WO2010024018A1 - 高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置 - Google Patents

高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置 Download PDF

Info

Publication number
WO2010024018A1
WO2010024018A1 PCT/JP2009/060777 JP2009060777W WO2010024018A1 WO 2010024018 A1 WO2010024018 A1 WO 2010024018A1 JP 2009060777 W JP2009060777 W JP 2009060777W WO 2010024018 A1 WO2010024018 A1 WO 2010024018A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer film
degassing
film substrate
heat treatment
Prior art date
Application number
PCT/JP2009/060777
Other languages
English (en)
French (fr)
Inventor
松山 秀昭
Original Assignee
富士電機アドバンストテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機アドバンストテクノロジー株式会社 filed Critical 富士電機アドバンストテクノロジー株式会社
Priority to JP2010526605A priority Critical patent/JP5273147B2/ja
Publication of WO2010024018A1 publication Critical patent/WO2010024018A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a degassing method and a degassing apparatus for a polymer film substrate that can be used as an electrically insulating film substrate of a thin film solar cell.
  • a plurality of photoelectric conversion elements (or cells) formed by laminating a metal electrode layer, a photoelectric conversion layer made of a thin film semiconductor layer, and a transparent electrode layer are formed on a flexible electrically insulating film substrate.
  • a metal electrode layer for example, a metal electrode made of a thin film semiconductor layer
  • a transparent electrode layer for example, a transparent electrode layer
  • the output voltage of the thin-film solar cell is desirably 100 V or higher, and actually several tens or more elements are connected in series.
  • FIG. 7 shows a configuration diagram of a thin film solar cell described in Patent Document 1.
  • the unit photoelectric conversion element 62 formed on the surface of the substrate 61 made of a plastic film and the connection electrode layer 63 formed on the back surface of the substrate 61 are completely separated into a plurality of unit units, and are formed by shifting the separation positions. Yes. For this reason, the current generated in the photoelectric conversion layer 65, which is an amorphous semiconductor portion of the photoelectric conversion element 62, is first collected in the transparent electrode layer 66, and then through the current collecting holes 67 formed in the transparent electrode layer region.
  • the transparent electrode layer region of the element adjacent to the element is connected to the connection electrode layer 63 on the back surface through a connection hole 68 for series connection formed outside the transparent electrode layer region of the element in the connection electrode layer region.
  • the lower electrode layer 64 extending outward is reached, and both elements are connected in series.
  • FIGS. 8A to 8G show a simplified manufacturing process of the thin film solar cell.
  • a substrate 71 made of a plastic film is prepared (step (a)), connection holes 78 are formed in the substrate 71 (step (b)), and a first electrode layer (lower electrode) 74 and a third electrode layer are formed on both surfaces of the substrate 71.
  • a current collecting hole 77 is formed at a position away from the connection hole 78 by a predetermined distance (step (d)).
  • a semiconductor layer 75 to be a photoelectric conversion layer and a transparent electrode layer 76 to be a second electrode layer are sequentially formed on the first electrode layer 74 (step (e) and step (f)), and the third A fourth electrode layer (connection electrode layer) 79 is formed on the electrode layer 73 (step (g)).
  • the thin film on both sides of the substrate 71 is separated using a laser beam to form a series connection structure as shown in FIG.
  • steps (a), (b), and (d) processing is performed on the substrate 71 in the atmosphere, but the other steps are processed in a vacuum film forming apparatus described later.
  • the substrate 71 is processed in the atmosphere and then introduced into the vacuum container of the vacuum film forming apparatus.
  • a roll-to-roll method or a stepping roll method as a method for producing the thin film of the thin film solar cell. Both types are equipped with a substrate transport means by a plurality of rolls, the former is a method of continuously forming a film on a substrate that moves continuously in each film forming chamber, and the latter is stopped simultaneously in each film forming chamber.
  • a method is employed in which a film is formed on a substrate and the substrate portion after film formation is sent to the next film formation chamber.
  • a stepping roll type film forming apparatus is excellent in that the characteristics of each thin film can be stably obtained because gas mutual diffusion between adjacent film forming chambers can be prevented (see, for example, Patent Documents 2 and 3). .
  • FIG. 9 shows an outline of the configuration of a vacuum film forming apparatus of a stepping roll film forming system having a plurality of film forming chambers in a common vacuum chamber.
  • 280 and a winding winder chamber 291 and the substrate 284 is configured to be deposited in a plurality of deposition chambers 280 while being rolled out from the core 282 and wound on the core 283.
  • the common chamber 281 houses a plurality of film formation chambers 280 therein.
  • film formation is performed by sputtering film formation or plasma chemical vapor deposition (hereinafter referred to as plasma CVD method).
  • plasma CVD method plasma chemical vapor deposition
  • the film formation chamber is opened, the substrate frame is moved, the film formation chamber is sealed, the raw material gas is introduced, the pressure is controlled, the discharge is started, the discharge is finished, the raw material gas is stopped, The operation consisting of opening the membrane chamber is repeated.
  • the solar cell substrate has moisture and other volatile components inside the substrate and the substrate surface, and in order to efficiently form a high-quality thin film that does not contain impurities or change the film, It is necessary to perform a degassing process for removing the substance (see, for example, Patent Document 4).
  • the substrate exposed to the atmosphere is degassed by a dedicated degassing device for removing moisture and other volatile components from the inside of the substrate and the substrate surface before the vacuum film forming process is performed in the vacuum film forming apparatus. It has been proposed to introduce a vacuum film forming apparatus after performing the gas process. In the case of the manufacturing process of FIG. 8, after the steps (b) and (d), the degassing process is performed by a dedicated degassing apparatus.
  • the above thin film solar cell is an example in which an electrode layer is formed on the back surface of the substrate in order to facilitate electrical series connection, but a solar cell thin film layer is formed only on one surface of the substrate surface. Commonly used.
  • the present inventor obtained the degassing characteristics shown in FIG. A polyimide film was used as the film substrate, and an Ag film (200 nm) was formed as the electrode film.
  • the polyimide film (A) that is the film substrate after the step (b) and the film with an electrode film that is the film substrate after the step (d) (B) were evaluated with a high vacuum temperature programmed desorption gas analyzer. The heating rate was 0.5 ° C./s.
  • the present invention has been made in view of the above points, and clarifies heating conditions for degassing treatment of a polymer film substrate having a surface coated with a film made of a metal or an inorganic substance. It is an object of the present invention to provide a method for degassing a polymer film substrate that can prevent deterioration of film characteristics formed thereon.
  • the method of degassing a polymer film substrate according to the present invention includes a polymer film substrate in which a film made of a metal or an inorganic material is coated on a surface of a flexible film, and a thin film is formed on the surface of the polymer film substrate by a vacuum process.
  • the degassing method is to perform degassing by heat treatment in vacuum before forming the heat treatment, wherein the heat treatment temperature is 100 ° C. or higher and lower than the decomposition temperature of the flexible film.
  • the time is characterized by being 10 times or more of the log e based on the time constant of the gas release rate that decreases exponentially with time.
  • the time constant of the exponentially decreasing gas release rate is exp (E) where the activation energy is E, the absolute temperature is T, the Boltzmann constant is k. / kT).
  • the heat treatment temperature is 150 to 250 ° C.
  • the degassing completion time is at least 2 to 5 minutes.
  • the heat treatment temperature is preferably 150 ° C. or higher
  • the degassing completion time is preferably 5 minutes or longer.
  • the flexible film includes polyimide, polystyrene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyethersulfone, polysulfone, and polyphenylene. It is preferably made of a polymer material selected from the group consisting of sulfide, polyetheretherketone, polyetherimide, and aramid.
  • the film coated on the polymer film substrate is preferably made of a high reflectance material and a transparent conductive material.
  • the polymer film substrate degassing apparatus includes a vacuum chamber and an unwinding roll provided with a polymer film substrate having a surface coated with a film made of a metal or an inorganic material provided in the vacuum chamber. And a winding roll that winds up the polymer film substrate that is provided in the vacuum chamber and is fed out from the unwinding roll, and a heater for heating the polymer film substrate that is fed out from the unwinding roll,
  • the heat treatment conditions for the polymer film substrate in the vacuum chamber are a heat treatment temperature of 100 ° C. or higher and a decomposition temperature of the flexible film, and the heat treatment time decreases exponentially with time. Based on the time constant of the gas release rate, the log e is 10 times or more.
  • membrane which consists of a metal or an inorganic substance on the surface can be clarified, and the film
  • Figure showing the time dependence of high vacuum thermal desorption for polyimide film without electrode coating Diagram showing the relaxation time of the gas release rate from the film substrate
  • Schematic diagram of degassing apparatus used in the present invention Diagram showing desorbed gas profile during heating process
  • the figure which shows the high vacuum temperature rising thermal desorption characteristic to the polyimide and the electrode coat polyimide film The perspective view which shows an example of a structure of a thin film solar cell notionally
  • the figure which shows an example of the manufacturing process of a thin film solar cell The figure which shows schematic structure of the manufacturing apparatus of the conventional thin film solar cell
  • the degassing method of the present invention in a film substrate in which a film made of a metal or an inorganic material is coated on both sides or one side of a flexible film made of a polymer material, before the step of forming a thin film on the surface by a vacuum process
  • the film substrate is heated in a vacuum to perform degassing to remove the gas contained in the film.
  • heat processing temperature shall be 100 degreeC or more and below the decomposition temperature of a flexible film.
  • the heating temperature is preferably 150 ° C. or higher.
  • the heat treatment time is set to 10 times or more the log e based on the time constant of the gas release rate that exponentially decreases with time.
  • Polymer materials that make up the flexible film include polyimide, polystyrene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyethersulfone, polysulfone, polyphenylene sulfide, polyetheretherketone, poly There are ether imide and aramid.
  • the coating film on the surface of the flexible film is made of a highly reflective material such as Ag, Ag alloy, Al, Al alloy and a transparent conductive material.
  • a silicon-based thin film as a thin film formed on the surface of a film substrate by a vacuum process.
  • the surface is coated with a metal electrode layer as a polymer film substrate, and after the degassing treatment (heating treatment), a photoelectric conversion layer and a transparent electrode layer are sequentially formed with a vacuum film forming apparatus. .
  • a degassing apparatus used for the degassing process will be described later.
  • the time dependence of gas detachment in a polymer film substrate having a metal film coated on both sides of a flexible film was examined.
  • Polyimide was used as a flexible film, and an Ag film (200 nm) was formed as an electrode to be a coating film.
  • the temperature was raised from room temperature to each set temperature (100, 150, 200, 250, 300 ° C.) over 3 minutes and kept at a constant temperature, and the pressure change in the chamber at that time was measured. Moreover, the mass analysis of the gas component at that time was performed.
  • FIG. 1 shows the time dependence of gas desorption in a vacuum on the polymer film substrate.
  • FIG. 3 is a diagram showing the heat treatment temperature dependence of the time constant (relaxation time) of the release rate of the gas released from the film substrate.
  • the degassing completion time at each heat treatment temperature is 20 minutes at a temperature of 100 ° C., 5 minutes at a temperature of 150 ° C., 3.5 minutes at a temperature of 200 ° C., 2.5 minutes at a temperature of 250 ° C., and 2 at a temperature of 300 ° C. It became minutes.
  • the time when the gas contained in the film substrate is released by heating and reduced by 90% is defined as the degassing completion time.
  • degassing is possible if the heat treatment temperature in vacuum is 100 ° C. or higher, and the upper limit temperature is the decomposition temperature of the film (about 400 ° C.). Further, it can be seen that degassing is possible if the heat treatment time which is the degassing completion time is 2 minutes or more. Preferably, if the heat treatment temperature is 150 ° C. or higher and the treatment time is 5 minutes or longer, sufficient degassing is possible.
  • FIG. 2 shows the time dependence of gas desorption similar to that in FIG. 1 on a polyimide film not coated with a metal film. It can be seen that gas is released in a short time at any set temperature. It is understood that the difference in the time dependency of gas desorption depending on whether or not the metal film is coated is due to the shielding effect of gas release by the metal film.
  • FIG. 4 is a schematic configuration diagram of a degassing apparatus according to the embodiment.
  • An unwinding roll 12 and a winding roll 13 are provided in the vacuum chamber 11, and a heater 15 for heating the substrate is disposed along a film transport path formed in a rectangular shape by guide rolls 14a to 14d.
  • the polymer film substrate 16 is attached to the unwinding roll 12 in the vacuum chamber 11, heated by the substrate heating heater 15 and wound by the winding roll 13.
  • the vacuum chamber 11 is kept in vacuum by being evacuated by the vacuum pump 17.
  • a polyimide film was used as the flexible film constituting the polymer film substrate 16.
  • polyimide film polyimide, polystyrene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyethersulfone, polysulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, aramid, etc.
  • a flexible film in which an Ag thin film was formed to 200 nm on both sides of this flexible film by vacuum sputtering was used as the polymer film substrate 16.
  • the polymer film substrate 16 was wound around the unwinding roll 12 over 2 hours while the surface of the polymer film substrate 16 was exposed to the air.
  • the output of the heater 16 is adjusted so that the heat treatment temperature is 250 ° C., and the heat treatment time of the polymer film substrate 16 is 5 minutes.
  • the substrate 16 was conveyed at a conveyance speed adjusted to 40 cm / min.
  • 100 sccm of nitrogen gas was passed through the vacuum chamber 11 and the exhaust amount was controlled by the valve 18 to adjust the pressure to 1 torr. This is because the polymer film substrate 16 is heated by heat conduction with gas.
  • the polymer film substrate 16 that has been subjected to the heat treatment in vacuum is unwound from the take-up roll 13 and cut out, and is attached to a high-vacuum temperature-programmed desorption gas analyzer so that the desorption gas characteristics have a temperature increase rate of 0.5. Measured at ° C / s.
  • Fig. 5 shows the profile of desorbed gas during the heating process.
  • the 80-300 ° C. peak due to moisture desorption was not observed, and it was confirmed from mass spectrometry that the degassing at 200 ° C. or higher was due to the decomposition of the film. It was confirmed that gas was desorbed from the film substrate by the heat treatment in vacuum.
  • Example 2 A thin film solar cell having the structure shown in FIG. 7 is manufactured using the polymer film substrate that has been degassed using the degassing apparatus of Example 1 above. The manufacturing process of the thin-film solar cell follows the manufacturing process shown in FIGS.
  • Degassing process is performed using the degassing apparatus of Example 1 after step (b) and step (d) in FIG.
  • the first electrode layer (lower electrode) 74 and the third electrode layer (part of the connection electrode) 73 are formed on both surfaces of the substrate 71, so that the heat treatment temperature is 150 ° C.
  • the degassing process is performed with a heat treatment time of 10 minutes.
  • a semiconductor layer 75 that becomes a photoelectric conversion layer and a transparent electrode layer 76 that is a second electrode layer are sequentially formed on the first electrode layer 74 (step (e)).
  • a fourth electrode layer (connection electrode layer) 79 is formed on the third electrode layer 73 (step (g)).
  • a thin film on both sides of the substrate 71 was separated using a laser beam to obtain a series connection structure as shown in FIG.
  • the present invention is applicable to a thin-film solar cell manufacturing facility that performs degassing treatment of a polymer film substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 薄膜太陽電池に用いる高分子フィルム基板からの放出ガスによる膜特性の劣化を防止する脱ガス処理方法を提供すること。高分子フィルム基板の脱ガス処理方法において、可撓性フィルムの両面又は片面に金属や無機物からなる膜をコーティングしたフィルム基板において、その表面に真空プロセスにより薄膜を形成する工程の前に、このフィルム基板を真空中で加熱することでフィルムの脱ガスを行う。このとき、加熱処理温度は100℃以上で、かつ可撓性フィルムの分解温度以下とする。加熱温度は、好ましくは150℃以上とする。また、加熱処理時間は2分以上、好ましくは5分以上とする。

Description

高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置
 本発明は、薄膜太陽電池の電気絶縁性フィルム基板として使用可能な高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置に関する。
 近年、環境保護の立場からクリーンエネルギーの研究開発が進められており、太陽電池は資源(太陽光)が無限であること及び無公害であることから注目を集めている。その中でも、薄膜太陽電池は、薄型・軽量で、製造コストも安く、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられており、特にプラスチックフィルムおよび金属フィルムを用いたフレキシブルタイプの太陽電池が軽量化、施工性、量産性の面で優れている。フレキシブルタイプの太陽電池の製造法として、ロールツーロール方式とステッピングロール方式とがある。
 薄膜太陽電池の場合、フレキシブルな電気絶縁性フィルム基板上に、金属電極層、薄膜半導体層からなる光電変換層、および透明電極層が積層されてなる光電変換素子(またはセル)が複数形成される(例えば、特許文献1参照)。ある光電変換素子の金属電極と隣接する光電変換素子の透明電極とを電気的に接続することを繰り返すことにより、最初の光電変換素子の金属電極と最後の光電変換素子の透明電極とに必要な電圧を出力させることができる。例えば、インバータにより交流化し商用電力源として交流100Vを得るためには、薄膜太陽電池の出力電圧は100V以上が望ましく、実際には数10個以上の素子が直列接続される。
 図7に特許文献1記載の薄膜太陽電池の構成図を示す。
 プラスチックフィルムからなる基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63はそれぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、光電変換素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。
 図8(a)~(g)は上記薄膜太陽電池の簡略化した製造工程を示している。
 プラスチックフィルムからなる基板71を準備し(工程(a))、これに接続孔78を形成し(工程(b))、基板71の両面に第1電極層(下電極)74および第3電極層(接続電極の一部)73を形成(工程(c))した後、接続孔78と所定の距離離れた位置に集電孔77を形成する(工程(d))。次に、第1電極層74の上に、光電変換層となる半導体層75および第2電極層である透明電極層76を順次形成するとともに(工程(e)および工程(f))、第3電極層73の上に第4電極層(接続電極層)79を形成する(工程(g))。この後、レーザビームを用いて、基板71の両側の薄膜を分離加工して図7に示すような直列接続構造を形成する。
 図8の製造工程において、工程(a),(b)および(d)においては、大気中で基板71に対して加工が行われるが、その他の工程は、後述する真空成膜装置において処理される。従って、上記工程の場合、工程(b)および(d)の後工程においては、基板71は大気中で加工後、真空成膜装置の真空容器内に導入されることになる。
 上記薄膜太陽電池の薄膜の製造方法としては、前述のように、ロールツーロール方式またはステッピングロール方式がある。両方式共に、複数のロールによる基板搬送手段を備え、前者は各成膜室内を連続的に移動する基板上に連続的に成膜する方式であり、後者は各成膜室内で同時に停止させた基板上に成膜し,成膜の終わった基板部分を次の成膜室へ送り出す方式を採用している。
 ステッピングロール方式の成膜装置は、隣接する成膜室間のガス相互拡散を防止できることから各薄膜の特性が安定して得られるなどの点で優れている(例えば、特許文献2、3参照)。
 図9に、共通真空室内に成膜室を複数有するステッピングロール成膜方式の真空成膜装置の構成の概略を示す。同図に示すように、可撓性基板の巻出し用アンワインダー室290と、金属電極層,光電変換層および透明電極層などを形成するための複数個の独立した処理空間としてなる成膜室280と、巻取り用ワインダー室291とを備え、基板284はコア282から捲き出されコア283にまきとられる間に、複数の成膜室280で成膜されるように構成されている。共通室281は複数の成膜室280を内部に収めている。成膜室ではスパッタ成膜またはプラズマ化学気相成長法(以下プラズマCVD法と記す)などにより成膜が行われる。例えば、プラズマCVD法により成膜するステッピングロール方式では、成膜室開放-基板フレーム移動-成膜室封止-原料ガス導入-圧力制御-放電開始-放電終了-原料ガス停止-ガス引き-成膜室開放からなる操作が繰り返される。
 ところで、太陽電池基板は、基板内部および基板表面に水分やその他揮発性分を有しており、不純物の混入や膜の変質が生じない品質のよい薄膜を効率よく形成するためには、これらの物質を除去するための脱ガス処理をする必要がある(例えば、特許文献4参照)。大気中にさらされた状態の基板を、真空成膜処理装置において真空成膜処理する前に、基板内部および基板表面から水分やその他揮発性分を除去するための専用の脱ガス処理装置により脱ガス処理を行った後に、真空成膜処理装置に導入することが提案されている。図8の製造プロセスの場合、工程(b)および(d)の工程後に、それぞれ専用の脱ガス処理装置により脱ガス処理を行うことになる。
 なお、上記薄膜太陽電池は、電気的直列接続を容易にするために、基板の裏面にも電極層を形成した例であるが、基板の表面の片面のみに太陽電池薄膜層を形成したものも一般的に使用されている。
特開2000-223727号公報 特開平6-292349号公報 特開平8-250431号公報 特開2000-299481号公報
 ところで、本発明者は、図8の工程(b)および(d)の各工程後のフィルム基板について脱ガス特性を測定した結果、図6に示す脱ガス特性を得た。なお、フィルム基板としてポリイミドフィルムを用い、電極膜としてはAg膜(200nm)を形成した。工程(b)後のフィルム基板であるポリイミドフィルム(A)、工程(d)後のフィルム基板である電極膜付きフィルムについて(B)、高真空昇温脱離ガス分析装置で評価した。昇温速度は0.5℃/sとした。
 工程(b)後のフィルム基板であるポリイミドフィルム(A)からは80℃程度で脱ガスがあり、ガスの質量分析から主な成分は水分であった。また、250℃以上で圧力が徐々に増加するが、質量分析からフィルムが分解することが分かった。一方、電極膜付きフィルム(B)においては水分の脱離は80~300℃の広い範囲に亘っており、その後にフィルムの分解が起きた。電極付きフィルムでは表面に電極がコーティングされていることより、ガスの放出が遅れていることが予測される。
 これらのフィルム基板上に真空中で成膜を行う場合、この放出ガスが膜特性を劣化させるので、フィルム基板の脱ガスが完了してから成膜を開始することが望ましいが、電極付きフィルムについては水分の脱離が80~300℃の広い範囲に亘っているので熱処理条件を決定するのが困難であった。
 本発明は、かかる点に鑑みてなされたものであり、表面に金属又は無機物からなる膜をコーティングしてなる高分子フィルム基板の脱ガス処理のための加熱条件を明確化して、高分子フィルム基板上に成膜する膜特性の劣化を防止できる高分子フィルム基板の脱ガス処理方法を提供することを目的とする。
 本発明の高分子フィルム基板の脱ガス処理方法は、可撓性フィルムの表面に金属又は無機物からなる膜がコーティングされてなる高分子フィルム基板を、当該高分子フィルム基板の表面に真空プロセスで薄膜を形成する前に、真空中で加熱処理して脱ガス処理する脱ガス処理方法であって、加熱処理温度が、100℃以上で、かつ前記可撓性フィルムの分解温度以下であり、加熱処理時間が、時間とともに指数的に減少するガス放出速度のタイムコンスタントを基準に、そのlog10倍以上であることを特徴とする。
 本発明の高分子フィルム基板の脱ガス処理方法において、前記指数的に減少するガス放出速度のタイムコンスタントは、その活性化エネルギーをEとし、絶対温度をT、ボルツマン定数をkとして、exp(E/kT)に比例することを特徴とする。
 本発明の高分子フィルム基板の脱ガス処理方法において、加熱処理温度が150℃~250℃であり、脱ガス完了時間が少なくとも2分~5分であることとした。特に、加熱処理温度が150℃以上であり、脱ガス完了時間が5分以上であることが好ましい。
 本発明の高分子フィルム基板の脱ガス処理方法において、前記可撓性フィルムは、ポリイミド、ポリスチレン、ポリカーボネート、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルイミド、アラミドからなる群から選ばれた高分子材料からなることが好ましい。
 本発明の高分子フィルム基板の脱ガス処理方法において、前記高分子フィルム基板にコーティングされた膜は、高反射率材料及び透明導電性材料からなることが好ましい。
 本発明の高分子フィルム基板の脱ガス処理装置は、真空槽と、前記真空槽内に設けられ表面に金属又は無機物からなる膜がコーティングされてなる高分子フィルム基板が巻回された巻き出しロールと、前記真空槽内に設けられ前記巻き出しロールから繰り出される高分子フィルム基板を巻き取る巻取りロールと、前記巻き出しロールから繰り出された高分子フィルム基板を加熱する加熱用ヒータとを備え、前記高分子フィルム基板の前記真空槽内での加熱処理条件として、加熱処理温度が100℃以上で、かつ前記可撓性フィルムの分解温度以下とし、加熱処理時間が、時間とともに指数的に減少するガス放出速度のタイムコンスタントを基準に、そのlog10倍以上であることを特徴とする。
 本発明によれば、表面に金属又は無機物からなる膜をコーティングしてなる高分子フィルム基板の脱ガス処理のための加熱条件を明確化でき、高分子フィルム基板上に成膜する膜特性の劣化を防止することができる。
電極をコートしたポリイミドフィルムに対する高真空昇温熱脱離の時間依存性を示す図 電極をコートしていないポリイミドフィルムに対する高真空昇温熱脱離の時間依存性を示す図 フィルム基板からのガス放出速度の緩和時間を示す図 本発明に用いた脱ガス処理装置の概略図 昇温過程での脱離ガスのプロファイルを示す図 ポリイミドおよび電極コートポリイミドフィルムに対する高真空昇温熱脱離特性を示す図 薄膜太陽電池の構成の一例を概念的に示す斜視図 薄膜太陽電池の製造工程の一例を示す図 従来の薄膜太陽電池の製造装置の概略構成を示す図
 本発明の脱ガス処理方法では、高分子材料からなる可撓性フィルムの両面又は片面に金属や無機物からなる膜をコーティングしたフィルム基板において、その表面に真空プロセスにより薄膜を形成する工程の前に、このフィルム基板を真空中で加熱することでフィルム中に含まれているガスを取り除く脱ガスを行う。このとき、加熱処理温度は100℃以上で、かつ可撓性フィルムの分解温度以下とする。加熱温度は、好ましくは150℃以上とする。また、加熱処理時間が、時間とともに指数的に減少するガス放出速度のタイムコンスタントを基準に、そのlog10倍以上とする。
 可撓性フィルムを構成する高分子材料としては、ポリイミド、ポリスチレン、ポリカーボネート、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルイミド、アラミドなどがある。
 可撓性フィルムの表面のコーティング膜は、Ag、Ag合金、Al、Al合金などの高反射率材料および透明導電性材料で構成される。真空プロセスによりフィルム基板の表面に形成する薄膜としてシリコン系薄膜がある。薄膜太陽電池の場合、高分子フィルム基板として表面に金属電極層をコーティングしたものであり、上記脱ガス処理(加熱処理)後に、光電変換層および透明電極層を真空成膜装置にて順次形成する。脱ガス処理に使用される脱ガス処理装置については後述する。
 可撓性フィルムの両面に金属膜をコーティングした高分子フィルム基板におけるガス離脱の時間依存性について調べた。可撓性フィルムとしてポリイミドを用い、コーティング膜となる電極としてAg膜(200nm)を形成した。室温から各設定温度(100,150,200,250,300℃)に3分間で昇温して一定温度に保ち、そのときのチャンバー内の圧力変化を測定した。また、その時のガス成分の質量分析をおこなった。
 図1は上記高分子フィルム基板について真空中でのガス脱離の時間依存性を調べたものである。その結果、設定温度到達前に圧力はピークを取り、その後、指数的に減少してバックグランドレベルまで低下していることが判った。高分子フィルム基板からの放出ガスは、質量分析より主に水分であることを確認した。ただし、300℃においてはフィルムの分解成分が混じっていた。金属膜をコーティングした高分子フィルム中の水分は少なくとも100℃以上の温度で長時間放置することによって取り除くことができる。
 フィルム基板からのガス放出速度を見積るために、図1の放出特性を指数関数でフィッティングしてそのガス放出速度(∝圧力)のタイムコンスタントを求めた。図3は、フィルム基板から放出されるガスの放出速度のタイムコンスタント(緩和時間)についてその熱処理温度依存性を示す図である。
 このときの各熱処理温度における脱ガス完了時間は、温度100℃では20分、温度150℃では5分、温度200℃では3.5分、温度250℃では2.5分、温度300℃では2分となった。ここで、フィルム基板に含まれているガスを加熱によりガス放出して90%減量した時点を脱ガス完了時間とする。脱ガス完了時間は、タイムコンスタント×log10と表すことができる。図3より熱処理温度150℃~300℃ではガス放出速度のタイムコンスタントが活性化型で、そのエネルギーが0.13eVであった。つまり、活性化エネルギーをE、絶対温度をT、ボルツマン定数をkとすると、タイムコンスタントはexp(E/kT)に比例する。この場合のタイムコンスタントτはτ=0.066exp(1470/T)と表された。ただし、熱処理温度100℃はこの関係から外れてタイムコンスタントが非常に長くなった。
 このように、ガス放出速度のタイムコンスタントから脱ガス処理時間を算出することができ、金属膜をコーティングした高分子フィルム基板の真空中での熱処理条件を算定することができる。
 以上の分析結果から、真空中の加熱処理温度は100℃以上であれば脱ガス可能であり、上限温度としてはフィルムの分解温度(約400℃)となる。また、脱ガス完了時間となる加熱処理時間は、2分以上であれば脱ガス可能であることが分かる。好ましくは、熱処理温度150℃以上で、処理時間を5分以上とすれば十分に脱ガスが可能となる。
 図2は、金属膜をコーティングしていないポリイミドフィルムについて、図1と同様のガス脱離の時間依存性を調べたものである。いずれの設定温度についても短時間でガスが放出されることがわかる。金属膜のコーティング有無によるガス脱離の時間依存性の違いは、金属膜によるガス放出の遮蔽効果によることが理解される。
 (実施例1)
 上記脱ガス処理を実施するための脱ガス処理装置の実施例について説明する。
 図4は実施例に係る脱ガス処理装置の概略的な構成図である。真空槽11内に巻き出しロール12と巻取りロール13とを備え、ガイドロール14a~14dにて矩形状に形成されたフィルム搬送路に沿って基板加熱用加熱ヒータ15が配置されている。高分子フィルム基板16は、真空槽11内の巻き出しロール12に取り付けられ、基板加熱用加熱ヒータ15で加熱され巻取りロール13で巻き取られる。真空槽11は真空ポンプ17で排気されることで真空に保たれる。
 ここで、高分子フィルム基板16を構成する可撓性フィルムとして、ポリイミド系のフィルムを用いた。ポリイミド系フィルムの他に、ポリイミド、ポリスチレン、ポリカーボネート、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルイミド、アラミドなどを使用することが出来る。この可撓性フィルムの両面に真空スパッタ法でAg薄膜を200nm形成した可撓性フィルムを高分子フィルム基板16とした。この高分子フィルム基板16を大気雰囲気下でその表面を大気に触れながら2時間かけて巻き出しロール12に巻き取った。
 以上のように構成された脱ガス処理装置において、熱処理温度が250℃になるように加熱ヒータ16の出力を調整すると共に、高分子フィルム基板16の熱処理時間が5分となるように高分子フィルム基板16の搬送速度を40cm/minに調節して搬送した。このとき、真空槽11に窒素ガスを100sccm流すとともに、バルブ18で排気量を制御して圧力を1torrに調節した。これは、ガスによる熱伝導で高分子フィルム基板16を加熱するためである。
 この真空中での加熱処理を終えた高分子フィルム基板16を巻取りロール13から巻き出して切り取り、高真空昇温脱離ガス分析装置に装着して脱離ガス特性を昇温速度0.5℃/sで測定した。
 図5に昇温過程での脱離ガスのプロファイルを示す。水分の脱離による80-300℃ピークは観測されず、200℃以上における脱ガスはフィルムの分解によることが質量分析から確認された。この真空中熱処理でフィルム基板中のガス脱離していることが確認できた。
 (実施例2)
 上記実施例1の脱ガス処理装置を用いて脱ガス処理した高分子フィルム基板を用いて、図7に示す構造を有する薄膜太陽電池を製造する。薄膜太陽電池の製造工程は図8(a)~(g)の製造工程に従うものとする。
 図8の工程(b)および工程(d)後に実施例1の脱ガス処理装置を用いて脱ガス処理を実施する。特に、工程(d)後は基板71の両面に第1電極層(下電極)74および第3電極層(接続電極の一部)73が形成されているので、加熱処理条件として熱処理温度150℃、熱処理時間10分で脱ガス処理を実施する。
 以上のようにして基板71を脱ガス処理した後、第1電極層74の上に光電変換層となる半導体層75および第2電極層である透明電極層76を順次形成し(工程(e)および工程(f))、第3電極層73の上に第4電極層(接続電極層)79を形成する(工程(g))。この後、レーザビームを用いて、基板71の両側の薄膜を分離加工して図7に示すような直列接続構造を得た。
 本発明は、高分子フィルム基板の脱ガス化処理を行う薄膜太陽電池の製造設備に適用可能である。

Claims (7)

  1.  可撓性フィルムの表面に金属又は無機物からなる膜がコーティングされてなる高分子フィルム基板を、当該高分子フィルム基板の表面に真空プロセスで薄膜を形成する前に、真空中で加熱処理して脱ガス処理する脱ガス処理方法であって、
     加熱処理温度が、100℃以上で、かつ前記可撓性フィルムの分解温度以下であり、
     加熱処理時間が、時間とともに指数的に減少するガス放出速度のタイムコンスタントを基準に、そのlog10倍以上であることを特徴とする高分子フィルム基板の脱ガス処理方法。
  2.  前記指数的に減少するガス放出速度のタイムコンスタントは、その活性化エネルギーをEとし、絶対温度をT、ボルツマン定数をkとして、exp(E/kT)に比例することを特徴とする請求項1記載の高分子フィルム基板の脱ガス処理方法。
  3.  加熱処理温度が150℃~250℃であり、脱ガス完了時間が少なくとも2分~5分であることを特徴とする請求項1又は請求項2記載の高分子フィルム基板の脱ガス処理方法。
  4.  加熱処理温度が150℃以上であり、脱ガス完了時間が5分以上であることを特徴とする請求項3記載の高分子フィルム基板の脱ガス処理方法。
  5.  前記可撓性フィルムは、ポリイミド、ポリスチレン、ポリカーボネート、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルイミド、アラミドからなる群から選ばれた高分子材料からなることを特徴とする請求項1から請求項4のいずれかに記載の高分子フィルム基板の脱ガス処理方法。
  6.  前記高分子フィルム基板にコーティングされた膜は、高反射率材料及び透明導電性材料からなることを特徴とする請求項1から請求項5のいずれかに記載の高分子フィルム基板の脱ガス処理方法。
  7.  真空槽と、前記真空槽内に設けられ表面に金属又は無機物からなる膜がコーティングされてなる高分子フィルム基板が巻回された巻き出しロールと、前記真空槽内に設けられ前記巻き出しロールから繰り出される高分子フィルム基板を巻き取る巻取りロールと、前記巻き出しロールから繰り出された高分子フィルム基板を加熱する加熱用ヒータとを備え、
     前記高分子フィルム基板の前記真空槽内での加熱処理条件として、加熱処理温度が100℃以上で、かつ前記可撓性フィルムの分解温度以下とし、加熱処理時間が、時間とともに指数的に減少するガス放出速度のタイムコンスタントを基準に、そのlog10倍以上で規定される時間であることを特徴とする脱ガス処理装置。
PCT/JP2009/060777 2008-08-29 2009-06-12 高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置 WO2010024018A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010526605A JP5273147B2 (ja) 2008-08-29 2009-06-12 高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008220904 2008-08-29
JP2008-220904 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010024018A1 true WO2010024018A1 (ja) 2010-03-04

Family

ID=41721193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060777 WO2010024018A1 (ja) 2008-08-29 2009-06-12 高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置

Country Status (2)

Country Link
JP (2) JP5273147B2 (ja)
WO (1) WO2010024018A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139574A (ja) * 2008-08-29 2013-07-18 Fuji Electric Co Ltd 高分子フィルム基板の脱ガス処理方法および脱ガス処理装置
DE102015119711A1 (de) 2014-12-25 2016-06-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wärmebehandlungsvorrichtung
JP2018144285A (ja) * 2017-03-02 2018-09-20 東洋紡株式会社 ガスバリア層付きポリイミド/無機基板積層体およびその製造方法
JP2020113748A (ja) * 2018-12-28 2020-07-27 旭化成株式会社 半導体装置、及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299481A (ja) * 1999-04-12 2000-10-24 Fuji Electric Co Ltd 薄膜太陽電池の製造方法及び同太陽電池基板の脱ガス処理装置
JP2003027234A (ja) * 2001-07-19 2003-01-29 Hirano Koon Kk 連続シート状材料の表面処理装置及びそのガスシール構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024018A1 (ja) * 2008-08-29 2010-03-04 富士電機アドバンストテクノロジー株式会社 高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299481A (ja) * 1999-04-12 2000-10-24 Fuji Electric Co Ltd 薄膜太陽電池の製造方法及び同太陽電池基板の脱ガス処理装置
JP2003027234A (ja) * 2001-07-19 2003-01-29 Hirano Koon Kk 連続シート状材料の表面処理装置及びそのガスシール構造

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139574A (ja) * 2008-08-29 2013-07-18 Fuji Electric Co Ltd 高分子フィルム基板の脱ガス処理方法および脱ガス処理装置
DE102015119711A1 (de) 2014-12-25 2016-06-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wärmebehandlungsvorrichtung
KR20160078895A (ko) 2014-12-25 2016-07-05 가부시키가이샤 고베 세이코쇼 열 처리 장치
CN105742209A (zh) * 2014-12-25 2016-07-06 株式会社神户制钢所 热处理装置
US9759488B2 (en) 2014-12-25 2017-09-12 Kobe Steel, Ltd. Heat treatment apparatus
JP2018144285A (ja) * 2017-03-02 2018-09-20 東洋紡株式会社 ガスバリア層付きポリイミド/無機基板積層体およびその製造方法
JP2020113748A (ja) * 2018-12-28 2020-07-27 旭化成株式会社 半導体装置、及びその製造方法
JP7370229B2 (ja) 2018-12-28 2023-10-27 旭化成株式会社 半導体装置、及びその製造方法

Also Published As

Publication number Publication date
JP5273147B2 (ja) 2013-08-28
JPWO2010024018A1 (ja) 2012-01-26
JP2013139574A (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5182610B2 (ja) 薄膜太陽電池の製造装置
US8465589B1 (en) Machine and process for sequential multi-sublayer deposition of copper indium gallium diselenide compound semiconductors
JP5273147B2 (ja) 高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置
WO2011142805A2 (en) Rapid thermal activation of flexible photovoltaic cells and modules
TWI558830B (zh) 製造透明導電氧化物層之方法
WO2010023947A1 (ja) 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
JP4985209B2 (ja) 薄膜太陽電池の製造装置
JP4497660B2 (ja) 光起電力素子の製造方法
JP3787410B2 (ja) 堆積膜製造方法及び光起電力素子の製造方法
JP4126810B2 (ja) 薄膜太陽電池の製造装置
JP2007180364A (ja) 光電変換素子及びその製造方法並びに薄膜形成装置
JP2000299481A (ja) 薄膜太陽電池の製造方法及び同太陽電池基板の脱ガス処理装置
JP5169068B2 (ja) 薄膜太陽電池の製造装置
JP4967272B2 (ja) Cu2O薄膜の結晶化方法及びCu2O薄膜を有する積層体
TWI550112B (zh) 光電轉換元件的基板的製造方法
JP2011176148A (ja) 太陽電池モジュールの製造方法およびそれを用いて得られた太陽電池モジュール
JP2000236105A (ja) 薄膜太陽電池の製造方法および装置
JP5071010B2 (ja) 光電変換素子の製造方法および製造装置
JPH11224952A (ja) 堆積膜及び光起電力素子の製造方法
JPH06204138A (ja) 薄膜形成方法および薄膜形成装置および半導体素子
EP3138133B1 (en) Additional temperature treatment step for thin-film solar cells
CN117693825A (zh) 用于制造具有钝化触点的硅太阳能电池的起始材料的方法
WO2010023948A1 (ja) 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
JP2004043910A (ja) 堆積膜形成方法および形成装置
KR101084362B1 (ko) 태양전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809673

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526605

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809673

Country of ref document: EP

Kind code of ref document: A1