO 2010024037A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- amorphous carbon
- nitride film
- carbon nitride
- gas
- Prior art date
Links
- 229910003481 amorphous carbon Inorganic materials 0.000 title claims abstract description 123
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 238000003860 storage Methods 0.000 title claims description 6
- 238000005530 etching Methods 0.000 claims abstract description 60
- 238000000059 patterning Methods 0.000 claims abstract description 20
- 239000010408 film Substances 0.000 claims description 302
- 239000007789 gas Substances 0.000 claims description 84
- 238000012545 processing Methods 0.000 claims description 61
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 40
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 29
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 24
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 21
- 229920002120 photoresistant polymer Polymers 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 20
- 230000008569 process Effects 0.000 abstract description 17
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 238000000206 photolithography Methods 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 150000001721 carbon Chemical group 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 102100022717 Atypical chemokine receptor 1 Human genes 0.000 description 2
- 101000678879 Homo sapiens Atypical chemokine receptor 1 Proteins 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/347—Carbon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/091—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02115—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/3146—Carbon layers, e.g. diamond-like layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/318—Inorganic layers composed of nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
Definitions
- the present invention relates to a method for forming an amorphous carbon nitride film applied to a semiconductor device, an amorphous carbon nitride film, a multilayer resist film, a method for manufacturing a semiconductor device, and a storage medium storing a control program.
- plasma etching is performed using a photoresist formed by patterning using a photolithography technique as an etching mask, thereby transferring a circuit pattern to a film to be etched.
- a photoresist formed by patterning using a photolithography technique as an etching mask, thereby transferring a circuit pattern to a film to be etched.
- an ArF resist is used corresponding to miniaturization in the generation of CD of 45 nm, and an ArF laser light source having a wavelength of 193 nm is used for exposure of the ArF resist.
- the ArF resist has a characteristic of low plasma resistance. For this reason, a technique has been proposed in which a SiO 2 film and a resist film having high plasma resistance are laminated under an ArF resist, and patterning is performed using this multilayer resist film.
- an amorphous carbon film formed by CVD (Chemical Vapor Deposition) using a hydrocarbon gas and an inert gas is used as an antireflection layer instead of the SiO 2 film.
- CVD Chemical Vapor Deposition
- an inert gas is used as an antireflection layer instead of the SiO 2 film.
- the technique to do is also proposed (for example, refer patent document 1).
- the amorphous carbon film to the multilayer resist film is laminated under the SiO 2 film is patterned as follows with respect to a multilayer resist film. That is, first, the ArF resist film is patterned, and the SiO 2 film is etched using the patterned ArF resist film. Next, the amorphous carbon film is etched using the patterned SiO 2 film.
- the pattern formed on the ArF resist film can be transferred to the amorphous carbon film without using a photolithography technique in processes other than the patterning process of the ArF resist film.
- the present invention is an amorphous carbon film formed under a resist film, which is excellent in etching resistance and has a reflectance of irradiated light when the resist film is exposed.
- the inventor has found the items (1) to (4) as a result of intensive studies.
- the amorphous carbon film with an extremely low hydrogen atom content can be further doped with nitrogen gas to reduce the probability that the irradiated light will be reflected by the amorphous carbon film when the resist film is exposed.
- a step of disposing an object to be processed inside a processing vessel a step of supplying a processing gas containing carbon monoxide gas and nitrogen gas to the inside of the processing vessel,
- a method for forming an amorphous carbon nitride film comprising: decomposing carbon monoxide gas and nitrogen gas inside the processing container to form an amorphous carbon nitride film on an object to be processed.
- amorphous carbon nitride film that has excellent etching resistance and can reduce the reflectance of irradiated light when the resist film is exposed.
- the resist film can be accurately patterned at the time of pattern formation using a photolithography technique.
- due to the high etching resistance a good pattern can be formed in the lower layer film even during the subsequent etching, and accurate pattern transfer can be realized without causing deformation of the pattern of the etching target film.
- the content of nitrogen atoms in the amorphous carbon nitride film may be 10% or less of the carbon atoms in the film.
- the amorphous carbon nitride film may be formed on the object to be processed using a plasma CVD apparatus.
- the plasma CVD apparatus is a parallel plate type in which an upper electrode and a lower electrode are disposed inside the processing vessel, and a high-frequency power is applied to at least the upper electrode in a state where an object to be processed is disposed on the lower electrode. May be applied to generate plasma from the processing gas.
- a high frequency power for bias may be applied to the lower electrode.
- the upper electrode may be a carbon electrode.
- the processing gas may include an inert gas.
- an amorphous carbon nitride film formed on a target object by plasma CVD using a processing gas containing carbon monoxide gas and nitrogen gas is provided.
- a processing gas containing carbon monoxide gas and nitrogen gas is supplied into the processing container, and the carbon monoxide is supplied inside the processing container.
- the amorphous carbon nitride film formed on the etching target film, the silicon-based thin film formed on the amorphous carbon nitride film, and the silicon-based thin film were formed.
- a multilayer resist film including a photoresist film is provided.
- a process of forming a film to be etched on an object to be processed, and a processing gas containing carbon monoxide gas and nitrogen gas inside the processing container A step of decomposing carbon monoxide gas and nitrogen gas inside the processing vessel to form an amorphous carbon nitride film on the object to be processed, and silicon on the amorphous carbon nitride film.
- the ArF resist film as the photoresist film may be patterned using light having a wavelength of 193 nm.
- a computer-readable storage medium storing a control program that operates on a computer, the control program being executed by the above method.
- a storage medium that controls the film forming apparatus for forming an amorphous carbon nitride film on the computer.
- the process which arrange
- the gas which consists only of a carbon atom and an oxygen atom inside the said processing container,
- a method for forming an amorphous carbon nitride film comprising: a step of supplying nitrogen gas; and a step of forming an amorphous carbon nitride film on an object to be processed using plasma inside the processing vessel.
- an amorphous carbon film that has excellent etching resistance and can reduce the reflectance of irradiated light when the resist film is exposed.
- FIG. 1 is a longitudinal sectional view of a plasma CVD apparatus applicable to the formation of an amorphous carbon nitride film according to an embodiment of the present invention. It is a figure for demonstrating the decomposition
- FIG. 4 is a diagram for explaining a process of patterning the ArF resist film according to the embodiment by lithography.
- FIG. 1 is a cross-sectional view schematically showing a parallel plate type plasma CVD apparatus.
- the plasma CVD apparatus 10 has a cylindrical processing container 100.
- the processing container 100 is grounded.
- a susceptor 105 on which the wafer W is placed is provided inside the processing container 100.
- the susceptor 105 is supported by the support body 110.
- a lower electrode 115 is embedded near the mounting surface of the susceptor 105, and a heater 120 is embedded below the lower electrode 115.
- a high frequency power source 130 is connected to the lower electrode 115 via a matching unit 125. If necessary, high frequency power for bias is output from the high frequency power supply 130 and applied to the lower electrode 115.
- a heater power source 135 is connected to the heater 120, and an AC voltage is applied from the heater power source 135 as necessary to adjust the wafer W to a desired temperature.
- a guide ring 140 is provided at the outer edge of the upper portion of the susceptor so as to guide the wafer W.
- the processing vessel 100 is opened in a cylindrical shape at the ceiling, and a cylindrical shower head 150 is fitted into the opening via an insulator 145.
- a buffer region 150a for diffusing gas is provided inside the shower head 150.
- the desired gas supplied from the gas supply source 155 is introduced into the shower head 150 from the gas inlet 160 via the gas line L, and supplied from the plurality of gas outlets 165 to the inside of the processing container via the buffer region 150a. Is done. Desired gases include carbon monoxide gas, argon gas, and nitrogen gas.
- a high frequency power source 175 is connected to the shower head 150 via a matching unit 170. Thereby, the shower head 150 is also configured as an upper electrode.
- high-frequency power for plasma generation is output from the high-frequency power source 175 and applied to the upper electrode (shower head 150), whereby electric discharge is generated by the electric field generated between the upper electrode and the lower electrode.
- the gas supplied inside is excited and plasma is generated.
- An exhaust pipe 180 is provided on the bottom wall of the processing container, and an exhaust device 185 including a vacuum pump (not shown) is connected to the exhaust pipe 180.
- the exhaust device 185 operates to reduce the pressure inside the processing container 100 to a desired degree of vacuum.
- a loading / unloading port 190 for loading / unloading the wafer W and a gate valve 195 for opening / closing the loading / unloading port 190 are provided.
- the plasma CVD apparatus 10 configured as described above is controlled by the control apparatus 200.
- the control device 200 includes a CPU 200a, a ROM 200b, a RAM 200c, and an interface 200d.
- the CPU 200a, the ROM 200b, the RAM 200c, and the interface 200d are connected by a bus 200e.
- the ROM 200b stores a control program (recipe) showing various methods for forming an amorphous carbon nitride film and various programs.
- the RAM 200c stores various data for forming an amorphous carbon nitride film.
- the control device 200 sends control signals to the high frequency power source 130 for bias, the heater power source 135, the gas supply source 155, the high frequency power source 175 for plasma excitation, and the exhaust device 185 via the interface 200d according to the procedure of the control program (recipe). Each device operates at a predetermined timing by this control signal. In this way, a desired amorphous carbon nitride film is formed on the wafer W by the CPU 200a executing the data and the control program stored in the mechanism area.
- the interface 200d is connected to a PC or display (both not shown) that can be operated by the operator, and the control device 200 reflects the operator's instructions in the control of the plasma CVD apparatus 10.
- the control program may be stored in a memory such as a hard disk, EEPROM, or DVD, or may be distributed via a network.
- a wafer W for forming an amorphous carbon nitride film is placed on a susceptor. Further, an inert gas such as Ar gas is supplied as a plasma excitation gas from the gas supply source 155 into the processing container. At the same time, the exhaust device 185 operates to exhaust the inside of the processing container, and the inside of the processing container is maintained in a desired reduced pressure state. High frequency power is applied from the high frequency power source 175 to the shower head 150, whereby the gas in the processing vessel is turned into plasma. In this state, a gas containing carbon monoxide gas and nitrogen gas is supplied from the gas supply source 155. For example, a mixed gas of carbon monoxide gas CO, nitrogen gas N 2 and argon gas Ar is introduced into the processing container. Note that an inert gas such as Ar gas, He gas, or Ne gas may not be supplied, but it is preferable that the inert gas is supplied together with carbon monoxide gas and nitrogen gas in order to maintain a uniform plasma.
- an inert gas such as Ar
- the carbon monoxide gas CO is excited by plasma and decomposed into carbon C and oxygen radicals O * (1-1: CO ⁇ C + O * ), and the generated carbon atom C is accumulate.
- a part of the carbon atom C is mixed in the deposit of the carbon atom C in a state where it is combined with the nitrogen atom N decomposed from the nitrogen gas (1-2: C + N ⁇ CN).
- nitrogen gas 1-2: C + N ⁇ CN
- the shower head 150 is preferably a carbon electrode. This is because, as described above, when the carbon monoxide gas CO is decomposed, oxygen radicals O * are generated .
- the oxygen radicals O * are generated as carbon monoxide.
- the carbon monoxide CO generated and used for the reaction (2: O * + C ⁇ CO) is used to generate the amorphous carbon nitride film described above. As a result, the deposition rate of the amorphous carbon nitride film can be improved.
- a part of the oxygen radical O * is used for a carbon dioxide generation reaction in the chamber (3: O * + CO ⁇ CO 2 ), and the carbon dioxide CO 2 generated thereby is exhausted from the exhaust pipe 180.
- the plasma CVD apparatus 10 is not limited to a parallel plate type (capacitive coupling type), but may be an inductively coupled plasma processing apparatus, a plasma processing apparatus that generates plasma using microwaves, or remote plasma.
- a plasma processing apparatus using microwaves can generate plasma having a high electron density Ne and a low electron temperature Te. For this reason, the temperature during the process can be kept low, which is more suitable for the back-end process including the Cu wiring.
- a high frequency power for bias may be applied from the high frequency power supply 130 to the lower electrode 115 to draw N ions in the plasma toward the susceptor.
- N ion can be reliably mixed in the amorphous carbon nitride film.
- this reduces the reflectance of the amorphous carbon nitride film and also makes the amorphous carbon nitride film denser, which is high during dry etching of the etching target film (film to be etched) executed in a later process. Selectivity can be realized.
- an amorphous carbon nitride film 330, a silicon oxide film 335 (SiO 2 ), an antireflection film 340 (DARC (registered trademark): dielectric anti-reflective coating), and an ArF resist film 345 are sequentially laminated.
- the ArF resist film 345 is an example of a photoresist film.
- the silicon oxide film 335 is an example of a silicon-based thin film.
- the antireflection film 340 can be formed of a silicon oxide film or a nitrided silicon oxide film.
- the ArF resist film 345, the antireflection film 340, the silicon oxide film 335, and the amorphous carbon nitride film 330 function as a multilayer resist film during the semiconductor device manufacturing method described later.
- the antireflection film 340 is preferably included in the multilayer resist film, but may be omitted.
- the SiC film 305 may be 30 nm
- the SiOC film (Low-k film) 310 may be 150 nm
- the SiC film 315 may be 30 nm
- the SiO 2 film 320 may be 150 nm
- the SiN film 325 may be 70 nm.
- the amorphous carbon nitride film 330 has a thickness of 100 to 800 nm (for example, 280 nm)
- the silicon oxide film 335 has a thickness of 10 to 100 nm (for example, 50 nm)
- the antireflection film 340 (DARC) the antireflection film 340
- the ArF resist film 345 may be 200 nm or less (eg, 180 nm).
- the silicon oxide film 335 another silicon-based thin film such as SiOC, SiON, SiCN, or SiCNH can be used.
- FIG. 4 is a diagram for explaining patterning of an ArF resist film by photolithography.
- FIG. 5 is a diagram showing measured values of reflectance of the amorphous carbon film and the amorphous carbon nitride film.
- 6 to 8 are views for explaining patterning of the multilayer film by etching.
- the ArF resist film 345 projects a mask pattern (not shown) by exposing the ArF resist film 345 using an ArF excimer laser having a wavelength of 193 nm.
- FIG. 4 shows a pattern boundary B as a part of the projected pattern.
- the exposed portion of the ArF resist film 345 is removed as shown in the developing step at the bottom of FIG. 4, thereby completing the patterning of the ArF resist film 345.
- the laser light passes through the base of the ArF resist film 345.
- the reflection light to the ArF resist film 345 is suppressed by the antireflection film 340.
- the light transmitted through the antireflection film 340 may be further reflected by the lower layer film.
- the reflected light sensitizes the ArF resist film 345.
- the sharp pattern B is accurately projected onto the ArF resist film 345 by incident light, unnecessary exposure occurs in the ArF resist film 345 due to uncontrolled reflected light, and the ArF resist film 345 is exposed to the ArF resist film 345.
- the boundary portion B of the projected pattern becomes ambiguous and prevents accurate patterning. Therefore, in this embodiment, reflection is suppressed by the amorphous carbon nitride film 330 described below.
- each device of the plasma CVD apparatus 10 was controlled as follows. That is, after the wafer is placed, Ar gas is supplied from the gas supply source 155 through the gas line L and the shower head 150 into the processing container, and the inside of the processing container is evacuated by the exhaust device 18 so that the inside of the processing container is 20 mTorr. The vacuum state was maintained. In addition, the temperature in the processing vessel was adjusted so that the temperatures of the upper wall, the lower wall, and the susceptor 105 were 60 ° C., 50 ° C., and 40 ° C., respectively.
- a high frequency power of 4.0 W / cm 2 was applied to the shower head (upper electrode) 150 from a high frequency power source 175. No high frequency power for bias was applied.
- the gap between the shower head 150 and the susceptor 105 was 30 cm.
- a mixed gas of carbon monoxide (CO) gas, argon (Ar) gas, and nitrogen (N 2 ) gas was supplied from a gas supply source 155.
- the gas flow ratio of CO / Ar / N 2 is set to 17: 1: 2
- the contents of N atoms and C atoms contained in the amorphous carbon nitride film 330 are 10. 0,83.2 (Atomic%). This indicates that about 12% of N atoms are contained in the amorphous carbon nitride film with respect to C atoms.
- the reflectance increased to “4.20”.
- the inventor made the lithography process without reflecting most of the 193 nm laser light to the ArF resist film 345 side if the N atoms added to the amorphous carbon nitride film were made approximately 10% or less of the C atoms. Found that can be done. As a result, the inventor was able to accurately form a pattern on the ArF resist film 345 using the amorphous carbon nitride film 330 having a content ratio of N atoms to C atoms of 10% or less.
- the amorphous carbon nitride film 330 is etched by plasma using the plasma CVD apparatus 10 using the silicon oxide film 335 in the state shown in FIG. 6 as an etching mask.
- the pattern of the ArF resist film 345 is transferred to the amorphous carbon nitride film 330 as shown in FIG.
- the amorphous carbon nitride film 330 has sufficient plasma resistance. Therefore, the amorphous carbon nitride film 330 is etched while maintaining a good shape during this step. As a result, the pattern of the ArF resist film 345 can be accurately transferred to the amorphous carbon nitride film 330.
- the SiN film 325, the SiO 2 film 320, the SiC film 315, and the SiOC film (Low-k film) 310 are used using the plasma CVD apparatus 10. Then, the etching target films are etched in the order of the SiC film 305. As described above, since the amorphous carbon nitride film 330 has high plasma resistance (etching resistance), the amorphous carbon nitride film 330 has a high selectivity with respect to the etching target film during etching.
- the amorphous carbon nitride film 330 can sufficiently remain as an etching mask until the etching of the SiC film 305 is completed, and accurate pattern transfer can be performed without causing deformation of the pattern of the etching target film.
- the remaining amorphous carbon nitride film 330 is ashed with O 2 gas, and as a result, the amorphous carbon nitride film 330 disappears as shown in FIG. Patterning is completed.
- a mixed gas of O 2 gas and Ar, or a mixed gas of O 2 gas and N 2 may be used, or a mixed gas of N 2 gas and H 2 gas may be used.
- the disappearance amount of each of the following films was measured. Specifically, the resist film (comparative film 1), the amorphous carbon film (film 1), and the amorphous carbon nitride film (films 2 and 3) used for the light source (g-line) with a wavelength of 436 nm under the above process conditions. The same evaluation was performed. The result is shown in FIG. In FIG. 9, the comparative film 1 disappeared by ⁇ 70 nm at the center and by ⁇ 90 nm at the end while the etching target film was etched for 15 seconds. That is, during the etching for 15 seconds, the comparative film 1 was thinned by 70 nm at the center and 90 nm at the end.
- the film 1, the film 2, and the film 3 have a film thickness of ⁇ 37.6 nm, ⁇ 42.7 nm, ⁇ 54.8 nm at the center, and ⁇ 37.8 nm, ⁇ 48.6 nm, and ⁇ 57.7 nm at the ends, respectively. Disappeared.
- the amorphous carbon nitride film 330 has improved plasma resistance compared to the resist film used for the light source (g line) having a wavelength of 436 nm.
- the amorphous carbon nitride film 330 has higher in-plane uniformity for etching than the resist film used for g-line.
- Step of forming a film to be etched on the wafer (b) Step of supplying a processing gas containing carbon monoxide gas and nitrogen gas into the processing vessel (c) Carbon monoxide gas and nitrogen gas in the processing vessel Decomposing and forming an amorphous carbon nitride film 330 on the wafer (d) Forming a silicon oxide film 335 on the amorphous carbon nitride film 330 (e) ArF resist film on the silicon oxide film 335 (F) Step of patterning ArF resist film 345 (g) Step of etching silicon oxide film 335 using ArF resist film 345 as an etching mask (h) Amorphous carbon nitride using silicon oxide film 335 as an etching mask The film 330 is etched to form a pattern of the ArF resist film 345. Step of transferring the down (i) etching the etching target film of a
- the amorphous carbon nitride film 330 capable of reducing the reflectance of the irradiated light can be used as the etching target film. It is possible to transfer an accurate pattern.
- the amorphous carbon nitride film of the present invention is applied to the lower layer in the multilayer resist film in the dry development technique, but the present invention is not limited to this, and the film is used as a normal photoresist. It can be used for various other purposes such as forming an etching mask having a function of antireflection film by forming it directly under the film.
- the gas used for forming the amorphous carbon nitride film is carbon monoxide gas, but carbon dioxide gas may be used depending on the process.
- the semiconductor wafer was illustrated as a to-be-processed object, it is not restricted to this, It applies also to other board
- FPD flat panel displays
- LCD liquid crystal display device
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Materials For Photolithography (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
Description
(1)アモルファスカーボン膜中における炭素原子の含有率が高いほどエッチング耐性の向上を図れること
(2)炭素原子の含有率を高めるためには水素原子の含有率を低下させることが不可欠であること
(3)CVD法における炭素を供給するガスとして、炭化水素ガスに代えて、水素原子を分子中に含まない一酸化炭素を使用することにより、水素原子の含有率の極めて低いアモルファスカーボン膜を生成できること
(4)水素原子の含有率の極めて低いアモルファスカーボン膜に、さらに窒素ガスをドーピングすることにより、レジスト膜を露光する際、照射する光がアモルファスカーボン膜で反射する確率を低下させることができること
プラズマCVD装置10は、円筒状の処理容器100を有している。処理容器100は接地されている。処理容器100の内部には、ウエハWを載置するサセプタ105が設けられている。サセプタ105は、支持体110により支持されている。サセプタ105の載置面近傍には下部電極115が埋設され、その下方にはヒータ120が埋設されている。下部電極115には、整合器125を介して高周波電源130が接続されている。必要に応じて、高周波電源130からバイアス用の高周波電力が出力され、下部電極115に印加される。ヒータ120には、ヒータ電源135が接続されており、必要に応じてヒータ電源135から交流電圧が印加され、ウエハWを所望の温度に調整する。サセプタ上部の外縁部にはガイドリング140が設けられ、ウエハWをガイドするようになっている。
次に、プラズマCVD装置10を用いて、本実施形態に係るアモルファスカーボンナイトライド膜を形成する方法について説明する。
次に、半導体装置を製造するために使われるアモルファスカーボンナイトライド膜を含む多層膜の積層構造について、図3を参照しながら説明する。ウエハW上にはエッチング対象膜として、SiC膜305、SiOC膜(Low-k膜)310、SiC膜315、SiO2膜320、SiN膜325が順に積層されている。
次に、上述した積層構造の多層膜に適用する半導体装置の製造方法について、図4~図8を参照しながら説明する。図4は、フォトリソグラフィーによるArFレジスト膜のパターニングを説明するための図である。図5は、アモルファスカーボン膜及びアモルファスカーボンナイトライド膜の反射率の測定値を示した図である。図6~図8は、エッチングによる多層膜のパターニングを説明するための図である。
まず、フォトリソグラフィーによるArFレジスト膜のパターニングを説明する。図4の上部の露光工程に示したように、ArFレジスト膜345は、193nmの波長のArFエキシマレーザを用いてArFレジスト膜345を感光することにより図示しないマスクのパターンを投影する。図4には投影されたパターンの一部としてパターンの境界部分Bが示されている。ArFレジスト膜345の感光部分は、図4の下部の現像工程に示したように除去され、これにより、ArFレジスト膜345のパターニングが完了する。
本実施形態に係るアモルファスカーボンナイトライド膜330は、アモルファスカーボンに窒素原子が混入されている。発明者が鋭意研究した結果、図5に示したように、添加するN原子の量により、アモルファスカーボンナイトライド膜330を反射する193nmの光の反射率が変化することがわかった。
次に、ArFレジスト膜345に形成されたパターンニングをエッチングにより下層膜に転写する工程を説明する。図3に示した状態のArFレジスト膜345をエッチングマスクとして、プラズマCVD装置10を用いて、反射防止膜340及び酸化シリコン膜335をプラズマによりエッチングする。その結果、図6に示したように、酸化シリコン膜335にArFレジスト膜345のパターンが転写される。ArFレジスト膜345はエッチング耐性が低いため、本工程中にArFレジスト膜345は消失してしまう。また、反射防止膜340もエッチングされて薄くなっている。
前述したアモルファスカーボンナイトライド膜のプラズマ耐性について、発明者が行った実験を以下に述べる。プロセス条件としては、アモルファスカーボンナイトライド膜の成膜時とほぼ同様であり、処理容器内を20mTorrの減圧状態に維持し、上部ウォール、下部ウォール、サセプタ105の温度がそれぞれ60℃、50℃、40℃になるように処理容器内の温度を調整した。シャワーヘッド(上部電極)150には、高周波電源175から出力された4.0W/cm2の高周波電力を「15秒」印加した。バイアス用の高周波電力は印加しなかった。シャワーヘッド150とサセプタ105との間のギャップは30cmであった。
(a)ウエハ上にエッチング対象膜を形成する工程
(b)処理容器内に一酸化炭素ガス及び窒素ガスを含む処理ガスを供給する工程
(c)処理容器内で一酸化炭素ガス及び窒素ガスを分解してウエハ上にアモルファスカーボンナイトライド膜330を成膜する工程
(d)アモルファスカーボンナイトライド膜330の上に酸化シリコン膜335を形成する工程
(e)酸化シリコン膜335の上にArFレジスト膜345を形成する工程
(f)ArFレジスト膜345をパターニングする工程
(g)ArFレジスト膜345をエッチングマスクとして酸化シリコン膜335をエッチングする工程
(h)酸化シリコン膜335をエッチングマスクとしてアモルファスカーボンナイトライド膜330をエッチングしてArFレジスト膜345のパターンを転写する工程
(i)アモルファスカーボンナイトライド膜330をエッチングマスクとしてエッチング対象膜をエッチングする工程
105 サセプタ
115 下部電極
130 高周波電源
150 シャワーヘッド
155 ガス供給源
175 高周波電源
200 制御装置
330 アモルファスカーボンナイトライド膜
335 酸化シリコン膜
340 反射防止膜
345 ArFレジスト膜
Claims (13)
- 処理容器の内部に被処理体を配置する工程と、
前記処理容器の内部に一酸化炭素ガス及び窒素ガスを含む処理ガスを供給する工程と、
前記処理容器の内部にて一酸化炭素ガス及び窒素ガスを分解して被処理体上にアモルファスカーボンナイトライド膜を成膜する工程と、を有するアモルファスカーボンナイトライド膜の形成方法。 - 前記アモルファスカーボンナイトライド膜中の窒素原子の含有率は、同膜中に含有される炭素原子の10%以下である請求項1に記載されたアモルファスカーボンナイトライド膜の形成方法。
- 前記アモルファスカーボンナイトライド膜は、
プラズマCVD装置を用いて被処理体上に成膜される請求項1に記載されたアモルファスカーボンナイトライド膜の形成方法。 - 前記プラズマCVD装置は、前記処理容器の内部に上部電極および下部電極が配設された平行平板型であり、前記下部電極上に被処理体が配置された状態で、少なくとも前記上部電極に高周波電力を印加して前記処理ガスからプラズマを生成する請求項3に記載されたアモルファスカーボンナイトライド膜の形成方法。
- 前記下部電極にバイアス用の高周波電力を印加する請求項4に記載されたアモルファスカーボンナイトライド膜の形成方法。
- 前記上部電極は炭素電極である請求項4に記載されたアモルファスカーボンナイトライド膜の形成方法。
- 前記処理ガスは、不活性ガスを含むことを特徴とする請求項1に記載されたアモルファスカーボンナイトライド膜の形成方法。
- 一酸化炭素ガス及び窒素ガスを含む処理ガスを用いてプラズマCVDにより被処理体上に形成されたアモルファスカーボンナイトライド膜。
- 処理容器の内部に一酸化炭素ガス及び窒素ガスを含む処理ガスを供給し、前記処理容器の内部にて一酸化炭素ガス及び窒素ガスを分解することにより、エッチング対象膜上に形成されたアモルファスカーボンナイトライド膜と、
前記アモルファスカーボンナイトライド膜上に形成されたシリコン系薄膜と、
前記シリコン系薄膜上に形成されたフォトレジスト膜を含む多層レジスト膜。 - 被処理体上にエッチング対象膜を形成する工程と、
処理容器の内部に一酸化炭素ガス及び窒素ガスを含む処理ガスを供給する工程と、
前記処理容器の内部にて一酸化炭素ガス及び窒素ガスを分解して被処理体上にアモルファスカーボンナイトライド膜を成膜する工程と、
前記アモルファスカーボンナイトライド膜上にシリコン系薄膜を形成する工程と、
前記シリコン系薄膜上にフォトレジスト膜を形成する工程と、
前記フォトレジスト膜をパターニングする工程と、
前記フォトレジスト膜をエッチングマスクとして前記シリコン系薄膜をエッチングする工程と、
前記シリコン系薄膜をエッチングマスクとして前記アモルファスカーボンナイトライド膜をエッチングする工程と、
前記アモルファスカーボンナイトライド膜をエッチングマスクとして前記エッチング対象膜をエッチングする工程と、を有する半導体装置の製造方法。 - 193nmの波長の光を用いて前記フォトレジスト膜としてのArFレジスト膜をパターニングする請求項10に記載された半導体装置の製造方法。
- コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読み取り可能な記憶媒体であって、
前記制御プログラムは、請求項1に記載された方法が実行されるように、前記コンピュータにアモルファスカーボンナイトライド膜を形成するための成膜装置を制御させる記憶媒体。 - 処理容器の内部に被処理体を配置する工程と、
前記処理容器の内部に炭素原子と酸素原子のみからなるガスと窒素ガスを供給する工程と、
前記処理容器の内部にてプラズマを用いて、被処理体上にアモルファスカーボンナイトライド膜を成膜する工程と、を有するアモルファスカーボンナイトライド膜の形成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/060,821 US8741396B2 (en) | 2008-08-28 | 2009-06-30 | Method for forming amorphous carbon nitride film, amorphous carbon nitride film, multilayer resist film, method for manufacturing semiconductor device, and storage medium in which control program is stored |
KR1020117000272A KR101194192B1 (ko) | 2008-08-28 | 2009-06-30 | 어모퍼스 카본 나이트라이드막의 형성 방법, 어모퍼스 카본 나이트라이드막, 다층 레지스트막, 반도체 장치의 제조 방법 및 제어 프로그램이 기억된 기억 매체 |
CN2009801306647A CN102112651B (zh) | 2008-08-28 | 2009-06-30 | 无定形碳氮膜的形成方法、无定形碳氮膜、多层抗蚀剂膜、半导体装置的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-219359 | 2008-08-28 | ||
JP2008219359A JP5289863B2 (ja) | 2008-08-28 | 2008-08-28 | アモルファスカーボンナイトライド膜の形成方法、多層レジスト膜、半導体装置の製造方法および制御プログラムが記憶された記憶媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010024037A1 true WO2010024037A1 (ja) | 2010-03-04 |
Family
ID=41721211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061907 WO2010024037A1 (ja) | 2008-08-28 | 2009-06-30 | アモルファスカーボンナイトライド膜の形成方法、アモルファスカーボンナイトライド膜、多層レジスト膜、半導体装置の製造方法および制御プログラムが記憶された記憶媒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8741396B2 (ja) |
JP (1) | JP5289863B2 (ja) |
KR (1) | KR101194192B1 (ja) |
CN (1) | CN102112651B (ja) |
TW (1) | TWI452630B (ja) |
WO (1) | WO2010024037A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101985744A (zh) * | 2010-11-26 | 2011-03-16 | 中国科学院微电子研究所 | 一种单晶立方型氮化碳薄膜的制备方法 |
CN102115878A (zh) * | 2010-11-26 | 2011-07-06 | 中国科学院微电子研究所 | 一种单晶立方型氮化碳薄膜的制备方法 |
CN102194686A (zh) * | 2010-03-12 | 2011-09-21 | 东京毅力科创株式会社 | 等离子体蚀刻方法和等离子体蚀刻装置 |
US12112949B2 (en) | 2017-12-01 | 2024-10-08 | Applied Materials, Inc. | Highly etch selective amorphous carbon film |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5289863B2 (ja) * | 2008-08-28 | 2013-09-11 | 東京エレクトロン株式会社 | アモルファスカーボンナイトライド膜の形成方法、多層レジスト膜、半導体装置の製造方法および制御プログラムが記憶された記憶媒体 |
WO2011158703A1 (en) * | 2010-06-18 | 2011-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP5588856B2 (ja) * | 2010-12-27 | 2014-09-10 | 東京エレクトロン株式会社 | カーボン膜上への酸化物膜の成膜方法及び成膜装置 |
DE102013112855A1 (de) * | 2013-11-21 | 2015-05-21 | Aixtron Se | Vorrichtung und Verfahren zum Fertigen von aus Kohlenstoff bestehenden Nanostrukturen |
US9449821B2 (en) * | 2014-07-17 | 2016-09-20 | Macronix International Co., Ltd. | Composite hard mask etching profile for preventing pattern collapse in high-aspect-ratio trenches |
JP2019047119A (ja) * | 2017-09-04 | 2019-03-22 | Tdk株式会社 | 磁気抵抗効果素子、磁気メモリ、および磁気デバイス |
JP6782211B2 (ja) * | 2017-09-08 | 2020-11-11 | 株式会社東芝 | 透明電極、それを用いた素子、および素子の製造方法 |
KR20220012474A (ko) * | 2020-07-22 | 2022-02-04 | 주식회사 원익아이피에스 | 박막 증착 방법 및 이를 이용한 반도체 소자의 제조방법 |
EP3945067A1 (en) | 2020-07-27 | 2022-02-02 | Universitat Rovira I Virgili | A method for producing an s-triazine or s-heptazine-based polymeric or oligomeric materials and s-triazine or s-heptazine-based coatings and composites derived therefrom |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004066664A (ja) * | 2002-08-07 | 2004-03-04 | Toyota Central Res & Dev Lab Inc | 密着層を備える積層体 |
JP2004217977A (ja) * | 2003-01-14 | 2004-08-05 | National Institute Of Advanced Industrial & Technology | 非晶質窒化炭素膜及びその製造方法 |
JP2004277882A (ja) * | 2003-02-28 | 2004-10-07 | Semiconductor Energy Lab Co Ltd | 窒化炭素組成物、当該窒化炭素組成物を有する薄膜トランジスタ並びに当該薄膜トランジスタを有する表示装置、及びそれらの作製方法 |
JP2008141009A (ja) * | 2006-12-01 | 2008-06-19 | Tokyo Electron Ltd | アモルファスカーボン膜、半導体装置、成膜方法、成膜装置及び記憶媒体 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4504519A (en) * | 1981-10-21 | 1985-03-12 | Rca Corporation | Diamond-like film and process for producing same |
US6099457A (en) * | 1990-08-13 | 2000-08-08 | Endotech, Inc. | Endocurietherapy |
US5606056A (en) * | 1994-05-24 | 1997-02-25 | Arizona Board Of Regents | Carbon nitride and its synthesis |
CN1138635A (zh) * | 1995-06-16 | 1996-12-25 | 南京大学 | 一种低温镀复金刚石薄膜的方法及设备 |
JP4109356B2 (ja) | 1998-08-20 | 2008-07-02 | 学校法人 龍谷大学 | 結晶質の窒化炭素膜を形成する方法 |
JP2000285437A (ja) | 1999-03-31 | 2000-10-13 | Hoya Corp | 磁気記録媒体及びその製造方法 |
JP5121090B2 (ja) | 2000-02-17 | 2013-01-16 | アプライド マテリアルズ インコーポレイテッド | アモルファスカーボン層の堆積方法 |
US6872503B2 (en) * | 2000-05-05 | 2005-03-29 | E. I. Du Pont De Nemours And Company | Copolymers for photoresists and processes therefor |
US6486082B1 (en) * | 2001-06-18 | 2002-11-26 | Applied Materials, Inc. | CVD plasma assisted lower dielectric constant sicoh film |
US7498066B2 (en) * | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
JP3921528B2 (ja) * | 2002-09-06 | 2007-05-30 | 独立行政法人物質・材料研究機構 | リソグラフィ用基板被覆構造体 |
JP3931229B2 (ja) * | 2002-09-13 | 2007-06-13 | 独立行政法人物質・材料研究機構 | 酸化炭素薄膜および酸化窒化炭素薄膜とこれら酸化炭素系薄膜の製造方法 |
US20040227197A1 (en) * | 2003-02-28 | 2004-11-18 | Shinji Maekawa | Composition of carbon nitride, thin film transistor with the composition of carbon nitride, display device with the thin film transistor, and manufacturing method thereof |
TWI250558B (en) * | 2003-10-23 | 2006-03-01 | Hynix Semiconductor Inc | Method for fabricating semiconductor device with fine patterns |
EP1768464A1 (en) * | 2004-04-05 | 2007-03-28 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence display device |
KR100628029B1 (ko) * | 2004-12-04 | 2006-09-26 | 주식회사 아이피에스 | 박막 증착 방법 및 이를 이용한 반도체 제조방법 |
WO2007078011A1 (ja) * | 2006-01-06 | 2007-07-12 | Nec Corporation | 多層配線の製造方法と多層配線構造 |
US7473950B2 (en) * | 2006-06-07 | 2009-01-06 | Ovonyx, Inc. | Nitrogenated carbon electrode for chalcogenide device and method of making same |
JP2008105321A (ja) * | 2006-10-26 | 2008-05-08 | Kyocera Mita Corp | 画像形成装置 |
CN101622693B (zh) * | 2007-02-28 | 2012-07-04 | 东京毅力科创株式会社 | 无定形碳膜的形成方法和半导体装置的制造方法 |
JP5534170B2 (ja) * | 2007-03-19 | 2014-06-25 | 日本電気株式会社 | 半導体装置及びその製造方法 |
US8071872B2 (en) * | 2007-06-15 | 2011-12-06 | Translucent Inc. | Thin film semi-conductor-on-glass solar cell devices |
SE532721C2 (sv) * | 2007-10-01 | 2010-03-23 | Mircona Ab | Produkt med vibrationsdämpande keramisk beläggning för spånavskiljning vid materialbearbetning samt metod för dess tillverkning |
TW200947670A (en) * | 2008-05-13 | 2009-11-16 | Nanya Technology Corp | Method for fabricating a semiconductor capacitor device |
US20110146787A1 (en) * | 2008-05-28 | 2011-06-23 | Sebastien Allen | Silicon carbide-based antireflective coating |
JP5064319B2 (ja) * | 2008-07-04 | 2012-10-31 | 東京エレクトロン株式会社 | プラズマエッチング方法、制御プログラム及びコンピュータ記憶媒体 |
JP5289863B2 (ja) * | 2008-08-28 | 2013-09-11 | 東京エレクトロン株式会社 | アモルファスカーボンナイトライド膜の形成方法、多層レジスト膜、半導体装置の製造方法および制御プログラムが記憶された記憶媒体 |
US20100203339A1 (en) * | 2009-02-06 | 2010-08-12 | Osman Eryilmaz | Plasma treatment of carbon-based materials and coatings for improved friction and wear properties |
JP2012038815A (ja) * | 2010-08-04 | 2012-02-23 | Toshiba Corp | 磁気抵抗素子の製造方法 |
JP5412402B2 (ja) * | 2010-11-02 | 2014-02-12 | 株式会社日立製作所 | 摺動部品およびそれを用いた機械装置 |
-
2008
- 2008-08-28 JP JP2008219359A patent/JP5289863B2/ja not_active Expired - Fee Related
-
2009
- 2009-06-30 CN CN2009801306647A patent/CN102112651B/zh not_active Expired - Fee Related
- 2009-06-30 WO PCT/JP2009/061907 patent/WO2010024037A1/ja active Application Filing
- 2009-06-30 US US13/060,821 patent/US8741396B2/en not_active Expired - Fee Related
- 2009-06-30 KR KR1020117000272A patent/KR101194192B1/ko not_active IP Right Cessation
- 2009-08-27 TW TW098128747A patent/TWI452630B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004066664A (ja) * | 2002-08-07 | 2004-03-04 | Toyota Central Res & Dev Lab Inc | 密着層を備える積層体 |
JP2004217977A (ja) * | 2003-01-14 | 2004-08-05 | National Institute Of Advanced Industrial & Technology | 非晶質窒化炭素膜及びその製造方法 |
JP2004277882A (ja) * | 2003-02-28 | 2004-10-07 | Semiconductor Energy Lab Co Ltd | 窒化炭素組成物、当該窒化炭素組成物を有する薄膜トランジスタ並びに当該薄膜トランジスタを有する表示装置、及びそれらの作製方法 |
JP2008141009A (ja) * | 2006-12-01 | 2008-06-19 | Tokyo Electron Ltd | アモルファスカーボン膜、半導体装置、成膜方法、成膜装置及び記憶媒体 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102194686A (zh) * | 2010-03-12 | 2011-09-21 | 东京毅力科创株式会社 | 等离子体蚀刻方法和等离子体蚀刻装置 |
US8609549B2 (en) | 2010-03-12 | 2013-12-17 | Tokyo Electron Limited | Plasma etching method, plasma etching apparatus, and computer-readable storage medium |
CN101985744A (zh) * | 2010-11-26 | 2011-03-16 | 中国科学院微电子研究所 | 一种单晶立方型氮化碳薄膜的制备方法 |
CN102115878A (zh) * | 2010-11-26 | 2011-07-06 | 中国科学院微电子研究所 | 一种单晶立方型氮化碳薄膜的制备方法 |
US12112949B2 (en) | 2017-12-01 | 2024-10-08 | Applied Materials, Inc. | Highly etch selective amorphous carbon film |
Also Published As
Publication number | Publication date |
---|---|
JP2010053397A (ja) | 2010-03-11 |
TWI452630B (zh) | 2014-09-11 |
KR20110027759A (ko) | 2011-03-16 |
US20110201206A1 (en) | 2011-08-18 |
TW201021121A (en) | 2010-06-01 |
JP5289863B2 (ja) | 2013-09-11 |
US8741396B2 (en) | 2014-06-03 |
CN102112651B (zh) | 2013-05-22 |
CN102112651A (zh) | 2011-06-29 |
KR101194192B1 (ko) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5289863B2 (ja) | アモルファスカーボンナイトライド膜の形成方法、多層レジスト膜、半導体装置の製造方法および制御プログラムが記憶された記憶媒体 | |
KR100979716B1 (ko) | 비결정 탄소막의 성막 방법 및 이를 이용한 반도체 장치의 제조 방법 | |
JP5113830B2 (ja) | アモルファスカーボン膜の形成方法、半導体装置の製造方法およびコンピュータ可読記憶媒体 | |
KR100777043B1 (ko) | 비정질 탄소막 형성 방법 및 이를 이용한 반도체 소자의제조 방법 | |
US8202805B2 (en) | Substrate processing method | |
US7642195B2 (en) | Hydrogen treatment to improve photoresist adhesion and rework consistency | |
JP2020521320A (ja) | リソグラフィにおける確率的な歩留まりへの影響の排除 | |
KR20060127250A (ko) | 금속 에칭 하드마스크 분야용 비정질 탄소막 증착 방법 | |
US20100043821A1 (en) | method of photoresist removal in the presence of a low-k dielectric layer | |
JP2012233259A (ja) | アモルファスカーボン膜の成膜方法、それを用いた半導体装置の製造方法、およびコンピュータ読取可能な記憶媒体 | |
US20060024971A1 (en) | Dry etching method using polymer mask selectively formed by CO gas | |
KR20080102928A (ko) | 비정질 탄소막 형성 방법 및 이를 이용한 반도체 소자의제조 방법 | |
KR100893675B1 (ko) | 비정질 탄소막 형성 방법 및 이를 이용한 반도체 소자의제조 방법 | |
WO2022219977A1 (ja) | 基板処理方法 | |
KR102678853B1 (ko) | 피처리체를 처리하는 방법 | |
WO2024125303A1 (zh) | 一种晶圆处理方法及用于晶圆处理的刻蚀-沉积一体设备 | |
WO2022059440A1 (ja) | エッチング方法、プラズマ処理装置、及び基板処理システム | |
US20080038462A1 (en) | Method of forming a carbon layer on a substrate | |
CN111834202A (zh) | 基板处理方法和基板处理装置 | |
KR20080100064A (ko) | 비정질 탄소막 형성 방법 및 이를 이용한 반도체 소자의제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980130664.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09809692 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117000272 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13060821 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09809692 Country of ref document: EP Kind code of ref document: A1 |