WO2010023974A1 - 広範な病害抵抗性を付与するイネ遺伝子 - Google Patents

広範な病害抵抗性を付与するイネ遺伝子 Download PDF

Info

Publication number
WO2010023974A1
WO2010023974A1 PCT/JP2009/054081 JP2009054081W WO2010023974A1 WO 2010023974 A1 WO2010023974 A1 WO 2010023974A1 JP 2009054081 W JP2009054081 W JP 2009054081W WO 2010023974 A1 WO2010023974 A1 WO 2010023974A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
plant
seq
pathogenic
rice
Prior art date
Application number
PCT/JP2009/054081
Other languages
English (en)
French (fr)
Inventor
昌樹 森
長生 林
正治 菅野
博志 高辻
洋彦 廣近
賢司 小田
南 松井
Original Assignee
独立行政法人農業生物資源研究所
岡山県
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人農業生物資源研究所, 岡山県, 独立行政法人理化学研究所 filed Critical 独立行政法人農業生物資源研究所
Priority to JP2010526583A priority Critical patent/JP5591703B2/ja
Priority to US13/061,396 priority patent/US9127290B2/en
Publication of WO2010023974A1 publication Critical patent/WO2010023974A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5097Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving plant cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a method for producing a plant that provides resistance to either or both of a pathogenic bacterium and a pathogenic filamentous fungus, a plant obtained using the same, and use thereof.
  • SA salicylic acid
  • Non-patent Document 2 Non-patent Document 2
  • SA npr1 mutant of Arabidopsis thaliana no longer induces the expression of disease resistance genes and PR genes by SA, INA, etc., and at the same time cannot grow on a medium containing SA.
  • rice knowledge about the SA signal transduction pathway and signal transduction factors involved in this pathway is extremely poor.
  • the present invention has been made in view of such a situation, and an object of the present invention is to isolate a novel gene imparting a wide range of disease resistance.
  • the present inventors have identified genes that are resistant to pathogenic bacteria and pathogenic fungi by screening based on gain-of-function (function acquisition) as an index instead of loss-of-function. Tried. Specifically, the present inventors selected pathogenic bacteria infection resistance, pathogenic fungal infection resistance in rice full-length cDNA high-expressing Arabidopsis thaliana (rice-Family FOX line) prepared using FOX hunting system. Three-stage screening of sex selection and salicylic acid sensitivity selection was attempted. As a result, the present inventors succeeded in finding one Arabidopsis thaliana line (K15424 line) selected in any of these three types of screening.
  • the K15424 line has a rice full-length cDNA (AK070024, a novel protein kinase gene).
  • the present inventors produced rice overexpressing AK070024, and conducted rice white leaf blight resistance test in the T1 generation. As a result, it was confirmed that AK070024 overexpressing rice is resistant to leaf blight and blast.
  • the present invention relates to an unprecedented gene that is resistant to pathogenic bacteria and pathogenic fungi, and a plant into which the gene has been introduced. More specifically, the following [1] to [7] are provided. To do. [1] A method for imparting resistance to a pathogenic bacterium and / or a pathogenic fungus to a plant, including the following steps (a) and (b): (A) a step of introducing a DNA selected from the group consisting of (i) to (iv) below or a vector containing the DNA into a plant cell; and (b) a plant into which the DNA or vector has been introduced in step (a).
  • a process of regenerating plant bodies from cells (I) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 2; (Ii) DNA containing the coding region of the base sequence set forth in SEQ ID NO: 1, (Iii) DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence of SEQ ID NO: 2, and (iv) SEQ ID NO: 1 DNA that hybridizes under stringent conditions with DNA comprising the base sequence described in 1.
  • SEQ ID NO: 1 DNA that hybridizes under stringent conditions with DNA comprising the base sequence described in 1.
  • [3] A plant body regenerated from the plant cell according to [2], which is resistant to either or both of a pathogenic bacterium and a pathogenic filamentous fungus
  • [4] A plant body that is a progeny or clone of the plant body according to [3], which is resistant to either or both of a pathogenic bacterium and a pathogenic fungus
  • [5] A plant propagation material that is resistant to either or both of the pathogenic bacterium and the pathogenic fungus described in [3] or [4]
  • [6] A method for producing a plant that is resistant to either or both of pathogenic bacteria and pathogenic fungi, comprising the following steps (a) and (b): (A) a step of introducing a DNA selected from the group consisting of (i) to (iv) below or a vector containing the DNA into a plant cell; and (b) a plant into which the DNA or vector has been introduced in step (a).
  • a process of regenerating plant bodies from cells (I) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 2; (Ii) DNA containing the coding region of the base sequence set forth in SEQ ID NO: 1, (Iii) DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence of SEQ ID NO: 2, and (iv) SEQ ID NO: 1 DNA that hybridizes under stringent conditions with DNA comprising the base sequence described in 1.
  • a method for screening a candidate compound for a drug that confers resistance to either or both of a pathogenic bacterium and a pathogenic fungus on a plant including the following steps (a) to (c): (A) contacting a test compound with a cell or cell extract containing DNA having a structure in which all or part of the base sequence set forth in SEQ ID NO: 3 and a reporter gene are functionally linked; (B) measuring the expression level of the reporter gene, and (c) selecting a compound that increases the expression level as compared to the measurement in the absence of the test compound.
  • OsPSR5 OX is rice that overexpresses OsPSR5. It is a photograph showing blast resistance in OsPSR5 overexpressing rice. Photo 8th day after spray inoculation with blast fungus.
  • OsPSR5 OX is rice that overexpresses OsPSR5. Nipponbare is Wt. It is a graph which shows the blast disease resistance in OsPSR5 overexpression rice.
  • Koganenishiki is a slightly more resistant system than Nipponbare (Wt). Bacteria were inoculated when the 6th leaf was developed. The number of lesions indicates the total value of the diseased lesions of 5 leaves and 6 leaves 6 days after inoculation.
  • the present invention provides a method for imparting resistance to a pathogenic bacterium and / or a pathogenic fungus to a plant using a protein kinase gene (DDBJ Accession No: AK070024).
  • the pathogenic bacteria in the present invention include, but are not limited to, tomato spotted bacterial disease bacteria, rice white leaf blight fungus, rice withering fungus, and withering bacterial blight.
  • pathogenic filamentous fungi in the present invention include, but are not limited to, the cruciferous vegetable anthracnose fungus, blast fungus, and powdery mildew.
  • Whether or not a plant is resistant to pathogenic bacteria or pathogenic fungi can be determined by culturing the pathogenic bacteria or pathogenic fungi and then immersing the plant in a bacterial solution or spraying the bacterial solution on the plant. Can be evaluated.
  • genomic DNA used in the present invention is not particularly limited, and may be cDNA or genomic DNA.
  • Preparation of genomic DNA and cDNA can be performed by those skilled in the art using conventional means.
  • genomic DNA is designed using an appropriate primer pair based on the known base sequence information (SEQ ID NO: 1) of the protein kinase gene (DDBJ Accession No: AK070024), and using the genomic DNA prepared from the target plant as a template. It can be prepared by performing PCR and screening a genomic library using the resulting amplified DNA fragment as a probe.
  • the protein of the present invention A cDNA encoding a phosphorylase can be prepared. Furthermore, if a commercially available DNA synthesizer is used, the target DNA can be prepared by synthesis.
  • the DNA of the present invention encodes a protein-derived protein kinase (SEQ ID NO: 2) as long as it has a function of imparting resistance to one or both of pathogenic bacteria and pathogenic fungi to plants.
  • DNAs eg, mutants, derivatives, alleles, variants, and homologs
  • Such DNA includes, for example, DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence set forth in SEQ ID NO: 2. .
  • Methods well known to those skilled in the art for preparing DNA encoding proteins with altered amino acid sequences include, for example, the site-directed mutagenesis method (Kramer, W. and Fritz, HJ Oligonucleotide-directed construction of mutagenesis via gapped duplex DNA. Methods in Enzymology. 154, 1987, 350-367.).
  • the amino acid sequence of the encoded protein may be mutated in nature due to the mutation of the base sequence.
  • SEQ ID NO: 2 amino acid sequence of kinase
  • pathogens may occur in plants. As long as it has a function of imparting resistance to either or both of bacteria and pathogenic fungi, it is included in the DNA of the present invention.
  • the number of amino acids to be modified is not particularly limited, but is generally within 50 amino acids, preferably within 30 amino acids, more preferably within 10 amino acids (for example, within 5 amino acids, within 3 amino acids).
  • the amino acid modification is preferably a conservative substitution.
  • the hydropathic index (Kyte, J. and Doolittle, RF J Mol Biol. 157 (1), 1982, 105-132.) And Hydrophilicity value (US Pat. No. 4,554,101) for each amino acid before and after modification are , Preferably within ⁇ 2, more preferably within ⁇ 1, and most preferably within ⁇ 0.5.
  • DNA encoding proteins structurally similar to rice protein kinase include hybridization techniques (Southern, EM Journal of Molecular Biology. 98, 1975, 503.) and polymerase chain reaction. (PCR) technology (Saiki, RK et al. Science. 230, 1985, 1350-1354 .; Saiki, RK et al. Science, 239, 1988, 487-491.) Is possible. That is, the DNA of the present invention includes DNA that hybridizes under stringent conditions with the DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 1. In order to isolate such DNA, the hybridization reaction is preferably carried out under stringent conditions.
  • stringent conditions refers to conditions of 6M urea, 0.4% SDS, 0.5 ⁇ SSC, or hybridization conditions of stringency equivalent thereto, but are not particularly limited to these conditions. Isolation of DNA with higher homology can be expected by using conditions with higher stringency, for example, 6M urea, 0.4% SDS, and 0.1xSSC.
  • the DNA thus isolated is considered to have high homology with the amino acid sequence (SEQ ID NO: 2) of the protein phosphorylase derived from rice at the amino acid level.
  • High homology means a sequence of at least 50% or more, more preferably 70% or more, more preferably 90% or more (for example, 95%, 96%, 97%, 98%, 99% or more) in the entire amino acid sequence. Refers to the identity of The identity of the amino acid sequence and nucleotide sequence is determined by the algorithm BLAST (Karlin, S.
  • the DNA of the present invention may be inserted into a vector.
  • the vector is not particularly limited as long as it can express the inserted gene in plant cells.
  • a vector having a promoter for constitutive gene expression in plant cells for example, potato chitinase gene SK2 promoter, cauliflower mosaic virus 35S promoter, etc.
  • inducibly activated by external stimulation It is also possible to use a vector having a promoter.
  • the coding region of the protein in the base sequence described in SEQ ID NO: 1 is from the 34th base to the 1251st base.
  • the amino acid sequence generated from the 34th base to the 1251st base in the base sequence described in SEQ ID NO: 1 is shown in SEQ ID NO: 2.
  • the present invention provides a method for producing a plant that is resistant to either or both of pathogenic bacteria and pathogenic fungi.
  • plant cells into which the DNA or vector is introduced include monocotyledonous plants such as rice, wheat, barley, corn, and sorghum, and dicotyledonous plants such as Arabidopsis, rapeseed, tomato, soybean, and potato. It is not limited to these.
  • the form of the plant cell into which the DNA or vector is introduced is not particularly limited as long as it can regenerate the plant body, and includes, for example, suspension culture cells, protoplasts, leaf sections, and callus.
  • the introduction of the DNA or vector into plant cells can be carried out by methods known to those skilled in the art such as polyethylene glycol method, electroporation method, Agrobacterium-mediated method, particle gun method and the like. it can.
  • Agrobacterium for example, according to the method of Nagel et al. (Nagel, R. et al. FEMS Microbiol Lett. 67, 1990, 325-328.)
  • the DNA can be introduced into a plant cell by infecting the plant cell with the Agrobacterium by direct infection method or leaf disk method.
  • the regeneration of plant bodies from plant cells can be performed by methods known to those skilled in the art depending on the type of plant.
  • the method of Fujimura et al. (Fujimura. Et al. Tissue Culture Lett. 2, 1995, 74.) can be mentioned, and for wheat, Harris et al. (Harris, R. et al. Plant Cell Reports. 7 1988, 337-340) and Ozgen et al. (Ozgen, M. et al. Plant Cell Reports. 18, 1998, 331-335).
  • Kihara and Funatsuki Kihara, M. and Funatsuki, H. Breeding Sci. 44, 1994, 157-160.
  • Lurs and Lorz (Lurs, R.
  • offspring or clones can be obtained from the plant by sexual or asexual reproduction. It is also possible to obtain a propagation material (for example, seeds, fruits, cuttings, tubers, tuberous roots, strains, callus, protoplasts, etc.) from the plant body, its descendants or clones, and mass-produce the plant body based on them. Is possible.
  • a propagation material for example, seeds, fruits, cuttings, tubers, tuberous roots, strains, callus, protoplasts, etc.
  • the control means a plant body of the same species as the plant body of the present invention, in which the DNA of the present invention is not overexpressed.
  • the control in the present invention is not limited at all as long as it is a plant of the same species as the plant of the present invention and the DNA of the present invention is not overexpressed. Therefore, the control of the present invention includes, for example, a plant into which DNA other than the DNA encoding the protein phosphorylase derived from the rice of the present invention has been introduced.
  • Examples of such a plant include, for example, a plant of the same species as the transformed plant of the present invention, a plant transformed with a DNA other than the DNA of the present invention, and the function of the DNA of the present invention.
  • a plant transformed with a DNA introduced with a deletion mutation, a plant transformed with a DNA converted to a function-inhibited form of the DNA of the present invention, a DNA fragment of a region insufficient for functional expression of the DNA of the present invention The plant body transformed with is mentioned, but it is not limited to these.
  • the present invention provides a plant exhibiting resistance to one or both of pathogenic bacteria and pathogenic fungi, plant cells capable of regenerating the plant, plants that are descendants or clones of the plant, and the above It also provides plant propagation material.
  • the plant body, plant cell, offspring or clone plant body and propagation material of the present invention may further have sensitivity to salicylic acid.
  • the present invention also provides a method for screening a candidate compound for a drug that confers resistance to either or both of a pathogenic bacterium and a pathogenic fungus on a plant.
  • a cell or a cell extract containing DNA having a structure in which a DNA comprising all or part of the 2000 bp upstream of the AK070024 gene including the transcriptional regulatory region of the AK070024 gene and a reporter gene are functionally linked to each other;
  • the test compound is brought into contact.
  • “functionally linked” means upstream of the AK070024 gene containing the transcriptional regulatory region of the AK070024 gene so that expression of the reporter gene is induced by binding of a transcription factor to the transcriptional regulatory region of the AK070024 gene. It means that a DNA comprising all or part of 2000 bp is bound to a reporter gene. Therefore, even when the reporter gene is bound to another gene and forms a fusion protein with another gene product, the transcription factor of the fusion protein binds to the transcriptional regulatory region of the AK070024 gene. Any expression that is induced is included in the meaning of “functionally linked”.
  • the base sequence of 2000 bp upstream of the AK070024 gene is shown in SEQ ID NO: 3.
  • the reporter gene used in the present method is not particularly limited as long as its expression can be detected, and examples thereof include CAT gene, lacZ gene, luciferase gene, and GFP gene.
  • Examples of “cells containing DNA having a structure in which the transcriptional regulatory region of the AK070024 gene and a reporter gene are functionally linked” include cells into which a vector having such a structure inserted is introduced. Such vectors can be prepared by methods well known to those skilled in the art. Introduction of the vector into the cells can be performed by a general method such as calcium phosphate precipitation, electric pulse perforation, lipofectamine method, microinjection method and the like.
  • Cells containing DNA having a structure in which the transcriptional regulatory region of the AK070024 gene and a reporter gene are functionally linked include cells in which the structure is inserted into the chromosome.
  • the DNA structure can be inserted into the chromosome by a method generally used by those skilled in the art, for example, a gene introduction method via Agrobacterium.
  • a cell extract containing DNA having a structure in which a transcriptional regulatory region of the AK070024 gene and a reporter gene are functionally linked refers to, for example, a cell extract contained in a commercially available in vitro transcription translation kit containing AK070024 gene Examples include those to which DNA having a structure in which a transcriptional regulatory region and a reporter gene are functionally linked is added.
  • test compound used in this method is not particularly limited.
  • natural compounds, organic compounds, inorganic compounds, proteins, peptides and other single compounds as well as compound libraries, gene library expression products, cell extracts, cell culture supernatants, fermented microorganism products, marine organism extracts Products, plant extracts and the like, but are not limited thereto.
  • Contact in this method means that the test compound is added to the culture solution of “the cell containing DNA having a structure in which the transcriptional regulatory region of AK070024 gene and the reporter gene are functionally linked”, or the DNA containing the DNA.
  • the test compound can be added to a commercially available cell extract.
  • the test compound is a protein, for example, it can be performed by introducing a DNA vector expressing the protein into the cell.
  • the expression level of the reporter gene is then measured.
  • the expression level of the reporter gene can be measured by methods known to those skilled in the art depending on the type of the reporter gene. For example, when the reporter gene is a CAT gene, the expression level of the reporter gene can be measured by detecting acetylation of chloramphenicol by the gene product.
  • the reporter gene is a lacZ gene, by detecting the color development of the dye compound catalyzed by the gene expression product, and when the reporter gene is a luciferase gene, the fluorescent compound catalyzed by the gene expression product By detecting fluorescence, and in the case of a GFP gene, the expression level of the reporter gene can be measured by detecting fluorescence due to the GFP protein.
  • a compound that increases the expression level of the measured reporter gene is then selected as compared to the measurement in the absence of the test compound.
  • the compound thus selected becomes a candidate compound for a drug that confers resistance to one or both of pathogenic bacteria and pathogenic fungi on plants.
  • a cDNA library was prepared with Agrobacterium (Agrobacterium GV3101) using the cDNA standardized as described above. Using these Agrobacterium, Arabidopsis thaliana Columbia (Col-0) was transformed by the flower infection method. A rice-plant FOX line consisting of plant bodies was produced. T2 seed was used for screening.
  • the cruciferous vegetable anthracnose fungus ( Colletotrichum higginsianum , Ch ) is a filamentous fungus that infects by using an attachment device and penetrating mycelia like blast fungus, and can infect Arabidopsis thaliana. This bacterium was used for selection of resistance to infection with pathogenic filamentous fungi. Infection was performed by the improved dip method used for selection with Pst 3000. The conidia concentration of the infectious solution was 10 5 to 10 6 conidia / ml, and selection was made based on the presence or absence of survival 6 days after infection.
  • SA Salicylic acid
  • Rice White Leaf Blight Resistance Test Using rice white leaf blight fungus race T7174, the method of Mori et al. (Mori et al. 2007) was modified and tested. The main modification was that approximately 5cm was cut from the tip of the young leaf blade of rice, and inoculation was performed by immersing the cut surface in a bacterial solution.
  • Salicylic acid-sensitive selection rice-Nazuna FOX strains were first selected from the lines that killed in + SA medium (primary screening). For the selected lines, secondary screening was performed to select lines that died after germination in the + SA medium and grew to the same extent as the wild type in the -SA medium (FIG. 2), and 95 lines were selected. For these lines, the partial rice sequence was determined after PCR amplification of the inserted rice full-length cDNA.
  • K15424 Lines Selected in Three Types of Screening and Their Causal Genes
  • This line is likely to have acquired resistance to pathogenic bacteria and pathogenic fungi by enhancing the defense response mechanism involving the SA signaling system.
  • Rice full-length cDNA was inserted into the K15424 line.
  • a phylogenetic analysis of AK070024 revealed that it was a novel protein kinase gene, closely related to the NAK (Novel Arabisopsis protein Kinase) gene.
  • AK070024 a novel gene (AK070024) was found by screening of rice FOX strain Arabidopsis thaliana, which gave three traits of pathogenic bacteria ( Pst 3000) resistance, pathogenic fungus (Ch) resistance, and salicylic acid hypersensitivity. Rice that overexpressed this gene was resistant to leaf blight and blast. From the above results, it was shown that plants overexpressing this gene are resistant to multiple diseases regardless of whether they are dicotyledonous or monocotyledonous plants. This gene can be a material for imparting combined disease resistance to various crops by genetic recombination technology.
  • a plant body resistant to pathogenic bacteria and pathogenic filamentous fungi is provided.
  • a plant overexpressed with the gene identified in the present invention is resistant to a plurality of diseases regardless of whether it is a dicotyledonous plant or a monocotyledonous plant. Therefore, the gene identified in the present invention is useful as a material for imparting combined disease resistance to various crops.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 FOX hunting systemを用いて作製されたイネ完全長cDNA高発現系統シロイヌナズナ(イネ-ナズナFOX系統)を対象に、病原細菌感染抵抗性選抜、病原糸状菌感染抵抗性選抜、及びサリチル酸感受性選抜の3段階のスクリーニングを試みた。その結果、これら3種類のスクリーニングのいずれにおいても選抜されたシロイヌナズナ1系統(K15424系統)を選抜することに成功した。K15424系統はイネの完全長cDNAを有する。AK070024を過剰発現するイネを作製し、T1世代でイネ白葉枯病抵抗性検定を行った結果、AK070024過剰発現イネは白葉枯病及びいもち病に抵抗性であることが確認された。

Description

広範な病害抵抗性を付与するイネ遺伝子
 本発明は、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性を与える植物体の製造方法及びこれを用いて得られる植物体、並びにその利用に関する。
 病害がイネの生産に与える被害は大きい。農業の現場では農薬を用いて防除しているが、農薬にかかるコストおよび農薬が人体および環境に及ぼす影響への懸念から、無農薬または低農薬での稲作が望まれる。特に遺伝子を用いる方法が有効と考えられ、近年、モデル植物であるシロイヌナズナなどから病害抵抗性遺伝子が単離されている。しかしながら、病害抵抗性遺伝子のスクリーニングは主にloss-of-function(機能欠損)を指標に行われてきたため、多くの重要遺伝子が見逃されていると考えられる。
 一方シロイヌナズナの病害応答において、サリチル酸(SA)がシグナル分子として働くシグナル伝達経路が存在し、その分子機構が詳細に研究されている。病原体がシロイヌナズナに感染すると細胞内SA濃度が上昇し、それにより、シグナル伝達経路においてSAの下流で制御されるPR遺伝子など多数の遺伝子の発現変化を含む病害応答反応が誘導される。また、SAやその誘導体であるINA(2,6-dichloroisonicotinic acid)を外部から処理することにより、SAシグナル伝達系が活性化され、下流で制御される病害抵抗性遺伝子やPR遺伝子の発現が誘導される。
 SAシグナル伝達系においては、NPR1タンパク質が重要な役割を果たしている(非特許文献2)。シロイヌナズナのnpr1変異体では、SAやINAなどによる病害抵抗性遺伝子及びPR遺伝子の発現の誘導が見られなくなると同時に、SAを含む培地上で生育出来なくなることが知られている。しかしながらイネに関しては、SAシグナル伝達経路およびこの経路に関わるシグナル伝達因子に関する知見が極めて乏しい。
 本発明の先行技術文献を以下に示す。
Becker, D et al., (1990) Nucleic Acid Res., 18(1): 203 Cao, H et al (1997) Cell 88:57-63 Ichikawa, T et al., (2006) Plant J. 48: 974-985 Kikuchi, S et al., (2003) Science 301: 376-379 Mori, M et al., (2007) Plant Mol. Biol., 63:847-860 Nakamura, H et al., (2007) Plant Mol Biol. 65:357-371 Taji, T et al., (2002) Plant J., 29(4): 417-426, Toki, S et al., (2006) Plant J. 47:969-76.
 本発明はこのような状況に鑑みてなされたものであり、本発明は、広範な病害抵抗性を付与する新規な遺伝子を単離することを課題とする。
 上記課題を解決するために本発明者らは、loss-of-functionに代わる指標としてgain-of-function(機能獲得)に基づくスクリーニングにより、病原細菌及び病原糸状菌に抵抗性である遺伝子の同定を試みた。具体的には本発明者らは、FOX hunting systemを用いて作製されたイネ完全長cDNA高発現系統シロイヌナズナ(イネ-ナズナFOX系統)を対象に、病原細菌感染抵抗性選抜、病原糸状菌感染抵抗性選抜、及びサリチル酸感受性選抜の3段階のスクリーニングを試みた。その結果本発明者らは、これら3種類のスクリーニングのいずれにおいても選抜されたシロイヌナズナ1系統(K15424系統)を見出すことに成功した。K15424系統はイネの完全長cDNA(AK070024、新規なタンパク質リン酸化酵素遺伝子)を有する。本発明者らはAK070024を過剰発現するイネを作製し、T1世代でイネ白葉枯病抵抗性検定を行った。その結果、AK070024過剰発現イネは白葉枯病及びいもち病に抵抗性であることが確認された。
 本発明は、病原細菌及び病原糸状菌に抵抗性であるという前例を見ない遺伝子及び当該遺伝子が導入された植物体に関するものであり、より詳しくは、以下の〔1〕~〔7〕を提供する。
〔1〕下記(a)及び(b)の工程を含む、植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する方法;
(a)下記(i)から(iv)からなる群より選択されるDNA又は該DNAを含むベクターを植物細胞に導入する工程、及び
(b)工程(a)においてDNA又はベクターが導入された植物細胞から植物体を再生する工程、
(i)配列番号:2に記載のアミノ酸配列を含むタンパク質をコードするDNA、
(ii)配列番号:1に記載の塩基配列のコード領域を含むDNA、
(iii)配列番号:2に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含むタンパク質をコードするDNA、及び
(iv)配列番号:1に記載の塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA、
〔2〕下記(a)から(d)のいずれかに記載のDNAまたは該DNAを含むベクターが導入された植物細胞であって、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体を再生しうる植物細胞;
(a)配列番号:2に記載のアミノ酸配列を含むタンパク質をコードするDNA、
(b)配列番号:1に記載の塩基配列のコード領域を含むDNA、
(c)配列番号:2に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含むタンパク質をコードするDNA、及び
(d)配列番号:1に記載の塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA、
〔3〕〔2〕に記載の植物細胞から再生された、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体、
〔4〕〔3〕に記載の植物体の子孫またはクローンである、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体、
〔5〕〔3〕または〔4〕に記載の病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体の繁殖材料、
〔6〕下記(a)及び(b)の工程を含む、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体の製造方法;
(a)下記(i)から(iv)からなる群より選択されるDNA又は該DNAを含むベクターを植物細胞に導入する工程、及び
(b)工程(a)においてDNA又はベクターが導入された植物細胞から植物体を再生する工程、
(i)配列番号:2に記載のアミノ酸配列を含むタンパク質をコードするDNA、
(ii)配列番号:1に記載の塩基配列のコード領域を含むDNA、
(iii)配列番号:2に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含むタンパク質をコードするDNA、及び
(iv)配列番号:1に記載の塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA、
〔7〕下記(a)から(c)の工程を含む、植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する薬剤の候補化合物のスクリーニング方法;
(a)配列番号:3に記載の塩基配列の全部又は一部とレポーター遺伝子とが機能的に結合した構造を有するDNAを含む細胞または細胞抽出液と、被検化合物を接触させる工程、
(b)該レポーター遺伝子の発現レベルを測定する工程、及び
(c)被検化合物の非存在下において測定した場合と比較して、該発現レベルを増加させる化合物を選択する工程。
イネ-ナズナFOX系統のPst3000 による選抜法(改良型Dip法)と選抜例を示す写真である。選抜例のWild typeはColumbia(Col-0)を使用した。Cpr5-2は既知の耐病性変異体をコントロールとして使用した。 イネ-ナズナFOX系統のSA感受性選抜例(二次スクリーニング)結果を示す写真である。0.05 mM SAを含む培地(+SA)および含まない培地(-SA)上でのFOX系統の生存を調べた。対照として野生型(Wt)およびSA高感受性の変異体(npr1)を用いた。 OsPSR5過剰発現イネにおけるイネ白葉枯病抵抗性を示すグラフ及び写真である。葉身の先端部(写真右端)に白葉枯病菌を接種後、2週間後の結果を示す。あそみのりは白葉枯病に高度抵抗性を有する品種である。日本晴はWt。ベクターコントロールはpRiceFOXのみを導入したもの。OsPSR5:OXはOsPSR5を過剰発現するイネ。 OsPSR5過剰発現イネにおけるいもち病抵抗性を示す写真である。いもち病菌を噴霧接種後8日目の写真。OsPSR5:OXはOsPSR5を過剰発現するイネ。日本晴はWt。 OsPSR5 過剰発現イネにおけるいもち病抵抗性を示すグラフである。黄金錦は日本晴(Wt)よりやや抵抗性の強い系統である。第6葉展開時に菌を接種した。病斑数は接種6日後の5葉、6葉の罹病性病斑の合計値を示す。
〔発明の実施の形態〕
 本発明は、タンパク質リン酸化酵素遺伝子(DDBJ Accession No: AK070024)を用いた植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する方法を提供する。
 本発明における病原細菌としてはトマト斑葉細菌病細菌、イネ白葉枯病菌、イネ立枯れ病菌、籾枯れ細菌病菌などが挙げられるがこれらに限定されない。また本発明における病原糸状菌としてはアブラナ科野菜類炭そ病菌、いもち病菌、うどんこ病菌などが挙げられるがこれらに限定されない。
 植物が病原細菌や病原糸状菌に抵抗性を有するか否かは、病原細菌や病原糸状菌を培養した後、植物体を菌液に浸したり、菌液を植物体にスプレーしたりすることにより評価することができる。
 本発明に用いるDNAの形態に特に制限はなく、cDNAであってもゲノムDNAであってもよい。ゲノムDNAおよびcDNAの調製は、当業者にとって常套手段を利用して行うことが可能である。例えば、ゲノムDNAはタンパク質リン酸化酵素遺伝子(DDBJ Accession No: AK070024)の公知の塩基配列情報(配列番号:1)から適当なプライマー対を設計して、目的の植物から調製したゲノムDNAを鋳型にPCRを行い、得られる増幅DNA断片をプローブとしてゲノミックライブラリーをスクリーニングすることによって調製することができる。また、同様にプライマー対を設計して、目的の植物から調製したcDNAまたはmRNAを鋳型にPCRを行い、得られる増幅DNA断片をプローブとして用いてcDNAライブラリーをスクリーニングすることにより、本発明のタンパク質リン酸化酵素をコードするcDNAを調製することができる。さらに市販のDNA合成機を用いれば、目的のDNAを合成により調製することも可能である。
 本発明のDNAは、植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する機能を有している限り、イネ由来のタンパク質リン酸化酵素(配列番号:2)をコードするDNAのみならず、該タンパク質に構造的に類似したタンパク質をコードするDNA(例えば、変異体、誘導体、アレル、バリアントおよびホモログ)を用いることもできる。このようなDNAには、例えば、配列番号:2に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列からなるタンパク質をコードするDNAが含まれる。
 アミノ酸配列が改変されたタンパク質をコードするDNAを調製するための当業者によく知られた方法としては、例えば、site-directed mutagenesis法(Kramer, W. and Fritz, H.J. Oligonucleotide-directed construction of mutagenesis via gapped duplex DNA. Methods in Enzymology. 154, 1987, 350-367.)が挙げられる。また、塩基配列の変異によりコードするタンパク質のアミノ酸配列が変異することは、自然界においても生じ得る。このように天然型のタンパク質リン酸化酵素のアミノ酸配列(配列番号:2)において1もしくは複数のアミノ酸が置換、欠失もしくは付加したアミノ酸配列を有するタンパク質をコードするDNAであっても、植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する機能を有している限り、本発明のDNAに含まれる。
 改変されるアミノ酸の数は、特に制限はないが、一般的には、50アミノ酸以内、好ましくは30アミノ酸以内、より好ましくは10アミノ酸以内(例えば、5アミノ酸以内、3アミノ酸以内)である。アミノ酸の改変は、好ましくは保存的置換である。改変前と改変後の各アミノ酸についてのhydropathic index(Kyte, J. and Doolittle, R.F. J Mol Biol. 157(1), 1982, 105-132.)やHydrophilicity value(米国特許第4,554,101号)の数値は、±2以内が好ましく、さらに好ましくは±1以内であり、最も好ましくは±0.5以内である。
 また、たとえ、塩基配列が変異した場合でも、それがタンパク質中のアミノ酸の変異を伴わない場合(縮重変異)もあり、このような縮重変異体も本発明のDNAに含まれる。
 イネ由来のタンパク質リン酸化酵素(配列番号:2)に構造的に類似したタンパク質をコードするDNAとしては、ハイブリダイゼーション技術(Southern, E.M. Journal of Molecular Biology. 98, 1975, 503.)やポリメラーゼ連鎖反応(PCR)技術(Saiki, R.K. et al. Science. 230, 1985, 1350-1354.; Saiki, R.K. et al. Science, 239, 1988, 487-491.)を利用して調製したものを用いることも可能である。即ち、本発明のDNAには、配列番号:1に記載の塩基配列からなるDNAとストリンジェントな条件でハイブリダイズするDNAが含まれる。このようなDNAを単離するためには、好ましくはストリンジェントな条件下でハイブリダイゼーション反応を行なう。本発明において「ストリンジェントな条件」とは、6M尿素、0.4%SDS、0.5xSSCの条件またはこれと同等のストリンジェンシーのハイブリダイゼーション条件を指すが、特にこれらの条件に限定されるものではない。よりストリンジェンシーの高い条件、例えば、6M尿素、0.4%SDS、0.1xSSCの条件を用いれば、より相同性の高いDNAの単離を期待することができる。
 ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度や塩濃度など複数の要素が考えられるが、当業者であればこれら要素を適宜選択することで最適なストリンジェンシーを実現することが可能である。これにより単離されたDNAは、アミノ酸レベルにおいて、イネ由来のタンパク質リン酸化酵素のアミノ酸配列(配列番号:2)と高い相同性を有すると考えられる。高い相同性とは、アミノ酸配列全体で、少なくとも50%以上、さらに好ましくは70%以上、さらに好ましくは90%以上(例えば、95%,96%,97%,98%,99%以上)の配列の同一性を指す。アミノ酸配列や塩基配列の同一性は、カーリンおよびアルチュールによるアルゴリズムBLAST(Karlin, S. and Altschul, S.F. Proc Natl Acad Sci U S A. 87(6), 1990, 2264-2268.; Karlin, S. and Altschul, S.F. Proc Natl Acad Sci U S A. 90(12), 1993, 5873-5877.)を用いて決定できる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul, S.F. et al. J Mol Biol. 215(3), 1990, 403-410.)。BLASTNを用いて塩基配列を解析する場合は、パラメーターは、例えばscore=100、wordlength=12とする。また、BLASTXを用いてアミノ酸配列を解析する場合は、パラメーターは、例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である。
 本発明のDNAは、ベクターに挿入された形態であってもよい。ベクターとしては、植物細胞内で挿入遺伝子を発現させることが可能なものであれば特に制限はない。例えば、植物細胞内での恒常的な遺伝子発現を行うためのプロモーター(例えば、ジャガイモ・キチナーゼ遺伝子SK2のプロモーター、カリフラワーモザイクウイルスの35Sプロモーター等)を有するベクターや外的な刺激により誘導的に活性化されるプロモーターを有するベクターを用いることも可能である。
 なお、配列番号:1に記載の塩基配列におけるタンパク質のコード領域は、34番目の塩基から1251番目の塩基である。配列番号:1に記載の塩基配列のうち34番目の塩基から1251番目の塩基から生成されるアミノ酸配列は、配列番号:2に示される。
 植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する機能を有する上記のDNAや該DNAを含むベクターを植物細胞に導入し、該植物細胞から植物体を再生することにより、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体を製造することができる。従って本発明は、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体の製造方法を提供する。
 上記DNAやベクターを導入する植物細胞の種類としては、例えば、イネ、小麦、大麦、トウモロコシ、ソルガム等の単子葉植物、シロイヌナズナ、ナタネ、トマト、大豆、ジャガイモ等の双子葉植物等があげられるがこれらに限定されない。
 上記DNAやベクターが導入される植物細胞の形態は、植物体を再生しうるものであれば、特に制限はなく、例えば、懸濁培養細胞、プロトプラスト、葉の切片、カルスなどが含まれる。
 上記DNAやベクターの植物細胞への導入は、例えば、ポリエチレングリコール法、電気穿孔法(エレクトロポーレーション)、アグロバクテリウムを介する方法、パーティクルガン法等の当業者に公知の方法によって実施することができる。アグロバクテリウムを介する方法においては、例えばNagelらの方法(Nagel, R. et al. FEMS Microbiol Lett. 67, 1990, 325-328.)にしたがって、上記DNAが挿入された発現ベクターをアグロバクテリウムに導入し、このアグロバクテリウムを直接感染法やリーフディスク法で植物細胞に感染させることにより、上記DNAを植物細胞に導入することができる。
 植物細胞からの植物体の再生は、植物の種類に応じて当業者に公知の方法で行うことが可能である。例えば、イネであればFujimuraら(Fujimura. et al. Tissue Culture Lett. 2, 1995, 74.)の方法が挙げられ、小麦であればHarrisら(Harris, R. et al. Plant Cell Reports. 7, 1988, 337-340)の方法やOzgenら(Ozgen, M. et al. Plant Cell Reports. 18, 1998, 331-335)の方法が挙げられ、大麦であればKiharaとFunatsuki(Kihara, M. and Funatsuki, H. Breeding Sci. 44, 1994, 157-160.)の方法やLursとLorz(Lurs, R. and Lorz, H. Theor. Appl. Genet. 75, 1987, 16-25.)の方法が挙げられ、トウモロコシであればShillitoら(Shillito, R.D., et al. Bio/Technology, 7, 1989, 581-587.)の方法やGordon-Kammら(Gordon-Kamm, W.J. et al. Plant Cell. 2(7), 1990, 603-618.)の方法が挙げられ、ソルガムであればWenら(Wen, F.S., et al. Euphytica. 52, 1991, 177-181.)の方法やHagio(Hagio, T. Breeding Sci. 44, 1994, 121-126.)の方法が挙げられるが、これらに限定されない。
 またシロイヌナズナであればAkamaら(Akama. et al. Plant Cell Reports. 12, 1992, 7-11.)の方法が挙げられ、ナタネであればWangら(Wang, Y.P. et al. Plant Breeding. 124, 2005, 1-4.)の方法が挙げられ、トマトであればKoblitzとKoblitz(Koblitz, H and  Koblitz, D. Plant Cell Reports. 1, 1982, 143-146.)の方法やMorganとCocking(Morgan, A. and Cocking, E.C. Z.Pflanzenpysiol. 106, 1982, 97-104.)の方法が挙げられ、大豆であればLazzeriら(Lazzeri, P.A. et al., Plant Mol. Biol. Rep. 3, 1985, 160-167.)の方法やRanchら(Ranch, J.P. et al., In Vitro Cell Dev. Biol. 21, 1985, 653-658.)の方法が挙げられ、ジャガイモであればVisserら(Visser, R.G.F. et al. Theor. Appl. Genet. 78, 1989, 594-600.)の方法が挙げられるが、これらに限定されない。
 一旦、ゲノム内に上記DNAやベクターが導入された形質転換植物体が得られれば、該植物体から有性生殖または無性生殖により子孫あるいはクローンを得ることが可能である。また、該植物体やその子孫あるいはクローンから繁殖材料(例えば、種子、果実、切穂、塊茎、塊根、株、カルス、プロトプラスト等)を得て、それらを基に該植物体を量産することも可能である。
 植物が病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を有するか否かは、対照と比較することによって判断することが出来る。本発明において対照とは、本発明の植物体と同じ種の植物体であって、本発明のDNAが過剰発現していない植物体を意味する。本発明における対照は、本発明の植物体と同じ種の植物体であって本発明のDNAが過剰発現していないものである限り何ら限定されない。従って本発明の対照には、例えば本発明のイネ由来のタンパク質リン酸化酵素をコードするDNA以外のDNAが導入された植物体も含まれる。このような植物体の例としては、例えば、本発明の形質転換植物体と同じ種の植物体であって、本発明のDNA以外のDNAで形質転換された植物体、本発明のDNAの機能欠失変異導入のDNAで形質転換された植物体、本発明のDNAの機能抑制型に変換されたDNAで形質転換された植物体、本発明のDNAの機能発現に不十分な領域のDNA断片で形質転換された植物体などが挙げられるが、これらに制限されない。
 このように本発明は、病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を示す植物体、該植物体を再生しうる植物細胞、該植物体の子孫あるいはクローンである植物体、および上記植物体の繁殖材料をも提供する。
 なお本発明の植物体、植物細胞、子孫あるいはクローンである植物体、繁殖材料は、さらにサリチル酸に対する感受性を有していてもよい。
 また本発明は、植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する薬剤の候補化合物のスクリーニング方法を提供する。
 本方法においては、まず、AK070024遺伝子の転写調節領域を含むAK070024遺伝子の上流2000bpの全部又は一部を含むDNAとレポーター遺伝子とが機能的に結合した構造を有するDNAを含む細胞または細胞抽出液と、被検化合物を接触させる。ここで「機能的に結合した」とは、AK070024遺伝子の転写調節領域に転写因子が結合することにより、レポーター遺伝子の発現が誘導されるように、AK070024遺伝子の転写調節領域を含むAK070024遺伝子の上流2000bpの全部又は一部を含むDNAとレポーター遺伝子とが結合していることをいう。従って、レポーター遺伝子が他の遺伝子と結合しており、他の遺伝子産物との融合タンパク質を形成する場合であっても、AK070024遺伝子の転写調節領域に転写因子が結合することによって、該融合タンパク質の発現が誘導されるものであれば、上記「機能的に結合した」の意に含まれる。
 なおAK070024遺伝子の上流2000bpの塩基配列を配列番号:3に示す。
 本方法に用いるレポーター遺伝子としては、その発現が検出可能であれば特に制限はなく、例えば、CAT遺伝子、lacZ遺伝子、ルシフェラーゼ遺伝子、およびGFP遺伝子等が挙げられる。「AK070024遺伝子の転写調節領域とレポーター遺伝子とが機能的に結合した構造を有するDNAを含む細胞」として、例えば、このような構造が挿入されたベクターを導入した細胞が挙げられる。このようなベクターは、当業者に周知の方法により作製することができる。ベクターの細胞への導入は、一般的な方法、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法、リポフェクタミン法、マイクロインジェクション法等によって実施することができる。「AK070024遺伝子の転写調節領域とレポーター遺伝子とが機能的に結合した構造を有するDNAを含む細胞」には、染色体に該構造が挿入された細胞も含まれる。染色体へのDNA構造の挿入は、当業者に一般的に用いられる方法、例えば、アグロバクテリウムを介した遺伝子導入法により行うことができる。
 「AK070024遺伝子の転写調節領域とレポーター遺伝子とが機能的に結合した構造を有するDNAを含む細胞抽出液」とは、例えば、市販の試験管内転写翻訳キットに含まれる細胞抽出液に、AK070024遺伝子の転写調節領域とレポーター遺伝子とが機能的に結合した構造を有するDNAを添加したものを挙げることができる。
 本方法に用いる被検化合物としては、特に制限はない。例えば、天然化合物、有機化合物、無機化合物、タンパク質、ペプチドなどの単一化合物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物等が挙げられるが、これらに限定されない。
 本方法における「接触」は、「AK070024遺伝子の転写調節領域とレポーター遺伝子とが機能的に結合した構造を有するDNAを含む細胞」の培養液に被検化合物を添加する、または該DNAを含む上記の市販された細胞抽出液に被検化合物を添加することにより行うことができる。被検化合物がタンパク質の場合には、例えば、該タンパク質を発現するDNAベクターを、該細胞へ導入することにより行うことも可能である。
 本方法においては、次いで、該レポーター遺伝子の発現レベルを測定する。レポーター遺伝子の発現レベルは、該レポーター遺伝子の種類に応じて、当業者に公知の方法により測定することができる。例えば、レポーター遺伝子がCAT遺伝子である場合には、該遺伝子産物によるクロラムフェニコールのアセチル化を検出することによって、レポーター遺伝子の発現量を測定することができる。レポーター遺伝子がlacZ遺伝子である場合には、該遺伝子発現産物の触媒作用による色素化合物の発色を検出することにより、また、ルシフェラーゼ遺伝子である場合には、該遺伝子発現産物の触媒作用による蛍光化合物の蛍光を検出することにより、さらに、GFP遺伝子である場合には、GFPタンパク質による蛍光を検出することにより、レポーター遺伝子の発現量を測定することができる。
 本方法においては、次いで、被検化合物の非存在下において測定した場合と比較して、測定したレポーター遺伝子の発現レベルを増加させる化合物を選択する。このようにして選択された化合物は、植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する薬剤の候補化合物となる。
 なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
 次に実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例になんら制限されるものではない。
1.材料と方法
1-1.イネ-ナズナFOX系統
 スクリーニングには約20,000系統(理研15,000系統+岡山5,000系統)のイネ-ナズナFOX系統を用いた。イネ-ナズナFOX系統は以下のようにして作製された。独立したイネ完全長cDNA(Kikuchi et al. 2003)約13,000種類をcDNAの等量比のプールとして調製し(標準化という)、cDNAをシロイヌナズナの発現ベクターに組み込んだ。発現ベクターには、pBIG2113N (Taji et al. 2002, Becker et al. 1990)にSfiIクローニングサイトを導入したpBIG2113SFを用いた。上記のように標準化したcDNAを用いてcDNAライブラリーをアグロバクテリア(Agrobacterium GV3101)で作成し、これらのアグロバクテリアを用いて花感染法によってシロイヌナズナColumbia(Col-0)の形質転換を行い、独立した植物体から成るイネ-ナズナFOX系統が作製された。スクリーニングにはT2種子を使用した。
1-2. 病原細菌感染抵抗性選抜
 トマト斑葉細菌病の病原細菌であるPseudomonas syringae pv. tomato strain DC3000(Pst3000)を用いて、改良型Dip法(図1)により(0.5~2)×108 CFU/mlの菌濃度で接種した。播種後3週間後のFOX系統を上記の菌液に浸し、6日後に生存の有無で選抜した。
1-3. 病原糸状菌感染抵抗性選抜
 アブラナ科野菜類炭そ病菌(Colletotrichum higginsianumCh)はいもち病菌同様に付着器、貫入菌糸を用いて感染する糸状菌で、シロイヌナズナにも感染できるため、この菌を病原糸状菌感染抵抗性選抜に用いた。感染はPst3000による選抜にも用いた改良型dip法で行った。感染液の分生子濃度は105~106 conidia/mlで、感染6日後に生存の有無で選抜した。
1-4.サリチル酸(SA)感受性選抜
 0.05mM SAを含むMS培地(+SA培地)および含まないMS培地(-SA培地)にFOX系統を播種し、-SA培地上では生育するが+SA培地上では発芽後死滅する系統を選抜した。
1-5.形質転換イネの作製
 イネの品種は日本晴を用いた。イネでの発現ベクターはpRiceFOX (Nakamura et al. 2007)を用いた。イネの形質転換はアグロバクテリウムEH105株を用いて高速形質転換法(Toki et al. 2006)で行った。
1-6.イネ白葉枯病抵抗性検定
 イネ白葉枯病菌レースT7174を用いて、森らの方法(Mori et al. 2007)を改変して検定した。主な改変点はイネの若い葉身の先端から約5cmを切断した点、接種は切断面を菌液に浸すことにより行った点である。
1-7.イネいもち病抵抗性検定
 イネいもち病菌Kyu89-246(MAFF101506,レース003.0)を用いて噴霧接種法(Mori et al. 2007)で行った。菌濃度は2 x 105 spore/mlで行った。
2.結果
2-1. 病原性細菌感染抵抗性選抜
 イネ-ナズナFOX系統約2万系統を対象に1次、2次、3次のスクリーニングを行い、最終的にPst3000抵抗性を示す72系統を選抜した。選抜した全系統についてゲノムDNAを抽出し、挿入されているイネ完全長cDNAをPCRで増幅して末端の塩基配列を決定することにより遺伝子を同定した。
2-2.病原性糸状菌感染抵抗性選抜
 上記の72系統について更にCh抵抗性検定を行い、両菌に対して複合抵抗性を示す系統があるかどうか調べた結果、21系統(29%)で複合抵抗性を示した。
2-3.サリチル酸感受性選抜
 イネ-ナズナFOX系統約2万系統を対象にまず+SA培地で死滅する系統を選抜(1次スクリーニング)した。選抜された系統について、+SA培地では発芽後死滅し、-SA培地では野生型とほぼ同程度の生育をする系統を選抜する二次スクリーニングを行い(図2)、95系統を選抜した。これらの系統について、挿入されているイネ完全長cDNAをPCR増幅後、部分塩基配列を決定した。
2-4.3種類のスクリーニングで共に選抜された系統とその原因遺伝子
 上記3種類のスクリーニングのいずれにおいても選抜された系統が1系統(K15424)存在した。この系統は、SAシグナル伝達系が関わる防御応答機構の増強により病原性細菌および病原性糸状菌に対する抵抗性を獲得した可能性が高い。K15424系統にはイネの完全長cDNA(AK070024)が挿入されていた。AK070024の系統樹解析を行うと、NAK(Novel Arabisopsis protein Kinase)遺伝子と近縁で、新規のタンパク質リン酸化酵素遺伝子であることが明らかになった。更にAK070024を有する他の独立のFOX系統やcDNA再導入シロイヌナズナの解析から、AK070024のシロイヌナズナでの過剰発現がPst3000抵抗性、Ch抵抗性、及びSA感受性を付与することを確認した。
2-5.過剰発現イネの作製及び病害抵抗性検定
 AK070024遺伝子(別名OsPSR5)を過剰発現するイネを作製し、T1世代でイネ白葉枯病抵抗性検定を行った。その結果、OsPSR5過剰発現イネは、白葉枯病に対して高度抵抗性を有する品種あそみのりと同等の、強い白葉枯病抵抗性を示した(図3)。同様にOsPSR5過剰発現イネのいもち病抵抗性検定を行ったところ、接種後、WTの日本晴では病斑が拡大していくのに対し(進展型病斑)、過剰発現体では褐点型病斑が認められたが、一定の大きさ以上に病斑が拡大しなかったことから、いもち病にも抵抗性であることが示された(図4)。抵抗性の程度は、日本晴よりも抵抗性の黄金錦よりも更に強い抵抗性を示した(図5)。
 本発明では、イネFOX系統シロイヌナズナのスクリーニングにより、病原細菌(Pst3000)抵抗性および病原糸状菌(Ch)抵抗性、サリチル酸高感受性の3種の形質を与える新規遺伝子(AK070024)を見出した。本遺伝子を過剰発現したイネは、白葉枯病およびいもち病に抵抗性を示した。以上の結果から、本遺伝子を過剰発現させた植物は、双子葉植物、単子葉植物を問わず、複数の病害に抵抗性になることが示された。本遺伝子は、遺伝子組換え技術により、様々な作物に複合病害抵抗性を付与するための素材となりうる。
 本発明により、病原細菌及び病原糸状菌に抵抗性である植物体が提供された。本発明にて同定された遺伝子を過剰発現させた植物は、双子葉植物、単子葉植物を問わず、複数の病害に抵抗性を有する。従って本発明にて同定された遺伝子は、様々な作物に複合病害抵抗性を付与するための材料として有用である。

Claims (7)

  1. 下記(a)及び(b)の工程を含む、植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する方法;
    (a)下記(i)から(iv)からなる群より選択されるDNA又は該DNAを含むベクターを植物細胞に導入する工程、及び
    (b)工程(a)においてDNA又はベクターが導入された植物細胞から植物体を再生する工程、
    (i)配列番号:2に記載のアミノ酸配列を含むタンパク質をコードするDNA、
    (ii)配列番号:1に記載の塩基配列のコード領域を含むDNA、
    (iii)配列番号:2に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含むタンパク質をコードするDNA、及び
    (iv)配列番号:1に記載の塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA。
  2. 下記(a)から(d)のいずれかに記載のDNAまたは該DNAを含むベクターが導入された植物細胞であって、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体を再生しうる植物細胞;
    (a)配列番号:2に記載のアミノ酸配列を含むタンパク質をコードするDNA、
    (b)配列番号:1に記載の塩基配列のコード領域を含むDNA、
    (c)配列番号:2に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含むタンパク質をコードするDNA、及び
    (d)配列番号:1に記載の塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA。
  3. 請求項2に記載の植物細胞から再生された、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体。
  4. 請求項3に記載の植物体の子孫またはクローンである、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体。
  5. 請求項3または4に記載の病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体の繁殖材料。
  6. 下記(a)及び(b)の工程を含む、病原細菌及び病原糸状菌のいずれか又は両方に抵抗性である植物体の製造方法;
    (a)下記(i)から(iv)からなる群より選択されるDNA又は該DNAを含むベクターを植物細胞に導入する工程、及び
    (b)工程(a)においてDNA又はベクターが導入された植物細胞から植物体を再生する工程、
    (i)配列番号:2に記載のアミノ酸配列を含むタンパク質をコードするDNA、
    (ii)配列番号:1に記載の塩基配列のコード領域を含むDNA、
    (iii)配列番号:2に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含むタンパク質をコードするDNA、及び
    (iv)配列番号:1に記載の塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA。
  7. 下記(a)から(c)の工程を含む、植物に病原細菌及び病原糸状菌のいずれか又は両方に対する抵抗性を付与する薬剤の候補化合物のスクリーニング方法;
    (a)配列番号:3に記載の塩基配列の全部又は一部とレポーター遺伝子とが機能的に結合した構造を有するDNAを含む細胞または細胞抽出液と、被検化合物を接触させる工程、
    (b)該レポーター遺伝子の発現レベルを測定する工程、及び
    (c)被検化合物の非存在下において測定した場合と比較して、該発現レベルを増加させる化合物を選択する工程。
PCT/JP2009/054081 2008-08-27 2009-03-04 広範な病害抵抗性を付与するイネ遺伝子 WO2010023974A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010526583A JP5591703B2 (ja) 2008-08-27 2009-03-04 広範な病害抵抗性を付与するイネ遺伝子
US13/061,396 US9127290B2 (en) 2008-08-27 2009-03-04 Rice gene capable of imparting wide-spectrum disease resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-217603 2008-08-27
JP2008217603 2008-08-27

Publications (1)

Publication Number Publication Date
WO2010023974A1 true WO2010023974A1 (ja) 2010-03-04

Family

ID=41721154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054081 WO2010023974A1 (ja) 2008-08-27 2009-03-04 広範な病害抵抗性を付与するイネ遺伝子

Country Status (3)

Country Link
US (1) US9127290B2 (ja)
JP (1) JP5591703B2 (ja)
WO (1) WO2010023974A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888399A (zh) * 2012-09-30 2013-01-23 浙江师范大学 鉴定水稻高抗白叶枯病基因的sts分子标记及其应用
US20140337602A1 (en) * 2008-01-11 2014-11-13 International Business Machines Corporation Execution Of An Instruction For Performing a Configuration Virtual Topology Change

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899726A (zh) * 2012-11-09 2013-01-30 东北林业大学 一种FOX hunting蒙古柳农杆菌cDNA文库的构建方法
CN112369314B (zh) * 2021-01-06 2023-06-27 湖南杂交水稻研究中心 一种鉴定苗期水稻纹枯病表型的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000898A1 (en) * 2001-06-22 2003-01-03 Syngenta Participations Ag Plant genes involved in defense against pathogens
US20040123343A1 (en) * 2000-04-19 2004-06-24 La Rosa Thomas J. Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
US20060123505A1 (en) * 2002-05-30 2006-06-08 National Institute Of Agrobiological Sciences Full-length plant cDNA and uses thereof
WO2008070179A2 (en) * 2006-12-06 2008-06-12 Monsanto Technology, Llc Genes and uses for plant improvement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123343A1 (en) * 2000-04-19 2004-06-24 La Rosa Thomas J. Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
WO2003000898A1 (en) * 2001-06-22 2003-01-03 Syngenta Participations Ag Plant genes involved in defense against pathogens
US20060123505A1 (en) * 2002-05-30 2006-06-08 National Institute Of Agrobiological Sciences Full-length plant cDNA and uses thereof
WO2008070179A2 (en) * 2006-12-06 2008-06-12 Monsanto Technology, Llc Genes and uses for plant improvement

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 14 February 2008 (2008-02-14), OHYANAGI H ET AL.: "Oryza sativa (japonica cultivar-group) Os09g0533600 (Os09g0533600) mRNA, complete cds.", retrieved from http://www.ncbi. nlm.nih.gov/nuccore/115480352?report=genbank Database accession no. NM-001070305 *
DUBOUZET J G ET AL.: "Ine-Nazuna FOX Keito 2 Man Keito yori Senbatsu sareta Byogen Saikin Pst3000 Kansen Teikosei Idenshi no Kaiseki", DAI 49 KAI PROCEEDINGS OF THE ANNUAL MEETING OF THE JAP, - 15 March 2008 (2008-03-15), pages 336 *
MASAHARU KANNO ET AL.: "Ine-Shiroinunazuna FOX Keito o Mochiita Ine no Yudo Teikosei ni Kan'yo suru Shinki Inshi no Tansaku", DAI 49 KAI PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, - 15 March 2008 (2008-03-15), pages 335 *
MINAMI MATSUI ET AL.: "Ine-Nazuna FOX hunting-kei: Yuyo Keishitsu no Kosoku Tansaku no Tameno Model System", DAI 49 KAI PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, - 15 March 2008 (2008-03-15), pages 89 *
SATORU MAEDA ET AL.: "Ine Kanzencho cDNA Ko Hatsugen Shiroinunazuna Keito o Mochiita Byogen Shijokin C. higginsianum Kansen Teikosei Keito no Senbatsu to Kaiseki", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2008 NENDO (HEISEI 20 NENDO) TAIKAI KOEN YOSHISHU, 5 March 2008 (2008-03-05), pages 65 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140337602A1 (en) * 2008-01-11 2014-11-13 International Business Machines Corporation Execution Of An Instruction For Performing a Configuration Virtual Topology Change
CN102888399A (zh) * 2012-09-30 2013-01-23 浙江师范大学 鉴定水稻高抗白叶枯病基因的sts分子标记及其应用
CN102888399B (zh) * 2012-09-30 2014-02-05 浙江师范大学 鉴定水稻高抗白叶枯病基因的sts分子标记及其应用

Also Published As

Publication number Publication date
JPWO2010023974A1 (ja) 2012-01-26
JP5591703B2 (ja) 2014-09-17
US20110258737A1 (en) 2011-10-20
US9127290B2 (en) 2015-09-08

Similar Documents

Publication Publication Date Title
US11299746B2 (en) Disease resistant pepper plants
JP5758376B2 (ja) イネのジンクフィンガータンパク質転写因子dstならびに渇水および塩の耐性を調節するためのその使用
EP2465933B1 (en) Disease-inducible promoters
WO2012017067A1 (en) Plants resistant to pathogens and methods for production thereof
EA008599B1 (ru) Полипептид r1, обеспечивающий устойчивость растений к патогенам, кодирующая его нуклеотидная последовательность и способы их применения
Serrazina et al. Expression of Castanea crenata allene oxide synthase in Arabidopsis improves the defense to Phytophthora cinnamomi
BRPI0709801A2 (pt) polinucleotÍdeo isolado, cassete de expressço, mÉtodo para modular o tamanho de àrgços sem plantas, mÉtodo de modular toda a planta ou o tamaho de àrgço em uma planta, produto
US8044262B2 (en) Generation of plants with improved drought tolerance
JP5591703B2 (ja) 広範な病害抵抗性を付与するイネ遺伝子
AU735063B2 (en) Resistance against nematodes and/or aphids
US10087461B2 (en) Glycine max resistance gene(s) and use thereof to engineer plants with broad-spectrum resistance to fungal pathogens and pests
US20080189805A1 (en) Novel genes and rna molecules that confer stress tolerance
JP6540936B2 (ja) 赤かび病抵抗性植物、その作製方法及びその利用
KR101955075B1 (ko) 식물 병 저항성을 증가시키는 OsCYP71 유전자 및 이의 용도
JPWO2016143458A1 (ja) 植物の耐病性、耐塩性及び生産性を向上させる方法、並びにその利用
CN113528558B (zh) 基因GhSINAs在防治棉花黄萎病中的应用
JP6210603B2 (ja) リゾクトニア菌抵抗性遺伝子
KR101398023B1 (ko) 식물체의 면역 증진용 조성물 및 그의 용도
KR101390832B1 (ko) 세포 사멸 관련 미토콘드리아 포메이트 디하이드로게나아제 유전자 CaFDH1 및 이를 이용한 형질전환 식물체
CN117925684A (zh) 水稻抗逆性相关蛋白gnp3及其编码基因与应用
CHeng et al. Expression Analysis on Melon MLO Family Genes and Identification of CmMLO2 Mutants Resistant to Powdery Mildew
Cheng Hong et al. Expression analysis on melon MLO family genes and identification of CmMLO2 mutants resistant to powdery mildew.
JPWO2007119381A1 (ja) アルミニウム耐性に関与する遺伝子、およびその利用
US20150184190A1 (en) METHOD OF PRODUCING STRESS TOLERANT PLANTS OVEREXPRESSING CaSUN1
Langenbach Identification of novel nonhost resistance genes in the interaction between Arabidopsis thaliana and Asian soybean rust

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526583

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13061396

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09809629

Country of ref document: EP

Kind code of ref document: A1