WO2010023883A1 - シンセサイザ及びこれを用いた受信装置及び電子機器 - Google Patents

シンセサイザ及びこれを用いた受信装置及び電子機器 Download PDF

Info

Publication number
WO2010023883A1
WO2010023883A1 PCT/JP2009/004104 JP2009004104W WO2010023883A1 WO 2010023883 A1 WO2010023883 A1 WO 2010023883A1 JP 2009004104 W JP2009004104 W JP 2009004104W WO 2010023883 A1 WO2010023883 A1 WO 2010023883A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
oscillation signal
unit
synthesizer
time variation
Prior art date
Application number
PCT/JP2009/004104
Other languages
English (en)
French (fr)
Inventor
槻尾泰信
南波昭彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09809539.1A priority Critical patent/EP2328272A4/en
Priority to CN200980132788.9A priority patent/CN102132492B/zh
Priority to JP2010526537A priority patent/JP5310728B2/ja
Priority to US13/057,055 priority patent/US8390334B2/en
Publication of WO2010023883A1 publication Critical patent/WO2010023883A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/06Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers
    • H03J7/065Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers the counter or frequency divider being used in a phase locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/027Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using frequency conversion means which is variable with temperature, e.g. mixer, frequency divider, pulse add/substract logic circuit

Definitions

  • the present invention relates to a synthesizer, a receiving device, and an electronic device.
  • FIG. 6 is a block diagram of a conventional synthesizer.
  • a synthesizer 60 includes a phase comparator 61 that outputs a pulse width signal proportional to the phase difference between a reference oscillation signal output from a reference oscillator 69 and a comparison signal output from a frequency divider 64 described later.
  • a loop filter 62 that inputs a pulse width signal and outputs a low-pass filtered signal, a VCO 63 that outputs an oscillation signal based on the low-pass filtered signal, and an oscillation based on a frequency division ratio set by a control unit 68 described later.
  • a frequency divider 64 that divides the signal and outputs a comparison signal.
  • PLL Phase Locked Loop
  • the synthesizer 60 further includes a temperature detector 65 that detects the ambient temperature of the reference oscillator 69, an AD converter 66 that converts the detected temperature into digitized temperature information, and frequency division ratio information corresponding to the temperature information. And a control unit 68 that sets the frequency division ratio of the frequency divider 64 based on the frequency division ratio information.
  • the oscillation signal output from the synthesizer 60 may generate a frequency fluctuation range greater than or equal to a predetermined value, and the processing is performed by a signal processing unit (not shown) connected to the subsequent stage of the synthesizer 60. There were cases where it had an adverse effect.
  • the synthesizer of the present invention includes a synthesizer unit that outputs an oscillation signal based on a reference oscillation signal, a temperature detection unit that detects temperature, and a time variation of the frequency of the reference oscillation signal based on the temperature detection result of the temperature detection unit. And a control unit that adjusts the frequency of the oscillation signal output from the synthesizer unit based on the detection result of the time variation detection unit.
  • the frequency fluctuation range of the oscillation signal output from the synthesizer can be suppressed to a predetermined value or less, and adverse effects on the subsequent signal processing unit can be suppressed.
  • FIG. 1 is a block diagram of a synthesizer according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of a receiving apparatus equipped with a synthesizer according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram of the oscillation signal frequency of the synthesizer in the first embodiment of the present invention.
  • FIG. 4 is a block diagram of a receiving apparatus equipped with a synthesizer according to Embodiment 2 of the present invention.
  • FIG. 5 is an explanatory diagram of the oscillation signal frequency of the synthesizer in the second embodiment of the present invention.
  • FIG. 6 is a block diagram of a conventional synthesizer.
  • FIG. 1 is a block diagram of a synthesizer according to Embodiment 1 of the present invention.
  • the synthesizer 1 detects the ambient temperature of the reference oscillator 6 and the synthesizer unit 2 that outputs an oscillation signal based on the reference oscillation signal output from the reference oscillator 6 and the division ratio set by the control unit 5.
  • the temperature detection unit 3 that detects the time variation of the frequency of the reference oscillation signal based on the temperature detection result of the temperature detection unit 3, and the oscillation that is output from the synthesizer unit 2 based on the time variation.
  • a control unit 5 that performs frequency adjustment of the signal.
  • the synthesizer unit 2 also has a phase comparator 2a that outputs a pulse width signal proportional to the phase difference between the reference oscillation signal output from the reference oscillator 6 and the comparison signal, and a pulse width signal that is input as a low-pass filtered signal.
  • a loop filter 2b for output, a VCO 2c for outputting an oscillation signal based on the low-pass filtered signal, and a frequency divider 2d for dividing the oscillation signal based on the frequency division ratio set by the control unit 5 and outputting a comparison signal And having.
  • PLL Phase Locked Loop
  • the time fluctuation detection unit 4 includes an AD conversion unit 4a that converts the detected temperature output from the temperature detection unit 3 into a digital signal, a differentiation unit 4b that performs time differentiation on the temperature converted into the digital signal, and the time A frequency conversion unit 4c that outputs a time fluctuation amount of the frequency of the reference oscillation signal from the differential value.
  • FIG. 2 is a block diagram of a receiving apparatus equipped with the synthesizer according to the first embodiment of the present invention.
  • a receiving device 20 outputs from the synthesizer 1 a reference oscillator 6 that outputs a reference oscillation signal, a synthesizer 1 that outputs an oscillation signal based on the reference oscillation signal, and a reception signal that is output from the receiving unit 21.
  • a frequency converter 22 that performs frequency conversion based on the generated oscillation signal and outputs a baseband signal (hereinafter referred to as “BB signal”) to the signal processing unit 23.
  • BB signal baseband signal
  • the frequency converter 22 may output a signal of a specific frequency and convert it to a BB signal using a second frequency converter (not shown) connected to the subsequent stage of the frequency converter 22.
  • the signal processing performed by the signal processing unit 23 may be adversely affected.
  • the BB signal is subjected to primary modulation by 64QAM or the like and secondary modulation by OFDM, and the signal processing unit 23 receives the modulated BB.
  • the frequency variation of the oscillation signal breaks the orthogonality between the carriers constituting the OFDM and gives a phase variation to the modulation such as 64QAM. Accordingly, the performance of the demodulation process is deteriorated, and noise is generated in the video display.
  • the relationship between the frequency fluctuation amount of the oscillation signal and the performance deterioration amount of the demodulation process differs depending on the system.
  • the interval between each carrier constituting OFDM is about 1 kHz (in the case of Mode 3), and therefore, when the oscillation signal fluctuates by more than ⁇ 500 Hz, it may be erroneously discriminated from the adjacent carrier.
  • the fluctuation of the frequency Fvco (Hz) of the oscillation signal output from the synthesizer 60 is expressed by ⁇ Fmax (Hz) using the reference oscillation signal whose frequency temperature characteristic is X (ppm / ° C.).
  • the temperature detection accuracy Z (° C.) of the temperature detection unit 65 needs to satisfy (Equation 2).
  • the reference oscillator 69 is configured using a vibrator having a large temperature characteristic, the temperature detection accuracy Z becomes small, and it becomes difficult to realize frequency compensation control.
  • MEMS Micro Electro mechanical System
  • the MEMS resonator is expected to be an alternative device for the crystal resonator because it can be reduced in size and cost as compared with the crystal resonator.
  • it has a drawback that the temperature characteristics are poor as compared with a quartz resonator.
  • the synthesizer 1 in the first embodiment pays attention to the fact that the minimum control unit of the frequency division ratio of the frequency divider 2d is sufficiently smaller than the frequency control unit determined from the temperature detection accuracy Z, and not the absolute value of the detected temperature.
  • the control amount of the frequency divider 2d based on the time change of the detected temperature, it is possible to perform frequency compensation control that suppresses the deterioration of the processing performance of the signal processing unit 23.
  • the differentiation unit 4b outputs a temperature change VT (° C./second) per unit time based on the digitized temperature output from the AD conversion unit 4a.
  • the frequency conversion unit 4c multiplies the VT and the temperature characteristic X (ppm / ° C.) of the reference oscillator 6 to calculate a time change rate (ppm / second) of the frequency fluctuation of the reference oscillation signal. Further, by multiplying the frequency Fvco (Hz) of the oscillation signal, the time change rate Vvco (Hz / second) of the frequency fluctuation amount of the oscillation signal can be obtained. That is, the time change rate Vvco (Hz / second) of the oscillation signal is expressed by (Expression 3).
  • Vvco VT ⁇ X ⁇ Fvco (Equation 3)
  • the control unit 5 performs frequency compensation control by controlling the frequency division ratio of the frequency divider 2d so that the time change rate of the oscillation signal becomes “ ⁇ Vvco”. Thereby, the time change rate of the frequency of the oscillation signal caused by the temperature change cancels the time change rate of the frequency of the oscillation signal caused by the control of the frequency division ratio.
  • the control unit 5 may add the frequency division ratio by Mstep represented by (Equation 4) every control cycle T (seconds).
  • Mstep INT (Vvco ⁇ T / Fmin) (Equation 4)
  • INT (X) represents an integer obtained by rounding off X. From (Equation 4), it is necessary to make the minimum change unit Fmin of the frequency divider 2d smaller than Vvco ⁇ T.
  • fractional frequency division methods such as a fractional N method and a ⁇ method. For example, when the ⁇ method is used, assuming that the number of bits of an accumulator (not shown) included in the frequency divider 2d is N, Fmin is expressed by (Expression 5) using the frequency Fref of the reference oscillation signal.
  • control unit 5 makes the frequency of the oscillation signal output from the synthesizer 1 smaller than the required fluctuation ratio R even when the reference oscillator 6 composed of an oscillator with poor temperature characteristics is used. Can do. This will be described with reference to FIG.
  • FIG. 3 is an explanatory diagram of the oscillation signal frequency of the synthesizer according to the first embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents frequency.
  • the conventional oscillation signal 30 represents the frequency variation of the oscillation signal when the conventional control is performed
  • the oscillation signal 31 of the present application represents the frequency variation of the oscillation signal when the control of the present invention is performed.
  • ⁇ fz X ⁇ Z ⁇ Fvco (Expression 7)
  • the control unit 68 operates in the control cycle T, but since the minimum control unit is ⁇ fz, the frequency division ratio of the frequency divider 64 can be controlled only at timings t3, t6, and t9. It cannot be controlled at the timing such as t2.
  • the conventional oscillation signal 30 fluctuates within a range of ⁇ ⁇ fz and does not satisfy the condition of (Equation 6), so that the reception quality is deteriorated.
  • the time variation detector 4 in the synthesizer 1 of the first embodiment can calculate the time variation rate of the frequency variation amount of the oscillation signal as (Equation 8) based on the detected temperatures at t0 and t3.
  • Vvco ⁇ fz / (t3-t0) (Equation 8)
  • the control unit 5 adds the frequency division ratio Mstep expressed by (Equation 4) to the frequency division ratio set in the frequency divider 2d at the times t4 and t5.
  • the oscillation signal 31 of the present application can be subjected to frequency compensation control in a frequency control unit ⁇ fz or less that is regulated by the temperature detection accuracy Z.
  • the frequency fluctuation of the oscillation signal can be suppressed to ⁇ ⁇ fmax or less, and the deterioration of the reception quality can be suppressed.
  • the addition amount of the frequency division ratio after t7 may be determined based on the temperatures detected at t0, t3, and t6.
  • the slope of the frequency change (first-order differential value) calculated from the temperature detection result is used.
  • the frequency change slope changes with time. The followability can be improved.
  • the time change rate Vvco of the frequency fluctuation amount is calculated, so that the influence of short-term temperature fluctuations and measurement variations can be reduced. This eliminates the possibility of stable control.
  • the invention of the present application is characterized in that frequency compensation control is performed in units smaller than the frequency control accuracy regulated by the temperature detection accuracy Z based on the time variation of the frequency. Therefore, the method of calculating Vvco in the time fluctuation detection unit 4 is not limited to the above-described differentiation or the like, and even if a term proportional to the current detected temperature or an integral term calculated from the past detected temperature is further added. Good.
  • the synthesizer 1 by using the synthesizer 1 according to the first embodiment, the reference oscillator 6 using a vibrator having poor temperature characteristics such as a MEMS vibrator is used, and the signal processing unit 23 in the subsequent stage uses it. It is possible to configure the receiving device 20 that suppresses reception quality deterioration.
  • a small electronic device using a MEMS vibrator or the like can be configured.
  • FIG. 4 is a block diagram of a receiving apparatus equipped with a synthesizer according to Embodiment 2 of the present invention.
  • a synthesizer 41 includes a synthesizer unit 41a that outputs an oscillation signal based on a reference oscillation signal output from the reference oscillator 6, and an oscillation signal that is output from the synthesizer 41 based on a frequency deviation input from the outside. And a control unit 41b that adjusts the frequency of the oscillation signal based on the time variation.
  • the receiving device 40 includes a reference oscillator 6, a synthesizer 41, and a frequency converter 22 that converts the frequency of the reception signal output from the reception unit 21 based on the oscillation signal output from the synthesizer 41 and outputs a BB signal.
  • the signal processing unit 42 includes a demodulation unit 42a that processes the BB signal and a frequency deviation detection unit 42b that outputs the frequency deviation of the BB signal.
  • the frequency deviation detector 42b can detect a frequency deviation by using a known reference signal (for example, a guard interval signal) or a characteristic of a modulation waveform between transmission and reception inserted in the BB signal.
  • a known reference signal for example, a guard interval signal
  • two frequency deviation calculation circuits a wide band carrier frequency deviation calculation circuit (not shown) and a narrow band carrier frequency deviation calculation circuit (not shown) are used.
  • the broadband carrier frequency deviation calculation circuit can calculate the frequency deviation in units of carrier intervals by using the reference symbol for frequency synchronization inserted at a predetermined period on the transmission side. Therefore, the detection range of the broadband carrier frequency deviation calculation circuit is the transmission bandwidth, and the frequency deviation detection accuracy is about 1 kHz (in the case of Mode 3).
  • the narrowband carrier frequency deviation calculation circuit calculates the frequency deviation within the carrier interval by using the correlation between the guard period signals in the OFDM signal because the guard period signal is a rear copy of the effective symbol period signal.
  • the detection range can be within a carrier interval (about 1 kHz), and the detection accuracy can be within 1% (about 10 Hz) of the carrier interval.
  • the frequency deviation detector 42b can detect the frequency deviation over a wide range and with high accuracy by using the broadband carrier frequency deviation calculation circuit and the narrow band carrier frequency deviation calculation circuit.
  • the frequency compensation control based on the frequency deviation cannot follow the frequency fluctuation.
  • the reference symbol used in the wideband carrier frequency deviation calculation circuit and the effective symbol period signal used in the narrowband carrier frequency deviation calculation circuit are acquired at intervals of about 1 millisecond (in the case of Mode 3). The period cannot be faster than 1 millisecond.
  • the detection cycle becomes several tens of milliseconds to several hundreds of milliseconds by performing an averaging process for alleviating detection variations. Accordingly, when the frequency fluctuation within the detection period exceeds the allowable frequency deviation ⁇ fmax determined by the processing performance of the demodulator 42a, the reception quality is deteriorated.
  • the time variation detector 41c performs time differentiation on the frequency deviation output from the frequency deviation detector 42b, so that the time of the frequency deviation of the oscillation signal output from the synthesizer 41 is obtained. Detect the rate of change. And based on this time change rate, frequency compensation control can be performed in a cycle shorter than the detection cycle.
  • the frequency deviation ⁇ f (t) detected by the frequency deviation detector 42b is expressed by using the frequency deviation ⁇ fRf (t) of the received signal and the frequency deviation ⁇ fLo (t) of the oscillation signal output from the synthesizer 41 (Equation 9 ).
  • ⁇ f (t) / ⁇ t ⁇ fRf (t) / ⁇ t + ⁇ fLo (t) / ⁇ t (Equation 10)
  • ⁇ fRf (t) / ⁇ t of the first term can be set to 0, and ⁇ f (t) / ⁇ t calculated by the time variation detection unit 41c is considered as frequency variation ⁇ fLo (t) / ⁇ t of the oscillation signal.
  • control unit 41b may determine the adjustment speed of the synthesizer unit 41a so that the frequency of the oscillation signal becomes 0 based on ⁇ f (t) / ⁇ t output from the time variation detection unit 41c.
  • FIG. 5 is an explanatory diagram of the oscillation signal frequency of the synthesizer in the second embodiment of the present invention.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • the control period of the control unit 41b is T, and the frequency deviation detection period is 3T.
  • the conventional oscillation signal 50 represents the frequency variation of the oscillation signal when the synthesizer 41a is controlled based on the absolute value of the frequency deviation output from the frequency deviation detector 42b.
  • the oscillation signal 51 of the present application represents the frequency fluctuation of the oscillation signal when the control in the present embodiment is performed.
  • the conventional oscillation signal 50 can perform frequency compensation control only at a cycle 3T (t0, t3, t6,%) Slower than the control cycle. For this reason, the frequency deviation of the oscillation signal exceeds ⁇ fmax, resulting in degradation of reception quality.
  • the oscillation signal 51 of the present application detects the time change rate of the frequency deviation of the oscillation signal based on the frequency deviation detected at t0 and t3. And based on this rate of time change, frequency compensation control can be performed in period T after t4. Therefore, the frequency deviation of the oscillation signal can be suppressed to ⁇ fmax or less, and deterioration of reception quality can be suppressed. Further, since a frequency deviation is newly output from the frequency deviation detector 42b at t6, the addition amount of the frequency division ratio after t7 may be determined based on the detected temperatures at t0, t3, and t6.
  • the synthesizer of the present invention can be used for a receiving apparatus and an electronic device.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

 本発明のシンセサイザ(1)は、基準発振信号を基に発振信号を出力するシンセサイザ部(2)と、温度を検出する温度検出部(3)と、温度検出部の温度検出結果に基づいて基準発振信号の周波数の時間変動を検出する時間変動検出部(4)と、時間変動検出部の検出結果に基づいてシンセサイザ部から出力される発振信号の周波数調整を行う制御部(5)と、を備える。このような構成により、温度係数が大きい振動子の周波数補償制御を行う。

Description

シンセサイザ及びこれを用いた受信装置及び電子機器
 本発明は、シンセサイザと受信装置及び電子機器に関する。
 以下、従来のシンセサイザについて図6を用いて説明する。
 図6は従来のシンセサイザのブロック図である。図6において、シンセサイザ60は、基準発振器69から出力される基準発振信号と後述する分周器64から出力される比較信号の位相差に比例したパルス幅信号を出力する位相比較器61と、このパルス幅信号を入力し低域濾波後信号を出力するループフィルタ62と、この低域濾波後信号に基づき発振信号を出力するVCO63と、後述する制御部68が設定する分周比に基づいて発振信号を分周し比較信号を出力する分周器64と、を有する。これらはPhase Locked Loop(以下、「PLL」という)を構成している。
 さらに、シンセサイザ60は、基準発振器69の周囲温度を検出する温度検出部65と、この検出温度をデジタル化された温度情報に変換するAD変換部66と、この温度情報に対応した分周比情報が格納された不揮発性メモリ67と、この分周比情報に基づいて分周器64の分周比を設定する制御部68と、を有する。
 このような構成により、基準発振器69の周囲温度に依存して基準発振信号の周波数が変化しても、シンセサイザ60から出力される発振信号を一定値に保つ制御(以下、「周波数補償制御」という)を行うことができる。シンセサイザ60に含まれるPLLにおいて、基準発振信号の周波数をFref、分周比をMとすると、シンセサイザ60から出力される発振信号の周波数Fvcoは、(式1)で表される。
  Fvco=Fref×M ・・(式1)
 ここで、Frefは温度の関数である。この関係を用いることにより、基準発振器69の周囲温度が変化してFrefがa倍になった場合には、Mを1/a倍に設定すれば、温度変化にかかわらずFvcoを一定値に保つことができる。したがって、基準発振器69の周囲温度とFvcoとを一定値とするための分周比Mの組み合わせ表を、不揮発性メモリ67に予め書き込んでおき、温度検出部65が検出した温度に対応して不揮発性メモリ67から読み出される分周比Mを、制御部68が分周器64に設定することにより、周波数補償制御を行うことができる。この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
 しかしながら、上記従来の制御方法では、シンセサイザ60から出力される発振信号が所定値以上の周波数変動幅を生じる場合があり、シンセサイザ60の後段に接続された信号処理部(図示せず)の処理に悪影響を与える場合があった。
特開平3-209917号公報
 本発明のシンセサイザは、基準発振信号に基づいて発振信号を出力するシンセサイザ部と、温度を検出する温度検出部と、この温度検出部の温度検出結果に基づいて基準発振信号の周波数の時間変動を検出する時間変動検出部と、この時間変動検出部の検出結果に基づいてシンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を有する。
 上記構成により、シンセサイザから出力される発振信号の周波数変動幅を所定値以下に抑え、後段の信号処理部に与える悪影響を抑制することができる。
図1は本発明の実施の形態1におけるシンセサイザのブロック図である。 図2は本発明の実施の形態1におけるシンセサイザを搭載した受信装置のブロック図である。 図3は本発明の実施の形態1におけるシンセサイザの発振信号周波数の説明図である。 図4は本発明の実施の形態2におけるシンセサイザを搭載した受信装置のブロック図である。 図5は本発明の実施の形態2におけるシンセサイザの発振信号周波数の説明図である。 図6は従来のシンセサイザのブロック図である。
 (実施の形態1)
 図1は、本発明の実施の形態1におけるシンセサイザのブロック図である。図1において、シンセサイザ1は、基準発振器6から出力された基準発振信号と制御部5から設定された分周比に基づいて発振信号を出力するシンセサイザ部2と、基準発振器6の周囲温度を検出する温度検出部3と、温度検出部3の温度検出結果に基づいて基準発振信号の周波数の時間変動を検出する時間変動検出部4と、この時間変動に基づいてシンセサイザ部2から出力される発振信号の周波数調整を行う制御部5と、を有する。また、シンセサイザ部2は、基準発振器6から出力された基準発振信号と比較信号の位相差に比例したパルス幅信号を出力する位相比較器2aと、パルス幅信号を入力し低域濾波後信号を出力するループフィルタ2bと、低域濾波後信号に基づき発振信号を出力するVCO2cと、制御部5から設定された分周比に基づいて発振信号を分周し比較信号を出力する分周器2dと、を有する。そして、これらはPhase Locked Loop(PLL)を構成している。さらに、時間変動検出部4は、温度検出部3から出力される検出温度をデジタル信号に変換するAD変換部4aと、このデジタル信号に変換された温度を時間微分する微分部4bと、この時間微分値から基準発振信号の周波数の時間変動量を出力する周波数換算部4cと、を有する。
 図2は本発明の実施の形態1におけるシンセサイザを搭載した受信装置のブロック図である。図2において、受信装置20は、基準発振信号を出力する基準発振器6と、この基準発振信号に基づいて発振信号を出力するシンセサイザ1と、受信部21から出力された受信信号をシンセサイザ1から出力された発振信号に基づいて周波数変換しベースバンド信号(以下、「BB信号」という)を信号処理部23に対して出力する周波数変換器22と、を有する。なお、周波数変換器22が特定の周波数の信号を出力し、周波数変換器22の後段に接続された第2の周波数変換器(図示せず)を用いてBB信号に変換してもよい。
 ここで、シンセサイザ1から出力される発振信号の周波数が変動すると、信号処理部23が行う信号処理に悪影響を与える場合がある。例えば、日本の地上デジタル放送(ISDB-T)を受信する場合には、BB信号は64QAM等による1次変調及びOFDMによる2次変調が施されており、信号処理部23はこの変調されたBB信号の復調処理を行う。発振信号の周波数変動は、OFDMを構成するキャリア間の直交性を崩し、64QAM等の変調に位相変動を与える。従って、復調処理の性能劣化をもたらし、映像表示にノイズを生じさせる。発振信号の周波数変動量と復調処理の性能劣化量との関係は、システムにより異なる。ISDB-Tでは、OFDMを構成する各キャリアの間隔が約1kHz(Mode3の場合)であるため、発振信号が±500Hz以上の周波数変動をすると、隣接キャリアとの判別を誤る場合が生じる。また、キャリア間干渉や位相変動の影響を小さくするためには、例えば、さらに10分の1である±50Hz以下の周波数変動に抑えることが望ましい。したがって、信号処理部23の処理性能で定まる許容周波数偏差をΔFmaxとすると、制御部5は、ΔFmax以下の単位で周波数補償制御を行う必要がある。
 従来のシンセサイザ60の周波数補償制御の場合は、周波数温度特性がX(ppm/℃)の基準発振信号を用いて、シンセサイザ60から出力される発振信号の周波数Fvco(Hz)の変動をΔFmax(Hz)以下に抑えるためには、温度検出部65の温度検出精度Z(℃)は、(式2)を満たす必要がある。
  Z≦(ΔFmax/Fvco)/X ・・(式2)
 従来用いられていたATカットの水晶振動子を用いて基準発振器69を構成した場合は、基準発振信号の常温付近における周波数温度特性Xは高々0.1(ppm/℃)である。よって、ISDB-Tで使われるUHF帯(470~770MHz)において、ΔFmax=50Hzを実現するためには、温度検出部3の温度検出精度はZ≦0.65℃となる。半導体ベースの簡易な温度検出部でも±0.5℃の温度検出精度を実現できるため、(式2)の条件を満たすことができ、信号処理部23の処理性能の劣化が問題となることはなかった。
 しかし、温度特性の大きい振動子を用いて基準発振器69を構成した場合は、温度検出精度Zが小さくなり、周波数補償制御が実現困難となる。具体例として近年、実用化検討が進んでいるMEMS(MicroElectro mechanical System)振動子が挙げられる。MEMS振動子は水晶振動子に比べて小型化及び低コスト化を図ることができるため、水晶振動子の代替デバイスとして期待されている。しかしながら、水晶振動子に比べて温度特性が悪いという欠点を有する。例えば、MEMS振動子の1つであるシリコン振動子は、温度特性の1次係数が約-30ppm/℃であり、周波数補償制御に必要な温度検出精度Zは、Δfmax=50Hzの場合、Z≦0.0022℃となる。この温度検出精度の温度センサーを実現するのは困難であるため、小型で安価なシリコン振動子等のMEMS振動子を放送受信装置等の高周波受信装置に適用する阻害要因の1つとなっていた。
 本実施の形態1におけるシンセサイザ1は、温度検出精度Zから定まる周波数制御単位に比べて、分周器2dの分周比の最小制御単位が十分小さいことに着目し、検出温度の絶対値ではなく、検出温度の時間変化に基づいて分周器2dの制御量を決定することにより、信号処理部23の処理性能の劣化を抑制した周波数補償制御を行うことができる。
 以下、本実施の形態1における周波数補償制御の具体方法を説明する。
 微分部4bは、AD変換部4aから出力されるデジタル化された温度に基づいて、単位時間当たりの温度変化VT(℃/秒)を出力する。周波数換算部4cは、VTと基準発振器6の温度特性X(ppm/℃)を乗算することにより、基準発振信号の周波数変動の時間変化率(ppm/秒)を算出する。さらに発振信号の周波数Fvco(Hz)を乗算することにより、発振信号の周波数変動量の時間変化率Vvco(Hz/秒)を得ることができる。つまり、発振信号の時間変化率Vvco(Hz/秒)は(式3)で表される。
  Vvco=VT×X×Fvco ・・(式3)
 制御部5は、発振信号の時間変化率が“-Vvco”となるように、分周器2dの分周比を制御することにより、周波数補償制御を行う。これにより、温度変化に起因する発振信号の周波数の時間変化率と、分周比の制御に起因する発振信号の周波数の時間変化率が相殺される。分周器2dによる最小変更単位をFmin(Hz)とすると、制御部5は、制御周期T(秒)ごとに、(式4)で表されるMstepだけ分周比を加算すればよい。
  Mstep=INT(Vvco×T/Fmin) ・・(式4)
 ここで、INT(X)はXを四捨五入等して得られる整数を表す。(式4)より、分周器2dの最小変更単位FminをVvco×Tより小さくする必要がある。Fminを小さくする手法として、フラクショナルN方式やΔΣ方式などの分数分周方式がある。例えばΔΣ方式を用いた場合は、分周器2dに含まれるアキュムレータ(図示せず)のビット数をNとすると、基準発振信号の周波数Frefを用いてFminは(式5)で表される。
  Fmin=Fref/(2^N) ・・(式5)
 従って、Nを大きくすることにより、最小変更単位Fminを格段に小さくすることができる。
 以上の制御により、制御部5は、温度特性が悪い振動子からなる基準発振器6を用いた場合であっても、シンセサイザ1から出力される発振信号の周波数を所要の変動比Rより小さくすることができる。この様子を、図3を用いて説明する。
 図3は本発明の実施の形態1におけるシンセサイザの発振信号周波数の説明図である。図3において、横軸は時間で、縦軸は周波数を表している。また、従来発振信号30は、従来の制御を行った場合の発振信号の周波数変動を表し、本願発振信号31は、本願発明の制御を行った場合の発振信号の周波数変動を表している。初期状態(t=t0)で、従来発振信号30及び本願発振信号31が、所望の発振周波数(fLo)になっているとする。信号処理部23の許容周波数偏差をΔfmaxとすると、発振信号の周波数fは(式6)を満たさない場合に、受信品質が劣化する。
  (fLo-Δfmax)<f<(fLo+Δfmax) ・・(式6)
 従来のシンセサイザ60における制御部68は、温度検出部65の検出温度に対応した分周比を不揮発性メモリ67から読み出し、分周器64に設定するので、温度検出部65の温度検出精度Z(℃)が、周波数制御精度を律束する。つまり、シンセサイザ60から出力される発振信号の周波数制御単位Δfzは(式7)で表される。
  Δfz=X×Z×Fvco ・・(式7)
 図3において、制御部68は、制御周期Tで動作するが、最小制御単位がΔfzであるので、t3、t6、t9のタイミングでしか分周器64の分周比を制御できず、t1、t2等のタイミングでは制御することができない。その結果、従来発振信号30は、±Δfzの範囲で変動することとなり、(式6)の条件を満たさないので、受信品質が劣化する。
 本実施の形態1のシンセサイザ1における時間変動検出部4は、t0及びt3における検出温度に基づいて、発振信号の周波数変動量の時間変化率は(式8)と算出することができる。
  Vvco=Δfz/(t3-t0) ・・(式8)
 制御部5は、Vvcoに基づいて、t4及びt5の時点で、(式4)で表される分周比Mstepを分周器2dに設定された分周比に加算する。その結果、本願発振信号31は、温度検出精度Zで律束される周波数制御単位Δfz以下で、周波数補償制御を行うことができる。これにより、発振信号の周波数変動を±Δfmax以下に抑えることができ、受信品質の劣化を抑制することが可能となる。また、t6では温度検出部3の検出温度が変化するため、t0、t3、t6における検出温度に基づいてt7以降の分周比の加算量を決めればよい。
 上述の説明では、温度検出結果から算出した周波数変化の傾き(1階微分値)を用いたが、さらに2階微分値をも考慮することにより、周波数変化の傾きが時間的に変化する場合に対する追従性を上げることが可能となる。また、温度検出結果を移動平均処理、あるいは所定の重みを付したスライディング平均処理を施した後に、周波数変動量の時間変化率Vvcoを算出することにより、短周期の温度変動や測定ばらつきの影響を排除し、安定した制御を行うことが可能となる。
 なお、本願発明は、周波数の時間変動に基づいて、温度検出精度Zで律束される周波数制御精度より小さい単位で周波数補償制御を行うところに特徴を有する。従って、時間変動検出部4におけるVvcoの算出方法は、上述の微分等に限られるものでなく、現在の検出温度に比例する項や、過去の検出温度から算出した積分項をさらに加算してもよい。
 また、図2に示すように、本実施の形態1におけるシンセサイザ1を用いることにより、MEMS振動子等の温度特性の悪い振動子を用いた基準発振器6を使って、後段の信号処理部23における受信品質劣化を抑制した受信装置20を構成することができる。
 また、信号処理部23、及びその後段に表示部(図示せず)を備えることにより、MEMS振動子等を用いた小型な電子機器を構成することができる。
 (実施の形態2)
 図4は、本発明の実施の形態2におけるシンセサイザを搭載した受信装置のブロック図である。図4において、シンセサイザ41は、基準発振器6から出力される基準発振信号に基づいて発振信号を出力するシンセサイザ部41aと、外部から入力された周波数偏差に基づいて、シンセサイザ41から出力される発振信号の周波数の時間変動を検出する時間変動検出部41cと、この時間変動に基づいて発振信号の周波数を調整する制御部41bと、を有する。また、受信装置40は、基準発振器6と、シンセサイザ41と、受信部21から出力される受信信号をシンセサイザ41から出力される発振信号に基づいて周波数変換しBB信号を出力する周波数変換器22と、を有する。さらに、信号処理部42は、BB信号を処理する復調部42aと、BB信号の周波数偏差を出力する周波数偏差検出部42bと、を有する。
 以下、BB信号の周波数偏差の検出方法について説明し、この周波数偏差の時間変動に基づいて周波数補償制御を行う方法を説明する。
 周波数偏差検出部42bは、BB信号に挿入された送受信間で既知の基準信号(例えば、ガードインターバル信号)や、変調波形の特徴を用いることにより周波数偏差を検出することができる。ISDB-Tの例では、広帯域キャリア周波数偏差算出回路(図示せず)と狭帯域キャリア周波数偏差算出回路(図示せず)の2つの周波数偏差算出回路が用いられている。広帯域キャリア周波数偏差算出回路は、送信側において所定の周期で挿入された周波数同期用の基準シンボルを用いることにより、キャリア間隔単位の周波数偏差を算出することができる。従って、広帯域キャリア周波数偏差算出回路の検出範囲は伝送帯域幅で、周波数偏差の検出精度は約1kHz(Mode3の場合)となる。また、狭帯域キャリア周波数偏差算出回路は、OFDM信号の中のガード期間信号が有効シンボル期間信号の後部のコピーであるので、それらの間の相関を利用することにより、キャリア間隔以内の周波数偏差を検出する。この狭帯域キャリア周波数偏差算出回路は、検出範囲がキャリア間隔(約1kHz)で、検出精度はキャリア間隔の1%(約10Hz)以内とすることが可能である。周波数偏差検出部42bは、これら広帯域キャリア周波数偏差算出回路と狭帯域キャリア周波数偏差算出回路を用いて、広範囲かつ高精度な周波数偏差の検出をすることができる。
 ここで、周波数変動速度に比べて、周波数偏差検出部42bの検出周期が遅い場合には、周波数偏差に基づく周波数補償制御では周波数変動に追従することができない。ISDB-Tの場合、広帯域キャリア周波数偏差算出回路に用いる基準シンボルや、狭帯域キャリア周波数偏差算出回路に用いる有効シンボル期間信号は、約1ミリ秒(Mode3の場合)の間隔で取得するので、検出周期は1ミリ秒より早くすることができない。また、実際には、検出ばらつきを緩和するための平均化処理を行うことにより、検出周期は数十ミリ秒~数百ミリ秒となる。従って、検出周期内における周波数変動が、復調部42aの処理性能で定まる許容周波数偏差Δfmaxを超える場合は、受信品質の劣化をもたらす。
 本実施の形態2におけるシンセサイザ41は、時間変動検出部41cが周波数偏差検出部42bから出力された周波数偏差に対して時間微分を施すことにより、シンセサイザ41から出力される発振信号の周波数偏差の時間変化率を検出する。そして、この時間変化率に基づいて、検出周期より短い周期で周波数補償制御を行うことができる。
 以下、本実施の形態2におけるシンセサイザ41における周波数補償制御の方法を説明する。
 周波数偏差検出部42bが検出する周波数偏差Δf(t)は、受信信号が有する周波数偏差ΔfRf(t)と、シンセサイザ41から出力される発振信号の周波数偏差ΔfLo(t)を用いて、(式9)で表される。
  Δf(t)=ΔfRf(t)+ΔfLo(t) ・・(式9)
 両辺を検出周期Δtで除算すると、(式10)となる。
  Δf(t)/Δt=ΔfRf(t)/Δt+ΔfLo(t)/Δt ・・(式10)
 ここで、放送局における送信機では一般にOCXO等の周波数安定性に優れた発振器が用いられるため、送信周波数の時間変動は十分小さい。したがって、第1項のΔfRf(t)/Δtは0とすることができ、時間変動検出部41cが算出するΔf(t)/Δtは、発振信号の周波数変動ΔfLo(t)/Δtと考えることができる。
 従って、制御部41bは、時間変動検出部41cから出力されるΔf(t)/Δtに基づいて、発振信号の周波数が0となるようにシンセサイザ部41aの調整速度を決めればよい。
 本実施の形態2における、発振信号の周波数変動について図5を用いて説明する。図5は本発明の実施の形態2におけるシンセサイザの発振信号周波数の説明図である。図5において、横軸は時間で、縦軸は周波数を表している。制御部41bの制御周期はT、周波数偏差の検出周期は3Tである。従来発振信号50は、周波数偏差検出部42bから出力される周波数偏差の絶対値に基づいてシンセサイザ部41aの制御を行った場合の発振信号の周波数変動を表す。また、本願発振信号51は、本実施の形態における制御を行った場合の発振信号の周波数変動を表す。
 従来発振信号50は、制御周期より遅い周期3T(t0、t3、t6、・・・)でしか周波数補償制御を行うことができない。そのため、発振信号の周波数偏差がΔfmaxを超え、受信品質の劣化をもたらしている。
 一方、本願発振信号51は、t0とt3で検出した周波数偏差に基づいて、発振信号の周波数偏差の時間変化率を検出する。そして、この時間変化率に基づくことにより、t4以降は周期Tで周波数補償制御を行うことができる。従って、発振信号の周波数偏差をΔfmax以下に抑えることができ、受信品質の劣化を抑制することができる。また、t6では新たに周波数偏差検出部42bから周波数偏差が出力されるので、t0、t3、t6における検出温度に基づいてt7以降の分周比の加算量を決めればよい。
 本発明のシンセサイザは、受信装置及び電子機器に利用することができる。
1,41  シンセサイザ
2,41a  シンセサイザ部
2a  位相比較器
2b  ループフィルタ
2c  VCO
2d  分周器
3  温度検出部
4,41c  時間変動検出部
4a  AD変換部
4b  微分部
4c,22  周波数換算部
5,41b  制御部
6  基準発振器
20,40  受信装置
21  受信部
23,42  信号処理部
30,50  従来発振信号
31,51  本願発振信号
42a  復調部
42b  周波数偏差検出部

Claims (10)

  1. 基準発振信号に基づいて発振信号を出力するシンセサイザ部と、
    温度を検出する温度検出部と、
    前記温度検出部の温度検出結果に基づいて前記基準発振信号の周波数の時間変動を検出する時間変動検出部と、
    前記時間変動検出部の検出結果に基づいて前記シンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を備えた
    シンセサイザ。
  2. 基準発振信号に基づいて発振信号を出力するシンセサイザ部と、
    前記シンセサイザ部の出力信号に基づいて前記基準発振信号の周波数の時間変動を検出する時間変動検出部と、
    前記時間変動検出部の検出結果に基づいて前記シンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を備えた
    シンセサイザ。
  3. 前記周波数の時間変動は、周波数の1階時間微分値である
    請求項1又は請求項2のうちいずれか一つに記載のシンセサイザ。
  4. 前記周波数の時間変動は、周波数の2階時間微分値である
    請求項1又は請求項2のうちいずれか一つに記載のシンセサイザ。
  5. 受信信号を周波数変換する周波数変換器と、
    基準発振信号を出力する基準発振器と、
    前記基準発振器から出力された基準発振信号に基づいて発振信号を前記周波数変換器に供給するシンセサイザ部と、
    温度を検出する温度検出部と、
    前記温度検出部の温度検出結果に基づいて前記基準発振信号の周波数の時間変動を検出する時間変動検出部と、
    前記時間変動検出部の検出結果に基づいて前記シンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を備えた
    受信装置。
  6. 受信信号を周波数変換する周波数変換器と、
    基準発振信号を出力する基準発振器と、
    前記基準発振器から出力された基準発振信号に基づいて発振信号を前記周波数変換器に供給するシンセサイザ部と、
    前記周波数変換器の出力信号に基づいて前記基準発振信号の周波数の時間変動を検出する時間変動検出部と、
    前記時間変動検出部の検出結果に基づいて前記シンセサイザ部から出力される発振信号の周波数調整を行う制御部と、を備えた
    受信装置。
  7. 前記時間変動検出部は、前記周波数変換器の出力信号に含まれる基準シンボルに基づいて前記基準発振信号の周波数の時間変動を検出する
    請求項6に記載の受信装置。
  8. 前記時間変動検出部は、前記周波数変換器の出力信号に含まれるガードインターバル信号に基づいて前記基準発振信号の周波数の時間変動を検出する
    請求項6に記載の受信装置。
  9. 前記基準発振器はMEMS振動子を備えた
    請求項5又は請求項6のうちいずれか一つに記載の受信装置。
  10. 請求項5又は請求項6のうちいずれか一つに記載の受信装置と、
    前記周波数変換器の出力側に接続された信号処理部と、
    前記信号処理部の出力側に接続された表示部と、を備えた
    電子機器。
PCT/JP2009/004104 2008-08-28 2009-08-26 シンセサイザ及びこれを用いた受信装置及び電子機器 WO2010023883A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09809539.1A EP2328272A4 (en) 2008-08-28 2009-08-26 SYNTHESIZER AND RECEIVING DEVICE AND ELECTRONIC DEVICE THEREFOR
CN200980132788.9A CN102132492B (zh) 2008-08-28 2009-08-26 合成器和使用它的接收装置及电子设备
JP2010526537A JP5310728B2 (ja) 2008-08-28 2009-08-26 シンセサイザ及びこれを用いた受信装置及び電子機器
US13/057,055 US8390334B2 (en) 2008-08-28 2009-08-26 Synthesizer and reception device and electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008219157 2008-08-28
JP2008-219157 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010023883A1 true WO2010023883A1 (ja) 2010-03-04

Family

ID=41721066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004104 WO2010023883A1 (ja) 2008-08-28 2009-08-26 シンセサイザ及びこれを用いた受信装置及び電子機器

Country Status (5)

Country Link
US (1) US8390334B2 (ja)
EP (1) EP2328272A4 (ja)
JP (1) JP5310728B2 (ja)
CN (1) CN102132492B (ja)
WO (1) WO2010023883A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545354A (ja) * 2010-10-11 2013-12-19 アイメック Memsデバイス用のマルチ温度マイクロオーブンの設計および制御
US11239844B2 (en) 2020-02-10 2022-02-01 Seiko Epson Corporation Oscillator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344065B2 (en) * 2012-10-22 2016-05-17 Mediatek Inc. Frequency divider, clock generating apparatus, and method capable of calibrating frequency drift of oscillator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209917A (ja) 1990-01-11 1991-09-12 Japan Radio Co Ltd Pll方式の周波数シンセサイザ
JPH07245563A (ja) * 1994-03-04 1995-09-19 Hitachi Ltd 自動周波数制御方式
JP2003069426A (ja) * 2001-08-23 2003-03-07 Matsushita Electric Ind Co Ltd 周波数シンセサイザー
JP2007175577A (ja) * 2005-12-27 2007-07-12 Seiko Epson Corp Mems振動子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027021B2 (ja) * 1991-04-16 2000-03-27 シチズン時計株式会社 温度補償付電子時計
JPH04367102A (ja) * 1991-06-13 1992-12-18 Nec Corp 水晶発振器
US5604468A (en) * 1996-04-22 1997-02-18 Motorola, Inc. Frequency synthesizer with temperature compensation and frequency multiplication and method of providing the same
US6965754B2 (en) * 2001-10-09 2005-11-15 Motorola, Inc. Satellite positioning system receiver with reference oscillator circuit and methods therefor
JP4302968B2 (ja) * 2002-11-19 2009-07-29 京セラキンセキ株式会社 発振器の温度補償方法
US7064617B2 (en) * 2003-05-02 2006-06-20 Silicon Laboratories Inc. Method and apparatus for temperature compensation
JP2005348222A (ja) * 2004-06-04 2005-12-15 Seiko Epson Corp Memsデバイス及び電子機器
JP2006303855A (ja) * 2005-04-20 2006-11-02 Seiko Epson Corp 温度補償発振回路の温度補償方法、温度補償発振回路および圧電デバイス
US7787841B2 (en) 2005-06-13 2010-08-31 Panasonic Corporation Receiving module and receiving device using the same
JP4735064B2 (ja) 2005-06-13 2011-07-27 パナソニック株式会社 チューナ受信部とこれを用いたデジタル信号受信装置
EP1777831A4 (en) * 2005-07-29 2013-01-16 Panasonic Corp RECEIVER DEVICE AND ELECTRONIC DEVICE USING THE SAME
JP4656103B2 (ja) * 2007-07-31 2011-03-23 パナソニック株式会社 発振器と、これを用いた受信装置及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209917A (ja) 1990-01-11 1991-09-12 Japan Radio Co Ltd Pll方式の周波数シンセサイザ
JPH07245563A (ja) * 1994-03-04 1995-09-19 Hitachi Ltd 自動周波数制御方式
JP2003069426A (ja) * 2001-08-23 2003-03-07 Matsushita Electric Ind Co Ltd 周波数シンセサイザー
JP2007175577A (ja) * 2005-12-27 2007-07-12 Seiko Epson Corp Mems振動子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2328272A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545354A (ja) * 2010-10-11 2013-12-19 アイメック Memsデバイス用のマルチ温度マイクロオーブンの設計および制御
US11239844B2 (en) 2020-02-10 2022-02-01 Seiko Epson Corporation Oscillator

Also Published As

Publication number Publication date
US20110133798A1 (en) 2011-06-09
US8390334B2 (en) 2013-03-05
JP5310728B2 (ja) 2013-10-09
CN102132492A (zh) 2011-07-20
EP2328272A4 (en) 2014-08-27
JPWO2010023883A1 (ja) 2012-01-26
EP2328272A1 (en) 2011-06-01
CN102132492B (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
JP4740905B2 (ja) Adpll周波数シンセサイザ
US8594608B2 (en) Synthesizer and reception device
US8170494B2 (en) Synthesizer and modulator for a wireless transceiver
US20100201412A1 (en) Oscillator, and receiving device and electronic device using the oscillator
US8971472B2 (en) Signal processing circuit and method
US7639769B2 (en) Method and apparatus for providing synchronization in a communication system
JP2007208367A (ja) 同期信号生成装置、送信機及び制御方法
JP5310728B2 (ja) シンセサイザ及びこれを用いた受信装置及び電子機器
WO2009101791A1 (ja) シンセサイザと、これを用いた受信装置
JP7394772B2 (ja) 複合位相ロックループを使用する、高分解能、広帯域幅および低位相ノイズを有する信号位相追跡
JP5272893B2 (ja) デジタル無線機のafc回路及びafc制御方法
JP2021168508A (ja) 受信装置、受信方法
EP3544194B1 (en) Receiver, reception method for receiving fsk signals
JP7143602B2 (ja) 受信装置、受信方法
US20100323648A1 (en) Demodulation device, reception device, and demodulation method
JP4855129B2 (ja) デジタル放送受信装置およびデジタル放送システム
JP4998275B2 (ja) 受信装置とこれを用いた電子機器
GB2455717A (en) Frequency synthesis in a wireless basestation
JP2001036386A (ja) 周波数制御回路
JP3672913B2 (ja) 携帯型無線機における発振周波数補正回路
JP4692261B2 (ja) 受信装置及び受信周波数の制御方法
JP2000312155A (ja) Fm受信装置
JP2000241524A (ja) デジタルプロセッシングpll
JPH03284015A (ja) 選局装置
KR20000059976A (ko) 브이.에스.비 방식 수신기의 적응 위상추적장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132788.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526537

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13057055

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009809539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE