WO2010023883A1 - シンセサイザ及びこれを用いた受信装置及び電子機器 - Google Patents
シンセサイザ及びこれを用いた受信装置及び電子機器 Download PDFInfo
- Publication number
- WO2010023883A1 WO2010023883A1 PCT/JP2009/004104 JP2009004104W WO2010023883A1 WO 2010023883 A1 WO2010023883 A1 WO 2010023883A1 JP 2009004104 W JP2009004104 W JP 2009004104W WO 2010023883 A1 WO2010023883 A1 WO 2010023883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- oscillation signal
- unit
- synthesizer
- time variation
- Prior art date
Links
- 230000010355 oscillation Effects 0.000 claims abstract description 103
- 238000001514 detection method Methods 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 230000004069 differentiation Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/18—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
- H03L7/197—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03J—TUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
- H03J7/00—Automatic frequency control; Automatic scanning over a band of frequencies
- H03J7/02—Automatic frequency control
- H03J7/04—Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
- H03J7/06—Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers
- H03J7/065—Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers the counter or frequency divider being used in a phase locked loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L1/00—Stabilisation of generator output against variations of physical values, e.g. power supply
- H03L1/02—Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
- H03L1/022—Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
- H03L1/027—Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using frequency conversion means which is variable with temperature, e.g. mixer, frequency divider, pulse add/substract logic circuit
Definitions
- the present invention relates to a synthesizer, a receiving device, and an electronic device.
- FIG. 6 is a block diagram of a conventional synthesizer.
- a synthesizer 60 includes a phase comparator 61 that outputs a pulse width signal proportional to the phase difference between a reference oscillation signal output from a reference oscillator 69 and a comparison signal output from a frequency divider 64 described later.
- a loop filter 62 that inputs a pulse width signal and outputs a low-pass filtered signal, a VCO 63 that outputs an oscillation signal based on the low-pass filtered signal, and an oscillation based on a frequency division ratio set by a control unit 68 described later.
- a frequency divider 64 that divides the signal and outputs a comparison signal.
- PLL Phase Locked Loop
- the synthesizer 60 further includes a temperature detector 65 that detects the ambient temperature of the reference oscillator 69, an AD converter 66 that converts the detected temperature into digitized temperature information, and frequency division ratio information corresponding to the temperature information. And a control unit 68 that sets the frequency division ratio of the frequency divider 64 based on the frequency division ratio information.
- the oscillation signal output from the synthesizer 60 may generate a frequency fluctuation range greater than or equal to a predetermined value, and the processing is performed by a signal processing unit (not shown) connected to the subsequent stage of the synthesizer 60. There were cases where it had an adverse effect.
- the synthesizer of the present invention includes a synthesizer unit that outputs an oscillation signal based on a reference oscillation signal, a temperature detection unit that detects temperature, and a time variation of the frequency of the reference oscillation signal based on the temperature detection result of the temperature detection unit. And a control unit that adjusts the frequency of the oscillation signal output from the synthesizer unit based on the detection result of the time variation detection unit.
- the frequency fluctuation range of the oscillation signal output from the synthesizer can be suppressed to a predetermined value or less, and adverse effects on the subsequent signal processing unit can be suppressed.
- FIG. 1 is a block diagram of a synthesizer according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram of a receiving apparatus equipped with a synthesizer according to Embodiment 1 of the present invention.
- FIG. 3 is an explanatory diagram of the oscillation signal frequency of the synthesizer in the first embodiment of the present invention.
- FIG. 4 is a block diagram of a receiving apparatus equipped with a synthesizer according to Embodiment 2 of the present invention.
- FIG. 5 is an explanatory diagram of the oscillation signal frequency of the synthesizer in the second embodiment of the present invention.
- FIG. 6 is a block diagram of a conventional synthesizer.
- FIG. 1 is a block diagram of a synthesizer according to Embodiment 1 of the present invention.
- the synthesizer 1 detects the ambient temperature of the reference oscillator 6 and the synthesizer unit 2 that outputs an oscillation signal based on the reference oscillation signal output from the reference oscillator 6 and the division ratio set by the control unit 5.
- the temperature detection unit 3 that detects the time variation of the frequency of the reference oscillation signal based on the temperature detection result of the temperature detection unit 3, and the oscillation that is output from the synthesizer unit 2 based on the time variation.
- a control unit 5 that performs frequency adjustment of the signal.
- the synthesizer unit 2 also has a phase comparator 2a that outputs a pulse width signal proportional to the phase difference between the reference oscillation signal output from the reference oscillator 6 and the comparison signal, and a pulse width signal that is input as a low-pass filtered signal.
- a loop filter 2b for output, a VCO 2c for outputting an oscillation signal based on the low-pass filtered signal, and a frequency divider 2d for dividing the oscillation signal based on the frequency division ratio set by the control unit 5 and outputting a comparison signal And having.
- PLL Phase Locked Loop
- the time fluctuation detection unit 4 includes an AD conversion unit 4a that converts the detected temperature output from the temperature detection unit 3 into a digital signal, a differentiation unit 4b that performs time differentiation on the temperature converted into the digital signal, and the time A frequency conversion unit 4c that outputs a time fluctuation amount of the frequency of the reference oscillation signal from the differential value.
- FIG. 2 is a block diagram of a receiving apparatus equipped with the synthesizer according to the first embodiment of the present invention.
- a receiving device 20 outputs from the synthesizer 1 a reference oscillator 6 that outputs a reference oscillation signal, a synthesizer 1 that outputs an oscillation signal based on the reference oscillation signal, and a reception signal that is output from the receiving unit 21.
- a frequency converter 22 that performs frequency conversion based on the generated oscillation signal and outputs a baseband signal (hereinafter referred to as “BB signal”) to the signal processing unit 23.
- BB signal baseband signal
- the frequency converter 22 may output a signal of a specific frequency and convert it to a BB signal using a second frequency converter (not shown) connected to the subsequent stage of the frequency converter 22.
- the signal processing performed by the signal processing unit 23 may be adversely affected.
- the BB signal is subjected to primary modulation by 64QAM or the like and secondary modulation by OFDM, and the signal processing unit 23 receives the modulated BB.
- the frequency variation of the oscillation signal breaks the orthogonality between the carriers constituting the OFDM and gives a phase variation to the modulation such as 64QAM. Accordingly, the performance of the demodulation process is deteriorated, and noise is generated in the video display.
- the relationship between the frequency fluctuation amount of the oscillation signal and the performance deterioration amount of the demodulation process differs depending on the system.
- the interval between each carrier constituting OFDM is about 1 kHz (in the case of Mode 3), and therefore, when the oscillation signal fluctuates by more than ⁇ 500 Hz, it may be erroneously discriminated from the adjacent carrier.
- the fluctuation of the frequency Fvco (Hz) of the oscillation signal output from the synthesizer 60 is expressed by ⁇ Fmax (Hz) using the reference oscillation signal whose frequency temperature characteristic is X (ppm / ° C.).
- the temperature detection accuracy Z (° C.) of the temperature detection unit 65 needs to satisfy (Equation 2).
- the reference oscillator 69 is configured using a vibrator having a large temperature characteristic, the temperature detection accuracy Z becomes small, and it becomes difficult to realize frequency compensation control.
- MEMS Micro Electro mechanical System
- the MEMS resonator is expected to be an alternative device for the crystal resonator because it can be reduced in size and cost as compared with the crystal resonator.
- it has a drawback that the temperature characteristics are poor as compared with a quartz resonator.
- the synthesizer 1 in the first embodiment pays attention to the fact that the minimum control unit of the frequency division ratio of the frequency divider 2d is sufficiently smaller than the frequency control unit determined from the temperature detection accuracy Z, and not the absolute value of the detected temperature.
- the control amount of the frequency divider 2d based on the time change of the detected temperature, it is possible to perform frequency compensation control that suppresses the deterioration of the processing performance of the signal processing unit 23.
- the differentiation unit 4b outputs a temperature change VT (° C./second) per unit time based on the digitized temperature output from the AD conversion unit 4a.
- the frequency conversion unit 4c multiplies the VT and the temperature characteristic X (ppm / ° C.) of the reference oscillator 6 to calculate a time change rate (ppm / second) of the frequency fluctuation of the reference oscillation signal. Further, by multiplying the frequency Fvco (Hz) of the oscillation signal, the time change rate Vvco (Hz / second) of the frequency fluctuation amount of the oscillation signal can be obtained. That is, the time change rate Vvco (Hz / second) of the oscillation signal is expressed by (Expression 3).
- Vvco VT ⁇ X ⁇ Fvco (Equation 3)
- the control unit 5 performs frequency compensation control by controlling the frequency division ratio of the frequency divider 2d so that the time change rate of the oscillation signal becomes “ ⁇ Vvco”. Thereby, the time change rate of the frequency of the oscillation signal caused by the temperature change cancels the time change rate of the frequency of the oscillation signal caused by the control of the frequency division ratio.
- the control unit 5 may add the frequency division ratio by Mstep represented by (Equation 4) every control cycle T (seconds).
- Mstep INT (Vvco ⁇ T / Fmin) (Equation 4)
- INT (X) represents an integer obtained by rounding off X. From (Equation 4), it is necessary to make the minimum change unit Fmin of the frequency divider 2d smaller than Vvco ⁇ T.
- fractional frequency division methods such as a fractional N method and a ⁇ method. For example, when the ⁇ method is used, assuming that the number of bits of an accumulator (not shown) included in the frequency divider 2d is N, Fmin is expressed by (Expression 5) using the frequency Fref of the reference oscillation signal.
- control unit 5 makes the frequency of the oscillation signal output from the synthesizer 1 smaller than the required fluctuation ratio R even when the reference oscillator 6 composed of an oscillator with poor temperature characteristics is used. Can do. This will be described with reference to FIG.
- FIG. 3 is an explanatory diagram of the oscillation signal frequency of the synthesizer according to the first embodiment of the present invention.
- the horizontal axis represents time
- the vertical axis represents frequency.
- the conventional oscillation signal 30 represents the frequency variation of the oscillation signal when the conventional control is performed
- the oscillation signal 31 of the present application represents the frequency variation of the oscillation signal when the control of the present invention is performed.
- ⁇ fz X ⁇ Z ⁇ Fvco (Expression 7)
- the control unit 68 operates in the control cycle T, but since the minimum control unit is ⁇ fz, the frequency division ratio of the frequency divider 64 can be controlled only at timings t3, t6, and t9. It cannot be controlled at the timing such as t2.
- the conventional oscillation signal 30 fluctuates within a range of ⁇ ⁇ fz and does not satisfy the condition of (Equation 6), so that the reception quality is deteriorated.
- the time variation detector 4 in the synthesizer 1 of the first embodiment can calculate the time variation rate of the frequency variation amount of the oscillation signal as (Equation 8) based on the detected temperatures at t0 and t3.
- Vvco ⁇ fz / (t3-t0) (Equation 8)
- the control unit 5 adds the frequency division ratio Mstep expressed by (Equation 4) to the frequency division ratio set in the frequency divider 2d at the times t4 and t5.
- the oscillation signal 31 of the present application can be subjected to frequency compensation control in a frequency control unit ⁇ fz or less that is regulated by the temperature detection accuracy Z.
- the frequency fluctuation of the oscillation signal can be suppressed to ⁇ ⁇ fmax or less, and the deterioration of the reception quality can be suppressed.
- the addition amount of the frequency division ratio after t7 may be determined based on the temperatures detected at t0, t3, and t6.
- the slope of the frequency change (first-order differential value) calculated from the temperature detection result is used.
- the frequency change slope changes with time. The followability can be improved.
- the time change rate Vvco of the frequency fluctuation amount is calculated, so that the influence of short-term temperature fluctuations and measurement variations can be reduced. This eliminates the possibility of stable control.
- the invention of the present application is characterized in that frequency compensation control is performed in units smaller than the frequency control accuracy regulated by the temperature detection accuracy Z based on the time variation of the frequency. Therefore, the method of calculating Vvco in the time fluctuation detection unit 4 is not limited to the above-described differentiation or the like, and even if a term proportional to the current detected temperature or an integral term calculated from the past detected temperature is further added. Good.
- the synthesizer 1 by using the synthesizer 1 according to the first embodiment, the reference oscillator 6 using a vibrator having poor temperature characteristics such as a MEMS vibrator is used, and the signal processing unit 23 in the subsequent stage uses it. It is possible to configure the receiving device 20 that suppresses reception quality deterioration.
- a small electronic device using a MEMS vibrator or the like can be configured.
- FIG. 4 is a block diagram of a receiving apparatus equipped with a synthesizer according to Embodiment 2 of the present invention.
- a synthesizer 41 includes a synthesizer unit 41a that outputs an oscillation signal based on a reference oscillation signal output from the reference oscillator 6, and an oscillation signal that is output from the synthesizer 41 based on a frequency deviation input from the outside. And a control unit 41b that adjusts the frequency of the oscillation signal based on the time variation.
- the receiving device 40 includes a reference oscillator 6, a synthesizer 41, and a frequency converter 22 that converts the frequency of the reception signal output from the reception unit 21 based on the oscillation signal output from the synthesizer 41 and outputs a BB signal.
- the signal processing unit 42 includes a demodulation unit 42a that processes the BB signal and a frequency deviation detection unit 42b that outputs the frequency deviation of the BB signal.
- the frequency deviation detector 42b can detect a frequency deviation by using a known reference signal (for example, a guard interval signal) or a characteristic of a modulation waveform between transmission and reception inserted in the BB signal.
- a known reference signal for example, a guard interval signal
- two frequency deviation calculation circuits a wide band carrier frequency deviation calculation circuit (not shown) and a narrow band carrier frequency deviation calculation circuit (not shown) are used.
- the broadband carrier frequency deviation calculation circuit can calculate the frequency deviation in units of carrier intervals by using the reference symbol for frequency synchronization inserted at a predetermined period on the transmission side. Therefore, the detection range of the broadband carrier frequency deviation calculation circuit is the transmission bandwidth, and the frequency deviation detection accuracy is about 1 kHz (in the case of Mode 3).
- the narrowband carrier frequency deviation calculation circuit calculates the frequency deviation within the carrier interval by using the correlation between the guard period signals in the OFDM signal because the guard period signal is a rear copy of the effective symbol period signal.
- the detection range can be within a carrier interval (about 1 kHz), and the detection accuracy can be within 1% (about 10 Hz) of the carrier interval.
- the frequency deviation detector 42b can detect the frequency deviation over a wide range and with high accuracy by using the broadband carrier frequency deviation calculation circuit and the narrow band carrier frequency deviation calculation circuit.
- the frequency compensation control based on the frequency deviation cannot follow the frequency fluctuation.
- the reference symbol used in the wideband carrier frequency deviation calculation circuit and the effective symbol period signal used in the narrowband carrier frequency deviation calculation circuit are acquired at intervals of about 1 millisecond (in the case of Mode 3). The period cannot be faster than 1 millisecond.
- the detection cycle becomes several tens of milliseconds to several hundreds of milliseconds by performing an averaging process for alleviating detection variations. Accordingly, when the frequency fluctuation within the detection period exceeds the allowable frequency deviation ⁇ fmax determined by the processing performance of the demodulator 42a, the reception quality is deteriorated.
- the time variation detector 41c performs time differentiation on the frequency deviation output from the frequency deviation detector 42b, so that the time of the frequency deviation of the oscillation signal output from the synthesizer 41 is obtained. Detect the rate of change. And based on this time change rate, frequency compensation control can be performed in a cycle shorter than the detection cycle.
- the frequency deviation ⁇ f (t) detected by the frequency deviation detector 42b is expressed by using the frequency deviation ⁇ fRf (t) of the received signal and the frequency deviation ⁇ fLo (t) of the oscillation signal output from the synthesizer 41 (Equation 9 ).
- ⁇ f (t) / ⁇ t ⁇ fRf (t) / ⁇ t + ⁇ fLo (t) / ⁇ t (Equation 10)
- ⁇ fRf (t) / ⁇ t of the first term can be set to 0, and ⁇ f (t) / ⁇ t calculated by the time variation detection unit 41c is considered as frequency variation ⁇ fLo (t) / ⁇ t of the oscillation signal.
- control unit 41b may determine the adjustment speed of the synthesizer unit 41a so that the frequency of the oscillation signal becomes 0 based on ⁇ f (t) / ⁇ t output from the time variation detection unit 41c.
- FIG. 5 is an explanatory diagram of the oscillation signal frequency of the synthesizer in the second embodiment of the present invention.
- the horizontal axis represents time and the vertical axis represents frequency.
- the control period of the control unit 41b is T, and the frequency deviation detection period is 3T.
- the conventional oscillation signal 50 represents the frequency variation of the oscillation signal when the synthesizer 41a is controlled based on the absolute value of the frequency deviation output from the frequency deviation detector 42b.
- the oscillation signal 51 of the present application represents the frequency fluctuation of the oscillation signal when the control in the present embodiment is performed.
- the conventional oscillation signal 50 can perform frequency compensation control only at a cycle 3T (t0, t3, t6,%) Slower than the control cycle. For this reason, the frequency deviation of the oscillation signal exceeds ⁇ fmax, resulting in degradation of reception quality.
- the oscillation signal 51 of the present application detects the time change rate of the frequency deviation of the oscillation signal based on the frequency deviation detected at t0 and t3. And based on this rate of time change, frequency compensation control can be performed in period T after t4. Therefore, the frequency deviation of the oscillation signal can be suppressed to ⁇ fmax or less, and deterioration of reception quality can be suppressed. Further, since a frequency deviation is newly output from the frequency deviation detector 42b at t6, the addition amount of the frequency division ratio after t7 may be determined based on the detected temperatures at t0, t3, and t6.
- the synthesizer of the present invention can be used for a receiving apparatus and an electronic device.
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Superheterodyne Receivers (AREA)
Abstract
Description
ここで、Frefは温度の関数である。この関係を用いることにより、基準発振器69の周囲温度が変化してFrefがa倍になった場合には、Mを1/a倍に設定すれば、温度変化にかかわらずFvcoを一定値に保つことができる。したがって、基準発振器69の周囲温度とFvcoとを一定値とするための分周比Mの組み合わせ表を、不揮発性メモリ67に予め書き込んでおき、温度検出部65が検出した温度に対応して不揮発性メモリ67から読み出される分周比Mを、制御部68が分周器64に設定することにより、周波数補償制御を行うことができる。この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
図1は、本発明の実施の形態1におけるシンセサイザのブロック図である。図1において、シンセサイザ1は、基準発振器6から出力された基準発振信号と制御部5から設定された分周比に基づいて発振信号を出力するシンセサイザ部2と、基準発振器6の周囲温度を検出する温度検出部3と、温度検出部3の温度検出結果に基づいて基準発振信号の周波数の時間変動を検出する時間変動検出部4と、この時間変動に基づいてシンセサイザ部2から出力される発振信号の周波数調整を行う制御部5と、を有する。また、シンセサイザ部2は、基準発振器6から出力された基準発振信号と比較信号の位相差に比例したパルス幅信号を出力する位相比較器2aと、パルス幅信号を入力し低域濾波後信号を出力するループフィルタ2bと、低域濾波後信号に基づき発振信号を出力するVCO2cと、制御部5から設定された分周比に基づいて発振信号を分周し比較信号を出力する分周器2dと、を有する。そして、これらはPhase Locked Loop(PLL)を構成している。さらに、時間変動検出部4は、温度検出部3から出力される検出温度をデジタル信号に変換するAD変換部4aと、このデジタル信号に変換された温度を時間微分する微分部4bと、この時間微分値から基準発振信号の周波数の時間変動量を出力する周波数換算部4cと、を有する。
従来用いられていたATカットの水晶振動子を用いて基準発振器69を構成した場合は、基準発振信号の常温付近における周波数温度特性Xは高々0.1(ppm/℃)である。よって、ISDB-Tで使われるUHF帯(470~770MHz)において、ΔFmax=50Hzを実現するためには、温度検出部3の温度検出精度はZ≦0.65℃となる。半導体ベースの簡易な温度検出部でも±0.5℃の温度検出精度を実現できるため、(式2)の条件を満たすことができ、信号処理部23の処理性能の劣化が問題となることはなかった。
制御部5は、発振信号の時間変化率が“-Vvco”となるように、分周器2dの分周比を制御することにより、周波数補償制御を行う。これにより、温度変化に起因する発振信号の周波数の時間変化率と、分周比の制御に起因する発振信号の周波数の時間変化率が相殺される。分周器2dによる最小変更単位をFmin(Hz)とすると、制御部5は、制御周期T(秒)ごとに、(式4)で表されるMstepだけ分周比を加算すればよい。
ここで、INT(X)はXを四捨五入等して得られる整数を表す。(式4)より、分周器2dの最小変更単位FminをVvco×Tより小さくする必要がある。Fminを小さくする手法として、フラクショナルN方式やΔΣ方式などの分数分周方式がある。例えばΔΣ方式を用いた場合は、分周器2dに含まれるアキュムレータ(図示せず)のビット数をNとすると、基準発振信号の周波数Frefを用いてFminは(式5)で表される。
従って、Nを大きくすることにより、最小変更単位Fminを格段に小さくすることができる。
従来のシンセサイザ60における制御部68は、温度検出部65の検出温度に対応した分周比を不揮発性メモリ67から読み出し、分周器64に設定するので、温度検出部65の温度検出精度Z(℃)が、周波数制御精度を律束する。つまり、シンセサイザ60から出力される発振信号の周波数制御単位Δfzは(式7)で表される。
図3において、制御部68は、制御周期Tで動作するが、最小制御単位がΔfzであるので、t3、t6、t9のタイミングでしか分周器64の分周比を制御できず、t1、t2等のタイミングでは制御することができない。その結果、従来発振信号30は、±Δfzの範囲で変動することとなり、(式6)の条件を満たさないので、受信品質が劣化する。
制御部5は、Vvcoに基づいて、t4及びt5の時点で、(式4)で表される分周比Mstepを分周器2dに設定された分周比に加算する。その結果、本願発振信号31は、温度検出精度Zで律束される周波数制御単位Δfz以下で、周波数補償制御を行うことができる。これにより、発振信号の周波数変動を±Δfmax以下に抑えることができ、受信品質の劣化を抑制することが可能となる。また、t6では温度検出部3の検出温度が変化するため、t0、t3、t6における検出温度に基づいてt7以降の分周比の加算量を決めればよい。
図4は、本発明の実施の形態2におけるシンセサイザを搭載した受信装置のブロック図である。図4において、シンセサイザ41は、基準発振器6から出力される基準発振信号に基づいて発振信号を出力するシンセサイザ部41aと、外部から入力された周波数偏差に基づいて、シンセサイザ41から出力される発振信号の周波数の時間変動を検出する時間変動検出部41cと、この時間変動に基づいて発振信号の周波数を調整する制御部41bと、を有する。また、受信装置40は、基準発振器6と、シンセサイザ41と、受信部21から出力される受信信号をシンセサイザ41から出力される発振信号に基づいて周波数変換しBB信号を出力する周波数変換器22と、を有する。さらに、信号処理部42は、BB信号を処理する復調部42aと、BB信号の周波数偏差を出力する周波数偏差検出部42bと、を有する。
両辺を検出周期Δtで除算すると、(式10)となる。
ここで、放送局における送信機では一般にOCXO等の周波数安定性に優れた発振器が用いられるため、送信周波数の時間変動は十分小さい。したがって、第1項のΔfRf(t)/Δtは0とすることができ、時間変動検出部41cが算出するΔf(t)/Δtは、発振信号の周波数変動ΔfLo(t)/Δtと考えることができる。
2,41a シンセサイザ部
2a 位相比較器
2b ループフィルタ
2c VCO
2d 分周器
3 温度検出部
4,41c 時間変動検出部
4a AD変換部
4b 微分部
4c,22 周波数換算部
5,41b 制御部
6 基準発振器
20,40 受信装置
21 受信部
23,42 信号処理部
30,50 従来発振信号
31,51 本願発振信号
42a 復調部
42b 周波数偏差検出部
Claims (10)
- 基準発振信号に基づいて発振信号を出力するシンセサイザ部と、
温度を検出する温度検出部と、
前記温度検出部の温度検出結果に基づいて前記基準発振信号の周波数の時間変動を検出する時間変動検出部と、
前記時間変動検出部の検出結果に基づいて前記シンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を備えた
シンセサイザ。 - 基準発振信号に基づいて発振信号を出力するシンセサイザ部と、
前記シンセサイザ部の出力信号に基づいて前記基準発振信号の周波数の時間変動を検出する時間変動検出部と、
前記時間変動検出部の検出結果に基づいて前記シンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を備えた
シンセサイザ。 - 前記周波数の時間変動は、周波数の1階時間微分値である
請求項1又は請求項2のうちいずれか一つに記載のシンセサイザ。 - 前記周波数の時間変動は、周波数の2階時間微分値である
請求項1又は請求項2のうちいずれか一つに記載のシンセサイザ。 - 受信信号を周波数変換する周波数変換器と、
基準発振信号を出力する基準発振器と、
前記基準発振器から出力された基準発振信号に基づいて発振信号を前記周波数変換器に供給するシンセサイザ部と、
温度を検出する温度検出部と、
前記温度検出部の温度検出結果に基づいて前記基準発振信号の周波数の時間変動を検出する時間変動検出部と、
前記時間変動検出部の検出結果に基づいて前記シンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を備えた
受信装置。 - 受信信号を周波数変換する周波数変換器と、
基準発振信号を出力する基準発振器と、
前記基準発振器から出力された基準発振信号に基づいて発振信号を前記周波数変換器に供給するシンセサイザ部と、
前記周波数変換器の出力信号に基づいて前記基準発振信号の周波数の時間変動を検出する時間変動検出部と、
前記時間変動検出部の検出結果に基づいて前記シンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を備えた
受信装置。 - 前記時間変動検出部は、前記周波数変換器の出力信号に含まれる基準シンボルに基づいて前記基準発振信号の周波数の時間変動を検出する
請求項6に記載の受信装置。 - 前記時間変動検出部は、前記周波数変換器の出力信号に含まれるガードインターバル信号に基づいて前記基準発振信号の周波数の時間変動を検出する
請求項6に記載の受信装置。 - 前記基準発振器はMEMS振動子を備えた
請求項5又は請求項6のうちいずれか一つに記載の受信装置。 - 請求項5又は請求項6のうちいずれか一つに記載の受信装置と、
前記周波数変換器の出力側に接続された信号処理部と、
前記信号処理部の出力側に接続された表示部と、を備えた
電子機器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09809539.1A EP2328272A4 (en) | 2008-08-28 | 2009-08-26 | SYNTHESIZER AND RECEIVING DEVICE AND ELECTRONIC DEVICE THEREFOR |
CN200980132788.9A CN102132492B (zh) | 2008-08-28 | 2009-08-26 | 合成器和使用它的接收装置及电子设备 |
JP2010526537A JP5310728B2 (ja) | 2008-08-28 | 2009-08-26 | シンセサイザ及びこれを用いた受信装置及び電子機器 |
US13/057,055 US8390334B2 (en) | 2008-08-28 | 2009-08-26 | Synthesizer and reception device and electronic device using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008219157 | 2008-08-28 | ||
JP2008-219157 | 2008-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010023883A1 true WO2010023883A1 (ja) | 2010-03-04 |
Family
ID=41721066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004104 WO2010023883A1 (ja) | 2008-08-28 | 2009-08-26 | シンセサイザ及びこれを用いた受信装置及び電子機器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8390334B2 (ja) |
EP (1) | EP2328272A4 (ja) |
JP (1) | JP5310728B2 (ja) |
CN (1) | CN102132492B (ja) |
WO (1) | WO2010023883A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013545354A (ja) * | 2010-10-11 | 2013-12-19 | アイメック | Memsデバイス用のマルチ温度マイクロオーブンの設計および制御 |
US11239844B2 (en) | 2020-02-10 | 2022-02-01 | Seiko Epson Corporation | Oscillator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9344065B2 (en) * | 2012-10-22 | 2016-05-17 | Mediatek Inc. | Frequency divider, clock generating apparatus, and method capable of calibrating frequency drift of oscillator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03209917A (ja) | 1990-01-11 | 1991-09-12 | Japan Radio Co Ltd | Pll方式の周波数シンセサイザ |
JPH07245563A (ja) * | 1994-03-04 | 1995-09-19 | Hitachi Ltd | 自動周波数制御方式 |
JP2003069426A (ja) * | 2001-08-23 | 2003-03-07 | Matsushita Electric Ind Co Ltd | 周波数シンセサイザー |
JP2007175577A (ja) * | 2005-12-27 | 2007-07-12 | Seiko Epson Corp | Mems振動子 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3027021B2 (ja) * | 1991-04-16 | 2000-03-27 | シチズン時計株式会社 | 温度補償付電子時計 |
JPH04367102A (ja) * | 1991-06-13 | 1992-12-18 | Nec Corp | 水晶発振器 |
US5604468A (en) * | 1996-04-22 | 1997-02-18 | Motorola, Inc. | Frequency synthesizer with temperature compensation and frequency multiplication and method of providing the same |
US6965754B2 (en) * | 2001-10-09 | 2005-11-15 | Motorola, Inc. | Satellite positioning system receiver with reference oscillator circuit and methods therefor |
JP4302968B2 (ja) * | 2002-11-19 | 2009-07-29 | 京セラキンセキ株式会社 | 発振器の温度補償方法 |
US7064617B2 (en) * | 2003-05-02 | 2006-06-20 | Silicon Laboratories Inc. | Method and apparatus for temperature compensation |
JP2005348222A (ja) * | 2004-06-04 | 2005-12-15 | Seiko Epson Corp | Memsデバイス及び電子機器 |
JP2006303855A (ja) * | 2005-04-20 | 2006-11-02 | Seiko Epson Corp | 温度補償発振回路の温度補償方法、温度補償発振回路および圧電デバイス |
US7787841B2 (en) | 2005-06-13 | 2010-08-31 | Panasonic Corporation | Receiving module and receiving device using the same |
JP4735064B2 (ja) | 2005-06-13 | 2011-07-27 | パナソニック株式会社 | チューナ受信部とこれを用いたデジタル信号受信装置 |
EP1777831A4 (en) * | 2005-07-29 | 2013-01-16 | Panasonic Corp | RECEIVER DEVICE AND ELECTRONIC DEVICE USING THE SAME |
JP4656103B2 (ja) * | 2007-07-31 | 2011-03-23 | パナソニック株式会社 | 発振器と、これを用いた受信装置及び電子機器 |
-
2009
- 2009-08-26 EP EP09809539.1A patent/EP2328272A4/en not_active Withdrawn
- 2009-08-26 WO PCT/JP2009/004104 patent/WO2010023883A1/ja active Application Filing
- 2009-08-26 CN CN200980132788.9A patent/CN102132492B/zh not_active Expired - Fee Related
- 2009-08-26 JP JP2010526537A patent/JP5310728B2/ja not_active Expired - Fee Related
- 2009-08-26 US US13/057,055 patent/US8390334B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03209917A (ja) | 1990-01-11 | 1991-09-12 | Japan Radio Co Ltd | Pll方式の周波数シンセサイザ |
JPH07245563A (ja) * | 1994-03-04 | 1995-09-19 | Hitachi Ltd | 自動周波数制御方式 |
JP2003069426A (ja) * | 2001-08-23 | 2003-03-07 | Matsushita Electric Ind Co Ltd | 周波数シンセサイザー |
JP2007175577A (ja) * | 2005-12-27 | 2007-07-12 | Seiko Epson Corp | Mems振動子 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2328272A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013545354A (ja) * | 2010-10-11 | 2013-12-19 | アイメック | Memsデバイス用のマルチ温度マイクロオーブンの設計および制御 |
US11239844B2 (en) | 2020-02-10 | 2022-02-01 | Seiko Epson Corporation | Oscillator |
Also Published As
Publication number | Publication date |
---|---|
US20110133798A1 (en) | 2011-06-09 |
US8390334B2 (en) | 2013-03-05 |
JP5310728B2 (ja) | 2013-10-09 |
CN102132492A (zh) | 2011-07-20 |
EP2328272A4 (en) | 2014-08-27 |
JPWO2010023883A1 (ja) | 2012-01-26 |
EP2328272A1 (en) | 2011-06-01 |
CN102132492B (zh) | 2014-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4740905B2 (ja) | Adpll周波数シンセサイザ | |
US8594608B2 (en) | Synthesizer and reception device | |
US8170494B2 (en) | Synthesizer and modulator for a wireless transceiver | |
US20100201412A1 (en) | Oscillator, and receiving device and electronic device using the oscillator | |
US8971472B2 (en) | Signal processing circuit and method | |
US7639769B2 (en) | Method and apparatus for providing synchronization in a communication system | |
JP2007208367A (ja) | 同期信号生成装置、送信機及び制御方法 | |
JP5310728B2 (ja) | シンセサイザ及びこれを用いた受信装置及び電子機器 | |
WO2009101791A1 (ja) | シンセサイザと、これを用いた受信装置 | |
JP7394772B2 (ja) | 複合位相ロックループを使用する、高分解能、広帯域幅および低位相ノイズを有する信号位相追跡 | |
JP5272893B2 (ja) | デジタル無線機のafc回路及びafc制御方法 | |
JP2021168508A (ja) | 受信装置、受信方法 | |
EP3544194B1 (en) | Receiver, reception method for receiving fsk signals | |
JP7143602B2 (ja) | 受信装置、受信方法 | |
US20100323648A1 (en) | Demodulation device, reception device, and demodulation method | |
JP4855129B2 (ja) | デジタル放送受信装置およびデジタル放送システム | |
JP4998275B2 (ja) | 受信装置とこれを用いた電子機器 | |
GB2455717A (en) | Frequency synthesis in a wireless basestation | |
JP2001036386A (ja) | 周波数制御回路 | |
JP3672913B2 (ja) | 携帯型無線機における発振周波数補正回路 | |
JP4692261B2 (ja) | 受信装置及び受信周波数の制御方法 | |
JP2000312155A (ja) | Fm受信装置 | |
JP2000241524A (ja) | デジタルプロセッシングpll | |
JPH03284015A (ja) | 選局装置 | |
KR20000059976A (ko) | 브이.에스.비 방식 수신기의 적응 위상추적장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980132788.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09809539 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010526537 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13057055 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009809539 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |